JP3891189B2 - Method for treating boron-containing water - Google Patents

Method for treating boron-containing water Download PDF

Info

Publication number
JP3891189B2
JP3891189B2 JP2004147626A JP2004147626A JP3891189B2 JP 3891189 B2 JP3891189 B2 JP 3891189B2 JP 2004147626 A JP2004147626 A JP 2004147626A JP 2004147626 A JP2004147626 A JP 2004147626A JP 3891189 B2 JP3891189 B2 JP 3891189B2
Authority
JP
Japan
Prior art keywords
boron
silica
phosphorus
water
containing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004147626A
Other languages
Japanese (ja)
Other versions
JP2005329281A (en
Inventor
裕之 朝田
泰彦 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004147626A priority Critical patent/JP3891189B2/en
Publication of JP2005329281A publication Critical patent/JP2005329281A/en
Application granted granted Critical
Publication of JP3891189B2 publication Critical patent/JP3891189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、ホウ素含有水の処理方法に関する。詳しくは、本発明は、希土類元素の水酸化物を担持した造粒体を用いて、シリカを含むホウ素含有水中のホウ素を吸着除去するホウ素含有水の処理方法において、該造粒体のホウ素吸着性能の低下を防止して安定かつ効率的な処理を行う方法に関する。 The present invention relates to a method for treating boron-containing water. Specifically, the present invention uses granular material carrying the hydroxide of the rare earth elements, in the processing method of the boron-containing water for adsorbing and removing boron in the boron-containing water containing by silica, boron granulation body The present invention relates to a method for performing stable and efficient treatment by preventing a decrease in adsorption performance.

ホウ素化合物は、医薬品、化粧品、石けん、電気メッキなどの種々の用途に使用されるため、これらの製造工程などから発生する排水にはホウ素が含まれている。また、ごみ焼却場の洗煙排水等にもホウ素が含まれている場合がある。このようなホウ素含有水の処理方法として、希土類元素の水酸化物を担持した造粒体にホウ素を吸着させる処理方法が知られており、ホウ素を吸着した造粒体をアルカリ水溶液を用いて処理することによりホウ素を脱着させて再生する方法が提案されている(特開2004−50069号公報)。また、処理を継続することにより、該造粒体にCa(OH),Mg(CH)といったスケール成分が蓄積することにより、ホウ素吸着性能が低下するため、これを酸で除去して再生する方法も提案されている(特開2004−57870号公報)。
特開2004−50069号公報 特開2004−57870号公報
Boron compounds are used in various applications such as pharmaceuticals, cosmetics, soaps, and electroplating, so that wastewater generated from these manufacturing processes contains boron. In addition, there are cases where boron is also contained in the wastewater from the waste incineration plant. As a treatment method for such boron-containing water, a treatment method is known in which boron is adsorbed to a granule supporting a rare earth element hydroxide, and the granule adsorbing boron is treated with an alkaline aqueous solution. Thus, a method of desorbing and regenerating boron has been proposed (Japanese Patent Laid-Open No. 2004-50069). In addition, by continuing the treatment, scale components such as Ca (OH) 2 and Mg (CH) 2 accumulate in the granulated material, so that the boron adsorption performance deteriorates. There has also been proposed a method (Japanese Patent Laid-Open No. 2004-57870).
JP 2004-50069 A JP 2004-57870 A

特開2004−57870号公報では、Ca(OH),Mg(CH)といったスケール成分による性能低下を防止するために、酸による再生工程を行うが、酸による再生では、造粒体からセリウム等の希土類の溶出の問題があり、これにより造粒体が劣化する。 In Japanese Patent Application Laid-Open No. 2004-57870, a regeneration step with an acid is performed in order to prevent performance degradation due to scale components such as Ca (OH) 2 and Mg (CH) 2. There is a problem of elution of rare earths such as this, and this causes deterioration of the granulated body.

また、希土類元素の含水酸化物を担持した造粒体を用いたホウ素含有水の処理方法にあっては、Ca(OH),Mg(CH)といったスケール成分の除去を行っても、処理を継続することによりホウ素吸着性能が低下する場合があり、特にリンやシリカを含むホウ素含有水にあっては、その他のホウ素吸着性能低下要因があることが推定された。即ち、ホウ素含有水のうち、脱硫排水ではシリカが、また、アルミ電解コンデンサ製造排水のような排水ではリンが含有されている。通常、脱硫排水や電解コンデンサ製造排水では、フッ素処理あるいは高濃度のリン酸性リン除去のために、カルシウム塩による凝集沈殿処理が行われている。しかしながら、このような処理を行っても、脱硫排水ではシリカが、アルミ電解コンデンサ製造排水では低濃度のリン酸性リンが、なお更に残留する。 Further, in the method for treating boron-containing water using a granule carrying a rare earth element hydrated oxide, the treatment can be performed even if scale components such as Ca (OH) 2 and Mg (CH) 2 are removed. It is estimated that there are other factors that lower boron adsorption performance, particularly in boron-containing water containing phosphorus and silica. That is, among the boron-containing water, silica is contained in the desulfurization waste water, and phosphorus is contained in the waste water such as the aluminum electrolytic capacitor manufacturing waste water. Usually, desulfurization waste water and electrolytic capacitor production waste water are subjected to a coagulation precipitation treatment with a calcium salt in order to remove fluorine or remove high-concentration phosphoric acid phosphorus. However, even if such treatment is performed, silica remains in the desulfurization effluent, and low concentration phosphoric acid phosphorus remains in the aluminum electrolytic capacitor manufacturing effluent.

従って、本発明は、希土類元素の含水酸化物を担持した造粒体を用いて、シリカ、或いはシリカ及びリンを含むホウ素含有水中のホウ素を吸着除去するに当たり、造粒体のホウ素吸着性能の低下を防止して安定かつ効率的な処理を行うことができるホウ素含有水の処理方法を提供することを目的とする。 Accordingly, the present invention uses granular material carrying the hydrous oxide of a rare earth element, shea silica, or Upon for adsorbing and removing boron in the boron-containing water containing silica and phosphorus, granules of boron adsorption performance of It is an object of the present invention to provide a method for treating boron-containing water that can prevent a decrease and perform a stable and efficient treatment.

本発明(請求項1)のホウ素含有水の処理方法は、シリカを含むホウ素含有水を、希土類元素の含水酸化物を担持した造粒体と接触させてホウ素を吸着除去するホウ素含有水の処理方法において、該ホウ素含有水中のシリカを予め除去した後、前記造粒体と接触させることを特徴とする。
請求項2のホウ素含有水の処理方法は、請求項1において、シリカを含むホウ素含有水がリンも含み、該ホウ素含有水中のシリカを除去する際に、シリカとともにリンも除去することを特徴とする。
Processing method of the boron-containing water of the present invention (claim 1) is a boron-containing water containing by silica is contacted with granules carrying the hydrous oxide of a rare earth element of boron-containing water for adsorbing and removing boron in the processing method, after prior removal by silica of the boron-containing water, wherein the contacting with the granules.
The method for treating boron-containing water according to claim 2 is characterized in that, in claim 1, the boron-containing water containing silica also contains phosphorus, and when removing silica in the boron-containing water, phosphorus is removed together with silica. To do.

即ち、本発明者らの研究により、被処理水中のリン(PO−P)やシリカ(SiO)は、希土類元素の含水酸化物を担持した造粒体のホウ素吸着性能低下の原因物質であることが判明した。なお、本発明においては含水酸化物は含水・酸化物も含水酸化物も両方含んでいる。 That is, according to the study by the present inventors, phosphorus (PO 4 -P) and silica (SiO 2 ) in the water to be treated are causative substances that cause a decrease in the boron adsorption performance of the granule carrying a rare earth element hydrous oxide. It turned out to be. In the present invention, the hydrous oxide includes both hydrous oxides and hydrous oxides.

被処理水中のリンやシリカは、特開2004−50069号公報に記載されるようなアルカリによる再生では脱着し得ず、造粒体に蓄積されていく。仮りにシリカを酸洗浄により除去しようとすると、7.5g−HCl/L(pH1以下)の強酸を用いる必要があり、この場合には、セリウム等の希土類の溶出量が多くなり、それによる性能低下を引き起こす。一方、リンは80g−NaOH/Lというような強アルカリであれば、80%程度の脱着効果を得ることができるが、通常のアルカリによる再生に用いる20g−NaOH/L程度のアルカリでは脱着し得ない。また、強アルカリで再生を行った場合には、リン(PO−P)が回収結晶中に混入するため、これを分離するための工程が必要となる。 Phosphorus and silica in the water to be treated cannot be desorbed by regeneration with alkali as described in JP-A No. 2004-50069 and accumulate in the granulated body. If an attempt is made to remove silica by acid cleaning, it is necessary to use a strong acid of 7.5 g-HCl / L (pH 1 or less). In this case, the amount of elution of rare earth such as cerium increases, and the performance due to this Causes a drop. On the other hand, if phosphorus is a strong alkali such as 80 g-NaOH / L, a desorption effect of about 80% can be obtained, but it can be desorbed with an alkali of about 20 g-NaOH / L used for regeneration with ordinary alkali. Absent. In addition, when regeneration is performed with a strong alkali, phosphorus (PO 4 -P) is mixed into the recovered crystal, and thus a step for separating it is necessary.

このようなことから、本発明者らは、被処理水中のリン、シリカは、これを予め除去し、造粒体への吸着自体を未然に防ぐことが、リンやシリカによる造粒体のホウ素吸着性能低下の防止のために有効であることを見出し、本発明に到達した。   For this reason, the present inventors removed phosphorus and silica in the water to be treated in advance, and previously prevented adsorption to the granulated body itself. The inventors have found that it is effective for preventing a decrease in adsorption performance and have reached the present invention.

本発明においては、ホウ素吸着処理に先立ち、被処理水中のシリカ、或いはシリカ及びリンを予め除去することにより、シリカ、或いはシリカ及びリンによる造粒体のホウ素吸着性能の低下を確実に防止することができる。 In the present invention, prior to the boron adsorption treatment, shea silica in the water to be treated, or by previously removing silica and phosphorus, shea silica, or securely prevent the decrease in boron adsorption performance of the granule with silica and phosphorus can do.

本発明において、シリカ、或いはシリカ及びリンを除去する処理は凝集処理が好ましく、特にアルミニウムを含む凝集剤を用い、pH8〜9で行う凝集処理が好ましい。この場合、生成した凝集汚泥は濾過又は沈殿により分離することが好ましい。 In the present invention, shea silica, or a process for removing silica and phosphorus are preferred agglomeration process, in particular using a flocculant containing aluminum, aggregation processing performed in pH 8 to 9 is preferred. In this case, it is preferable to separate the produced sludge by filtration or precipitation.

本発明のホウ素含有水の処理方法によれば、希土類元素の含水酸化物を担持した造粒体を用いてシリカ、或いはシリカ及びリンを含むホウ素含有水中のホウ素を吸着除去するに当たり、シリカ、或いはシリカ及びリンによる造粒体のホウ素吸着性能の低下を防止して、造粒体の再生頻度の低減、造粒体寿命の延長を図り、長期にわたり安定かつ効率的な処理を行うことができる。 According to the processing method of the boron-containing water of the present invention, in sheet silica or adsorbing and removing boron in the boron-containing water containing silica and phosphorus by using a granular material carrying the hydrous oxide of a rare earth element, shea silica Alternatively, it is possible to prevent a decrease in the boron adsorption performance of the granulate by silica and phosphorus , reduce the frequency of granulation regeneration, extend the granule life, and perform stable and efficient treatment over a long period of time. it can.

以下に図面を参照して本発明のホウ素含有水の処理方法の実施の形態を詳細に説明する。   Embodiments of a method for treating boron-containing water according to the present invention will be described below in detail with reference to the drawings.

図1は、本発明のホウ素含有水の処理方法の実施の形態を示す系統図であり、図示の方法においては、シリカ、或いはシリカ及びリンを含むホウ素含有水に凝集剤とpH調整剤を添加して、凝集分離手段1にて凝集処理及び凝集汚泥の分離を行うことにより、シリカ、或いはシリカ及びリンを除去した後、後述の希土類含水酸化物担持樹脂2A等の希土類元素の含水酸化物を担持した造粒体が充填されたホウ素吸着塔2に導入してホウ素を吸着除去する。ホウ素吸着塔2の流出水は処理水として系外へ排出される。 Figure 1 is a system diagram showing an embodiment of treatment method of the boron-containing water of the present invention, in the method shown, shea silica, or the boron-containing water containing silica and phosphorus coagulant and a pH adjusting agent was added, by performing the aggregation treatment and separation of agglomerated sludge in flocculation separation unit 1, shea silica, or after removal of silica and phosphorus, hydrated rare earth element of the rare earth oxide hydroxide carrying resin 2A like below It is introduced into a boron adsorption tower 2 filled with a granulated body carrying a substance to adsorb and remove boron. The outflow water from the boron adsorption tower 2 is discharged out of the system as treated water.

リカ、或いはシリカ及びリンを含むホウ素含有水中のシリカ、或いはシリカ及びリンの除去処理としては特に制限はないが、処理設備が簡素、処理が容易であることから、凝集処理が好適であり、特に凝集剤として、PAC(ポリ塩化アルミニウム)、硫酸バンド(硫酸アルミニウム)等のアルミニウム塩系凝集剤を用い、pH9以上で凝集処理を行うことが好ましい。このpH条件が9を超えるとアルミニウム塩系凝集剤からのアルミニウムの溶解の問題があり好ましくない。 Shi silica, or silica and boron-containing water shea silica containing phosphorus, or is not particularly limited as removal treatment of the silica and phosphorus, process equipment simpler, because the process is easy, the aggregation treatment is preferred In particular, it is preferable to use an aluminum salt-based flocculant such as PAC (polyaluminum chloride) or sulfuric acid band (aluminum sulfate) as the flocculant and perform the flocculant treatment at a pH of 9 or more. If this pH condition exceeds 9, there is a problem of dissolution of aluminum from the aluminum salt flocculant, which is not preferable.

特に、凝集処理時のpH及びアルミニウム塩系凝集剤添加量については、後述の実験例1の結果からも明らかなように、除去対象により好適な条件が異なり、次のような条件とすることが好ましい。従って、凝集処理に先立ち、シリカ、或いはシリカ及びリンを含むホウ素含有水には必要に応じて、酸又はアルカリのpH調整剤を添加して好適pHに調整する。 In particular, the pH and the addition amount of the aluminum salt-based flocculant during the flocculation process are different depending on the object to be removed, as will be apparent from the results of Experimental Example 1 described later. preferable. Therefore, prior to the flocculation treatment, shea silica, or silica and optionally the boron-containing water containing phosphorus, adjusted to a preferred pH by adding a pH adjusting agent in an acid or alkali.

シリカを除去する場合:pH8〜9、アルミニウム塩系凝集剤添加量5mg/L以上(Alとして)、例えば5〜20mg/
リカ及びリン酸性リンを除去する場合:pH8〜9、アルミニウム塩系凝集剤添加量5mg/L以上(Alとして)、例えば5〜20mg/L
なお、シリカとリンとが共存する場合は、上記pH条件でもシリカとの共沈でリン酸性リンが析出してくるものと推定される。
When removing silica: pH 8-9, aluminum salt-based flocculant addition amount 5 mg / L or more (as Al 2 O 3 ), for example, 5-20 mg / L
When removing by silica and phosphorus acid phosphate: pH 8-9, (as Al 2 O 3) aluminum salt flocculant addition amount 5 mg / L or more, for example 5 to 20 mg / L
In addition, when silica and phosphorus coexist, it is presumed that phosphoric acid phosphorus is precipitated by coprecipitation with silica even under the above pH conditions.

凝集汚泥を固液分離する方法としては特に制限はないが、砂濾過、膜濾過等の濾過手段や沈殿分離手段が好ましい。   A method for solid-liquid separation of the coagulated sludge is not particularly limited, but a filtration means such as sand filtration and membrane filtration and a precipitation separation means are preferable.

このようにしてシリカ、或いはシリカ及びリンが除去されたシリカ・リン除去処理水は、次いで希土類元素の含水酸化物を担持した造粒体によるホウ素の吸着除去処理に供される。 Shi silica Thus, or silica and silica and phosphorus removal process water which phosphorus is removed is then subjected to adsorption removal treatment of boron granulating compound carrying hydrous oxide of a rare earth element.

本発明においては、希土類元素の含水酸化物を担持した造粒体のシリカ、或いはシリカ及びリンによるホウ素吸着性能の低下を確実に防止するために、ホウ素吸着処理に供されるシリカ・リン除去処理水は、シリカ(SiO)濃度1.5mg/L以下、リン酸性リン(PO−P)濃度1mg/L以下にまで、シリカ、或いはシリカ及びリンが高度に除去されたものであることが好ましい。 In the present invention, shea Rica granulated compound carrying hydrous oxide of a rare earth element, or a decrease in the boron adsorption performance with silica and phosphorus in order to reliably prevent, silica and phosphorus removal to be subjected to the boron adsorption treatment treated water, a silica (SiO 2) concentration of 1.5 mg / L or less, to less than the phosphorus acidic phosphate (PO 4 -P) concentration 1 mg / L, is shea silica, or those silica and phosphorus is highly removed It is preferable.

本発明方法に用いる希土類元素の含水酸化物を担持した造粒体の製造方法に特に制限はなく、例えば、希土類元素の塩の水溶液を担体に付着させ、アルカリ水溶液で処理し、担体上に不溶性の希土類元素の水酸化物を沈着、乾燥させることにより、製造することができる(乾燥の程度によって酸化物と水酸化物両方が含まれるので本発明ではあわせて水酸化物という。)。希土類元素の水酸化物としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムの水酸化物を挙げることができる。これらの中で、セリウムの水酸化物を特に好適に用いることができる。   There is no particular limitation on the method for producing a granule carrying a rare earth element hydrous oxide used in the method of the present invention. For example, an aqueous solution of a salt of a rare earth element is attached to a carrier, treated with an alkaline aqueous solution, and insoluble on the carrier. It can be produced by depositing and drying a rare earth element hydroxide (in the present invention, both oxide and hydroxide are included depending on the degree of drying). Examples of rare earth element hydroxides include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. it can. Of these, cerium hydroxide can be particularly preferably used.

希土類元素の水酸化物を担持する担体についても特に制限はなく、例えば、マグネシア、アルミナ、チタニア、シリカ、シリカ−アルミナ、ジルコニア、ゼオライト、活性炭、ケイソウ土、コージェライトなどの無機系担体、ポリアミド、セルロース系樹脂、ポリスルホン、ポリアクリロニトリル、ポリ塩化ビニル、エチレン−ビニルアルコール共重合体などの有機系担体を挙げることができ、その平均粒径は接触効率、取り扱い性の面から0.5〜5mm程度であることが好ましく、また、担体への希土類元素の水酸化物の担持量は担体に対する希土類元素換算の割合で0.1〜1kg−希土類元素/L−担体程度、好ましくは0.4〜0.5kg−希土類元素/L−担体とすることが好ましい。   There is no particular limitation on the carrier supporting the rare earth element hydroxide, for example, magnesia, alumina, titania, silica, silica-alumina, zirconia, zeolite, activated carbon, diatomaceous earth, cordierite and other inorganic carriers, polyamide, Organic carriers such as cellulose resin, polysulfone, polyacrylonitrile, polyvinyl chloride, and ethylene-vinyl alcohol copolymer can be listed, and the average particle size is about 0.5 to 5 mm from the viewpoint of contact efficiency and handling The amount of the rare earth element hydroxide supported on the carrier is preferably about 0.1-1 kg-rare earth element / L-carrier, preferably 0.4-0. 0.5 kg-rare earth element / L-support is preferable.

なお、以下において、希土類元素水酸化物を有機系担体に担持してなる造粒体を「希土類含水酸化物担持樹脂」と称す場合がある。   In the following, a granulated body obtained by supporting a rare earth element hydroxide on an organic carrier may be referred to as “rare earth hydroxide-containing resin”.

本発明方法において、シリカ・リン除去処理水を希土類元素の水酸化物を担持した造粒体と接触させる方法に特に制限はなく、例えば、図1に示す如く、該造粒体を充填したホウ素吸着塔2にシリカ・リン除去処理水を通水して接触させることができる。造粒体を充填したホウ素吸着塔の数に特に制限はなく、例えば、ホウ素吸着塔1基のみを使用しても、複数基のホウ素吸着塔を直列につなぎ、最初の塔が飽和したとき、最初の塔を系列からはずし、再生済みの塔を最終段に付け加えるいわゆるメリーゴーラウンド方式とすることもできる。また、ホウ素吸着塔を2基並列に設け、ホウ素の吸着除去処理と再生処理とを交互に行うように通水を切り換えることもできる。ホウ素吸着塔1基のみを使用する場合は、塔から流出する処理水のホウ素濃度が所定の排水基準に達したときに、後述の方法で再生工程に移行する。メリーゴーラウンド方式の場合は、最初の塔の流出水のホウ素濃度が入口濃度に等しくなったとき、最初の塔を塔列から外して、再生工程に移行する。   In the method of the present invention, there is no particular limitation on the method of bringing the silica / phosphorus-removed treated water into contact with the granule supporting the rare earth element hydroxide. For example, as shown in FIG. The adsorption tower 2 can be brought into contact with the silica / phosphorus removal treated water. There is no particular limitation on the number of boron adsorption towers packed with granules, for example, even when only one boron adsorption tower is used, when a plurality of boron adsorption towers are connected in series and the first tower is saturated, A so-called merry-go-round system in which the first tower is removed from the line and the regenerated tower is added to the final stage can be employed. Further, two boron adsorption towers can be provided in parallel, and the water flow can be switched so as to alternately perform the boron adsorption removal process and the regeneration process. When only one boron adsorption tower is used, when the boron concentration of the treated water flowing out from the tower reaches a predetermined drainage standard, the process proceeds to the regeneration step by the method described later. In the case of the merry-go-round method, when the boron concentration of the effluent of the first column becomes equal to the inlet concentration, the first column is removed from the column and the process proceeds to the regeneration process.

本発明方法において、シリカ・リン除去処理水は、pHを3〜12、特に4〜10に調整して希土類元素の水酸化物を担持した造粒体と接触させることが好ましい。希土類元素の含水酸化物を担持した造粒体と接触させるシリカ・リン除去処理水のpHが3未満であったり、pHが12を超えると、吸着量が低下するおそれがある。従って、シリカ・リン除去処理水は、ホウ素吸着処理に先立ち、必要に応じてpH調整を行っても良い。   In the method of the present invention, the silica / phosphorus-removed treated water is preferably brought into contact with a granule carrying a rare earth element hydroxide by adjusting the pH to 3 to 12, particularly 4 to 10. If the pH of the silica / phosphorus-removed water to be brought into contact with the granule carrying a rare earth element-containing hydrous oxide is less than 3, or if the pH exceeds 12, the adsorption amount may decrease. Accordingly, the silica / phosphorus removal treated water may be adjusted in pH as necessary prior to the boron adsorption treatment.

ホウ素吸着処理に用いた、希土類元素の含水酸化物を担持した造粒体は、アルカリ水溶液と接触させてホウ素を脱着させることにより再生処理する。   The granule carrying the rare earth element hydrated oxide used in the boron adsorption treatment is regenerated by bringing it into contact with an alkaline aqueous solution to desorb boron.

ホウ素の脱着に用いるアルカリ水溶液に特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどの水溶液を挙げることができる。これらの中で、水酸化ナトリウム水溶液を好適に用いることができる。アルカリ水溶液の濃度に特に制限はないが、0.1〜2モル/Lであることが好ましく、0.3〜1モル/Lであることがより好ましい。アルカリ水溶液の濃度が0.1モル/L未満であると、必要なアルカリ水溶液の量が過大になるとともに、ホウ素が十分に脱着しないおそれがある。アルカリ水溶液の濃度が2モル/Lを超えても、脱着効率が向上せず、希土類元素の水酸化物を担持した造粒体が劣化するおそれがある。   There is no restriction | limiting in particular in aqueous alkali solution used for the desorption of boron, For example, aqueous solution, such as sodium hydroxide and potassium hydroxide, can be mentioned. Among these, an aqueous sodium hydroxide solution can be suitably used. Although there is no restriction | limiting in particular in the density | concentration of aqueous alkali solution, it is preferable that it is 0.1-2 mol / L, and it is more preferable that it is 0.3-1 mol / L. If the concentration of the aqueous alkaline solution is less than 0.1 mol / L, the amount of the required aqueous alkaline solution becomes excessive, and boron may not be sufficiently desorbed. Even if the concentration of the aqueous alkali solution exceeds 2 mol / L, the desorption efficiency is not improved, and the granule carrying the rare earth element hydroxide may be deteriorated.

アルカリ水溶液と造粒体との接触方法には特に制限はなく、前述の希土類元素の含水酸化物を担持した造粒体を充填したホウ素吸着塔であれば、図1に示す如く、このホウ素吸着塔2に再生剤としてのアルカリ水溶液を通水して再生を行えば良い。なお、アルカリ水溶液の通水の前後で必要に応じて水による洗浄を行っても良い。   The method for contacting the alkaline aqueous solution with the granulated body is not particularly limited. If the boron adsorption tower is filled with the above-mentioned granulated body supporting the hydrated oxide of the rare earth element, as shown in FIG. The regeneration may be performed by passing an aqueous alkali solution as a regenerant through the tower 2. In addition, you may perform the washing | cleaning with water as needed before and behind water flow of alkaline aqueous solution.

なお、本発明においても、特開2004−57870号公報に記載されるように、上記アルカリ水溶液による再生の前又は後で造粒体を酸水溶液で処理してCa(OH),Mg(CH)といったスケール成分により低下したホウ素吸着性能の回復処理を行っても良い。 In the present invention, as described in JP-A-2004-57870, the granulated product is treated with an acid aqueous solution before or after regeneration with the alkaline aqueous solution, and Ca (OH) 2 , Mg (CH ) You may perform the recovery process of the boron adsorption | suction performance reduced with scale components, such as 2 .

この場合、使用する酸としては、例えば、塩酸、硝酸、硫酸などを挙げることができる。これらの中で、塩酸は、窒素含有廃液が発生せず、ホウ素吸着塔内で不溶性の塩を生成するおそれもないので、好適に用いることができる。酸水溶液は、pH1〜5であることが好ましく、pH1〜3であることがより好ましい。酸水溶液のpHが1未満であると、担持している希土類元素の水酸化物が溶出し、造粒体の吸着性能が低下するおそれがある。酸水溶液のpHが5を超えると、造粒体の表面のスケールを除去する効果が十分に発現しないおそれがある。   In this case, examples of the acid used include hydrochloric acid, nitric acid, and sulfuric acid. Among these, hydrochloric acid can be suitably used because no nitrogen-containing waste liquid is generated and there is no possibility of forming an insoluble salt in the boron adsorption tower. The acid aqueous solution preferably has a pH of 1 to 5, more preferably a pH of 1 to 3. When the pH of the acid aqueous solution is less than 1, the supported rare earth element hydroxide is eluted, and the adsorbing performance of the granulated material may be lowered. When the pH of the acid aqueous solution exceeds 5, the effect of removing the scale on the surface of the granulated body may not be sufficiently exhibited.

造粒体と酸水溶液との接触方法についても特に制限はなく、例えば、造粒体を充填したホウ素吸着塔に酸水溶液を通水する方法が挙げられる。   There is no restriction | limiting in particular also about the contact method of a granulation body and acid aqueous solution, For example, the method of passing an acid aqueous solution to the boron adsorption tower filled with the granulation body is mentioned.

ホウ素を吸着した造粒体をアルカリ水溶液と接触させる前に、該造粒体を酸水溶液と接触させる場合は、シリカ・リン除去処理水の通水を停止し、造粒体を水で洗浄し、造粒体を酸水溶液と接触させた後、水で洗浄し、次いで造粒体をアルカリ水溶液と接触させてホウ素を脱着し、更に造粒体を水で洗浄して1サイクルの処理を完了する。ホウ素を吸着した造粒体をアルカリ水溶液と接触させた後に、造粒体を酸水溶液と接触させる場合は、シリカ・リン除去処理水の通水を停止し、造粒体を水で洗浄し、造粒体をアルカリ水溶液と接触させてホウ素を脱着した後、水で洗浄し、次いで造粒体を酸水溶液と接触させ、造粒体を水で洗浄し、次いで造粒体をアルカリ水溶液と接触させてOH型に変換し、最後に造粒体を水で洗浄して1サイクルの処理を完了する。酸水溶液による処理後にアルカリ水溶液によるホウ素の脱着を行うと、脱着工程終了時に造粒体がOH型になっているので、工程数が少ないという利点がある。しかし、酸水溶液による処理後において、吸着されているホウ素の一部が脱着するので、ホウ素の回収に重点をおく場合は、脱着工程後に酸処理工程を行うことが好ましい。   Before bringing the granulated body adsorbing boron into contact with the aqueous alkali solution, when the granulated body is brought into contact with the aqueous acid solution, the flow of silica / phosphorus removal water is stopped and the granulated body is washed with water. After the granulated body is contacted with an acid aqueous solution, it is washed with water, and then the granulated body is contacted with an alkaline aqueous solution to desorb boron, and the granulated body is further washed with water to complete one cycle of processing. To do. After contacting the granulated body adsorbed with boron with an aqueous alkaline solution, if the granulated body is contacted with an aqueous acid solution, stop the silica / phosphorus removal treatment water flow, wash the granulated body with water, Contact the granulation with an aqueous alkali solution to desorb boron, then wash with water, then contact the granulation with an aqueous acid solution, wash the granulation with water, and then contact the granulation with an aqueous alkali solution Then, it is converted to OH type, and finally the granulated body is washed with water to complete one cycle of treatment. When boron is desorbed with an alkaline aqueous solution after the treatment with the acid aqueous solution, the granulated body is in the OH type at the end of the desorption step, and thus there is an advantage that the number of steps is small. However, since part of the adsorbed boron is desorbed after the treatment with the acid aqueous solution, it is preferable to perform the acid treatment step after the desorption step when emphasizing the recovery of boron.

なお、用いたアルカリ水溶液及び酸水溶液は、使用後、アルカリ又は酸を添加してpH調整することにより、循環再使用することができる。   In addition, the alkali aqueous solution and acid aqueous solution which were used can be recirculated and reused by adding alkali or an acid and adjusting pH after use.

本発明によれば、予めシリカ、或いはシリカ及びリンを除去することにより、シリカ、或いはシリカ及びリンによる希土類元素の含水酸化物を担持した造粒体のホウ素吸着性能の低下が防止されることにより、上記アルカリ水溶液或いはアルカリ水溶液及び酸水溶液による再生頻度を従来の1/10程度に低減することができる。 According to the present invention, by removing pre Me shea silica, or silica and phosphorus, shea silica, or reduction of boron adsorption performance of the granulated material with silica and phosphate carrying hydrous oxide of a rare earth element is prevented Thus, the regeneration frequency with the alkaline aqueous solution or the alkaline aqueous solution and the acid aqueous solution can be reduced to about 1/10 of the conventional one.

このような本発明のホウ素含有水の処理方法が適用されるシリカ、或いはシリカ及びリンを含むホウ素含有水としては特に制限はないが、例えば、前述のシリカとホウ素を含む脱硫排水が挙げられる。これらの排水は必要に応じて、フッ素及び高濃度リン除去のためにカルシウム塩による凝集沈殿処理が施された後、本発明による処理に供される。 Such boron is processed method contains water applied Cie Rica present invention, or is not particularly limited as boron-containing water containing silica and phosphorus, for example, include desulfurization waste water containing silica and boron above It is done. These wastewaters are subjected to the treatment according to the present invention after being subjected to a coagulation-precipitation treatment with a calcium salt to remove fluorine and high-concentration phosphorus as required.

本発明のホウ素含有水の処理方法は、1〜20mg/L程度のシリカ、或いは更に0.1〜10mg/L程度のリン酸性リンを含み、10〜500mg/L程度のホウ素とを含む水に特に有効に適用される。 The method for treating boron-containing water according to the present invention is about water containing about 1 to 20 mg / L of silica, or about 0.1 to 10 mg / L of phosphoric acid phosphorus , and about 10 to 500 mg / L of boron. It is applied particularly effectively.

以下に実験例、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to experimental examples, examples and comparative examples.

実験例1
シリカ12.8mg/L、リン酸性リン0.91mg/L、カルシウム1400mg/L、ホウ素200mg/Lを含む排水20mLに、PACを10〜100mg/Lの所定量添加し、pH5〜9の所定値に調整して、20分間撹拌後、No.5A濾紙で濾過した。
Experimental example 1
A predetermined amount of 10 to 100 mg / L of PAC is added to 20 mL of waste water containing 12.8 mg / L of silica, 0.91 mg / L of phosphoric acid phosphorus, 1400 mg / L of calcium, and 200 mg / L of boron, and a predetermined value of pH 5 to 9 After stirring for 20 minutes, No. Filter with 5A filter paper.

この凝集処理におけるPAC添加量及び調整pH値と、得られた処理水(濾過水)のシリカ(SiO)濃度、リン(PO−P)濃度との関係を表1及び図2に示した。 And PAC amount and adjusting pH value in the flocculation treatment, silica (SiO 2) concentration of the resulting treated water (filtered water), the relationship between phosphorus (PO 4 -P) concentrations shown in Table 1 and Figure 2 .

表1,図2より、PACを用いた凝集処理により、SiO,PO−Pを効率的に除去することができることが分かる。 From Table 1 and FIG. 2, it can be seen that SiO 2 and PO 4 -P can be efficiently removed by the aggregation treatment using PAC.

Figure 0003891189
Figure 0003891189

実施例1
実験例1で処理したものと同様の水質の排水に、PAC100mg/Lを添加してpH9に調整した後濾過し、その後pH7に調整したシリカ・リン除去処理水(シリカ濃度1.0mg/L、リン酸性リン濃度0.08mg/L、ホウ素濃度200mg/L)を原水として、希土類含水酸化物担持樹脂20mLを充填したガラスカラムよりなるホウ素吸着塔に下向流にてSV=3h−1で通水し、塔出口水のホウ素濃度が通水原水ホウ素濃度と同じになるまでの単位希土類含水酸化物担持樹脂量(L−希土類含水酸化物担持樹脂(R))当たりの平衡吸着量を調べた。なお、希土類含水酸化物担持樹脂としては、エチレン−ビニルアルコール共重合体にセリウムの水酸化物をセリウムとして0.5kg−Ce/L−担体担持させた造粒体(平均粒径0.7mm)を用いた。
Example 1
Silica / phosphorus-removed water (silica concentration 1.0 mg / L, silica concentration 1.0 mg / L), adjusted to pH 9 by adding PAC 100 mg / L to the waste water having the same water quality as that treated in Experimental Example 1 Phosphoric acid phosphorus concentration of 0.08 mg / L, boron concentration of 200 mg / L) was used as raw water, and passed through a boron adsorption tower consisting of a glass column packed with 20 mL of rare earth hydrated oxide-supporting resin at SV = 3h −1 in a downward flow. The equilibrium adsorption amount per unit rare earth hydroxide-supported resin amount (L-rare earth hydroxide-containing resin (R)) until the boron concentration in the tower outlet water was the same as the raw water boron concentration was examined. . The rare earth hydrated oxide-supported resin is a granulated product (average particle size 0.7 mm) in which 0.5 kg-Ce / L-carrier is supported on an ethylene-vinyl alcohol copolymer with cerium hydroxide as cerium. Was used.

通水終了後(平衡吸着量到達後)、通水流量SV=3h−1で、純水(3BV)→20g−NaOH/L(3BV)→純水(3BV)の順で通水して再生した。 After completion of water flow (after reaching the equilibrium adsorption amount), water is regenerated by flowing water in the order of pure water (3 BV) → 20 g-NaOH / L (3 BV) → pure water (3 BV) at a flow rate of SV = 3h −1. did.

このような原水の通水と再生を繰り返し、平衡吸着量の変化を調べ、結果を図3に示した。   Such flow and regeneration of the raw water were repeated, the change in the equilibrium adsorption amount was examined, and the result is shown in FIG.

比較例1
実施例1において、PACによる凝集処理を行わなかったこと以外は同様にして、通水と再生を繰り返し、平衡吸着量の変化を調べ、結果を図3に示した。
Comparative Example 1
In Example 1, water passage and regeneration were repeated in the same manner except that the PAC aggregation treatment was not performed, and changes in the equilibrium adsorption amount were examined. The results are shown in FIG.

図3より凝集処理により予めリンとシリカを除去することにより、希土類含水酸化物担持樹脂のホウ素吸着性能の低下が防止されることが分かる。   It can be seen from FIG. 3 that the phosphorus adsorption performance of the rare earth-containing hydrated oxide-supported resin is prevented from being lowered by previously removing phosphorus and silica by agglomeration treatment.

本発明のホウ素含有水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the boron containing water of this invention. 実験例1における凝集処理試験結果を示すグラフであり、(a)図はSiO凝集処理試験結果、(b)図はPO−P凝集処理試験結果を示す。Is a graph showing the aggregation treatment test results of Experimental Example 1, (a) drawing SiO 2 flocculation treatment test results, showing the (b) figure PO 4 -P flocculation treatment test results. 実施例1及び比較例1における平衡吸着量の変化を示すグラフである。5 is a graph showing changes in the amount of equilibrium adsorption in Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

1 凝集分離手段
2 ホウ素吸着塔
2A 希土類含水酸化物担持樹脂
DESCRIPTION OF SYMBOLS 1 Aggregation separation means 2 Boron adsorption tower 2A Rare earth hydrated oxide carrying resin

Claims (5)

リカを含むホウ素含有水を、希土類元素の含水酸化物を担持した造粒体と接触させてホウ素を吸着除去するホウ素含有水の処理方法において、該ホウ素含有水中のシリカを予め除去した後、前記造粒体と接触させることを特徴とするホウ素含有水の処理方法。 The boron-containing water containing by silica, in the processing method of the boron-containing water containing a hydroxide is contacted with the granules carrying adsorbing and removing boron rare earth element, after prior removal by silica of the boron-containing water A method for treating boron-containing water, which is brought into contact with the granulated body. 請求項1において、シリカを含むホウ素含有水がリンも含み、該ホウ素含有水中のシリカを除去する際に、シリカとともにリンも除去することを特徴とするホウ素含有水の処理方法。The method for treating boron-containing water according to claim 1, wherein the boron-containing water containing silica also contains phosphorus, and when removing silica in the boron-containing water, phosphorus is also removed together with silica. 請求項1又は2において、シリカ、或いはシリカ及びリンを除去する処理が凝集処理であることを特徴とするホウ素含有水の処理方法。 3. The method for treating boron-containing water according to claim 1 , wherein the treatment for removing silica or silica and phosphorus is a coagulation treatment. 請求項において、凝集処理を、アルミニウムを含む凝集剤を用い、pH8〜9で行うことを特徴とするホウ素含有水の処理方法。 4. The method for treating boron-containing water according to claim 3, wherein the coagulation treatment is performed at a pH of 8 to 9 using a coagulant containing aluminum. 請求項において、生成した凝集汚泥を濾過又は沈殿により分離することを特徴とするホウ素含有水の処理方法。 5. The method for treating boron-containing water according to claim 4, wherein the produced agglomerated sludge is separated by filtration or precipitation.
JP2004147626A 2004-05-18 2004-05-18 Method for treating boron-containing water Expired - Lifetime JP3891189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004147626A JP3891189B2 (en) 2004-05-18 2004-05-18 Method for treating boron-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147626A JP3891189B2 (en) 2004-05-18 2004-05-18 Method for treating boron-containing water

Publications (2)

Publication Number Publication Date
JP2005329281A JP2005329281A (en) 2005-12-02
JP3891189B2 true JP3891189B2 (en) 2007-03-14

Family

ID=35484276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147626A Expired - Lifetime JP3891189B2 (en) 2004-05-18 2004-05-18 Method for treating boron-containing water

Country Status (1)

Country Link
JP (1) JP3891189B2 (en)

Also Published As

Publication number Publication date
JP2005329281A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP5157941B2 (en) Method for treating boron-containing water
JP4880656B2 (en) Water treatment apparatus and water treatment method
TW201833037A (en) Water treatment method and water treatment system capable of conveniently removing more fluoride ions from water to be treated containing fluoride ions at a relatively high concentration
CN111517530A (en) Waste acid liquid regeneration pretreatment method and system
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP3995554B2 (en) Method for treating boron-containing water
JP4618937B2 (en) How to remove phosphorus from wastewater.
JP3791760B2 (en) Method and apparatus for removing and recovering phosphorus from water containing SS and phosphorus
JP3908585B2 (en) Treatment method for fluorine-containing wastewater
JP2004050069A (en) Treatment method for boron containing water and treatment apparatus therefor
JP3319053B2 (en) Treatment method for fluoride-containing water
JP3891189B2 (en) Method for treating boron-containing water
JP2008073639A (en) Boron recovery apparatus
JP3913939B2 (en) Boron recovery method
JP4821170B2 (en) Ultrapure water production equipment
JP4297663B2 (en) Boron recovery method
JP2891790B2 (en) Regeneration method of anion exchange resin
JP3845758B2 (en) Dephosphorization method of waste water
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP2005238152A (en) Organic material-containing water treatment method
JP2737610B2 (en) Treatment of flue gas desulfurization wastewater
JPH0371199B2 (en)
JPH0839059A (en) Recovery of semiconductor washing waste water containing organic alkali
JP4665279B2 (en) Method for treating boron-containing water
JP2008297568A (en) Method of electrolyzing sodium chloride aqueous solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3891189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250