JP3995554B2 - Method for treating boron-containing water - Google Patents

Method for treating boron-containing water Download PDF

Info

Publication number
JP3995554B2
JP3995554B2 JP2002216478A JP2002216478A JP3995554B2 JP 3995554 B2 JP3995554 B2 JP 3995554B2 JP 2002216478 A JP2002216478 A JP 2002216478A JP 2002216478 A JP2002216478 A JP 2002216478A JP 3995554 B2 JP3995554 B2 JP 3995554B2
Authority
JP
Japan
Prior art keywords
boron
water
containing water
aqueous solution
granulated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002216478A
Other languages
Japanese (ja)
Other versions
JP2004057870A (en
Inventor
継明 山浦
学 進藤
万洋 生駒
誠一 今野
裕之 朝田
良弘 恵藤
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Asahi Kasei Engineering Corp
Original Assignee
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Asahi Kasei Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kurita Water Industries Ltd, Asahi Kasei Engineering Corp filed Critical Tohoku Electric Power Co Inc
Priority to JP2002216478A priority Critical patent/JP3995554B2/en
Publication of JP2004057870A publication Critical patent/JP2004057870A/en
Application granted granted Critical
Publication of JP3995554B2 publication Critical patent/JP3995554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ホウ素含有水の処理方法に関する。さらに詳しくは、本発明は、希土類元素の水酸化物を担持した造粒体を用いてホウ素を吸着除去するホウ素含有水の処理方法において、該造粒体のホウ素吸着性能を低下させることなく、安定して処理を続けることができるホウ素含有水の処理方法に関する。
【0002】
【従来の技術】
ホウ素化合物は、医薬品、化粧品、石けん、電気メッキなどの種々の用途に使用され、これらの製造工程などから発生する排水にはホウ素が含まれている。また、ごみ焼却場の洗煙排水等にもホウ素が含まれている場合がある。このようなホウ素含有水の処理方法として、希土類元素の水酸化物にホウ酸イオンを吸着させて分離する方法(特開昭59−132986号公報)が提案されており、希土類元素の水酸化物を担持した造粒体にホウ素を吸着させ、アルカリ水溶液を用いてホウ素を脱着するホウ素含有水の処理方法が知られている。
しかし、この方法をごみ焼却場の洗煙排水などのホウ素含有水に適用し、ホウ素の吸着と脱着を繰り返すと、希土類元素の水酸化物を担持した造粒体のホウ素吸着性能が次第に低下し、ホウ素含有水の処理を継続することが困難になる場合が生じた。このために、希土類元素の水酸化物を担持した造粒体を用いて、長期間にわたり安定して処理することができるホウ素含有水の処理方法が求められていた。
【0003】
【発明が解決しようとする課題】
本発明は、希土類元素の水酸化物を担持した造粒体を用いてホウ素を吸着除去するホウ素含有水の処理方法において、該造粒体のホウ素吸着性能を低下させることなく、安定して処理を続けることができるホウ素含有水の処理方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、希土類元素の水酸化物を担持した造粒体にホウ素を吸着させ、アルカリ水溶液と接触させてホウ素を脱着させる前に、又は、脱着させた後に、造粒体を酸水溶液と接触させて処理することにより、造粒体のホウ素吸着性能を維持し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)医薬品、化粧品、石けん、電気メッキの工程排水又はごみ焼却場の洗煙排水であるホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着工程と、ホウ素を吸着した造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する脱着工程を有するホウ素含有水の処理方法において、ホウ素含有水の通水を停止し、造粒体を水で洗浄し、造粒体をアルカリ水溶液と接触させてホウ素を脱着したのち水で洗浄し、つづいて造粒体を酸水溶液と接触させたのち造粒体を水で洗浄し、次いで造粒体をアルカリ水溶液と接触させてOH型に変換し、最後に造粒体を水で洗浄する1サイクルの造粒体の処理後に、ホウ素含有水の通水を再開することを特徴とするホウ素含有水の処理方法、
(2)酸水溶液のpHが1〜5である第1項記載のホウ素含有水の処理方法、及び、
(3)アルカリ水溶液の濃度が0 . 1〜2モル/Lである第1又は第2項記載のホウ素含有水の処理方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明方法は、ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着工程と、ホウ素を吸着した造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する脱着工程を有するホウ素含有水の処理方法において、造粒体をアルカリ水溶液と接触させる前に、又は、接触させた後に、造粒体を酸水溶液と接触させる酸処理工程を有するホウ素含有水の処理方法である。
本発明方法を適用するホウ素含有水に特に制限はなく、例えば、医薬品、化粧品、石けん、電気メッキなどの工程排水、ごみ焼却場の洗煙排水などを挙げることができる。これらの排水には、ホウ素がホウ酸又はホウ酸塩として含まれ、そのホウ素濃度は、数十ないし数百mg/Lである場合が多い。
本発明方法に用いる希土類元素の水酸化物を担持した造粒体の製造方法に特に制限はなく、例えば、希土類元素の塩の水溶液を担体に付着させ、アルカリ水溶液で処理し、担体上に不溶性の希土類元素の水酸化物を沈着させることにより、製造することができる。希土類元素の水酸化物としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムの水酸化物を挙げることができる。これらの中で、セリウムの水酸化物を特に好適に用いることができる。希土類元素の水酸化物を担持する担体に特に制限はなく、例えば、マグネシア、アルミナ、チタニア、シリカ、シリカ−アルミナ、ジルコニア、ゼオライト、活性炭、ケイソウ土、コージェライトなどの無機系担体、ポリアミド、セルロース系樹脂、ポリスルホン、ポリアクリロニトリル、ポリ塩化ビニル、エチレン−ビニルアルコール共重合体などの有機系担体を挙げることができる。
【0006】
本発明方法において、ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させる方法に特に制限はなく、例えば、該造粒体を充填した充填塔にホウ素含有水を通水して接触させることができる。造粒体を充填した充填塔の数に特に制限はなく、例えば、充填塔1基のみを使用することができ、あるいは、複数基の充填塔を直列につなぎ、最初の塔が飽和したとき、最初の塔を系列からはずし、再生済みの塔を最終段に付け加えるいわゆるメリーゴーラウンド方式とすることもできる。充填塔1基のみを使用する場合は、塔から流出する処理水のホウ素濃度が所定の排水基準に達したときに、脱着工程又は酸処理工程に移行する。メリーゴーラウンド方式の場合は、最初の塔の流出水のホウ素濃度が入口濃度に等しくなったとき、最初の塔を充填塔列から外して、脱着工程又は酸処理工程に移行する。
本発明方法において、ホウ素含有水は、pHを3〜12に調整して希土類元素の水酸化物を担持した造粒体と接触させることが好ましく、pHを4〜10に調整して該造粒体と接触させることがより好ましい。ホウ素含有水のpHが3未満又はpHが12を超えると、吸着量が低下するおそれがある。
【0007】
本発明方法においては、ホウ素を吸着した造粒体をアルカリ水溶液と接触させる前に、又は、接触させた後に、造粒体と酸水溶液を接触させる。ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させると、ホウ素が造粒体に吸着される以外に、ホウ素含有水中に含まれるマグネシウム、カルシウムなどのスケール成分から水酸化マグネシウム、炭酸カルシウムなどのスケールが生成して造粒体の表面に析出する。造粒体によるホウ素の吸着と脱着を繰り返すと、造粒体の表面に析出したスケールの量が増え、造粒体のホウ素吸着性能が低下し、吸着速度が遅くなり、平衡吸着量が減少する。造粒体を酸水溶液と接触させることにより、造粒体の表面に析出したスケールを除去し、造粒体が本来有する吸着性能を維持することができる。
本発明方法に使用する酸としては、例えば、塩酸、硝酸、硫酸などを挙げることができる。これらの中で、塩酸は、窒素含有廃液が発生せず、充填塔内で不溶性の塩を生成するおそれもないので、好適に用いることができる。酸水溶液は、pH1〜5であることが好ましく、pH1〜3であることがより好ましい。酸水溶液のpHが1未満であると、担持している希土類元素の水酸化物が溶出し、造粒体の吸着性能が低下するおそれがある。酸水溶液のpHが5を超えると、造粒体の表面のスケールを除去する効果が十分に発現しないおそれがある。
本発明方法において、造粒体と酸水溶液を接触させる方法に特に制限はなく、例えば、造粒体を充填した充填塔に酸水溶液を通液することにより、接触させることができる。充填塔から流出する酸水溶液は、酸を添加して所定のpHに調整することにより、循環して再使用することができる。
【0008】
本発明方法において、ホウ素の脱着に用いるアルカリ水溶液に特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどの水溶液を挙げることができる。これらの中で、水酸化ナトリウム水溶液を好適に用いることができる。アルカリ水溶液の濃度に特に制限はないが、0.1〜2モル/Lであることが好ましく、0.3〜1モル/Lであることがより好ましい。アルカリ水溶液の濃度が0.1モル/L未満であると、必要なアルカリ水溶液の量が過大になるとともに、ホウ素が十分に脱着しないおそれがある。アルカリ水溶液の濃度が2モル/Lを超えても、脱着効率が向上せず、希土類元素の水酸化物を担持した造粒体が劣化するおそれがある。
本発明方法において、ホウ素を吸着した造粒体をアルカリ水溶液と接触させた後に、造粒体を酸水溶液と接触させる場合は、ホウ素含有水の通水を停止し、造粒体を水で洗浄し、造粒体をアルカリ水溶液と接触させてホウ素を脱着したのち、水で洗浄し、つづいて造粒体を酸水溶液と接触させ、造粒体を水で洗浄し、次いで造粒体をアルカリ水溶液と接触させてOH型に変換し、最後に造粒体を水で洗浄して1サイクルの処理を完了する。酸処理工程後にアルカリ水溶液によるホウ素の脱着を行うと、脱着工程終了時に造粒体がOH型になっているので、工程数が少ないという利点がある。しかし、酸処理工程において、吸着されているホウ素の一部が脱着するので、ホウ素の回収に重点をおく場合は、脱着工程後に酸処理工程を行うことが好ましい。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
硫酸イオン1,000mg/L、塩化物イオン1,000mg/L、カルシウムイオン300mg/L、ナトリウムイオン400mg/L、マグネシウムイオン200mg/Lを含有する合成水に、ホウ酸を添加してホウ素濃度300mg/Lの試験水を調製した。この試験水に水酸化ナトリウム水溶液を加えてpH9に調整し、エチレン−ビニルアルコール共重合体にセリウムの水酸化物をセリウムとして0.5kg/L担持させた造粒体20mLを充填したカラムに、流速60mL/h、下向流で通水した。10h通水したとき、カラムから流出する処理水のホウ素濃度が10mg/Lになったので、通水を停止した。
カラムに水20mLを20minで通水して水洗し、0.5モル/L水酸化ナトリウム水溶液60mLを60minで通液して、造粒体を再生した。再生廃液のホウ素濃度は3.0g/Lであり、造粒体のホウ素平衡吸着量は9.0g/Lであった。
次いで、水20mLを20minで通水して水洗し、pH1.2の希塩酸をカラム出口水のpHが5になるまで200mL/hで通液したのち、水20mLを20minで通水して水洗し、0.5モル/L水酸化ナトリウム水溶液20mLを20minで通液し、最後に水20mLを20minで通水して水洗し、1サイクルの処理を終了した。
ふたたび、pH9に調整した試験水の通水に戻り、同様にして、全10サイクルの処理を行った。なお、希塩酸はpH1.2に調整し、循環して再使用した。10サイクル目の造粒体のホウ素平衡吸着量は、8.8g/Lであった。
参考例
実施例1と同様にして、カラムから流出する処理水のホウ素濃度が10mg/Lになったとき、pH9に調整した試験水の通水を停止し、カラムに水20mLを20minで通水したのち、pH1.2の希塩酸をカラム出口水のpHが5になるまで通液し、次いで、水20mLを20minで通水して水洗し、0.5モル/L水酸化ナトリウム水溶液60mLを60minで通液して、造粒体を再生した。再生廃液のホウ素濃度は3.0g/Lであり、造粒体のホウ素平衡吸着量は9.0g/Lであった。さらに、水20mLを20minで通水して水洗し、1サイクルの処理を終了した。
ふたたび、pH9に調整した試験水の通水に戻り、同様にして、全10サイクルの処理を行った。なお、希塩酸はpH1.2に調整し、循環して再使用した。10サイクル目の造粒体のホウ素平衡吸着量は、9.0g/Lであった。
比較例1
希塩酸を通液しない以外は、参考例と同じ操作を行った。
実施例1と同様にして、カラムから流出する処理水のホウ素濃度が10mg/Lになったとき、pH9に調整した試験水の通水を停止し、カラムに水20mLを20minで通水したのち、0.5モル/L水酸化ナトリウム水溶液60mLを60minで通液して、造粒体を再生した。再生廃液のホウ素濃度は3.0g/Lであり、造粒体のホウ素平衡吸着量は9.0g/Lであった。さらに、水20mLを20minで通水して水洗し、1サイクルの処理を終了した。
ふたたび、pH9に調整した試験水の通水に戻り、同様にして、全10サイクルの処理を行った。10サイクル目の造粒体のホウ素平衡吸着量は、5.8g/Lであった。
実施例1、参考例及び比較例1の結果を、第1表に示す。
【0010】
【表1】

Figure 0003995554
【0011】
第1表に見られるように、水酸化ナトリウム水溶液による再生後に希塩酸を通液した実施例1でも、希塩酸を通液したのち水酸化ナトリウム水溶液による再生を行った参考例でも、1サイクル目と10サイクル目のホウ素平衡吸着量にほとんど差がなく、セリウムの水酸化物を担持させた造粒体の性能は維持されている。これに対して、希塩酸の通液を行わなかった比較例1では、10サイクル目のホウ素平衡吸着量は1サイクル目の約3分の2に低下している。
【0012】
【発明の効果】
本発明のホウ素含有水の処理方法によれば、共存塩類が存在するホウ素含有水からホウ素を選択的に吸着分離する操作を繰り返しても、希土類元素の水酸化物を担持した造粒体の性能を維持し、安定して処理を続けることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating boron-containing water. More specifically, the present invention is a boron-containing water treatment method in which boron is adsorbed and removed using a granule carrying a rare earth element hydroxide, without reducing the boron adsorption performance of the granule, The present invention relates to a method for treating boron-containing water that can be stably treated.
[0002]
[Prior art]
Boron compounds are used in various applications such as pharmaceuticals, cosmetics, soaps, electroplating, etc., and wastewater generated from these production processes contains boron. In addition, there are cases where boron is also contained in the wastewater from the waste incineration plant. As a method for treating such boron-containing water, a method of separating boric acid ions by adsorbing them on a rare earth element hydroxide (JP 59-132986 A) has been proposed. There is known a method for treating boron-containing water, in which boron is adsorbed on a granulated body supporting bismuth and boron is desorbed using an alkaline aqueous solution.
However, when this method is applied to boron-containing water such as sewage effluent from a waste incineration plant and boron adsorption and desorption are repeated, the boron adsorption performance of the granule carrying rare earth element hydroxide gradually decreases. In some cases, it was difficult to continue the treatment with boron-containing water. For this reason, there has been a demand for a method for treating boron-containing water that can be stably treated over a long period of time using a granule carrying a rare earth element hydroxide.
[0003]
[Problems to be solved by the invention]
The present invention relates to a method for treating boron-containing water in which boron is adsorbed and removed using a granule carrying a hydroxide of a rare earth element, and the treatment is stably performed without reducing the boron adsorption performance of the granule. The object of the present invention is to provide a method for treating boron-containing water that can continue the process.
[0004]
[Means for Solving the Problems]
As a result of intensive research to solve the above problems, the present inventors adsorbed boron to a granule carrying a hydroxide of a rare earth element and contacted it with an alkaline aqueous solution before desorbing boron. Alternatively, after the desorption, it was found that the boron adsorption performance of the granule can be maintained by contacting the granule with an acid aqueous solution, and the present invention has been completed based on this finding. It was.
That is, the present invention
(1) Contacting boron-containing water, which is waste water from pharmaceuticals, cosmetics, soap, electroplating process or smoke incineration plant, with a granule carrying rare earth element hydroxide to remove boron by adsorption and the adsorption step, the granular material that has adsorbed boron is contacted with an alkaline aqueous solution, in the processing method of the boron-containing water having a desorption step of desorbing boron, stop water flow of boron-containing water, water granule After washing the granulated body with an alkaline aqueous solution and desorbing boron, the granulated body is washed with water, followed by contacting the granulated body with an acid aqueous solution, and then the granulated body is washed with water, and then the granulated body. The boron-containing water is characterized by restarting the flow of boron-containing water after the treatment of the granulated body in one cycle, which is brought into contact with an alkaline aqueous solution to be converted into OH type and finally washed with water. Processing method,
(2) The method for treating boron-containing water according to item 1, wherein the pH of the acid aqueous solution is 1 to 5, and
(3) concentration of the alkaline aqueous solution is from 0.1 to 2 mol / L first or processing method of the boron-containing water of the second term, wherein the,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, the boron-containing water is brought into contact with a granule carrying a hydroxide of a rare earth element, the adsorption step of adsorbing and removing boron, the granule adsorbing boron is brought into contact with an alkaline aqueous solution, In a method for treating boron-containing water having a desorption step of desorbing boron, boron having an acid treatment step of bringing the granulated body into contact with an acid aqueous solution before or after contacting the granulated body with an alkaline aqueous solution It is a processing method of contained water.
The boron-containing water to which the method of the present invention is applied is not particularly limited, and examples thereof include process wastewater such as pharmaceuticals, cosmetics, soap, and electroplating, and smoke washing wastewater from a garbage incinerator. These wastewaters contain boron as boric acid or borate, and the boron concentration is often several tens to several hundreds mg / L.
There is no particular limitation on the method for producing a granule carrying a rare earth element hydroxide used in the method of the present invention. For example, an aqueous solution of a rare earth element salt is attached to a carrier, treated with an alkaline aqueous solution, and insoluble on the carrier. Can be produced by depositing a rare earth element hydroxide. Examples of rare earth element hydroxides include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. it can. Of these, cerium hydroxide can be particularly preferably used. There is no particular limitation on the carrier supporting the rare earth element hydroxide, for example, magnesia, alumina, titania, silica, silica-alumina, zirconia, zeolite, activated carbon, diatomaceous earth, cordierite and other inorganic carriers, polyamide, cellulose And organic carriers such as resin, polysulfone, polyacrylonitrile, polyvinyl chloride, and ethylene-vinyl alcohol copolymer.
[0006]
In the method of the present invention, there is no particular limitation on the method of bringing boron-containing water into contact with a granule carrying a rare earth element hydroxide. For example, boron-containing water is passed through a packed tower packed with the granule. Can be contacted. There is no particular limitation on the number of packed towers packed with granulation, for example, only one packed tower can be used, or when a plurality of packed towers are connected in series and the first tower is saturated, A so-called merry-go-round system in which the first tower is removed from the line and the regenerated tower is added to the final stage can be employed. When only one packed tower is used, the process proceeds to the desorption process or the acid treatment process when the boron concentration of the treated water flowing out of the tower reaches a predetermined drainage standard. In the case of the merry-go-round method, when the boron concentration of the effluent of the first column becomes equal to the inlet concentration, the first column is removed from the packed column column and the process proceeds to the desorption step or the acid treatment step.
In the method of the present invention, the boron-containing water is preferably brought into contact with a granule carrying a rare earth element hydroxide by adjusting the pH to 3 to 12, and the granulation by adjusting the pH to 4 to 10 More preferably, it is brought into contact with the body. If the pH of the boron-containing water is less than 3 or more than 12, the adsorption amount may decrease.
[0007]
In the method of the present invention, the granulated body adsorbed with boron is brought into contact with the aqueous acid solution before or after being brought into contact with the alkaline aqueous solution. When boron-containing water is brought into contact with a granule carrying a rare earth element hydroxide, boron is adsorbed to the granule, and magnesium hydroxide from magnesium, calcium and other scale components contained in the boron-containing water is used. Then, a scale such as calcium carbonate is generated and deposited on the surface of the granulated body. Repeated adsorption and desorption of boron by the granulate increases the amount of scale deposited on the surface of the granule, lowers the boron adsorption performance of the granulate, slows the adsorption rate, and decreases the equilibrium adsorption amount. . By bringing the granulated body into contact with an acid aqueous solution, the scale deposited on the surface of the granulated body can be removed, and the inherent adsorption performance of the granulated body can be maintained.
Examples of the acid used in the method of the present invention include hydrochloric acid, nitric acid, sulfuric acid and the like. Among these, hydrochloric acid can be preferably used because no nitrogen-containing waste liquid is generated and there is no possibility of forming an insoluble salt in the packed tower. The aqueous acid solution preferably has a pH of 1 to 5, more preferably a pH of 1 to 3. If the pH of the aqueous acid solution is less than 1, the supported rare earth element hydroxide is eluted, and the adsorbing performance of the granulate may be lowered. If the pH of the acid aqueous solution exceeds 5, the effect of removing the scale on the surface of the granulated body may not be sufficiently exhibited.
In the method of the present invention, there is no particular limitation on the method of bringing the granule into contact with the aqueous acid solution. For example, the granule can be brought into contact by passing the aqueous acid solution through a packed tower packed with the granulated body. The acid aqueous solution flowing out from the packed tower can be circulated and reused by adding an acid to adjust the pH to a predetermined value.
[0008]
In the method of the present invention, the alkaline aqueous solution used for boron desorption is not particularly limited, and examples thereof include aqueous solutions of sodium hydroxide and potassium hydroxide. Among these, an aqueous sodium hydroxide solution can be suitably used. Although there is no restriction | limiting in particular in the density | concentration of aqueous alkali solution, it is preferable that it is 0.1-2 mol / L, and it is more preferable that it is 0.3-1 mol / L. If the concentration of the aqueous alkaline solution is less than 0.1 mol / L, the amount of the required aqueous alkaline solution becomes excessive, and boron may not be sufficiently desorbed. Even if the concentration of the aqueous alkali solution exceeds 2 mol / L, the desorption efficiency is not improved, and the granule carrying the rare earth element hydroxide may be deteriorated.
In the method of the present invention, after bringing the granulated body adsorbing boron into contact with the alkaline aqueous solution and then bringing the granulated body into contact with the aqueous acid solution, the flow of boron-containing water is stopped and the granulated body is washed with water. Then, after contacting the granulated body with an alkaline aqueous solution and desorbing boron, it is washed with water, and then the granulated body is contacted with an acid aqueous solution, the granulated body is washed with water, and then the granulated body is washed with alkali. It is brought into contact with an aqueous solution to convert it to OH type, and finally the granule is washed with water to complete one cycle of treatment. When boron is desorbed with an alkaline aqueous solution after the acid treatment step, the granulated body is in the OH type at the end of the desorption step, and thus there is an advantage that the number of steps is small. However, since part of the adsorbed boron is desorbed in the acid treatment step, it is preferable to perform the acid treatment step after the desorption step when emphasizing the recovery of boron.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Boric acid is added to synthetic water containing 1,000 mg / L of sulfate ion, 1,000 mg / L of chloride ion, 300 mg / L of calcium ion, 400 mg / L of sodium ion and 200 mg / L of magnesium ion, and boron concentration is 300 mg. / L test water was prepared. A sodium hydroxide aqueous solution was added to this test water to adjust the pH to 9, and a column packed with 20 mL of a granulated product in which 0.5 kg / L of cerium hydroxide was supported as cerium on an ethylene-vinyl alcohol copolymer, Water was passed at a flow rate of 60 mL / h in a downward flow. When the water flowed for 10 hours, the boron concentration of the treated water flowing out from the column became 10 mg / L, so the water flow was stopped.
20 mL of water was passed through the column for 20 min and washed, and 60 mL of a 0.5 mol / L sodium hydroxide aqueous solution was passed through for 60 min to regenerate the granulated body. The boron concentration of the regenerated waste liquid was 3.0 g / L, and the boron equilibrium adsorption amount of the granulated body was 9.0 g / L.
Next, 20 mL of water was passed through for 20 minutes and washed with water. After dilute hydrochloric acid with a pH of 1.2 was passed at 200 mL / h until the pH of the column outlet water became 5, then 20 mL of water was passed through for 20 minutes and washed with water. Then, 20 mL of a 0.5 mol / L sodium hydroxide aqueous solution was passed through for 20 min, and finally 20 mL of water was passed through for 20 min and washed with water to complete one cycle of processing.
Again, the test water adjusted to pH 9 was returned to flow, and the treatment for all 10 cycles was performed in the same manner. The dilute hydrochloric acid was adjusted to pH 1.2, circulated and reused. The boron equilibrium adsorption amount of the granulated product at the 10th cycle was 8.8 g / L.
Reference Example In the same manner as in Example 1, when the boron concentration of the treated water flowing out from the column reached 10 mg / L, the test water adjusted to pH 9 was stopped and 20 mL of water was passed through the column in 20 min. After that, dilute hydrochloric acid having a pH of 1.2 was passed through until the pH of the column outlet water reached 5, then 20 mL of water was passed through for 20 min and washed, and 60 mL of 0.5 mol / L aqueous sodium hydroxide solution was added for 60 min. Then, the granulated body was regenerated. The boron concentration of the regenerated waste liquid was 3.0 g / L, and the boron equilibrium adsorption amount of the granulated body was 9.0 g / L. Furthermore, 20 mL of water was passed for 20 minutes to wash the water, and one cycle of processing was completed.
Again, the test water adjusted to pH 9 was returned to flow, and the treatment for all 10 cycles was performed in the same manner. The dilute hydrochloric acid was adjusted to pH 1.2, circulated and reused. The boron equilibrium adsorption amount of the granulated product at the 10th cycle was 9.0 g / L.
Comparative Example 1
The same operation as in the Reference Example was performed except that dilute hydrochloric acid was not passed.
Similarly to Example 1, when the boron concentration of the treated water flowing out from the column reached 10 mg / L, the test water adjusted to pH 9 was stopped and 20 mL of water was passed through the column for 20 min. Then, 60 mL of 0.5 mol / L sodium hydroxide aqueous solution was passed through for 60 min to regenerate the granulated body. The boron concentration of the regenerated waste liquid was 3.0 g / L, and the boron equilibrium adsorption amount of the granulated body was 9.0 g / L. Furthermore, 20 mL of water was passed for 20 minutes to wash the water, and one cycle of processing was completed.
Again, the test water adjusted to pH 9 was returned to flow, and the treatment for all 10 cycles was performed in the same manner. The boron equilibrium adsorption amount of the granulated product at the 10th cycle was 5.8 g / L.
The results of Example 1 , Reference Example and Comparative Example 1 are shown in Table 1.
[0010]
[Table 1]
Figure 0003995554
[0011]
As can be seen from Table 1, both Example 1 and Example 10 in which diluted hydrochloric acid was passed after regeneration with an aqueous sodium hydroxide solution and Reference Examples in which regeneration was performed with an aqueous sodium hydroxide solution after passing diluted hydrochloric acid. There is almost no difference in the amount of boron equilibrium adsorption at the cycle, and the performance of the granule carrying cerium hydroxide is maintained. In contrast, in Comparative Example 1 in which dilute hydrochloric acid was not passed, the boron equilibrium adsorption amount at the 10th cycle was reduced to about two thirds of the first cycle.
[0012]
【The invention's effect】
According to the method for treating boron-containing water of the present invention, the performance of a granule carrying a rare earth element hydroxide even if the operation of selectively adsorbing and separating boron from boron-containing water in which coexisting salts exist is repeated. The process can be continued stably.

Claims (3)

医薬品、化粧品、石けん、電気メッキの工程排水又はごみ焼却場の洗煙排水であるホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着工程と、ホウ素を吸着した造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する脱着工程を有するホウ素含有水の処理方法において、ホウ素含有水の通水を停止し、造粒体を水で洗浄し、造粒体をアルカリ水溶液と接触させてホウ素を脱着したのち水で洗浄し、つづいて造粒体を酸水溶液と接触させたのち造粒体を水で洗浄し、次いで造粒体をアルカリ水溶液と接触させてOH型に変換し、最後に造粒体を水で洗浄する1サイクルの造粒体の処理後に、ホウ素含有水の通水を再開することを特徴とするホウ素含有水の処理方法。An adsorption process for adsorbing and removing boron by contacting boron-containing water, which is wastewater from pharmaceuticals, cosmetics, soap, electroplating process or smoke incineration plant, with a granulated material carrying rare earth element hydroxide. In the method of treating boron-containing water having a desorption step of bringing the granulated body adsorbing boron into contact with an alkaline aqueous solution and desorbing boron, the flow of boron-containing water is stopped and the granulated body is washed with water. Then, the granulated body is brought into contact with an alkaline aqueous solution, boron is desorbed and then washed with water, and then the granulated body is brought into contact with an acid aqueous solution, and then the granulated body is washed with water, and then the granulated body is washed with an alkaline aqueous solution. The process for treating boron-containing water is characterized by restarting the flow of boron-containing water after the treatment of the granulated body in one cycle in which it is brought into contact with OH to be converted into OH type and finally washed with water. . 酸水溶液のpHが1〜5である請求項1記載のホウ素含有水の処理方法。  The method for treating boron-containing water according to claim 1, wherein the acid aqueous solution has a pH of 1 to 5. アルカリ水溶液の濃度が0Concentration of alkaline aqueous solution is 0 .. 1〜2モル/Lである請求項1又は2記載のホウ素含有水の処理方法。It is 1-2 mol / L, The processing method of the boron containing water of Claim 1 or 2.
JP2002216478A 2002-07-25 2002-07-25 Method for treating boron-containing water Expired - Fee Related JP3995554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216478A JP3995554B2 (en) 2002-07-25 2002-07-25 Method for treating boron-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216478A JP3995554B2 (en) 2002-07-25 2002-07-25 Method for treating boron-containing water

Publications (2)

Publication Number Publication Date
JP2004057870A JP2004057870A (en) 2004-02-26
JP3995554B2 true JP3995554B2 (en) 2007-10-24

Family

ID=31938226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216478A Expired - Fee Related JP3995554B2 (en) 2002-07-25 2002-07-25 Method for treating boron-containing water

Country Status (1)

Country Link
JP (1) JP3995554B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863825B2 (en) 2003-01-29 2005-03-08 Union Oil Company Of California Process for removing arsenic from aqueous streams
KR100698672B1 (en) * 2003-05-01 2007-03-23 가부시키가이샤 니혼 가이스이 Adsorbent and process for producing the same
JP4637737B2 (en) * 2005-12-16 2011-02-23 株式会社日本海水 Regeneration method of boron adsorbent
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
JP6252143B2 (en) * 2013-12-04 2017-12-27 栗田工業株式会社 Recycling method of boron adsorbent
EP3113859A4 (en) 2014-03-07 2017-10-04 Secure Natural Resources LLC Cerium (iv) oxide with exceptional arsenic removal properties

Also Published As

Publication number Publication date
JP2004057870A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP5157941B2 (en) Method for treating boron-containing water
US20110155669A1 (en) Method for trace phosphate removal from water using composite resin
CN101337707B (en) Method for processing dimethylamine waste water by ion-exchange method
JP3995554B2 (en) Method for treating boron-containing water
CN111517530A (en) Waste acid liquid regeneration pretreatment method and system
TWI381999B (en) Silica removing device and silica removing method
JP3995550B2 (en) Method and apparatus for treating boron-containing water
JP4297663B2 (en) Boron recovery method
JP2008073639A (en) Boron recovery apparatus
CN100525899C (en) Regeneration of rare-earth adsorbent after sewage denitrifying and dephosphor
JP3913939B2 (en) Boron recovery method
CN1259251C (en) Method for biochemical treatment of discharged water
JPS61192385A (en) Treatment of fluorine-containing waste solution
JP2891790B2 (en) Regeneration method of anion exchange resin
JP3891189B2 (en) Method for treating boron-containing water
JP4696333B2 (en) Boron recovery method
JP2004298738A (en) Boron-containing water treatment method
SU1766848A1 (en) Method of pentavalent arsenic extraction from acid arsenic-containing flow
CN101928048A (en) Method for purifying humic acid pollutants in water by utilizing polyaniline
JP3963101B2 (en) Vanadium-containing water ion exchange method and apparatus
JP2005334701A (en) Boron-containing water treatment method
CN111892120B (en) Method for synchronously and deeply removing trace ammonia nitrogen and phosphate in biochemical tail water
JP2001219163A (en) Treating method of boron-containing water
JPH09206604A (en) Regeneration method of weak basic anion exchange resin
CN101254992A (en) Chemical wastewater biochemical tailrace advanced treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3995554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140810

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees