JP3995550B2 - Method and apparatus for treating boron-containing water - Google Patents

Method and apparatus for treating boron-containing water Download PDF

Info

Publication number
JP3995550B2
JP3995550B2 JP2002211554A JP2002211554A JP3995550B2 JP 3995550 B2 JP3995550 B2 JP 3995550B2 JP 2002211554 A JP2002211554 A JP 2002211554A JP 2002211554 A JP2002211554 A JP 2002211554A JP 3995550 B2 JP3995550 B2 JP 3995550B2
Authority
JP
Japan
Prior art keywords
boron
containing water
desorption
liquid
boric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002211554A
Other languages
Japanese (ja)
Other versions
JP2004050069A (en
Inventor
継明 山浦
学 進藤
万洋 生駒
裕之 朝田
良弘 恵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kurita Water Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2002211554A priority Critical patent/JP3995550B2/en
Publication of JP2004050069A publication Critical patent/JP2004050069A/en
Application granted granted Critical
Publication of JP3995550B2 publication Critical patent/JP3995550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ホウ素含有水の処理方法及び処理装置に関する。さらに詳しくは、本発明は、薬品使用量が少なく、ホウ素含有水を経済的に処理することができ、ホウ素を有価物として回収し得るホウ素含有水の処理方法及び処理装置に関する。
【0002】
【従来の技術】
ホウ素化合物は、医薬品、化粧品、石けん、電気メッキなどの種々の用途に使用され、これらの製造工程などから発生する排水にはホウ素が含まれている。また、ごみ焼却場の洗煙排水等にもホウ素が含まれている場合がある。このようなホウ素含有水からホウ素を除去し、有価物として回収するための処理方法が開発されている。
例えば、特開昭59−132986号公報には、低濃度のホウ酸水溶液中より、選択性よく高い効率でホウ酸イオンを分離する方法として、希土類元素の水酸化物にホウ酸イオンを吸着させて分離する方法が提案されおり、希土類元素の水酸化物を担持した造粒体にホウ素を吸着させ、アルカリ水溶液を用いてホウ素を脱着するホウ素含有水の処理方法が知られている。特開昭62−121689号公報には、ホウ素含有水をアニオン交換樹脂で処理する方法において、イオン交換樹脂の再生廃液からホウ素を抽出し、再生廃液を排出することなく再利用する方法が提案されている。また、ホウ素含有水から効率的に高純度のホウ素を分離、回収する方法として、ホウ素を吸着したホウ素選択性樹脂から、鉱酸溶液を用いてホウ素を脱離して得た脱離液を、OH形弱塩基性陰イオン交換樹脂に通液してホウ素溶液と鉱酸溶液に分画する方法が提案されている。しかし、これらの方法は、いずれも複雑な処理工程が必要であり、設備投資においても、運転管理においても、経済的負担が大きかった。このために、より経済的にホウ素含有水を処理し、ホウ素を有価物として回収し得るホウ素含有水の処理方法及び処理装置が求められていた。
【0003】
【発明が解決しようとする課題】
本発明は、薬品使用量が少なく、ホウ素含有水を経済的に処理することができ、ホウ素を有価物として回収し得るホウ素含有水の処理方法及び処理装置を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、ホウ素を希土類元素の水酸化物を担持した造粒体に吸着させ、アルカリによる該造粒体からの脱着液を濃縮し、ホウ酸塩を晶析したのち固液分離することにより、ホウ素を有価物として回収し、かつ、処理工程において発生する固液分離液と凝縮水を再利用することが可能となることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)(A)ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着工程、(B)ホウ素を吸着した該造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する脱着工程、(C)ホウ素を高濃度に含有する脱着液を蒸発濃縮する蒸発工程、(D)蒸発濃縮液中のホウ酸のアルカリ金属塩を晶析する晶析工程、及び(E)晶析したホウ酸のアルカリ金属塩を液から分離する固液分離工程を有し、 ( ) 固液分離工程で得られた液を、脱着工程のアルカリ水溶液の調製に使用することを特徴とするホウ素含有水の処理方法、
(2)蒸発工程で生成する凝縮水を、脱着工程のアルカリ水溶液の水分として使用する第1項記載のホウ素含有水の処理方法、
)晶析工程において、蒸発濃縮液を冷却する第1項記載のホウ素含有水の処理方法、
)固液分離工程で分離したホウ酸のアルカリ金属塩を、付着水分を含むホウ酸のアルカリ金属塩の容量に対して0.5〜1容量倍の水で洗浄する第1項〜第項のいずれかに記載のホウ酸含有水の処理方法、及び、
)(A)ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着手段、(B)ホウ素を吸着した該造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する脱着手段、(C)ホウ素を高濃度に含有する脱着液を蒸発濃縮する蒸発手段、(D)蒸発濃縮液中のホウ酸のアルカリ金属塩を晶析する晶析手段、(E)晶析したホウ酸のアルカリ金属塩を液から分離する固液分離手段及び ( ) 固液分離工程で得られた液を脱着工程のアルカリ水溶液の調製に使用する手段を有することを特徴とするホウ素含有水の処理装置、
を提供するものである。
【0005】
【発明の実施の形態】
本発明のホウ素含有水の処理方法は、(A)ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着工程、(B)ホウ素を吸着した該造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する脱着工程、(C)ホウ素を高濃度に含有する脱着液を蒸発濃縮する蒸発工程、(D)蒸発濃縮液中のホウ酸のアルカリ金属塩を晶析する晶析工程、及び(E)晶析したホウ酸のアルカリ金属塩を液から分離する固液分離工程を有する。
図1は、本発明方法の実施の一態様の工程系統図である。希土類元素の水酸化物を担持した造粒体を充填した充填塔1に、ホウ素含有水を通水し、該造粒体と接触させてホウ素を吸着除去する。ホウ素が吸着除去された処理水は、充填塔の塔底から流出する。流出する処理水のホウ素濃度が所定の値に達したとき、ホウ素含有水の通水を停止し、造粒体の再生脱着工程に移行する。まず、充填塔の塔頂から洗浄水を送り、充填塔内のホウ素含有水を押し出す。このときに発生する廃液は、希薄廃液としてホウ素含有水とともに再度充填塔に通水する。次いで、再生液貯槽2からアルカリ水溶液を充填塔に送り、ホウ素を吸着した造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する。このときに発生するホウ素を高濃度に含有する脱着液は、濃厚廃液として蒸発缶3に送り、蒸発濃縮する。
蒸発缶で発生する蒸気は、冷却凝縮器で冷却し、発生する凝縮水を再生液貯槽に送り、アルカリ水溶液の水分として利用する。蒸発缶で得られた蒸発濃縮液は、晶析装置4へ送り、冷却することにより、ホウ酸のアルカリ金属塩を晶析する。ホウ酸のアルカリ金属塩が晶析した懸濁液は、固液分離装置5へ送り、固液分離によりホウ酸のアルカリ金属塩の結晶とろ液とに分離する。ホウ酸のアルカリ金属塩の結晶は、洗浄装置6において水洗することにより、純結晶とする。ろ液は、濃厚なアルカリ水溶液であるので、再生液貯槽に送って、脱着工程のアルカリ水溶液の調製に使用する。各工程を経由することにより、アルカリと水の一部が失われるので、再生液貯槽において、アルカリと補充水を追加して、所定の濃度のアルカリ水溶液を必要量調製する。本発明方法においては、必要に応じて、脱着工程の後で、充填塔を洗浄することができる。このとき発生する廃液は、希薄廃液としてホウ素含有水とともに再度充填塔に通水する。
【0006】
本発明方法によれば、固液分離装置において、ホウ素のアルカリ金属塩を有価物として回収することができる。回収して再利用する場合は、ホウ素のアルカリ金属塩の結晶を水洗して純度を向上させることができる。また、蒸発缶で発生する凝縮水と、固液分離装置で発生する濃厚なアルカリ水溶液であるろ液を、ホウ素の脱着に用いるアルカリ水溶液の調製に再利用するので、使用する用水や薬剤の量が少なく、経済的にホウ素含有水を処理することができる。
本発明方法を適用するホウ素含有水に特に制限はなく、例えば、医薬品、化粧品、石けん、電気メッキなどの工程排水、ごみ焼却場の洗煙排水などを挙げることができる。これらの排水には、ホウ素がホウ酸又はホウ酸塩として含まれ、そのホウ素濃度は、数十ないし数百mg/Lである場合が多い。
本発明方法に用いる希土類元素の水酸化物を担持した造粒体の製造方法に特に制限はなく、例えば、希土類元素の塩の水溶液を担体に付着させ、アルカリ水溶液で処理し、担体上に不溶性の希土類元素の水酸化物を沈着させることにより、製造することができる。希土類元素の水酸化物としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムの水酸化物を挙げることができる。これらの中で、セリウムの水酸化物を特に好適に用いることができる。希土類元素の水酸化物を担持する担体に特に制限はなく、例えば、マグネシア、アルミナ、チタニア、シリカ、シリカ−アルミナ、ジルコニア、ゼオライト、活性炭、ケイソウ土、コージェライトなどの無機系担体、ポリアミド、セルロース系樹脂、ポリスルホン、ポリアクリロニトリル、ポリ塩化ビニル、エチレン−ビニルアルコール共重合体などの有機系担体を挙げることができる。
【0007】
本発明方法において、ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させる方法に特に制限はなく、例えば、該造粒体を充填した充填塔にホウ素含有水を通水して接触させることができる。造粒体を充填した充填塔の数に特に制限はなく、例えば、充填塔1基のみを使用することができ、あるいは、複数基の充填塔を直列につなぎ、最初の塔が飽和したとき、最初の塔を系列からはずし、再生済みの塔を最終段に付け加えるいわゆるメリーゴーラウンド方式とすることもできる。充填塔1基のみを使用する場合は、塔から流出する処理水のホウ素濃度が所定の排水基準に達したときに、脱着工程に移行する。メリーゴーラウンド方式の場合は、最初の塔の流出水のホウ素濃度が入口濃度に等しくなったとき、最初の塔を充填塔列から外して、脱着工程に移行する。
本発明方法において、ホウ素含有水は、pHを3〜12に調整して希土類元素の水酸化物を担持した造粒体と接触させることが好ましく、pHを4〜10に調整して該造粒体と接触させることがより好ましい。ホウ素含有水のpHが3未満であっても、pHが12を超えても、ともに吸着量が低下するおそれがある。
【0008】
本発明方法において、ホウ素の脱着に用いるアルカリ水溶液に特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどの水溶液を挙げることができる。これらの中で、水酸化ナトリウム水溶液を好適に用いることができる。アルカリ水溶液の濃度に特に制限はないが、0.1〜2モル/Lであることが好ましく、0.3〜1モル/Lであることがより好ましい。アルカリ水溶液の濃度が0.1モル/L未満であると、必要なアルカリ水溶液の量が過大になるとともに、ホウ素が十分に脱着しないおそれがある。アルカリ水溶液の濃度が2モル/Lを超えても、吸着効率が向上せず、希土類元素の水酸化物を担持した造粒体が劣化するおそれがある。
本発明方法において、ホウ素を吸着した造粒体と接触させるアルカリ水溶液の量に特に制限はないが、造粒体の1〜5容量倍であることが好ましく、造粒体の3〜4容量倍であることがより好ましい。アルカリ水溶液の量が造粒体の1容量倍未満であると、ホウ素の脱着が不十分になるおそれがある。造粒体に吸着されたホウ素は、造粒体の5容量倍以下のアルカリ水溶液で脱着され、通常は造粒体の5容量倍を超えるアルカリ水溶液を使用する必要はない。本発明方法によれば、通常はホウ素1,000〜6,000mg/Lを含有する脱着液を得ることができる。
本発明方法において、ホウ素を高濃度に含有する脱着液を蒸発濃縮する方法に特に制限はなく、例えば、常圧、減圧のいずれの条件でも蒸発濃縮することができる。常圧で脱着液を蒸発濃縮していくと、液中に溶解しているホウ酸のアルカリ金属塩や、脱着に用いたアルカリによる沸点上昇のために、液温は110〜130℃に達する。濃縮倍数に特に制限はないが、後段の晶析工程においてホウ酸のアルカリ金属塩が析出し、アルカリが析出しない範囲までを適宜選定することができる。蒸発濃縮により、ホウ素濃度50,000〜80,000mg/Lの蒸発濃縮液とすることが好ましい。
【0009】
本発明方法において、蒸発濃縮液中のホウ酸のアルカリ金属塩を晶析する方法に特に制限はなく、例えば、蒸発濃縮液を冷却して溶解度を下げ、ホウ酸のアルカリ金属塩を析出させる方法、酸を添加してpHを9〜10に調整し、ホウ酸のアルカリ金属塩を析出させる方法、冷却と酸の添加を併用する方法などを挙げることができる。これらの中で、冷却のみによる方法は、アルカリが酸との中和により失われることがなく、ホウ酸塩となったアルカリを除いてほぼ完全に回収し、再生液の調整に利用することができるので、好適に用いることができる。冷却温度に特に制限はないが、冷媒などを必要としない15〜30℃まで冷却することにより、効率よくホウ酸のアルカリ金属塩を析出させて回収することができる。冷却のみによりホウ酸のアルカリ金属塩を晶析させたろ液を用いて、ホウ素を脱着するためのアルカリ水溶液を調製すると、該水溶液にはホウ素が1,000〜2,000mg/L含まれるが、このようなアルカリ水溶液を用いて、支障なくホウ素を脱着することができる。
本発明方法において、晶析したホウ酸のアルカリ金属塩を液から分離する方法に特に制限はなく、例えば、沈殿、ろ過、膜分離、遠心分離、フィルタープレスなどを挙げることができ、また、これら方法の2つ以上を組み合わせて使用することもできる。これらの中で、遠心分離及びフィルタープレスは目詰まりが少なく、装置を小型化し得るので、好適に用いることができる。
本発明方法により回収されたホウ酸のアルカリ金属塩は、そのままで、あるいは、必要に応じて水洗し、若しくは、熱水に溶解したのち、冷却して再結晶するなどの処理を施してさらに純度を上げたのち、各種産業分野のホウ素原料として有効に利用することができる。
ホウ酸のアルカリ金属塩の結晶の純度を上げるための好ましい水洗方法としては、固液分離によって回収された結晶を、付着した水分を含む結晶の容量に対し、0.5〜1容量倍の水で洗浄する。水量は少ないほど結晶のロス(水洗水による結晶の溶解減量)が少ないが、少なすぎると洗浄が不完全になるので、できるだけ結晶容量の0.5容量倍以上の水で洗浄することが好ましい。また、水量が1容量倍を超えると、溶解減量が急激に大きくなる。水洗水温は低いほど結晶の水への溶解濃度を小さくできるため、利用できる水の状況にもよるが、水洗温度は30℃以下であることが好ましい。
一方、晶析後、固液分離して得られるろ液は、高濃度のアルカリを含有しており、これを廃棄したり、あるいは、原排水へ返送するなど、一過的に使用することも可能であるが、経済性を考慮すると、蒸発した凝縮水及び結晶析出によって消費されたアルカリを補給し、ホウ素を吸着した造粒体の再生液として再利用することが好ましい。
【0010】
本発明のホウ素含有水の処理装置は、(A)ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着手段、(B)ホウ素を吸着した該造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する脱着手段、(C)ホウ素を高濃度に含有する脱着液を蒸発濃縮する蒸発手段、(D)蒸発濃縮液中のホウ酸のアルカリ金属塩を晶析する晶析手段、及び(E)晶析したホウ酸のアルカリ金属塩を液から分離する固液分離手段を有する。
本発明装置において、(A)ホウ素を吸着除去する手段に特に制限はなく、例えば、希土類元素の水酸化物の造粒体を充填した充填塔などを挙げることができる。充填塔へのホウ素含有水の通水方向に特に制限はなく、下向流、上向流のいずれともすることができる。(B)ホウ素を脱着する脱着手段に特に制限はなく、例えば、アルカリ水溶液からなる再生液の調整槽と、該調整槽から希土類元素の水酸化物の充填塔へ再生液を送液するポンプの組み合わせなどを挙げることができる。(C)充填塔の脱着液を蒸発濃縮する蒸発手段としては、例えば、垂直短管バスケット型、強制循環式水平管型、強制循環式垂直管型、コイル型などの蒸発装置を挙げることができる。これらの蒸発装置は、単一缶、蒸気圧縮法、多段効用法、多段フラッシュ蒸発法などにより用いることができる。(D)晶析手段としては、例えば、冷却式晶析装置、蒸発式晶析装置などを挙げることができる。これらの中で、間接冷却式晶析装置を好適に用いることができる。(E)固液分離手段としては、例えば、沈降分離器、遠心分離機、ろ過器、圧搾機などを挙げることができる。
本発明方法及び装置によれば、ホウ素含有水を処理した造粒体の脱着液を蒸発濃縮することにより、脱着液中のホウ素を回収し、固液分離により得られた液は、再生液の調製に有効に利用することが可能である。このために、本発明方法及び装置によれば、従来のホウ素含有水を造粒体で処理する方法の問題であった、脱着液の処理の問題が解決され、また、溶媒抽出やイオン交換を組み合わせた脱着液の処理方法に比べて、簡易な設備で処理することができ、ホウ素含有水を経済的にの処理することができる。
【0011】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
硫酸イオン1,000mg/L、塩化物イオン1,000mg/L、カルシウムイオン300mg/L、ナトリウムイオン400mg/L、マグネシウムイオン200mg/Lを含有する合成水に、ホウ酸を添加してホウ素濃度200mg/Lの試験水を調製した。この試験水に水酸化ナトリウムを加えてpH7に調整し、セリウムの水酸化物をエチレン−ビニルアルコール共重合体に担持させた造粒体1Lを充填したガラスカラムに、流速3L/hで下向流通水した。カラムから流出する処理水中のホウ素濃度が10mg/Lに達するまで13時間通水し、全通水量は39Lであった。
次いで、カラム中の造粒体に吸着されたホウ素を、ホウ素1,000mg/Lを含有する0.5モル/L水酸化ナトリウム水溶液3Lを用いて脱着し、ホウ素濃度3,200mg/Lの脱着液を得た。この脱着液3Lを、20倍に蒸発濃縮した。
この蒸発濃縮液をガラスビーカーに取り、30℃まで冷却し、1時間撹拌したのち、析出した結晶を減圧ろ過器(No.5A)を用いてろ別し、乾燥して、45.0gDS(乾燥汚泥)の結晶を得た。
また、ろ液は、ホウ素濃度30g/L、水酸化ナトリウム濃度340g/Lであった。このろ液に、蒸発過程で生成した凝縮水を加え、さらに蒸発過程で損失した水を補給して3Lとした結果、ホウ素濃度950mg/L、水酸化ナトリウム濃度10.8g/Lとなった。水酸化ナトリウムの濃度を0.5モル/Lに調整するために、水酸化ナトリウム27.7gを添加して、再生液として使用した。
このようにして、試験水の通水によるホウ素の吸着と、水酸化ナトリウム水溶液の通液によるホウ素の脱着を5回繰り返したが、造粒体のホウ素吸着量と再生率は安定して変化はなかった。5回の吸着及び脱着の結果を、第1表に示す。
【0012】
【表1】

Figure 0003995550
【0013】
実施例2
実施例1で回収した結晶を用いて、水洗試験を行った。試験は、結晶(含水率20重量%)10mLをブフナーロートに載置し、上部から水道水を洗浄水として注ぎ、下部から吸引して水分を排出した。洗浄水量を変化させ、それぞれの結晶純度と結晶減量を測定した結果を第2表に示す。表中、洗浄水量は含水率20重量%の結晶容量に対する水量(容量倍)であり、結晶減量は洗浄前後の結晶の乾燥重量から求めた。
【0014】
【表2】
Figure 0003995550
【0015】
この結果から、洗浄水量は0.5〜1容量倍が適当であることが分かる。洗浄水量が0.5容量倍未満であると結晶の純度が低下し、洗浄水量が1容量倍を超えると急激に結晶減量が大きくなる。
【0016】
【発明の効果】
本発明のホウ素含有水の処理方法及び処理装置によれば、ホウ素含有水を経済的に処理することができ、薬品使用量が少なく、ホウ素を有価物として効果的に回収することができる。
【図面の簡単な説明】
【図1】図1は、本発明方法の実施の一態様の工程系統図である。
【符号の説明】
1 充填塔
2 再生液貯槽
3 蒸発缶
4 晶析装置
5 固液分離装置
6 洗浄装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for treating boron-containing water. More specifically, the present invention relates to a treatment method and treatment apparatus for boron-containing water that can be used for economical treatment of boron-containing water and that can recover boron as a valuable resource.
[0002]
[Prior art]
Boron compounds are used in various applications such as pharmaceuticals, cosmetics, soaps, electroplating, etc., and wastewater generated from these production processes contains boron. In addition, there are cases where boron is also contained in the wastewater from the waste incineration plant. A treatment method for removing boron from such boron-containing water and recovering it as a valuable material has been developed.
For example, JP-A-59-132986 discloses that a borate ion is adsorbed on a rare earth element hydroxide as a method for separating borate ions with high selectivity and efficiency from a low concentration boric acid aqueous solution. A method for treating boron-containing water is known, in which boron is adsorbed to a granule carrying a rare earth element hydroxide and boron is desorbed using an aqueous alkaline solution. JP-A-62-121689 proposes a method of treating boron-containing water with an anion exchange resin, extracting boron from the regeneration waste liquid of the ion exchange resin, and reusing it without discharging the regeneration waste liquid. ing. Further, as a method for efficiently separating and recovering high-purity boron from boron-containing water, a desorption solution obtained by desorbing boron using a mineral acid solution from a boron-selective resin that has adsorbed boron is used as OH. A method has been proposed in which a weakly basic anion exchange resin is passed through and fractionated into a boron solution and a mineral acid solution. However, all of these methods require complicated processing steps, and both the capital investment and the operation management are economically burdensome. For this reason, the processing method and processing apparatus of the boron containing water which can process boron containing water more economically and can collect | recover boron as a valuable material were calculated | required.
[0003]
[Problems to be solved by the invention]
The present invention has been made for the purpose of providing a treatment method and a treatment apparatus for boron-containing water that can be used to economically treat boron-containing water with a small amount of chemicals and that can recover boron as a valuable resource. It is.
[0004]
[Means for Solving the Problems]
As a result of intensive research to solve the above-mentioned problems, the present inventors adsorbed boron to a granule carrying a hydroxide of a rare earth element, and concentrated the desorption liquid from the granule by alkali. In addition, by separating solid and liquid after crystallization of borate, it is possible to recover boron as a valuable material and to reuse the solid-liquid separation liquid and condensed water generated in the treatment process. As a result, the present invention has been completed based on this finding.
That is, the present invention
(1) (A) an adsorption step in which boron-containing water is brought into contact with a granule carrying a hydroxide of a rare earth element to adsorb and remove boron; and (B) the granule adsorbing boron is treated with an alkaline aqueous solution. A desorption step of contacting and desorbing boron; (C) an evaporation step of evaporating and concentrating a desorption solution containing boron at a high concentration; and (D) a crystallization of crystallization of an alkali metal salt of boric acid in the evaporated concentration solution. step, and have a solid-liquid separation step of separating the alkali metal salt of (E) crystallized the boric acid from a liquid, a liquid obtained in (F) solid-liquid separation step, the preparation of the alkaline aqueous solution of the desorption step A method for treating boron-containing water, characterized in that it is used ;
(2) The method for treating boron-containing water according to item 1, wherein the condensed water produced in the evaporation step is used as the moisture of the alkaline aqueous solution in the desorption step.
( 3 ) In the crystallization step, the method for treating boron-containing water according to item 1, wherein the evaporated concentrated liquid is cooled,
( 4 ) The first to second items in which the alkali metal salt of boric acid separated in the solid-liquid separation step is washed with 0.5 to 1 volume of water with respect to the volume of the boric acid alkali metal salt containing adhering moisture. The method for treating boric acid-containing water according to any one of items 3 and
( 5 ) (A) an adsorbing means for adsorbing and removing boron by bringing boron-containing water into contact with a granule carrying a rare earth element hydroxide; and (B) the granule adsorbing boron adsorbed with an alkaline aqueous solution. Desorption means for desorbing boron by contact, (C) Evaporation means for evaporating and concentrating a desorption liquid containing boron at a high concentration, (D) Crystallization for crystallization of alkali metal salt of boric acid in the evaporative concentrate Means, (E) a solid-liquid separation means for separating the alkali metal salt of crystallized boric acid from the liquid, and ( F ) means for using the liquid obtained in the solid-liquid separation process for preparing an alkaline aqueous solution in the desorption process. An apparatus for treating boron-containing water,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the method for treating boron-containing water of the present invention, (A) an adsorption step in which boron-containing water is brought into contact with a granule supporting a rare earth element hydroxide to adsorb and remove boron; and (B) boron is adsorbed. A desorption step of desorbing boron by bringing the granulated body into contact with an alkaline aqueous solution; (C) an evaporation step of evaporating and concentrating a desorption solution containing boron at a high concentration; and (D) an alkali of boric acid in the evaporation concentrated solution. A crystallization step of crystallizing the metal salt, and (E) a solid-liquid separation step of separating the crystallized alkali metal salt of boric acid from the liquid.
FIG. 1 is a process flow diagram of one embodiment of the method of the present invention. Boron-containing water is passed through a packed column 1 packed with a granule carrying a hydroxide of a rare earth element, and brought into contact with the granule to remove boron by adsorption. The treated water from which boron has been adsorbed and removed flows out from the bottom of the packed tower. When the boron concentration of the outflowing treated water reaches a predetermined value, the flow of boron-containing water is stopped, and the process proceeds to the granule regeneration / desorption process. First, wash water is sent from the top of the packed tower, and the boron-containing water in the packed tower is pushed out. The waste liquid generated at this time passes through the packed tower again as a dilute waste liquid together with boron-containing water. Next, an alkaline aqueous solution is sent from the regenerated liquid storage tank 2 to the packed tower, and the granulated body adsorbing boron is brought into contact with the alkaline aqueous solution to desorb boron. The desorption liquid containing the boron generated at this time in a high concentration is sent to the evaporator 3 as a concentrated waste liquid and concentrated by evaporation.
The vapor generated in the evaporator is cooled by a cooling condenser, and the generated condensed water is sent to the regenerated liquid storage tank and used as the water of the alkaline aqueous solution. The evaporated concentrate obtained by the evaporator is sent to the crystallizer 4 and cooled to crystallize the alkali metal salt of boric acid. The suspension in which the alkali metal salt of boric acid is crystallized is sent to the solid-liquid separator 5 and separated into crystals and filtrate of the alkali metal salt of boric acid by solid-liquid separation. The alkali metal salt crystals of boric acid are washed with water in the cleaning device 6 to obtain pure crystals. Since the filtrate is a concentrated alkaline aqueous solution, it is sent to a regenerating liquid storage tank and used for preparing an alkaline aqueous solution in the desorption process. Since a part of alkali and water is lost by going through each step, alkali and supplementary water are added to the regenerated liquid storage tank to prepare a required amount of an aqueous alkali solution having a predetermined concentration. In the method of the present invention, if necessary, the packed tower can be washed after the desorption step. The waste liquid generated at this time passes through the packed tower again as a dilute waste liquid together with boron-containing water.
[0006]
According to the method of the present invention, an alkali metal salt of boron can be recovered as a valuable material in a solid-liquid separator. When recovered and reused, the boron alkali metal salt crystals can be washed with water to improve purity. In addition, the condensed water generated in the evaporator and the filtrate, which is a concentrated alkaline aqueous solution generated in the solid-liquid separator, are reused for the preparation of the alkaline aqueous solution used for boron desorption. Therefore, boron-containing water can be treated economically.
The boron-containing water to which the method of the present invention is applied is not particularly limited, and examples thereof include process wastewater such as pharmaceuticals, cosmetics, soap, and electroplating, and smoke washing wastewater from a garbage incinerator. These wastewaters contain boron as boric acid or borate, and the boron concentration is often several tens to several hundreds mg / L.
There is no particular limitation on the method for producing a granule carrying a rare earth element hydroxide used in the method of the present invention. For example, an aqueous solution of a rare earth element salt is attached to a carrier, treated with an alkaline aqueous solution, and insoluble on the carrier. Can be produced by depositing a rare earth element hydroxide. Examples of rare earth element hydroxides include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. it can. Of these, cerium hydroxide can be particularly preferably used. There is no particular limitation on the carrier supporting the rare earth element hydroxide, for example, magnesia, alumina, titania, silica, silica-alumina, zirconia, zeolite, activated carbon, diatomaceous earth, cordierite and other inorganic carriers, polyamide, cellulose And organic carriers such as resin, polysulfone, polyacrylonitrile, polyvinyl chloride, and ethylene-vinyl alcohol copolymer.
[0007]
In the method of the present invention, there is no particular limitation on the method of bringing boron-containing water into contact with a granule carrying a rare earth element hydroxide. For example, boron-containing water is passed through a packed tower packed with the granule. Can be contacted. There is no particular limitation on the number of packed towers packed with granulation, for example, only one packed tower can be used, or when a plurality of packed towers are connected in series and the first tower is saturated, A so-called merry-go-round system in which the first tower is removed from the line and the regenerated tower is added to the final stage can be employed. When only one packed tower is used, the process proceeds to the desorption process when the boron concentration of the treated water flowing out of the tower reaches a predetermined drainage standard. In the case of the merry-go-round method, when the boron concentration of the effluent of the first column becomes equal to the inlet concentration, the first column is removed from the packed column and the process proceeds to the desorption process.
In the method of the present invention, the boron-containing water is preferably brought into contact with a granule carrying a rare earth element hydroxide by adjusting the pH to 3 to 12, and the granulation by adjusting the pH to 4 to 10 More preferably, it is brought into contact with the body. Even if the pH of the boron-containing water is less than 3 or the pH exceeds 12, there is a possibility that the amount of adsorption decreases.
[0008]
In the method of the present invention, the alkaline aqueous solution used for boron desorption is not particularly limited, and examples thereof include aqueous solutions of sodium hydroxide and potassium hydroxide. Among these, an aqueous sodium hydroxide solution can be suitably used. Although there is no restriction | limiting in particular in the density | concentration of aqueous alkali solution, it is preferable that it is 0.1-2 mol / L, and it is more preferable that it is 0.3-1 mol / L. If the concentration of the aqueous alkaline solution is less than 0.1 mol / L, the amount of the required aqueous alkaline solution becomes excessive, and boron may not be sufficiently desorbed. Even if the concentration of the alkaline aqueous solution exceeds 2 mol / L, the adsorption efficiency is not improved, and the granule carrying the rare earth element hydroxide may be deteriorated.
In the method of the present invention, the amount of the alkaline aqueous solution to be brought into contact with the granulated body adsorbing boron is not particularly limited, but is preferably 1 to 5 times the volume of the granulated body, and 3 to 4 times the volume of the granulated body. It is more preferable that If the amount of the alkaline aqueous solution is less than one volume of the granulated body, boron may be insufficiently desorbed. Boron adsorbed on the granulated body is desorbed with an alkaline aqueous solution not more than 5 times the volume of the granulated body, and it is usually not necessary to use an alkaline aqueous solution exceeding 5 times the volume of the granulated body. According to the method of the present invention, a desorption solution containing usually 1,000 to 6,000 mg / L of boron can be obtained.
In the method of the present invention, the method for evaporating and concentrating a desorption solution containing boron at a high concentration is not particularly limited, and for example, it can be evaporated and concentrated under any conditions of normal pressure and reduced pressure. When the desorption liquid is evaporated and concentrated at normal pressure, the liquid temperature reaches 110 to 130 ° C. due to an increase in boiling point due to the alkali metal salt of boric acid dissolved in the liquid and the alkali used for desorption. Although there is no restriction | limiting in particular in a concentration multiplication factor, The range to which the alkali metal salt of boric acid precipitates and an alkali does not precipitate can be selected suitably in the latter crystallization process. It is preferable to obtain an evaporated concentrated solution having a boron concentration of 50,000 to 80,000 mg / L by evaporation.
[0009]
In the method of the present invention, there is no particular limitation on the method for crystallizing the alkali metal salt of boric acid in the evaporated concentrated solution. For example, the method of cooling the evaporated concentrated solution to lower the solubility and precipitating the alkali metal salt of boric acid And a method of adjusting the pH to 9 to 10 by adding an acid to precipitate an alkali metal salt of boric acid, a method of using cooling and adding an acid in combination. Among these methods, the method using only cooling does not cause the alkali to be lost by neutralization with the acid, and can be recovered almost completely except for the alkali that has become a borate and used for the adjustment of the regenerated solution. Therefore, it can be preferably used. Although there is no restriction | limiting in particular in cooling temperature, By cooling to 15-30 degreeC which does not require a refrigerant | coolant etc., the alkali metal salt of boric acid can be efficiently precipitated and collect | recovered. When an alkaline aqueous solution for desorbing boron is prepared using a filtrate obtained by crystallizing an alkali metal salt of boric acid only by cooling, the aqueous solution contains 1,000 to 2,000 mg / L of boron. Using such an alkaline aqueous solution, boron can be desorbed without hindrance.
In the method of the present invention, the method for separating the crystallized alkali metal salt of boric acid from the liquid is not particularly limited, and examples thereof include precipitation, filtration, membrane separation, centrifugation, filter press, and the like. Two or more methods may be used in combination. Among these, the centrifugal separation and the filter press can be suitably used because they are less clogged and can downsize the apparatus.
The alkali metal salt of boric acid recovered by the method of the present invention is further purified as it is or after being washed with water as necessary, or dissolved in hot water and then cooled and recrystallized. Can be effectively used as a boron raw material in various industrial fields.
As a preferred water washing method for increasing the purity of the alkali metal salt of boric acid, the crystal recovered by solid-liquid separation is 0.5 to 1 volume times water with respect to the volume of the crystal containing attached water. Wash with. The smaller the amount of water, the smaller the loss of crystals (loss of crystal dissolved by washing water). However, if the amount is too small, the washing becomes incomplete, so washing with water at least 0.5 times the crystal capacity is preferred. Further, when the amount of water exceeds 1 volume, the loss on dissolution increases rapidly. The lower the washing water temperature, the smaller the concentration of crystals dissolved in water. Therefore, the washing temperature is preferably 30 ° C. or less, although it depends on the available water conditions.
On the other hand, the filtrate obtained by solid-liquid separation after crystallization contains high-concentration alkali, and can be used temporarily such as discarding it or returning it to the raw drainage. Although it is possible, in consideration of economy, it is preferable to replenish the evaporated condensate and the alkali consumed by crystal precipitation and recycle it as a regenerated liquid of the granulated body adsorbing boron.
[0010]
The apparatus for treating boron-containing water of the present invention comprises (A) adsorption means for adsorbing and removing boron by bringing boron-containing water into contact with a granule carrying a rare earth element hydroxide, and (B) adsorbing boron. A desorption means for desorbing boron by bringing the granulated body into contact with an alkaline aqueous solution; (C) an evaporation means for evaporating and concentrating a desorption liquid containing boron at a high concentration; and (D) an alkali of boric acid in the evaporated concentrated liquid. A crystallization means for crystallizing the metal salt; and (E) a solid-liquid separation means for separating the alkali metal salt of the crystallized boric acid from the liquid.
In the apparatus of the present invention, (A) means for adsorbing and removing boron is not particularly limited, and examples thereof include a packed tower packed with a rare earth element hydroxide granule. There is no restriction | limiting in particular in the flow direction of the boron containing water to a packed tower, and it can be any of a downward flow and an upward flow. (B) The desorption means for desorbing boron is not particularly limited. For example, a regenerative liquid adjustment tank made of an alkaline aqueous solution, and a pump for feeding the regenerative liquid from the adjustment tank to a rare earth element hydroxide packed tower. Combinations can be mentioned. (C) Examples of the evaporation means for evaporating and concentrating the desorbed liquid in the packed tower include evaporation apparatuses such as a vertical short tube basket type, a forced circulation horizontal tube type, a forced circulation vertical tube type, and a coil type. . These evaporators can be used by a single can, a vapor compression method, a multistage utility method, a multistage flash evaporation method, or the like. Examples of the crystallization means (D) include a cooling crystallization apparatus and an evaporation crystallization apparatus. Among these, an indirect cooling type crystallizer can be suitably used. (E) As a solid-liquid separation means, a sedimentation separator, a centrifuge, a filter, a pressing machine etc. can be mentioned, for example.
According to the method and apparatus of the present invention, boron in the desorption liquid is recovered by evaporating and concentrating the desorption liquid of the granulated body treated with boron-containing water, and the liquid obtained by solid-liquid separation is the regenerated liquid. It can be used effectively for preparation. Therefore, according to the method and apparatus of the present invention, the problem of the treatment of the desorption liquid, which has been a problem of the conventional method of treating boron-containing water with a granulated body, is solved, and solvent extraction and ion exchange are performed. Compared to the combined treatment method of the desorption liquid, it can be treated with simple equipment, and boron-containing water can be treated economically.
[0011]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Boric acid is added to synthetic water containing 1,000 mg / L of sulfate ion, 1,000 mg / L of chloride ion, 300 mg / L of calcium ion, 400 mg / L of sodium ion and 200 mg / L of magnesium ion, and boron concentration is 200 mg. / L test water was prepared. Sodium hydroxide was added to this test water to adjust the pH to 7, and the glass column filled with 1 L of granulated material in which cerium hydroxide was supported on an ethylene-vinyl alcohol copolymer was lowered at a flow rate of 3 L / h. Circulating water. Water was passed for 13 hours until the boron concentration in the treated water flowing out from the column reached 10 mg / L, and the total water flow rate was 39 L.
Next, boron adsorbed on the granulated material in the column is desorbed using 3 L of 0.5 mol / L sodium hydroxide aqueous solution containing 1,000 mg / L of boron, and desorbed with a boron concentration of 3,200 mg / L. A liquid was obtained. 3 L of this desorption liquid was concentrated by evaporation 20 times.
The evaporated concentrated solution is taken in a glass beaker, cooled to 30 ° C., stirred for 1 hour, and then the precipitated crystals are filtered off using a vacuum filter (No. 5A), dried and dried to 45.0 g DS (dried sludge). ) Crystals were obtained.
The filtrate had a boron concentration of 30 g / L and a sodium hydroxide concentration of 340 g / L. Condensed water generated in the evaporation process was added to this filtrate, and water lost in the evaporation process was further replenished to 3 L. As a result, the boron concentration was 950 mg / L and the sodium hydroxide concentration was 10.8 g / L. In order to adjust the concentration of sodium hydroxide to 0.5 mol / L, 27.7 g of sodium hydroxide was added and used as a regenerating solution.
In this way, the adsorption of boron by passing the test water and the desorption of boron by passing the aqueous sodium hydroxide solution were repeated five times. However, the boron adsorption amount and the regeneration rate of the granulated material were stably changed. There wasn't. The results of 5 adsorptions and desorptions are shown in Table 1.
[0012]
[Table 1]
Figure 0003995550
[0013]
Example 2
A water washing test was performed using the crystals recovered in Example 1. In the test, 10 mL of crystals (water content 20% by weight) were placed on a Buchner funnel, tap water was poured as washing water from the top, and water was discharged by suction from the bottom. Table 2 shows the results of measuring the crystal purity and the crystal loss by changing the amount of washing water. In the table, the amount of washing water is the amount of water (volume times) with respect to the crystal volume with a water content of 20% by weight.
[0014]
[Table 2]
Figure 0003995550
[0015]
From this result, it can be seen that an appropriate amount of washing water is 0.5 to 1 volume times. When the amount of washing water is less than 0.5 times the volume, the purity of the crystal is lowered, and when the amount of washing water exceeds 1 volume, the crystal weight loss increases rapidly.
[0016]
【The invention's effect】
According to the method and apparatus for treating boron-containing water of the present invention, boron-containing water can be treated economically, the amount of chemical used is small, and boron can be effectively recovered as a valuable material.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of one embodiment of the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Packing tower 2 Reclaimed liquid storage tank 3 Evaporator 4 Crystallizer 5 Solid-liquid separator 6 Cleaning apparatus

Claims (5)

(A)ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着工程、(B)ホウ素を吸着した該造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する脱着工程、(C)ホウ素を高濃度に含有する脱着液を蒸発濃縮する蒸発工程、(D)蒸発濃縮液中のホウ酸のアルカリ金属塩を晶析する晶析工程、及び(E)晶析したホウ酸のアルカリ金属塩を液から分離する固液分離工程を有し、(F)固液分離工程で得られた液を、脱着工程のアルカリ水溶液の調製に使用することを特徴とするホウ素含有水の処理方法。(A) An adsorption step in which boron-containing water is brought into contact with a granule carrying a rare earth element hydroxide to adsorb and remove boron; and (B) the granule in which boron is adsorbed is brought into contact with an alkaline aqueous solution. A desorption step of desorbing boron, (C) an evaporation step of evaporating and concentrating a desorption solution containing boron at a high concentration, (D) a crystallization step of crystallizing an alkali metal salt of boric acid in the evaporated concentrate, and (E) an alkali metal salt of crystallization and boric acid have a solid-liquid separation step of separating from the liquid, (F) a liquid obtained by solid-liquid separation step, it is used in the preparation of the alkaline aqueous solution of the desorption step A method for treating boron-containing water. 蒸発工程で生成する凝縮水を、脱着工程のアルカリ水溶液の水分として使用する請求項1記載のホウ素含有水の処理方法。  The method for treating boron-containing water according to claim 1, wherein the condensed water generated in the evaporation step is used as moisture of the alkaline aqueous solution in the desorption step. 晶析工程において、蒸発濃縮液を冷却する請求項1記載のホウ素含有水の処理方法。  The method for treating boron-containing water according to claim 1, wherein the evaporative concentrate is cooled in the crystallization step. 固液分離工程で分離したホウ酸のアルカリ金属塩を、付着水分を含むホウ酸のアルカリ金属塩の容量に対して0.5〜1容量倍の水で洗浄する請求項1〜のいずれかに記載のホウ酸含有水の処理方法。The alkali metal salt of boric acid separated in solid-liquid separation step, claim 1-3 washing with 0.5 fold volume of water relative to the volume of the alkali metal salt of boric acid containing water attached A method for treating boric acid-containing water as described in 1. above. (A)ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着手段、(B)ホウ素を吸着した該造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する脱着手段、(C)ホウ素を高濃度に含有する脱着液を蒸発濃縮する蒸発手段、(D)蒸発濃縮液中のホウ酸のアルカリ金属塩を晶析する晶析手段、(E)晶析したホウ酸のアルカリ金属塩を液から分離する固液分離手段及び(F)固液分離工程で得られた液を脱着工程のアルカリ水溶液の調製に使用する手段を有することを特徴とするホウ素含有水の処理装置。(A) An adsorbing means for adsorbing and removing boron by bringing boron-containing water into contact with a granule carrying a rare earth element hydroxide, and (B) contacting the granule adsorbing boron with an aqueous alkaline solution. , A desorption means for desorbing boron, (C) an evaporation means for evaporating and concentrating a desorption liquid containing boron at a high concentration, (D) a crystallization means for crystallizing an alkali metal salt of boric acid in the evaporated concentrate, E) Solid-liquid separation means for separating the alkali metal salt of crystallized boric acid from the liquid, and (F) means for using the liquid obtained in the solid-liquid separation process for preparing an alkaline aqueous solution in the desorption process. Boron-containing water treatment equipment.
JP2002211554A 2002-07-19 2002-07-19 Method and apparatus for treating boron-containing water Expired - Fee Related JP3995550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211554A JP3995550B2 (en) 2002-07-19 2002-07-19 Method and apparatus for treating boron-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211554A JP3995550B2 (en) 2002-07-19 2002-07-19 Method and apparatus for treating boron-containing water

Publications (2)

Publication Number Publication Date
JP2004050069A JP2004050069A (en) 2004-02-19
JP3995550B2 true JP3995550B2 (en) 2007-10-24

Family

ID=31934759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211554A Expired - Fee Related JP3995550B2 (en) 2002-07-19 2002-07-19 Method and apparatus for treating boron-containing water

Country Status (1)

Country Link
JP (1) JP3995550B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863825B2 (en) 2003-01-29 2005-03-08 Union Oil Company Of California Process for removing arsenic from aqueous streams
WO2004096433A1 (en) * 2003-05-01 2004-11-11 Nihon Kaisui Co., Ltd. Adsorbent and process for producing the same
CN1863591A (en) * 2004-07-26 2006-11-15 栗田工业株式会社 Anion adsorbent, process for producing the same and method of water treatment
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
KR20160132076A (en) 2014-03-07 2016-11-16 몰리코프 미네랄스, 엘엘씨 Cerium (iv) oxide with exceptional arsenic removal properties
JP6379382B2 (en) * 2014-03-20 2018-08-29 株式会社化研 Iodine removing agent, removing apparatus and removing method for removing iodine from aqueous solution
CN106178583B (en) * 2016-09-20 2018-02-23 武汉科技大学 The feedback of crystal product granularity during a kind of dilution crystallization
CN115569401B (en) * 2022-11-04 2023-05-02 武汉宏达丰源分离技术有限公司 Boric acid production method and device for boron-containing brine

Also Published As

Publication number Publication date
JP2004050069A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
AU682423B2 (en) Recovery of an amino acid
JP3995550B2 (en) Method and apparatus for treating boron-containing water
JP5157941B2 (en) Method for treating boron-containing water
KR102221524B1 (en) Treating method and treating device for polarizer manufacturing waste liquid
JP4297663B2 (en) Boron recovery method
CN108314114B (en) Method for treating waste water containing ammonium salt
JP2008073639A (en) Boron recovery apparatus
JP4618937B2 (en) How to remove phosphorus from wastewater.
JP3995554B2 (en) Method for treating boron-containing water
JP5400845B2 (en) Boron adsorption device, boron removal system, and boron removal method
JP2014079688A (en) Phosphorus recovery system and phosphorus recovery method
CN116282655A (en) Method for heating, concentrating, crystallizing and cleaning waste sulfuric acid
CN216837160U (en) Sodium carbonate waste salt recovery device system
CN214781303U (en) Bromine salt recovery system
JP3913939B2 (en) Boron recovery method
CN214088113U (en) Landfill leachate's processing and separation extraction element of its salt
JP3366258B2 (en) Method and apparatus for evaporating and concentrating sulfuric acid-containing wastewater
CN108726606B (en) Treatment method of catalyst production wastewater
CN108726611B (en) Treatment method of catalyst production wastewater
CN108726603B (en) Treatment method of catalyst production wastewater
JPH0143594B2 (en)
CN1103104A (en) A process for the removal of impurities from hydrazine hydrate
CN108726765B (en) Treatment method of catalyst production wastewater
CN108726613B (en) Treatment method of catalyst production wastewater
CN114890629B (en) Method for recycling high-salt wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3995550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140810

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees