JP3949283B2 - Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans - Google Patents

Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans Download PDF

Info

Publication number
JP3949283B2
JP3949283B2 JP20871998A JP20871998A JP3949283B2 JP 3949283 B2 JP3949283 B2 JP 3949283B2 JP 20871998 A JP20871998 A JP 20871998A JP 20871998 A JP20871998 A JP 20871998A JP 3949283 B2 JP3949283 B2 JP 3949283B2
Authority
JP
Japan
Prior art keywords
lubricating oil
resin film
ironing
temperature
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20871998A
Other languages
Japanese (ja)
Other versions
JP2000024722A (en
Inventor
修一 古田
克優 松波
正俊 山本
英一郎 笠戸
知彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP20871998A priority Critical patent/JP3949283B2/en
Publication of JP2000024722A publication Critical patent/JP2000024722A/en
Application granted granted Critical
Publication of JP3949283B2 publication Critical patent/JP3949283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シームレス缶用ポリエステル樹脂被覆アルミニウム板およびシームレス缶の製造方法に関する。
【0002】
【従来の技術】
アルミニウムやスチールを素材とした金属缶・容器は、その形状からスリーピース缶とツーピース缶とに大別される。スリーピース缶は、地蓋、缶胴、天蓋から成るためスリーピース缶と呼ばれている。
一方、ツーピース缶は、地蓋と缶胴とが一体となったもので、それに天蓋とから成るためツーピース缶、又は、缶胴部に接合部がないことから、シームレス缶とも呼ばれている。
【0003】
金属缶の場合、缶内面には耐食性の確保から塗装が施され使用されているが、近年、熱可塑性樹脂フィルムを積層したラミネート缶が開発され、ビールや例えばコーラのような炭酸飲料を充填した飲料缶分野で市場に出回っている。
ラミネート缶は、金属素材に熱可塑性樹脂フィルムを積層させたものから、缶体成形加工を行うものが主であり、特にツーピース缶を得るには高度な成形加工技術を必要とする。
かかる意味においても、ツーピースのラミネート缶に関わる技術は、例えば特開平7−2241号公報、特開平7−195619号公報、特開平8−244750号公報等、数多く提案され、開示されている。
【0004】
ラミネート缶のメリットは、消費者側から見た場合、適用する熱可塑性樹脂フィルムにもよるが、耐内容物性、特に内容物の味、風味と言ったフレーバー性に優れている点が第一に挙げられている。
一方、デメリットとしては、今度は製缶メーカー側からであるが、前述したようにツーピース缶の場合、熱可塑性樹脂フィルム被覆金属板の加工度(又は変形度合)が大きいので、成形時に内面樹脂フィルムに傷が入ったりした場合、缶内面の品質確保ができなくなるため、缶体の品質検査を厳重に行う必要があることと、製品歩留まりが現行の塗装缶に比べて劣るといった点が挙げられる。
【0005】
特に、スチール素材を用いたツーピースラミネート缶の場合、上記の傾向が大きいが、アルミニウム合金を素材としたツーピースラミネート缶でも同様なことが起こる。
こうしたラミネート缶の内面樹脂フィルムの皮膜欠陥は、前述したように缶成形加工時に入るものであり、この欠陥を最小限に抑えることは、品質、製品歩留まりの点から重要な技術課題であることは言うまでもない。
しかし、しごき加工を伴うツーピース缶成形の、特に高加工率の場合の内面の樹脂フィルムに傷その他の欠陥を入れることなく成形する適切手段がないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明は、こうした実状に鑑みなされたもので、皮膜欠陥のない高耐食性、高品質な熱可塑性樹脂被覆アルミニウムシームレス缶を歩留まりよく提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明の第一は、板厚が0.20mm〜0.32mmのアルミニウム板の両面に、厚み10〜50μm、融点(Tm)200℃〜260℃、密度1.36未満である熱可塑性ポリエステル樹脂フィルムで被覆されたラミネート板の樹脂フィルム被覆面に、流動点が5℃以下である潤滑油(A)を重量部で5〜50部と、融点が40℃以上である潤滑油(B)を重量部で95〜50部の混合比で混合されている混合潤滑油を、片面の付着量として30〜200mg/m2塗油したことを特徴とするシームレス缶用ポリエステル樹脂被覆アルミニウム板に関する。
【0008】
本発明の第二は、板厚が0.20mm〜0.32mmのアルミニウム板の両面に、厚み10〜50μm、融点(Tm)200℃〜260℃、密度1.36未満であるポリエステル樹脂で被覆されたラミネート板を用いてシームレス缶を製造するに際し、該ラミネート板の樹脂フィルム被覆面に、流動点が5℃以下である潤滑油(A)を重量部で5〜50部と、融点が40℃以上である潤滑油(B)を重量部で95〜50部の混合比で混合されている混合潤滑油を、片面の付着量として30〜200mg/m2塗油した後、該ポリエステル樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲でストレッチ加工および/またはしごき加工を付加した絞り加工(第1工程)を行い、次いで、第1工程の絞り加工で得たカップを該ポリエステル樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲でストレッチ加工および/またはしごき加工を付加した再絞り加工(第2工程)を行い、次いで、第2工程で得た再絞りカップの温度を潤滑油(B)の融点以下にし、加工金型の温度を120℃以下に保持してしごき加工(第3工程)を行うことを特徴とするポリエステル樹脂被覆アルミニウムシームレス缶の製造方法に関する。
【0009】
【発明の実施の形態】
以下、本発明の方法の実施形態について詳細に説明する。
まず、本発明におけるアルミニウム板について述べる。
本発明に適用されるアルミニウム板は、特に制限するものではなく、アルミニウム板やその合金板が用いられるが、とくに通常缶容器の製造に用いられる3004系アルミ合金、5052系アルミ合金、5182系アルミ合金等種々のアルミニウム合金が好ましい。アルミニウムの板厚としては、0.20mm〜0.32mmのものが適用される。板厚が0.20mm以下では、炭酸飲料やビール等を充填・密封する内圧缶の場合、耐圧強度が十分でなく缶底部が張り出した状態(バックリング)になる場合があり、好ましくない。一方、0.32mm以上では、缶の耐圧強度は十分に確保されるが、実質的には品質過剰であり、経済的でない。板厚の限定理由は、上述のように缶の耐圧強度から限定したものである。
従って、適用するアルミニウム板の機械的特性、特に耐力強度と関わりがあり、耐力強度が高い場合は板厚の薄手化が可能となる。実際に本発明を実施する際は、板厚は缶全体の強度バランスを考慮し、適宜選択することが望ましい。
【0010】
本発明では、熱可塑性ポリエステル樹脂フィルムとの密着性を確保する目的で、アルミニウム板表面に表面処理を施したものを使用することが好ましい。
表面処理としては、通常アルミニウム板の絞りしごき缶の成形加工後の表面処理として使用されている、リン酸クロム酸処理や、リン酸ジルコニウム処理が適用されるが、特に、缶壁部の板厚減少度が大きい高加工度の場合は、リン酸またはリン酸ジルコニウムと有機樹脂との有機無機複合型化成処理が有効である。
有機無機複合型化成処理の場合、付着量は皮膜中C量として5〜50mg/m2が良く、5mg/m2以下では被覆性が劣り、防食作用および密着性が共に不十分となり、缶体成形加工後に樹脂フィルムが局部的に剥離する、いわゆるデラミが起こったり局部的な腐食が起こったり、また、デント性も劣り好ましくない。
一方、50mg/m2を超えると、被覆性は良好であるが、加工度が大きい缶体成形加工の場合、皮膜が凝集破壊を起こし密着性が低下し、樹脂フィルムが剥離するといった場合があるので好ましくない。
表面処理皮膜量としては、皮膜C量として10〜40mg/m2が好適である。
【0011】
アルミニウム板の表面処理方法としては、例えば上記の有機無機複合型化成処理の場合、リン酸またはリン酸とフッ化ジルコニウムと水溶性有機樹脂、例えば水溶性フェノール樹脂、水溶性アクリル樹脂等を含む水溶液に、反応性を促進させるためにフッ酸、ポリリン酸を添加した処理液を、アルミニウム板にロール塗布した後、水洗、乾燥し硬化させる方法や、処理液をアルミニウム板にスプレー塗布した後、水洗、乾燥し硬化させる方法等が適宜適用できる。
乾燥硬化方法としては熱風での乾燥、電気炉での乾燥等の方法が適用でき、温度は150℃〜250℃で乾燥時間は10秒〜2分程度である。
【0012】
本発明において、アルミニウム板を被覆する樹脂フィルムとしては熱可塑性ポリエステル樹脂フィルムを用いるが、その理由は、▲1▼耐熱性が良い、▲2▼内容物のフレーバーが確保される、といった、例えばポリエチレンやポリプロピレンなどのポリオレフィン系樹脂フィルムにはない、缶用途に適した特性を有しているからである。
【0013】
ポリエステル樹脂としては、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンイソフタレート(PEI)のようなホモポリマーや、例えばポリエチレンテレフタレートとポリエチレンイソフタレートとの共重合樹脂であるコポリマーや、またこうしたホモポリマーやコポリマーのブレンド樹脂等が適用される。
【0014】
アルミニウム板の表面を被覆する熱可塑性ポリエステル樹脂フィルムの厚みは、10〜50μm、好ましくは12〜40μmのものを用いる。
缶の内面に当たる面に積層されるフィルム厚みは、缶内面の耐食性の観点から限定されるものであり、10μm以下では缶の成形加工後で充填する内容物にもよるが、十分な耐食性を確保するのは難しい場合がある。
一方、50μmを超えると、ほとんどの内容物に対し耐食性は十分確保されるが、実質的に過剰品質となり、経済的でない。
【0015】
また、本発明を実施する際のフィルム厚みの選定は、後述する缶壁部の薄肉化の加工度との関係があることも選定の際の重要な要素である。即ち、加工度が高い場合は、当然その加工度に応じてフィルムの厚みも薄くなるため、その結果として、缶内面の防食性能は低下する。従って、加工度が高い場合は予め厚手のフィルムを使用することが望ましい。一方、加工度が低い場合はそれに応じて予め薄手のフィルムを使用することが可能となる。
【0016】
本発明で使用する熱可塑性ポリエステル樹脂フィルムは、融点(Tm)が200℃〜260℃の樹脂フィルムである。
成形加工時には、金属の加工熱が発生し、缶体はかなりの温度となる。特にしごき加工の際に発生する金属の加工熱は、樹脂フィルムの特性を大きく変化させる。この熱による樹脂フィルムの特性変化の一つに樹脂フィルムの軟化がある。樹脂フィルムが軟化すると、しごき加工時に内外面の樹脂フィルムを傷つける原因となる。
即ち、内面側の樹脂フィルムは、パンチに付着してしまいパンチが抜け難くなる、いわゆる離型性不良が起こり、内面の樹脂フィルムを傷つける原因となる。また、離型性不良が甚だしい場合は、缶体の開口部近傍が座屈し、正規の缶体高さが得られない事態が起こったりする。
【0017】
一方、外面側の樹脂フィルムは、しごきダイスによる「かじり」と言われる缶高さ方向への直線的な傷が入り易くなる。外面の「かじり」による傷が入った場合は、その後施される印刷の仕上がり外観を損ねる結果となる。
【0018】
この樹脂フィルムの熱による軟化の程度は、樹脂の融点(Tm)とかかわっており、融点が下限値の200℃以下では、たとえ本発明で適用される潤滑油が塗布されていても離型性やかじり性が劣り、好ましくない。
一方、上限値の260℃以上では、高融点化に伴う離型性やかじり性の更なる改善は期待できず、効果は飽和する。
樹脂フィルムの融点(Tm)は、上記の離型性やかじり性の観点から限定したものであるが、しごき加工時の発熱量は後述する加工度との関係もあり、樹脂フィルムの融点だけで離型性やかじり性の良否を決められるものではないが、基本的には融点は高い方が有利であり、本発明で使用する樹脂フィルムの融点は、210〜255℃が好ましく、特に220〜255℃が好適である。
【0019】
本発明のラミネート板およびシームレス缶を被覆しているポリエステル樹脂フィルムの密度は、1.36未満である。
密度は樹脂の結晶状態を示す指標となり、例えば、延伸された樹脂フィルム等の結晶化度が高い場合は、密度は大きくなる。密度が1.36未満であるということは、熱可塑性ポリエステル樹脂フィルムの結晶状態としては、実質的に非晶質であることを示す。
【0020】
ラミネート板に被覆した樹脂フィルムを非晶質にする理由は、その後行うカップの絞り加工、カップの再絞り加工、更にしごき加工において、樹脂フィルムの加工性を十分に確保することを目的にしたもので、密度が1.36以上になると、結晶性の低いポリエステル樹脂フィルムでも、成形加工にフィルムが耐えられず亀裂欠陥が激しく起こる場合があり好ましくない。特に、加工度が大きい時は、しごき加工時の発熱と併せて引き延ばし加工により、樹脂フィルムの配向結晶化が一層進み、その結果、樹脂フィルムがアルミニウム板の加工に追随し難くなり、上記の挙動が顕著に現れ、缶体の耐食性が十分に確保できない場合がしばしば起こる。従って、密度が大きい、結晶化した状態からの成形加工は、特に、加工度が高くなると極めて難しく不適である。
密度を1.36未満と限定した理由は、上記の理由からで、特に、第1工程の絞り加工の前の密度としては、1.35未満が好ましい。
【0021】
熱可塑性ポリエステル樹脂フィルム被覆ラミネートアルミニウム板を得る製造方法としては、加熱されたアルミニウム板の表面に樹脂フィルムを供給してロール間で圧着し積層させた後、直ちに急冷してポリエステル樹脂フィルムを非晶質にする方法や、溶融した樹脂を押し出し、アルミニウム板に供給し積層させ、直ちに急冷してポリエステル樹脂フィルムを非晶質にする方法や、例えば二軸延伸フィルムの場合は、一度積層したポリエステル樹脂フィルムを、必要に応じ更に樹脂の融点以上に加熱した後直ちに急冷して、ポリエステル樹脂フィルムを非晶質にする方法等が適用できる。
【0022】
アルミニウム板の加熱方法としては、電気炉中で加熱する方法、熱風による加熱方法、加熱ロールに接触させて加熱する方法、等の常用の加熱方法が採用できる。
【0023】
次に、本発明に適用される潤滑油について説明する。
本発明において適用される潤滑油は、流動点が5℃以下である潤滑油(A)を重量部で5〜50部と、融点が40℃以上である潤滑油(B)を重量部で95〜50部の範囲で混合されている混合潤滑油を、ラミネート板の樹脂フィルム被覆された面に、片面の付着量として30〜200mg/m2塗油するものである。
潤滑油(A)は、流動点が5℃以下であり、これは常温下では液体である。一方、潤滑油(B)は、融点が40℃以上であり、これは常温下では液体ではない。この2種類の潤滑油を重量部で潤滑油(A)を5〜50部、潤滑油(B)を95〜50部の範囲に混合した混合潤滑油にすることで、後述する缶の加工手段との組み合わせにおいて、良好な特性を発揮することが、発明者等の研究結果から明らかになり、本発明に至ったものである。
【0024】
何故、潤滑油(A)と潤滑油(B)を上記のような混合比で混合した混合潤滑油にすることで、後述する缶の加工手段との組み合わせにおいて、良好な特性を発揮するかは、次のように考えられる。即ち、本発明におけるシームレス缶の成形加工は、ポリエステル樹脂被覆アルミニウム板に対して、絞り加工としごき加工と言った、異なる加工を組み合わせて行う。
【0025】
絞り加工では、ストレッチ加工または/およびしごき加工を付加するが、基本的には絞り加工である。絞り加工は、第1工程のカップ絞り加工、更には第2工程では第1工程で得られたカップの再絞り加工を行うが、この絞り加工では、加工と同時に材料は成形されるカップへの流れ込みが起こり、その結果、例えばカップの場合絞り加工後の胴壁部の板厚は、カップ開口部になる程加工前の板厚より厚くなる。この時、しわ押さえ部の摩擦力が大きく材料の流れ込みが不十分な場合、カップは底部のコーナー部から破断する、いわゆる抜けが起こったり、また缶胴の途中から破断したりする。一方、摩擦力が小さく、流れ込みが過剰な場合は、しわが発生する。いずれの場合も正常なカップは得られない。
【0026】
材料の流れ込みの程度は、しわ押さえ力としわ押さえ部全体の表面潤滑のバランスによって決まるが、使用する表面潤滑の影響が大きいことは周知であり、かかる意味においてプレス成形加工では、一般的には表面潤滑的特性や、もしくは境界潤滑的特性を有する潤滑剤が用いられている。
【0027】
また、本発明のように、樹脂フィルムを被覆したラミネート板を、絞り加工でカップ状に成形する場合、潤滑油の不適合によっては、カップ底部のコーナーにマイクロクラックが発生する時もあり、潤滑剤の選定は重要な要素となっている。
【0028】
一方、しごき加工は、胴壁部のみを、その胴壁部の厚さより狭い間隔を有する、パンチとしごきダイスのクリアランス部を通し、胴壁部の板厚を減少させる加工であるため、むしろ適度な摩擦力によって胴壁部の板厚を薄くする加工となっている。
【0029】
従って、余り流動性を有する潤滑剤ではパンチとしごきダイスのクリアランス部を通る時、缶の成形方向と逆の方向に潤滑剤が寄っていってしまい、潤滑剤を必要とする部位での欠如が起こり、缶胴が破断すると言った現象が起こり易い。そのためしごき加工では、極圧潤滑的な作用が必要であると考えられている。
【0030】
しごき加工における潤滑剤不適合の場合の問題点としては、上記の缶胴の破断と言った問題だけでなく、前述した離型性不良による内面樹脂フィルムの欠陥や、かじりによる外面フィルムの欠陥につながる問題も、併せ持っている。こうしたしごき加工時の問題は、前述した樹脂フィルムの融点や後述する成形加工とも関係があり、潤滑油だけの問題ではないが、潤滑油の影響も小さくなく、かかる意味においても、潤滑油の選定は品質確保の点から重要な要素となっている。
【0031】
本発明における潤滑油(A)は、ストレッチ加工または/およびしごき加工を付加した絞り加工に対し有効に作用し、また潤滑油(B)はしごき加工に有効に作用しているものと考えられる。本発明では、潤滑油(A)を重量部で5〜50部と潤滑油(B)を重量部で95〜50部の混合比で混合するが、潤滑油(A)が5重量部未満では絞り加工および再絞り加工の際に表面潤滑性が不十分で、カップの底が抜けたり、また途中から破断する危険性が高く好ましくない。一方、潤滑油(A)が50重量部を超えると、今度はしごき加工で缶胴破断が起こり易くなり好ましくない。
潤滑油(B)の場合は、潤滑油(A)と逆で、50重量部未満ではしごき加工で缶胴破断が起こり易く、一方、95重量部を超えると、絞り加工および再絞り加工の際に、カップの底が抜けたり、また途中から破断し易くなり、好ましくない。潤滑油(A)と潤滑油(B)との混合は、重量部で潤滑油(A)10〜40部、潤滑油(B)90〜60の混合比の範囲が好ましく、特に、しごき加工の加工度が高い場合は、重量部でそれぞれ10〜30部、70〜90部の混合比の範囲が好ましい。
【0032】
また、塗油量としては、片面の塗油量で30〜200mg/m2を塗油するが、下限値の30mg/m2未満では、第1工程の絞り加工および第2工程の再絞り加工で、潤滑油の寄りが起こり、しごき加工で必要な潤滑油量が確保されないこともあるため、缶胴の破断につながる場合もあり好ましくない。一方、上限値の200mg/m2を超えても、効果は飽和しており、経済的でない。また、塗油量が多いと脱脂性が悪くなるという問題が生じる可能性もあり好ましくはない。
【0033】
即ち、本発明で得られたしごき加工後缶体は、缶上端部を切断して正規の缶高さにするトリミングを行った後、脱脂工程、外面印刷工程、缶開口部を縮径にするネック加工と天蓋を巻き締めるために必要な開口部上端部分を外方へ曲げるフランジ加工等の工程を経て、内容物が充填される缶体となる。上記の脱脂が不十分な場合は、外面の印刷でインキがはじいたり、内面では内容物のフレーバー性に影響したりして、問題となる。従って、脱脂不良は避けねばならない事柄である。
【0034】
脱脂はアルカリ水溶液のスプレーによる脱脂や、加熱による揮発脱脂等、周知慣用の手段が適用できるが、本発明における潤滑油の塗油量の上限値である200mg/m2を超えると、脱脂時間が長く要するため、生産性の点で不利である。最適な塗油量としては、成形加工性および脱脂性の観点から、好ましくは40〜150mg/m2、更に好ましくは40〜100mg/m2であるが、特にしごき加工の加工度が高い場合は若干多目にすることが望ましい。
【0035】
流動点が5℃以下である潤滑油(A)としては、例えば流動パラフィンがあり、また、融点が40℃以上である潤滑油(B)としては、白色ワセリン(別名、ペトロラタム)、パラフィンワックス、マクロクリスタリンワックス等があり、これらのものが本発明では使用される。
なお、潤滑油(A)の流動点は、JIS−K2269の試験法に準じて測定したもので、一方の潤滑油(B)の融点は、JIS−K2235の試験法に準じて測定したものである。
【0036】
潤滑油のラミネート板への塗布方法としては、潤滑油(B)は常温では液体でないため、加温して液体にした後、潤滑油(A)と最適混合比で混合するとか、予め最適混合比の量を一緒にし、加温し混合することが望ましく、混合した後は必要に応じ加温しながら、平滑ロールによる塗布、グラビアロールによる塗布、スプレーによる塗布等、常用の手段が適用される。
【0037】
次に、本発明の方法である、缶の成形加工方法について述べる。
本発明の方法では、ポリエステル樹脂フィルム被覆したラミネートアルミニウム板を、絞り加工にてカップ状に成形する第1工程と、次いで第1工程で得たカップを更に再絞り加工し、第1工程で得たカップより缶径が小さく、缶高さの高いカップを成形する第2工程と、次いでこのカップの缶壁部をパンチとしごきダイスの間に通し、缶壁を薄く伸ばすしごき加工を行う第3工程からなっている。
【0038】
上記の成形加工方法の内、第1工程の絞り加工、第2工程の再絞り加工、第3工程のしごき加工は、いずれも缶壁部の板厚減少を伴った加工であるが、第4工程のネック加工・フランジ加工は、事実上板厚減少は伴わない加工である。従って、シームレス缶として成形加工されたものは、第3工程後の缶体が最終缶体となる。
【0039】
第1工程の絞り加工は、ラミネート板の温度を被覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲で、ストレッチ加工および/またはしごき加工を付加し、加工度として、前記式(1)から求められる値として10%以内になるように行う。
【0040】
また、第2工程の再絞り加工も、第1工程で得たカップの温度を被覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲で、ストレッチ加工および/またはしごき加工を付加し、加工度として式(1)で求められる値として第1工程の加工度と合わせて25%以内で行う。
【0041】
第3工程のしごき加工は、絞り加工で得たカップの缶体温度を潤滑油(B)の融点以下、好ましくは50℃以下〔潤滑油(B)の融点が50℃以下の場合はさらにその融点以下の温度とする〕にした後、加工金型の温度を120℃以下に保持し、しごき加工後の最終缶体の加工度として50〜70%の範囲になるよう成形加工を行う。
【0042】
まず、本発明の缶体成形方法における加工温度の限定について述べる。
本発明の方法における、第1工程の絞り加工および第2工程の再絞り加工を、被覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲に限定した理由は、絞り加工によるカップ底部コーナーの被膜健全性を確保するためである。
【0043】
カップ底部コーナーの樹脂フィルムは、パンチが最初に当たる個所であり、高い衝撃が掛かる。そして、この部位では樹脂フィルムにマイクロクラックが生じ易い。特に、第1工程の絞り加工によるカップ底部コーナーは、第2工程の再絞り加工後はカップ胴壁部(側壁部)となり、更に第3工程のしごき加工で延伸されるため、第1工程の絞り加工でカップ底部コーナーの樹脂フィルムにマイクロクラックが生じた場合、その後の加工で、激しい被膜欠陥となってしまう危険性が高くなり好ましくない。従って、特に絞り加工によるカップ底部コーナーの被膜健全性確保は、缶体の内面品質の点で重要な要素となる。
かかる意味において、樹脂フィルムのガラス転移温度(Tg)以下での絞り加工は、カップの缶底部コーナーの樹脂フィルムにマイクロクラックが生じ易く、好ましくない。
【0044】
一方、冷結晶化温度(Tc)以上で絞り加工を行った場合は、樹脂の熱結晶化が起こり易くなり、樹脂フィルムの衝撃強度が低下し、カップ底部コーナーの樹脂フィルムにマイクロクラックが生じ易いこと、更には、前述したように熱結晶化が起こり易くなることはしごき加工で被膜欠陥の発生につながる危険性が高くなること等から、好ましくない。第1工程の絞り加工および第2工程の再絞り加工を、被覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲に限定したのは、上記の理由からで、好ましくはガラス転移温度(Tg)+5℃から冷結晶化温度(Tc)−10℃の範囲が良い。
【0045】
絞り加工および再絞り加工に供するラミネート板やカップの温度とは、接触式温度計等で測定される表面温度を指し、ラミネート板やカップの温度を、被覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲に制御する手段としては、ラミネート板やカップを電気炉中で加熱する方法や熱風で加熱する方法等、常用の手段が適用される。
【0046】
また、絞り加工や再絞り加工を行う金型の表面温度を、ガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲に加熱して成形加工する加温加工方法も、ラミネート板やカップを加熱した場合と同様な効果が得られるが、この場合は、絞り加工や再絞り加工を行う前のラミネート板やカップの表面温度により、加工金型の設定温度を決める必要があるが、ラミネート板やカップの表面温度が、例えば常温の場合は、設定温度はガラス転移温度(Tg)より10〜15℃高めに設定すると良い。
【0047】
上記の常用の手段でラミネート板やカップの加熱を、ガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲にして成形加工する方法と、加工を行う金型の表面温度を、ガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲に加熱して成形加工する加温加工方法の併用も可能であり、設備にあった手段が採用できる。
【0048】
第1工程の絞り加工、第2工程の再絞り加工に次いで行う第3工程のしごき加工は、再絞り加工で得たカップの温度を潤滑油(B)の融点以下にした後、加工金型の温度を120℃以下に保持して行う。なお、ここでいう再絞り加工で得たカップの温度とは、カップの表面温度を指し、加工金型の温度とは、金型の表面温度を指す。
【0049】
前述したように、樹脂フィルムの欠陥は、内外面共、しごき加工で最も起こり易い。
しごき加工は、缶壁部のみをパンチとしごきダイスの間のクリアランスを瞬時の通し薄肉化する加工であるため、加工の際には金属の激しい加工熱が発生し、樹脂フィルムの特性を大きく変化させる。熱による樹脂フィルムの特性変化は、(1)樹脂フィルムの軟化、(2)樹脂フィルムの結晶化等があるが、いずれの特性変化も成形加工による皮膜欠陥の発生原因となることは前述した通りである。従って、このしごき加工の温度制御は樹脂フィルムの欠陥発生防止の点から重要である。そこで、本発明の方法では、第2工程の再絞り加工で得たカップの温度を潤滑油(B)の融点以下にしてしごき加工に供すると共に、併せて加工金型の温度を120℃以下に保持して成形加工を行う。なお、ここでいう再絞り加工で得たカップの温度とは、カップの表面温度を指し、加工金型の温度とは、金型の表面温度を指す。
【0050】
カップの温度が潤滑油(B)の融点温度を超えると、付着している潤滑油は液体となっており、その結果、樹脂フィルムと成形加工金型との離型性が悪くなり、樹脂フィルムが傷つき易く、また、缶外面側は「かじり」が入り易くなるので好ましくない。
【0051】
また、加工金型の温度は、120℃以下でしごき加工を行うが、120℃を超える温度では、缶内面側では樹脂フィルムと成形加工金型との離型性が悪く、樹脂フィルムの傷つきが激しくなって、缶内面側は耐食性確保が難しいと共に、場合によっては樹脂フィルムと成形加工金型との離型の際に缶胴部が座屈し、正常な缶体が得られないと言った事態が発生することがある。更に、しごき加工における加工金型が120℃を超える温度では、ポリエステル樹脂フィルムの、配向結晶化が急激に進み、その結果、樹脂フィルムの亀裂欠陥が発生し易くなる危険性が高くなる。また、外面側の樹脂フィルムは、前述した「かじり」が激しく入り、その後行われる印刷での外観性が劣るだけでなく、場合によっては「かじり」部を起点とする缶胴の破断が起こる。
【0052】
従って、しごき加工における加工温度は、缶体の内外面の品質確保の点から極めて重要で、本発明のようにポリエステル樹脂フィルムを被覆したラミネートアルミニウム板から、絞りしごき加工によって良好な品質を有する缶体を得るには、加工金型の温度を120℃以下に保持することが重要である。本発明の方法において、しごき加工の際の加工金型の温度を120℃以下に保持して行うと、限定した理由は上記の理由からである。
【0053】
しごき加工は、加工金型全体の温度を120℃以下に保持して行うのが好ましいが、特に加工度が低い場合は加工パンチの温度を120℃以下に保持するだけでも樹脂フィルムの欠陥防止効果は得られる。しごき加工の際の加工金型または加工パンチの温度は、基本的には低い方が良く、好適な温度としては100℃以下にするのが好ましい。なお、しごき加工は、しごきダイスを一枚で行う1段しごき加工法や、二枚乃至は三枚で行う多段しごき加工法などが適用出来る。
【0054】
再絞り加工で得たカップの温度を潤滑油(B)の融点以下にする手段としては、絞り加工で得たカップの温度が潤滑油(B)の融点を超えている場合は冷風を当てる等の手法が採用でき、また、加工金型の温度を120℃以下にする手段としては、金型に冷却水を通す方法、水、又は潤滑成分を水に溶解または分散させたものを吹きかけて冷却する方法、更にはこれらの併用と言った方法が採用できる。どの手法を採用するかは、設備との関係で適宜選択することが好ましい。
【0055】
次に、本発明の缶体成形方法における加工度の限定について述べる。
第1工程の絞り加工の加工度は、下記の式(1)から求められる値として10%以内になるように行い、第2工程の再絞り加工の加工度は、式(1)から求められる値として第1工程での加工度と合わせて25%以内になるように成形加工を行い、第3工程のしごき加工の加工度は、式(1)から求められる加工度として第1工程および第2工程での加工度と合わせて50〜70%の範囲で成形加工を行うものである。
【数2】
加工度(%)=〔(Bt−Wt)/Bt〕×100 ……(1)
Bt:缶底部のアルミニウム板の板厚
Wt:缶胴側壁部のアルミニウム板の最も薄い部位の板厚
【0056】
式(1)から求められる値として、第1工程の絞り加工の加工度が10%以内になるように、第2工程の再絞り加工後の加工度が第1工程での加工度と合わせて25%以内になるように行う理由は、前述したように、通常の絞り加工ではカップの側壁部は元板厚(本発明では、缶底部の板厚を指す)より厚くなるため、この状態からしごき加工、特に高加工度のしごき加工を行うと、加工時の熱と伸ばし加工により、樹脂フィルムが配向結晶化し、成形に耐えられずフィルムに亀裂が発生する場合があるからである。従って、それを避けるためには、上記のように順次加工度を上げた加工を行い、最終のしごき加工の加工度はなるべく低く抑える方が良い。
【0057】
かかる意味から本発明の方法であれば、缶内外面の樹脂フィルムの健全性が確保される成形加工が可能となる。
特に、第2工程終了時の再絞りカップの段階で、側壁部の樹脂フィルムが完全に結晶化していない状態にしておくことが、第3工程のしごき加工後の缶体内面の樹脂フィルムの健全性確保には重要であり、再絞り加工後の加工度として25%以内であれば、しごき加工後の内外面の樹脂フィルムの健全性は確保される。
【0058】
なお本発明の方法では、上記の第1工程および第2工程で行う、ストレッチ加工および/またはしごき加工を付加した絞り加工および再絞り加工は、ストレッチ加工のみを付加した方法、しごき加工を付加した方法、ストレッチ加工としごき加工の両者を付加した方法、のいずれの方法でも良く、適宜適用される。
【0059】
【実施例】
以下、実施例にて、本発明の方法の効果を具体的に説明するが、その前に本発明の方法で行った評価方法について述べる。
(1)潤滑油の流動点の測定は、JIS−K2269の試験法に準じて測定を行った。
(2)潤滑油の融点の測定は、JIS−K2235の試験法に準じて測定を行った。
(3)樹脂フィルムの密度は、密度勾配管法にて測定した。
(4)樹脂フィルムのガラス転移温度(Tg)、冷結晶化温度(Tc)、融点(Tm)は示差走査熱量計(DSC)で、10℃/分の昇温速度で測定し、ガラス転移温度は転移の始まる点をその温度とし、冷結晶化温度(Tc)、融点(Tm)は、それぞれのピーク温度を冷結晶化温度および融点とした。
(5)カップの絞り加工後の缶底部コーナーのマイクロクラックについては、光学顕微鏡で観察しその程度を評価した。
評価は次のように評価基準を設定し行った。
○:クラックなく良好 □:軽微なクラック発生
△:明確なクラック発生 ×:激しいクラック発生
(6)フィルムと加工パンチの離型性は、成形缶上部に起こる缶体の座屈程度を観察し評価した。
離型性の評価は、次のように評価基準を設定し行った。
○:缶開口部の座屈なく良好
□:缶開口部に軽微な座屈あり
△:開口部円周の1/3未満の座屈
×:開口部円周の1/3以上の座屈
(7)缶外面の耐かじり性は、成形した缶体胴壁部外面のかじり発生程度を観察して評価した。
○:かじりなく良好
□:軽微なかじり発生
△:外面の1/3未満にかじり発生
×:外面の1/3以上に激しいかじり発生
(8)缶内面の樹脂フィルムの傷付き程度については、1.0重量%食塩水に界面活性剤を、0.1重量%添加した電解液で、缶体を陽極、陰極を銅線とし印加電圧6Vで3秒後の電流値を測定し、樹脂フィルムの皮膜の健全性を評価した(以降、この評価法をQTV試験と称する)。
【0060】
実験例1
表面に皮膜C量として16mg/m2のリン酸−フェノール樹脂の有機無機複合型化成処理皮膜を有する、板厚0.26mmのアルミニウム板(3004系合金)の両面に、ガラス転移温度(Tg)が67℃、冷結晶化温度(Tc)が123℃、融点が238℃、厚み20μmの二軸延伸ポリエステル樹脂フィルムを熱圧着法で接着した後、加熱・冷却し、非晶質化ポリエステル樹脂フィルム被覆ラミネート板を作成した。
得られたラミネート板のポリエステル樹脂フィルムの密度は、表1〜2に示した。
【0061】
こうして得られたラミネート板の両面に成形用潤滑剤として流動点が−12.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を加熱混合して、潤滑油(A)と潤滑油(B)の混合比が重量部比で0:100(テスト1)、10:90(テスト2)、20:80(テスト3)、40:60(テスト4)、60:40(テスト5)、80:20(テスト6)、100:0(テスト7)に混合し、加温して液状にしグラビアロールで塗油した。塗油量は、表1〜2に示した。
【0062】
こうして得た塗油ラミネート板の温度を70℃にして、加工度が7%のしごき加工を付加した絞り加工を行った。
この時得られたカップの、底部コーナーの樹脂フィルムのマイクロクラック発生状況について調べ、その結果を表3〜4に示した。次いで、得られたカップの温度を70℃にして、加工度が22%のストレッチ加工およびしごき加工を付加した再絞り加工を行った後、再絞り加工で得られたカップの温度を50℃にして、金型温度を100℃に保持して最終加工度が60%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。こうして得た缶体について、金型離型性、耐かじり性および缶内面の品質をQTV試験で調べ、その評価結果を表3〜4に示した。
【0063】
表1〜4から、本発明の実施例1〜3に相当するテスト2〜4は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面のかじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。
一方、潤滑油(B)のみをラミネート板に塗油して成形した比較例1であるテスト1は、絞り加工で缶底抜けが散発し、絞り成形性が本発明の実施例1から3に比べ劣ることが分かる。また、混合潤滑油中の潤滑油(A)の混合重量部比が50を超える比較例2、3であるテスト5、6では、しごき加工時の金型離型性、缶外面の耐かじり性が共に本発明の実施例に比べ劣り、QTV値も高い。特に、潤滑油(A)のみを塗油して成形した比較例4のテスト7の場合は、しごき加工で缶胴の切断が多発した。
【0064】
下記表中、*1〜*8は下記の説明のとおりである。
*1 潤Aは潤滑油Aを示す。
*2 混合割合の項は潤滑油Aと潤滑油Bの重量比での混合割合を示す。
*3 潤Bは潤滑油Bを示す。
*4 塗布量は、片面に塗布された潤滑油の量を示し、単位はmg/m2である。
*5 第1工程のストレッチ加工および/またはしごき加工を付加した絞り加工工程を示す。
*6 第2工程のストレッチ加工および/またはしごき加工を付加した再絞り加工工程を示す。
*7 第3工程のしごき加工工程を示す。
*8 実施例および比較例の表示の項については、実施例1、2、…を実1、実2、…と、比較例1、2、…を比1、比2…と表示した。
【0065】
【表1】

Figure 0003949283
【0066】
【表2】
Figure 0003949283
【0067】
【表3】
Figure 0003949283
【0068】
【表4】
Figure 0003949283
【0069】
実験例2
実験例1で作成した非晶質化ポリエステル樹脂フィルムラミネート板を用いて、両面に成形用潤滑剤として、流動点が2.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト8)、流動点が−7.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト9)、流動点が−12.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト10)、流動点が−17.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト11)、流動点が−20.0℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト12)、を加温して液状にしグラビアロールで塗油した。塗油量は表5〜6に示した。
【0070】
こうして得た塗油ラミネート板の温度を70℃にして、加工度が5%のしごき加工を付加した絞り加工を行った。
この時得られたカップの、底部コーナーの樹脂フィルムのマイクロクラツク発生状況について調べ、その結果を表7〜8に示した。
次いで、得られたカップの温度を70℃にして、加工度が15%のストレッチ加工およびしごき加工を付加した再絞り加工を行った後、再絞り加工で得たカップの温度を50℃にして、金型温度を80℃に保持し最終加工度が60%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。こうして得た缶体について、金型離型性、耐かじり性および缶内面の品質をQTV試験で調べた。その評価結果を表7〜8に示した。
【0071】
表5〜8から、本発明の実施例4〜8に相当するテスト8〜12は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面のかじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。
【0072】
【表5】
Figure 0003949283
【0073】
【表6】
Figure 0003949283
【0074】
【表7】
Figure 0003949283
【0075】
【表8】
Figure 0003949283
【0076】
実験例3
実験例1で作成した非晶質化ポリエステル樹脂フィルムラミネート板を用いて、両面に成形用潤滑剤として、流動点が−12.5℃の潤滑油(A)と融点が50℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト13)、流動点が−12.5℃の潤滑油(A)と融点が54℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト14)、流動点が−12.5℃の潤滑油(A)と融点が63℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト15)、流動点が−12.5℃の潤滑油(A)と融点が75℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト16)、流動点が−12.5℃の潤滑油(A)と融点が84℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油(テスト17)、を液状に加温しグラビアロールで塗油した。塗油量は表9〜10に示した。
【0077】
こうして得た塗油ラミネート板の温度を70℃にして、加工度が7%のストレッチ加工およびしごき加工を付加した絞り加工を行った。この時得られたカップの底部コーナーの樹脂フィルムのマイクロクラック発生状況について調べ、その結果を表11〜12に示した。次いで、得られたカップの温度を70℃にして、加工度が15%のストレッチ加工およびしごき加工を付加した再絞り加工を行った後、再絞り加工で得たカップの温度を40℃にし、金型温度を100℃に保持し最終加工度が60%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。こうして得た缶体について、金型離型性、耐かじり性および缶内面の品質をQTV試験で調べた。その評価結果を表11〜12に示した。
【0078】
表9〜12から、本発明の実施例9〜13に相当するテスト13〜17は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面の耐かじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。
【0079】
【表9】
Figure 0003949283
【0080】
【表10】
Figure 0003949283
【0081】
【表11】
Figure 0003949283
【0082】
【表12】
Figure 0003949283
【0083】
実験例4
実験例1で作成した非晶質化ポリエステル樹脂フィルムラミネート板を用いて、両面に成形用潤滑剤として、流動点が−7.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油を加温して液状にしスプレーで、それぞれ片面の塗油量が23mg/m2(テスト18)、44mg/m2(テスト19)、67mg/m2(テスト20)、93mg/m2(テスト21)、122mg/m2(テスト22)、158mg/m2(テスト23)、187mg/m2(テスト24)の塗油をした。塗油量は表13〜14に示した。
【0084】
こうして得た塗油ラミネート板の温度を70℃にして、加工度が7%のストレッチ加工およびしごき加工を付加した絞り加工を行った。この時得られたカップの、底部コーナーの樹脂フィルムのマイクロクラック発生状況について調べ、その結果を表15〜16に示した。次いで、得られたカップの温度を70℃にして、加工度が22%のストレッチ加工およびしごき加工を付加した再絞り加工を行った後、再絞り加工で得られたカップの温度を50℃にし、金型温度を80℃に保持し最終加工度が60%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。こうして得た缶体について、金型離型性、かじり性および缶内面の品質をQTV試験で調べた。その評価結果を表15〜16に示した。
【0085】
表13〜16から、本発明の実施例14〜19であるテスト19〜24は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、また耐しごき加工時の金型離型性、缶外面の耐かじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。
一方、比較例5のテスト18は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムに僅かにクラックが発生した。またしごき加工時の金型離型性、缶外面の耐かじり性共に本発明の実施例14から19に比べ劣り、QTV値も高い値を示した。
【0086】
【表13】
Figure 0003949283
【0087】
【表14】
Figure 0003949283
【0088】
【表15】
Figure 0003949283
【0089】
【表16】
Figure 0003949283
【0090】
実験例5
表面に皮膜C量として26mg/m2のリン酸−フェノール樹脂の有機無機複合型化成処理皮膜を有する、板厚0.28mmのアルミニウム板(3004系合金)の両面に、ガラス転移温度(Tg)が67℃、冷結晶化温度(Tc)が123℃、融点が238℃のポリエステル樹脂フィルムの厚みが8μm(テスト25)、15μm(テスト26)、20μm(テスト27)、30μm(テスト28)、40μm(テスト29)、50μm(テスト30)の二軸延伸フィルムを熱圧着法で接着した後、加熱・冷却し、6種類の非晶質化ポリエステル樹脂フィルム被覆ラミネート板を作成した。次いで、ラミネート板の両面に、流動点が−12.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70に加温混合して、グラビアロールで塗油をした。得られたラミネート板のポリエステル樹脂フィルムの密度および塗油量は表17〜18に示した。
【0091】
こうして得た塗油ラミネート板の温度を70℃にして、加工度が7%のストレッチ加工およびしごき加工を付加した絞り加工を行った。この時得られたカップの、底部コーナーの樹脂フィルムのマイクロクラック発生状況について調べ、その結果を表19〜20に示した。次いで、得られたカップの温度を70℃にして、加工度が15%のストレッチ加工およびしごき加工を付加した再絞り加工を行った後、再絞り加工で得られたカップの温度を50℃にし、金型温度を80℃に保持し最終加工度が63%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。こうして得た缶体について、金型離型性、耐かじり性および缶内面の品質をQTV試験で調べた。その評価結果を表19〜20に示した。
【0092】
表17〜20から、本発明の実施例20〜24であるテスト26〜30は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面の耐かじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。一方、比較例6のテスト25は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムにはクラックの発生もなく、またしごき加工時の金型離型性、缶外面の耐かじり性共に良好であったが、高いQTV値を示し、本発明の樹脂フィルム厚みの限定値の下限未満では内面品質は確保できないことが分かる。
【0093】
【表17】
Figure 0003949283
【0094】
【表18】
Figure 0003949283
【0095】
【表19】
Figure 0003949283
【0096】
【表20】
Figure 0003949283
【0097】
実験例6
実験例5で用いた有機無機複合型化成処理皮膜を有するアルミニウム板の両面に、樹脂フィルムの融点が193℃のフィルム(テスト31)、融点が205℃のフィルム(テスト32)、融点が218℃のフィルム(テスト33)、融点が230℃のフィルム(テスト34)、融点が242℃のフィルム(テスト35)、融点が252℃のフィルム(テスト36)、融点が261℃のフィルム(テスト37)の、それぞれ厚みが20μmの二軸延伸ポリエステル樹脂フィルムを熱圧着で接着した後、加熱・冷却し、7種類の非晶質化ポリエステル樹脂フィルム被覆ラミネート板を作成した。
【0098】
次いで、ラミネート板の両面に、流動点が−12.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を加温混合して、潤滑油(A)と潤滑油(B)の混合比が重量部比で30:70の成形用潤滑剤を、加温し液状にしてグラビアロールで塗油した。各テスト板の樹脂フィルムの密度および塗油量は表21〜22に示した。
【0099】
こうして得た塗油ラミネート板の温度を75℃にして、加工度が5%のストレッチ加工を付加した絞り加工を行った。この時得られたカップの、底部コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、得られたカップの温度を75℃にして、加工度が22%のストレッチ加工およびしごき加工を付加した再絞り加工を行った後、再絞り加工で得られたカップの温度を40℃にし、金型温度を80℃に保持し最終加工度が63%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。こうして得た缶体について、金型離型性、耐かじり性および缶内面の品質をQTV試験で調べた。その評価結果を表23〜24に示した。
【0100】
表21〜24から、本発明の実施例25〜29に相当するテスト32〜36は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面の耐かじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。一方、比較例7のテスト31は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラックは発生もなく良好だが、しごき加工時の金型離型性、缶外面の耐かじり性は共に本発明の実施例25から29に比べ劣り、QTV値も高い値を示した。また比較例8のテスト37の場合は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生は、本発明の実施例25から29に比べ若干劣る程度であり、一方、しごき加工時の金型離型性、缶外面の耐かじり性共に良好にもかかわらず、高いQTV値を示した。
【0101】
【表21】
Figure 0003949283
【0102】
【表22】
Figure 0003949283
【0103】
【表23】
Figure 0003949283
【0104】
【表24】
Figure 0003949283
【0105】
実験施例7
表面に皮膜C量として23mg/m2のリン酸−フェノール樹脂の複合化成処理皮膜を有する、板厚0.28mmのアルミニウム板(3004系合金)の両面に、実験例6のテスト35で用いたフィルムを熱圧着条件を変えて接着した後、必要に応じ加熱冷却し、密度の異なるポリエステル樹脂フィルム被覆ラミネート板を作成した。
得られたラミネート板の樹脂フィルムの密度は、1.342(テスト38)、1.357(テスト39)、1.365(テスト40)、1.381(テスト41)であった。次いで、これらのラミネート板の両面に、流動点が−12.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70に加温混合して液状にし、スプレーで塗油した。各テストに用いたラミネート板の塗油量は表25に示した。
【0106】
こうして得た塗油ラミネート板の温度を70℃にして、加工度が5%のストレッチ加工を付加した再絞り加工を行った。この時得られたカップの、底部コーナー部の樹脂フィルムのマイクロクラック発生状況について調べ、その結果を表26に示した。次いで、得られたカップの温度を70℃にして、加工度が22%のストレッチ加工およびしごき加工を付加した再絞り加工を行った後、再絞り加工で得られたカップの温度を40℃にし、金型温度を80℃に保持し最終加工度が63%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。こうして得た缶体について、金型離型性、かじり性および缶内面の品質をQTV試験で調べた。その評価結果を表26に示した。
【0107】
表25〜26から、本発明の実施例30〜31であるテスト38、39は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面の耐かじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。一方、比較例9から10のテスト40、41は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラックは発生もなく良好であり、またしごき加工時の金型離型性、缶外面の耐かじり性は共にしごき加工時の金型離型性、缶外面のかじり性共に良好にもかかわらず、高いQTV値を示し内面品質は本発明の実施例30、31に比べ劣る。
【0108】
【表25】
Figure 0003949283
【0109】
【表26】
Figure 0003949283
【0110】
実験例8
実験例1で作成した非晶質化ポリエステル樹脂フィルム被覆ラミネート板を用いて、両面に成形用潤滑剤として、流動点が−12.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油を加温して液状にし、スプレーで塗油した。塗油量は表27〜31に示した。
【0111】
こうして得た塗油ラミネート板の温度を50℃(テスト42)、70℃(テスト43)、90℃(テスト44)、110℃(テスト45)、120℃(テスト46)、130℃(テスト47)の条件にして、それぞれしごき加工を付加した加工度が5%の絞り加工を行った。この時得られたカップの、底部コーナー部の樹脂フィルムのマイクロクラック発生状況について観察し、その結果を表32〜36に示した。次いで、得られたカップの温度を70℃にして、ストレッチ加工およびしごき加工を付加した加工度が15%の再絞り加工を行った後、再絞り加工で得られたカップの温度を40℃にして、金型温度を80℃で最終加工度が60%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。更に、上記のテスト43で得られた再絞り加工のカップの温度を、それぞれ30℃(テスト48)、40℃(テスト49)、50℃(テスト50)、60℃(テスト51)、70℃(テスト52)にしてから、金型温度を100℃に保持し最終加工度が60%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。
【0112】
なお、比較のため上記テスト47で得た絞りカップの温度を70℃にし、ストレッチ加工およびしごき加工を付加した加工度が15%の再絞り加工を行った後、それぞれカップの温度を40℃(テスト53)、60℃(テスト54)にしてから、金型温度を100℃に保持したものを使用して最終加工度が60%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。さらに、比較のため上記テスト43で得た絞りカップの温度を70℃にし、ストレッチ加工およびしごき加工を付加した加工度が15%の再絞り加工を行った後、カップの温度を40℃にし、それぞれ金型温度を70℃(テスト55)、100℃(テスト56)、120℃(テスト57)、140℃(テスト58)にした条件下で最終加工度が60%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。
【0113】
こうして得た缶体について、金型離型性、耐かじり性および缶内面の品質をQTV試験で調べた。その評価結果を表32〜36に示した。
【0114】
表27〜36から、本発明の実施例32〜35であるテスト43〜46は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面の耐かじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。一方、比較例11、12であるテスト42、47は、しごき加工時の金型離型性、缶外面の耐かじり性は共に良好であるが、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生は実施例32から35に比べ劣り、その結果高いQTV値を示し内面品質も実施例32から35に比べ劣る。
また、本発明の実施例36から38であるテスト48〜50は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面の耐かじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。一方、比較例13、14であるテスト51、52は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生は見られないが、しごき加工時の金型離型性、缶外面の耐かじり性は共に劣り、しかも高いQTV値を示しており、缶内面品質が実施例36から38に比べ劣ることが分かる。
比較例16のテスト54の場合は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムにクラックが発生し、また、しごき加工時の金型離型性、缶外面の耐かじり性は共に劣り、高いQTV値を示しており、缶内面品質が実施例36から37に比べ劣ることが分かる。なお、比較例15のテスト53は、前述した比較例12のテスト47の再現評価である。
更に、本発明の実施例39から41のテスト55〜57は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面の耐かじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。一方、比較例17のテスト58は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生は見られないが、しごき加工時の金型離型性、缶外面の耐かじり性は共に劣り高いQTV値を示しており、缶内面品質が本発明の実施例39から41に比べ劣ることが分かる。
【0115】
【表27】
Figure 0003949283
【0116】
【表28】
Figure 0003949283
【0117】
【表29】
Figure 0003949283
【0118】
【表30】
Figure 0003949283
【0119】
【表31】
Figure 0003949283
【0120】
【表32】
Figure 0003949283
【0121】
【表33】
Figure 0003949283
【0122】
【表34】
Figure 0003949283
【0123】
【表35】
Figure 0003949283
【0124】
【表36】
Figure 0003949283
【0125】
実験例9
実験例1で作成した非晶質化ポリエステル樹脂フィルム被覆ラミネート板を用いて、両面に成形用潤滑剤として、流動点が−12.5℃の潤滑油(A)と融点が57℃の潤滑油(B)を混合比が重量部比で30:70の潤滑油を加温して液状にし、スプレーで塗油した。塗油量は表37〜38に示した。
【0126】
こうして得た塗油ラミネート板を金型温度を50℃(テスト59)、70℃(テスト60)、90℃(テスト61)、110℃(テスト62)、120℃(テスト63)、130℃(テスト64)の条件にして、それぞれしごき加工を付加した加工度が5%の絞り加工を行った。この時得られたカップの、底部コーナー部の樹脂フィルムのマイクロクラック発生状況について観察した。
次いで、得られたカップを、金型温度の温度を80℃にして、ストレッチ加工およびしごき加工を付加した加工度が15%の再絞り加工を行った後、再絞り加工で得られたカップの温度を40℃にして、金型温度を80℃で最終加工度が60%のしごき加工を行い、350mlビール缶サイズのシームレス缶を作成した。こうして得られた缶体について、金型離型性、耐かじり性および缶内面の品質をQTV試験で調べた。その評価結果を表39〜40に示した。
【0127】
表37〜40から、本発明の実施例42〜45であるテスト60〜63は、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生もなく、またしごき加工時の金型離型性、缶外面の耐かじり性共に良好で、低いQTV値を示しており、良好な缶体が得られていることが分かる。しかし、実験例8に示した通りのラミネート板およびカップの温度をガラス転移温度(Tg)から冷結晶化温度(Tc)にして成形加工を行った、実施例32〜35であるテスト43〜46に比べると、内面品質の点で若干劣るが、十分実用性を有しているレベルである。
一方、比較例18、19であるテスト59、64は、しごき加工時の金型離型性、缶外面の耐かじり性は共に良好であるが、絞り加工で得られるカップの底部コーナー部の樹脂フィルムのクラック発生は実施例42〜45に比べ劣り、その結果高いQTV値を示し内面品質も実施例42〜45に比べ劣る。
【0128】
【表37】
Figure 0003949283
【0129】
【表38】
Figure 0003949283
【0130】
【表39】
Figure 0003949283
【0131】
【表40】
Figure 0003949283
【0132】
【発明の効果】
以上、説明したように、本発明を実施することで、得られる缶体内面のポリエステル樹脂フィルムは優れた皮膜健全性を有していることから、高耐食性のアルミニウムシームレス缶が得られる。
従って、種々の内容物を充填することが可能であることから、品種の統一化が安心して対応出来ることから、経済的に有利となり、その社会的意義は大きいものがある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester resin-coated aluminum plate for seamless cans and a method for producing a seamless can.
[0002]
[Prior art]
Metal cans / containers made of aluminum or steel are roughly classified into three-piece cans and two-piece cans based on their shapes. The three-piece can is called a three-piece can because it consists of a ground cover, a can body, and a canopy.
On the other hand, the two-piece can is called a seamless can because the ground cover and the can body are integrated with each other, and since it is composed of a canopy, the two-piece can or the can body portion has no joint.
[0003]
In the case of metal cans, the inner surface of the can is painted and used to ensure corrosion resistance. In recent years, laminated cans with laminated thermoplastic resin films have been developed and filled with beer or carbonated beverages such as cola. It is on the market in the beverage can field.
Laminate cans are mainly those obtained by laminating a thermoplastic resin film on a metal material and performing can body forming processing. In particular, in order to obtain a two-piece can, advanced molding processing technology is required.
In this sense as well, many techniques relating to the two-piece laminate can have been proposed and disclosed, for example, in JP-A-7-2241, JP-A-7-195619, and JP-A-8-244750.
[0004]
The merit of laminated cans depends on the thermoplastic resin film to be applied from the consumer's side, but first of all, it has excellent content resistance, especially flavor, such as taste and flavor of the contents. Are listed.
On the other hand, as a demerit, this time is from the manufacturer of cans, but in the case of two-piece cans, as described above, since the degree of processing (or degree of deformation) of the thermoplastic resin film-coated metal plate is large, the inner resin film during molding If the surface of the can is damaged, the quality of the inner surface of the can cannot be ensured. Therefore, it is necessary to strictly inspect the quality of the can, and the product yield is inferior to that of the current paint can.
[0005]
In particular, in the case of a two-piece laminate can using a steel material, the above tendency is large, but the same thing occurs in a two-piece laminate can made of an aluminum alloy.
The film defects of the resin film on the inner surface of such laminated cans are introduced during can molding as described above, and minimizing these defects is an important technical issue in terms of quality and product yield. Needless to say.
However, the present situation is that there is no appropriate means for molding without causing scratches or other defects in the resin film on the inner surface of the two-piece can molding with ironing processing, particularly in the case of a high processing rate.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and an object of the present invention is to provide a high-corrosion resistance, high-quality thermoplastic resin-coated aluminum seamless can having no film defects with a high yield.
[0007]
[Means for Solving the Problems]
The first of the present invention is a thermoplastic polyester resin having a thickness of 10 to 50 μm, a melting point (Tm) of 200 ° C. to 260 ° C., and a density of less than 1.36 on both sides of an aluminum plate having a thickness of 0.20 mm to 0.32 mm. Lubricating oil (B) having a pour point of 5 ° C. or less and 5 to 50 parts by weight and a melting point of 40 ° C. or more are applied to the resin film-coated surface of the laminate coated with the film. 30 to 200 mg / m of mixed lubricating oil mixed at a mixing ratio of 95 to 50 parts by weight as the amount of adhesion on one side 2 The present invention relates to a polyester resin-coated aluminum plate for seamless cans characterized by being oiled.
[0008]
In the second aspect of the present invention, both sides of an aluminum plate having a thickness of 0.20 mm to 0.32 mm are coated with a polyester resin having a thickness of 10 to 50 μm, a melting point (Tm) of 200 ° C. to 260 ° C., and a density of less than 1.36. When producing a seamless can using the laminated plate, 5-50 parts by weight of lubricating oil (A) having a pour point of 5 ° C. or less on the resin film-coated surface of the laminated board, and a melting point of 40 30 to 200 mg / m as a single surface adhering amount of mixed lubricating oil in which lubricating oil (B) having a temperature of ℃ or higher is mixed at a mixing ratio of 95 to 50 parts by weight. 2 After oiling, the polyester resin film is subjected to a drawing process (first step) with a stretch process and / or ironing process in the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tc), The redrawing process which added the stretch process and / or ironing process to the cup obtained by the drawing process of 1 process in the range of the glass transition temperature (Tg) of this polyester resin film to the cold crystallization temperature (Tc) (2nd process) Next, the temperature of the redraw cup obtained in the second step is set to be equal to or lower than the melting point of the lubricating oil (B), and the temperature of the processing mold is maintained at 120 ° C. or lower to perform ironing (third step). The present invention relates to a method for producing a polyester resin-coated aluminum seamless can.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the method of the present invention will be described in detail.
First, the aluminum plate in the present invention will be described.
The aluminum plate applied to the present invention is not particularly limited, and an aluminum plate or an alloy plate thereof is used. In particular, a 3004 series aluminum alloy, a 5052 series aluminum alloy, and a 5182 series aluminum that are usually used for manufacturing can containers. Various aluminum alloys such as alloys are preferred. The aluminum plate thickness is 0.20 mm to 0.32 mm. When the plate thickness is 0.20 mm or less, in the case of an internal pressure can that is filled and sealed with carbonated beverages, beer or the like, the pressure strength is not sufficient, and the bottom of the can may protrude (buckle), which is not preferable. On the other hand, when the thickness is 0.32 mm or more, the pressure resistance of the can is sufficiently secured, but the quality is practically excessive and not economical. The reason for limiting the plate thickness is limited from the pressure strength of the can as described above.
Therefore, it is related to the mechanical properties of the aluminum plate to be applied, in particular, the proof strength, and when the proof strength is high, the plate thickness can be reduced. When actually carrying out the present invention, it is desirable to select the plate thickness as appropriate in consideration of the strength balance of the entire can.
[0010]
In this invention, it is preferable to use what performed the surface treatment on the aluminum plate surface in order to ensure adhesiveness with a thermoplastic polyester resin film.
As the surface treatment, chromic phosphate treatment or zirconium phosphate treatment, which is usually used as a surface treatment after molding of an aluminum plate drawn iron can, is applied. In the case of a high degree of processing with a large reduction degree, an organic-inorganic composite chemical conversion treatment of phosphoric acid or zirconium phosphate and an organic resin is effective.
In the case of organic-inorganic composite type chemical conversion treatment, the adhesion amount is 5 to 50 mg / m as the amount of C in the film. 2 5mg / m 2 Below, the coatability is inferior, both the anti-corrosion action and the adhesiveness are insufficient, the resin film peels off locally after the can molding process, so-called delamination or local corrosion occurs, and the dent property is also Inferior and undesirable.
On the other hand, 50 mg / m 2 In the case of a can body molding process with a high degree of processing, the coating property is good, but the film causes cohesive failure, the adhesion is lowered, and the resin film may be peeled off, which is not preferable.
The surface treatment film amount is 10 to 40 mg / m as the film C amount. 2 Is preferred.
[0011]
As the surface treatment method of the aluminum plate, for example, in the case of the above organic-inorganic composite chemical conversion treatment, an aqueous solution containing phosphoric acid or phosphoric acid and zirconium fluoride and a water-soluble organic resin such as a water-soluble phenol resin or a water-soluble acrylic resin In addition, a treatment liquid to which hydrofluoric acid or polyphosphoric acid has been added to promote reactivity is roll-coated on an aluminum plate, followed by washing with water, drying and curing, or spraying the treatment liquid onto an aluminum plate, followed by washing with water. A method of drying and curing can be applied as appropriate.
As a drying and curing method, a method such as drying with hot air or drying in an electric furnace can be applied, the temperature is 150 ° C. to 250 ° C., and the drying time is about 10 seconds to 2 minutes.
[0012]
In the present invention, a thermoplastic polyester resin film is used as the resin film for covering the aluminum plate. The reason is (1) good heat resistance, (2) the flavor of the contents is ensured, for example, polyethylene. This is because it has characteristics suitable for cans, which are not found in polyolefin resin films such as polypropylene and polypropylene.
[0013]
Examples of the polyester resin include homopolymers such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene isophthalate (PEI), copolymers that are copolymer resins of polyethylene terephthalate and polyethylene isophthalate, Such a homopolymer or copolymer blend resin is applied.
[0014]
The thermoplastic polyester resin film covering the surface of the aluminum plate has a thickness of 10 to 50 μm, preferably 12 to 40 μm.
The thickness of the film laminated on the inner surface of the can is limited from the viewpoint of the corrosion resistance of the inner surface of the can, and if it is 10 μm or less, depending on the contents filled after the can molding process, sufficient corrosion resistance is ensured It can be difficult to do.
On the other hand, if it exceeds 50 μm, corrosion resistance is sufficiently secured for most contents, but it is substantially excessive quality and is not economical.
[0015]
In addition, the selection of the film thickness when carrying out the present invention is also an important factor in selecting that there is a relationship with the degree of processing of thinning the can wall portion described later. That is, when the degree of processing is high, the thickness of the film is naturally reduced according to the degree of processing, and as a result, the anticorrosion performance of the inner surface of the can is lowered. Therefore, when the degree of processing is high, it is desirable to use a thick film in advance. On the other hand, when the degree of processing is low, a thin film can be used in advance accordingly.
[0016]
The thermoplastic polyester resin film used in the present invention is a resin film having a melting point (Tm) of 200 ° C. to 260 ° C.
At the time of forming, metal processing heat is generated, and the can body becomes a considerable temperature. In particular, the metal processing heat generated during ironing greatly changes the characteristics of the resin film. One of the characteristic changes of the resin film due to this heat is softening of the resin film. When the resin film is softened, the resin film on the inner and outer surfaces is damaged during the ironing process.
That is, the resin film on the inner surface side adheres to the punch and makes it difficult for the punch to come off, so-called releasability failure occurs, causing damage to the inner resin film. In addition, when the releasability is severe, the vicinity of the opening of the can body buckles, and a situation in which the normal can body height cannot be obtained may occur.
[0017]
On the other hand, the resin film on the outer surface side is likely to have a linear flaw in the can height direction, which is called “galling” due to the ironing die. In the case where scratches are caused by “galling” on the outer surface, the finished appearance of the subsequent printing is impaired.
[0018]
The degree of softening of the resin film due to heat is related to the melting point (Tm) of the resin. When the melting point is 200 ° C. or less, which is the lower limit value, even if the lubricating oil applied in the present invention is applied, releasability is achieved. The galling property is inferior.
On the other hand, if the upper limit value is 260 ° C. or higher, further improvement in releasability and galling property associated with higher melting point cannot be expected, and the effect is saturated.
The melting point (Tm) of the resin film is limited from the above viewpoints of releasability and galling properties, but the amount of heat generated during ironing is also related to the degree of processing described later, and only the melting point of the resin film. Although the quality of releasability and galling property cannot be determined, basically, a higher melting point is advantageous, and the melting point of the resin film used in the present invention is preferably 210 to 255 ° C., particularly 220 to 255 ° C is preferred.
[0019]
The density of the polyester resin film covering the laminate plate and seamless can of the present invention is less than 1.36.
The density is an index indicating the crystalline state of the resin. For example, when the degree of crystallization of a stretched resin film or the like is high, the density increases. That the density is less than 1.36 indicates that the crystalline state of the thermoplastic polyester resin film is substantially amorphous.
[0020]
The reason for making the resin film coated on the laminate plate amorphous is to ensure sufficient processability of the resin film in subsequent cup drawing, cup redrawing, and ironing. On the other hand, when the density is 1.36 or more, even a polyester resin film having low crystallinity is not preferable because the film cannot withstand the molding process and crack defects may occur severely. In particular, when the degree of processing is large, the orientation crystallization of the resin film further progresses due to the stretching process combined with the heat generation during the ironing process, and as a result, the resin film becomes difficult to follow the processing of the aluminum plate, and the above behavior Often appears and the corrosion resistance of the can cannot be sufficiently secured. Therefore, molding from a crystallized state having a high density is extremely difficult and unsuitable particularly when the degree of processing is high.
The reason why the density is limited to less than 1.36 is from the above reason. In particular, the density before the drawing process in the first step is preferably less than 1.35.
[0021]
As a manufacturing method for obtaining a laminated aluminum plate coated with a thermoplastic polyester resin film, a resin film is supplied onto the surface of a heated aluminum plate, pressed and laminated between rolls, and immediately cooled immediately to make the polyester resin film amorphous. Or a method of extruding molten resin, supplying it to an aluminum plate, laminating it, and quenching it immediately to make the polyester resin film amorphous. For example, in the case of a biaxially stretched film, once laminated polyester resin A method of making the polyester resin film amorphous by heating the film to the melting point of the resin or higher as necessary and then immediately cooling it can be applied.
[0022]
As a method for heating the aluminum plate, a conventional heating method such as a method of heating in an electric furnace, a method of heating with hot air, or a method of heating in contact with a heating roll can be adopted.
[0023]
Next, the lubricating oil applied to the present invention will be described.
The lubricating oil applied in the present invention includes 5 to 50 parts by weight of lubricating oil (A) having a pour point of 5 ° C. or less, and 95 parts by weight of lubricating oil (B) having a melting point of 40 ° C. or more. The mixed lubricating oil mixed in the range of ˜50 parts is applied to the surface of the laminate plate coated with the resin film as 30 to 200 mg / m on one side. 2 It is to be oiled.
Lubricating oil (A) has a pour point of 5 ° C. or lower, which is a liquid at room temperature. On the other hand, the lubricating oil (B) has a melting point of 40 ° C. or higher, which is not a liquid at room temperature. By processing these two types of lubricating oil into a mixed lubricating oil in which the lubricating oil (A) is mixed in the range of 5 to 50 parts by weight and the lubricating oil (B) in the range of 95 to 50 parts by weight, the processing means for cans described later It has become clear from the research results of the inventors that the present invention exhibits good characteristics in combination with the present invention, and the present invention has been achieved.
[0024]
Why does the combination of the lubricating oil (A) and the lubricating oil (B) with the mixing ratio as described above exhibit good characteristics in combination with the can processing means described later? It is considered as follows. That is, the seamless can molding process of the present invention is performed by combining different processes such as drawing and ironing on the polyester resin-coated aluminum plate.
[0025]
In drawing processing, stretch processing or / and ironing processing is added, but basically drawing processing. In the drawing process, the cup drawing process in the first step is performed, and in the second step, the cup obtained in the first step is redrawn. As a result, for example, in the case of a cup, the plate thickness of the body wall portion after drawing becomes thicker than the plate thickness before processing as the cup opening portion is reached. At this time, when the frictional force of the wrinkle pressing portion is large and the material does not flow in sufficiently, the cup breaks from the corner portion of the bottom portion, so-called detachment occurs, or breaks from the middle of the can body. On the other hand, when the frictional force is small and the flow is excessive, wrinkles are generated. In either case, a normal cup cannot be obtained.
[0026]
The degree of material flow is determined by the balance between the wrinkle holding force and the surface lubrication of the entire wrinkle holding part, but it is well known that the influence of the surface lubrication used is large. A lubricant having surface lubrication characteristics or boundary lubrication characteristics is used.
[0027]
In addition, when a laminate plate coated with a resin film is formed into a cup shape by drawing as in the present invention, micro-cracks may occur at the corner of the cup bottom depending on the incompatibility of the lubricating oil. The selection of is an important factor.
[0028]
On the other hand, the ironing process is a process that reduces the plate thickness of the body wall part by reducing the thickness of the body wall part by passing only the body wall part through the clearance part of the punch and ironing die, which is narrower than the thickness of the body wall part. It is a process to reduce the plate thickness of the body wall by an appropriate frictional force.
[0029]
Therefore, when the lubricant has excessive fluidity and passes through the clearance part of the punch and ironing die, the lubricant is offset in the direction opposite to the molding direction of the can, and there is a lack in the part that requires the lubricant. The phenomenon that the can body breaks is likely to occur. Therefore, it is considered that the ironing process requires an extreme pressure lubrication action.
[0030]
In the case of non-conformity of lubricant in ironing, not only the above-mentioned problem of breakage of the can body but also the defect of the inner surface resin film due to the above-mentioned releasability failure, and the defect of the outer surface film due to galling I have a problem. These ironing problems are related to the melting point of the resin film described above and the molding process described later, and are not only a problem of lubricating oil, but the influence of the lubricating oil is not small. Is an important factor in terms of quality assurance.
[0031]
It is considered that the lubricating oil (A) in the present invention effectively acts on the drawing processing to which stretch processing and / or ironing processing is added, and the lubricating oil (B) effectively acts on ironing processing. In the present invention, the lubricating oil (A) is mixed at a mixing ratio of 5 to 50 parts by weight and the lubricating oil (B) at a mixing ratio of 95 to 50 parts by weight, but if the lubricating oil (A) is less than 5 parts by weight. The surface lubricity is insufficient at the time of drawing and redrawing, and there is a high risk that the bottom of the cup may come off or break from the middle. On the other hand, if the lubricating oil (A) exceeds 50 parts by weight, the can barrel breakage is likely to occur in the ironing process, which is not preferable.
In the case of the lubricating oil (B), in contrast to the lubricating oil (A), if it is less than 50 parts by weight, the can body breaks easily during the ironing process. In addition, the bottom of the cup comes off, and it is easy to break from the middle, which is not preferable. The mixing of the lubricating oil (A) and the lubricating oil (B) is preferably in the range of 10 to 40 parts by weight of the lubricating oil (A) and 90 to 60 in the mixing ratio of the lubricating oil (B). When the degree of processing is high, the mixing ratio ranges of 10 to 30 parts and 70 to 90 parts by weight are preferable, respectively.
[0032]
The amount of oil applied is 30 to 200 mg / m on one side. 2 The lower limit of 30 mg / m 2 If it is less than the above, the drawing of the first step and the redrawing of the second step may cause a shift of the lubricating oil, and the amount of lubricating oil necessary for the ironing may not be ensured. There is not preferable. On the other hand, the upper limit of 200 mg / m 2 Even if the value is exceeded, the effect is saturated and not economical. Moreover, when there are many oil-coating amounts, the problem that degreasing property worsens may arise and it is unpreferable.
[0033]
That is, after the ironing process can body obtained in the present invention, the upper end of the can is trimmed to a normal can height, and then the degreasing process, the outer surface printing process, and the can opening are reduced in diameter. The can is filled with the contents through a process such as a flange process that bends the upper end portion of the opening necessary to wind the neck process and the canopy outward. When the above degreasing is insufficient, the ink repels on the outer surface printing, or the flavor property of the contents is affected on the inner surface, which causes a problem. Therefore, poor degreasing is a matter that must be avoided.
[0034]
For degreasing, well-known and commonly used means such as degreasing by spraying an alkaline aqueous solution or volatilization degreasing by heating can be applied, but 200 mg / m, which is the upper limit of the amount of lubricating oil applied in the present invention. 2 If it exceeds 1, degreasing time is required, which is disadvantageous in terms of productivity. The optimum oil coating amount is preferably 40 to 150 mg / m from the viewpoint of moldability and degreasing properties. 2 More preferably, 40-100 mg / m 2 However, it is desirable to increase the number slightly, especially when the degree of ironing is high.
[0035]
The lubricating oil (A) having a pour point of 5 ° C. or lower includes, for example, liquid paraffin, and the lubricating oil (B) having a melting point of 40 ° C. or higher includes white petrolatum (also known as petrolatum), paraffin wax, There are macrocrystalline wax and the like, and these are used in the present invention.
The pour point of the lubricating oil (A) was measured according to the test method of JIS-K2269, and the melting point of one lubricating oil (B) was measured according to the test method of JIS-K2235. is there.
[0036]
As a method of applying the lubricating oil to the laminate plate, the lubricating oil (B) is not a liquid at room temperature, so it is heated to a liquid and then mixed with the lubricating oil (A) at an optimal mixing ratio, or in advance an optimal mixing. It is desirable to mix the ratios together and heat and mix. After mixing, conventional means such as coating with a smooth roll, coating with a gravure roll, and coating with a spray are applied while heating as necessary. .
[0037]
Next, a can molding method that is the method of the present invention will be described.
In the method of the present invention, a laminated aluminum plate coated with a polyester resin film is formed into a cup shape by drawing, and then the cup obtained in the first step is further drawn again to obtain the first step. A second step of forming a cup having a smaller can diameter and a higher can height than the cup, and then passing the can wall portion of the cup between punches and a dies, and then performing a squeezing process by extending the can wall thinly It consists of a process.
[0038]
Among the above-described forming methods, the first step drawing, the second step redrawing, and the third step ironing are all accompanied by a reduction in the thickness of the can wall. Process necking and flanging are processes with virtually no reduction in plate thickness. Therefore, in the case where the seamless can is molded, the can after the third step becomes the final can.
[0039]
In the first drawing process, the temperature of the laminate plate is in the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the coated resin film, and stretch processing and / or ironing processing is added. The value obtained from the formula (1) is set to be within 10%.
[0040]
Also, the redrawing process in the second step is a stretch process and / or an ironing process in which the temperature of the cup obtained in the first step is in the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the coated resin film. Is added, and the processing degree is calculated within 25% together with the processing degree of the first step as a value obtained by the expression (1).
[0041]
In the ironing process of the third step, the can body temperature of the cup obtained by the drawing process is not higher than the melting point of the lubricating oil (B), preferably not higher than 50 ° C. [If the melting point of the lubricating oil (B) is not higher than 50 ° C., further The temperature of the working mold is kept at 120 ° C. or lower, and molding is performed so that the final can body after the ironing process has a processing degree of 50 to 70%.
[0042]
First, the limitation of the processing temperature in the can forming method of the present invention will be described.
The reason why the drawing process in the first step and the redrawing process in the second step in the method of the present invention are limited to the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the coated resin film is the drawing process. This is to ensure the coating soundness of the bottom corner of the cup.
[0043]
The resin film at the bottom corner of the cup is where the punch hits first, and a high impact is applied. And in this site | part, a micro crack tends to arise in a resin film. In particular, the cup bottom corner by the drawing process in the first step becomes a cup body wall portion (side wall portion) after the redrawing process in the second step, and is further stretched by the ironing process in the third step. If a microcrack is generated in the resin film at the bottom corner of the cup by drawing, the risk of severe film defects is increased in the subsequent processing, which is not preferable. Therefore, ensuring the film soundness of the cup bottom corner, particularly by drawing, is an important factor in terms of the inner surface quality of the can body.
In this sense, drawing at a temperature equal to or lower than the glass transition temperature (Tg) of the resin film is not preferable because microcracks are likely to occur in the resin film at the bottom corner of the cup.
[0044]
On the other hand, when drawing is performed at a temperature equal to or higher than the cold crystallization temperature (Tc), thermal crystallization of the resin is likely to occur, the impact strength of the resin film is reduced, and micro cracks are likely to occur in the resin film at the cup bottom corner. In addition, it is not preferable that thermal crystallization is likely to occur as described above, because the risk of the occurrence of film defects by ironing increases. The reason why the drawing process in the first step and the redrawing process in the second step are limited to the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the coated resin film is as described above. A range from the glass transition temperature (Tg) + 5 ° C. to the cold crystallization temperature (Tc) −10 ° C. is preferable.
[0045]
The temperature of the laminate and cup used for drawing and redrawing refers to the surface temperature measured with a contact thermometer, etc., and the temperature of the laminate and cup is determined from the glass transition temperature (Tg) of the coated resin film. Usable means such as a method of heating a laminate plate or cup in an electric furnace or a method of heating with hot air as the means for controlling the cold crystallization temperature (Tc) range.
[0046]
In addition, there is a heating processing method in which the surface temperature of the mold for drawing and redrawing is heated to a range of the glass crystallization temperature (Tg) to the cold crystallization temperature (Tc). However, in this case, it is necessary to determine the set temperature of the processing mold depending on the surface temperature of the laminate plate and cup before drawing or redrawing. When the surface temperature of the plate or cup is, for example, room temperature, the set temperature is preferably set to be 10 to 15 ° C. higher than the glass transition temperature (Tg).
[0047]
The method of forming the laminated plate or cup by the above-mentioned conventional means within the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tc) and the surface temperature of the mold for processing the glass transition It is possible to use a warming processing method in which molding is performed by heating in the range of temperature (Tg) to cold crystallization temperature (Tc), and means suitable for the equipment can be employed.
[0048]
The ironing process in the third step performed after the drawing process in the first process and the redrawing process in the second process is performed after the temperature of the cup obtained by the redrawing process is set to be equal to or lower than the melting point of the lubricating oil (B). The temperature is maintained at 120 ° C. or lower. In addition, the temperature of the cup obtained here by redrawing refers to the surface temperature of the cup, and the temperature of the working mold refers to the surface temperature of the mold.
[0049]
As described above, defects in the resin film are most likely to occur during ironing on both the inner and outer surfaces.
The ironing process is a process in which only the can wall is punched and the clearance between the ironing dies is instantaneously reduced in thickness, and during processing, intense metal processing heat is generated, which greatly changes the characteristics of the resin film. Let Changes in the properties of the resin film due to heat include (1) softening of the resin film, (2) crystallization of the resin film, etc. As described above, any property change causes film defects due to molding. It is. Therefore, the temperature control of the ironing process is important from the viewpoint of preventing defects in the resin film. Therefore, in the method of the present invention, the temperature of the cup obtained by the redrawing process in the second step is set to the melting point of the lubricating oil (B) or less and used for ironing, and the temperature of the working mold is set to 120 ° C. or less. Hold and perform molding. In addition, the temperature of the cup obtained here by redrawing refers to the surface temperature of the cup, and the temperature of the working mold refers to the surface temperature of the mold.
[0050]
When the temperature of the cup exceeds the melting point temperature of the lubricating oil (B), the adhering lubricating oil becomes a liquid, and as a result, the releasability between the resin film and the molding die becomes poor, and the resin film Is easily damaged and “galling” easily enters the outer surface of the can.
[0051]
In addition, the temperature of the processing mold is 120 ° C. or lower, and the ironing process is performed. However, when the temperature exceeds 120 ° C., the releasability between the resin film and the molding die is poor on the inner surface of the can, and the resin film is damaged. Intense, it is difficult to ensure corrosion resistance on the inner surface of the can, and in some cases, the can body could buckle when releasing the resin film and the molding die, and a normal can body could not be obtained May occur. Furthermore, when the working mold in the ironing process exceeds 120 ° C., the orientation crystallization of the polyester resin film proceeds rapidly, and as a result, there is a high risk that crack defects of the resin film are likely to occur. In addition, the resin film on the outer surface side is severely subjected to the above-described “galling”, and not only the appearance of the subsequent printing is inferior, but also the can body breaks from the “galling” portion in some cases.
[0052]
Accordingly, the processing temperature in the ironing process is extremely important from the viewpoint of ensuring the quality of the inner and outer surfaces of the can body, and a can having good quality by drawing and ironing from a laminated aluminum plate coated with a polyester resin film as in the present invention. In order to obtain a body, it is important to keep the temperature of the working mold at 120 ° C. or lower. In the method of the present invention, when the temperature of the working mold at the time of ironing is kept at 120 ° C. or lower, the reason for the limitation is from the above reason.
[0053]
It is preferable to perform the ironing process while maintaining the temperature of the entire processing mold at 120 ° C. or less. However, when the degree of processing is particularly low, it is possible to prevent defects in the resin film simply by maintaining the processing punch temperature at 120 ° C. or less. Is obtained. The temperature of the working die or the working punch during the ironing process should basically be low, and a preferable temperature is preferably 100 ° C. or lower. For the ironing process, a one-step ironing method in which a single ironing die is used, or a multistage ironing method in which two or three irons are used can be applied.
[0054]
As a means for setting the temperature of the cup obtained by redrawing to be equal to or lower than the melting point of the lubricating oil (B), if the temperature of the cup obtained by drawing exceeds the melting point of the lubricating oil (B), apply cold air, etc. In addition, as a means for setting the temperature of the processing mold to 120 ° C. or less, cooling is performed by passing cooling water through the mold, water or a solution obtained by dissolving or dispersing a lubricating component in water. In addition, a method called a combination of these methods can be employed. It is preferable to select an appropriate method depending on the equipment.
[0055]
Next, the limitation of the degree of processing in the can forming method of the present invention will be described.
The working degree of the drawing process in the first step is set to be within 10% as a value obtained from the following formula (1), and the working degree of the redrawing process in the second step is obtained from the formula (1). The forming process is performed so that the value is within 25% in combination with the degree of processing in the first step, and the degree of processing of ironing in the third step is the first step and the first step as the degree of processing obtained from Equation (1). The molding process is performed in the range of 50 to 70% in combination with the processing degree in the two steps.
[Expression 2]
Degree of processing (%) = [(Bt−Wt) / Bt] × 100 (1)
Bt: Thickness of the aluminum plate at the bottom of the can
Wt: the thickness of the thinnest part of the aluminum plate on the side wall of the can body
[0056]
As the value obtained from equation (1), the degree of processing after redrawing in the second step is combined with the degree of processing in the first step so that the degree of drawing in the first step is within 10%. The reason for making it within 25% is that, as described above, in the normal drawing process, the side wall of the cup is thicker than the original plate thickness (in the present invention, it indicates the plate thickness of the bottom of the can). This is because if the ironing process, particularly the ironing process with a high degree of processing, is performed, the resin film is oriented and crystallized due to heat and stretching at the time of processing, and the film cannot withstand molding and may crack. Therefore, in order to avoid this, it is better to perform the processing with increasing the processing degree as described above and keep the processing degree of the final ironing process as low as possible.
[0057]
In this sense, the method of the present invention enables a molding process that ensures the soundness of the resin film on the inner and outer surfaces of the can.
In particular, in the stage of the redraw cup at the end of the second step, it is necessary to keep the resin film on the side wall portion not completely crystallized so that the resin film on the inner surface of the can body after the ironing process in the third step is sound. If the degree of processing after redrawing is within 25%, the soundness of the resin film on the inner and outer surfaces after ironing is ensured.
[0058]
In the method of the present invention, the drawing process and the redrawing process to which the stretching process and / or the ironing process are performed in the first step and the second process described above are the method in which only the stretching process is added and the ironing process is added. Either a method or a method in which both stretch processing and ironing are added may be used as appropriate.
[0059]
【Example】
Hereinafter, the effects of the method of the present invention will be described in detail by way of examples, but before that, evaluation methods performed by the method of the present invention will be described.
(1) The pour point of the lubricating oil was measured according to the test method of JIS-K2269.
(2) The melting point of the lubricating oil was measured according to the test method of JIS-K2235.
(3) The density of the resin film was measured by a density gradient tube method.
(4) The glass transition temperature (Tg), cold crystallization temperature (Tc), and melting point (Tm) of the resin film were measured with a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min. Is the temperature at which the transition starts, and the cold crystallization temperature (Tc) and melting point (Tm) are the peak temperatures of the cold crystallization temperature and melting point, respectively.
(5) About the microcrack of the can bottom part corner after drawing of a cup, it observed with the optical microscope and evaluated the grade.
Evaluation was performed by setting evaluation criteria as follows.
○: Good without cracking □: Minor cracking occurred
Δ: Clear cracking ×: Severe cracking
(6) The releasability of the film and the processing punch was evaluated by observing the degree of buckling of the can body occurring at the upper part of the can.
Evaluation of releasability was performed by setting evaluation criteria as follows.
○: Good without buckling of can opening
□: Slight buckling at the can opening
Δ: Buckling less than 1/3 of the circumference of the opening
×: Buckling of 1/3 or more of the circumference of the opening
(7) The galling resistance of the outer surface of the can was evaluated by observing the degree of galling on the outer surface of the molded can body wall.
○: Good without galling
□: Slight galling occurs
Δ: Scoring occurs at less than 1/3 of the outer surface.
×: Severe galling occurred to 1/3 or more of the outer surface
(8) About the degree of damage to the resin film on the inner surface of the can, an electrolyte solution containing 0.1% by weight of a surfactant added to 1.0% by weight saline, the can body being an anode, and the cathode being a copper wire The current value after 3 seconds was measured at a voltage of 6 V, and the soundness of the film of the resin film was evaluated (hereinafter, this evaluation method is referred to as a QTV test).
[0060]
Experimental example 1
The amount of film C on the surface is 16mg / m 2 A glass transition temperature (Tg) of 67 ° C. and a cold crystallization temperature (Tc) on both surfaces of an aluminum plate (3004 series alloy) with a thickness of 0.26 mm having an organic-inorganic composite type chemical conversion treatment film of phosphoric acid-phenol resin. ), A biaxially stretched polyester resin film having a melting point of 238 ° C. and a thickness of 20 μm was bonded by thermocompression bonding, and then heated and cooled to prepare an amorphized polyester resin film-coated laminate.
The density of the polyester resin film of the obtained laminated board was shown to Tables 1-2.
[0061]
A lubricating oil (A) having a pour point of −12.5 ° C. and a lubricating oil (B) having a melting point of 57 ° C. as a forming lubricant are heated and mixed on both surfaces of the thus-obtained laminate plate to obtain a lubricating oil (A). And lubricating oil (B) in a weight ratio of 0: 100 (Test 1), 10:90 (Test 2), 20:80 (Test 3), 40:60 (Test 4), 60:40 ( Tests 5), 80:20 (Test 6), and 100: 0 (Test 7) were mixed, heated to a liquid state, and oiled with a gravure roll. The amount of oil coating is shown in Tables 1-2.
[0062]
The temperature of the oil-coated laminate plate thus obtained was set to 70 ° C., and drawing was performed with ironing having a processing degree of 7%.
The state of microcracks in the resin film at the bottom corner of the cup obtained at this time was examined, and the results are shown in Tables 3-4. Next, after the temperature of the obtained cup was set to 70 ° C. and the redrawing process was performed by adding stretch processing and ironing processing with a processing degree of 22%, the temperature of the cup obtained by redrawing was set to 50 ° C. Then, the mold temperature was maintained at 100 ° C., and ironing with a final processing degree of 60% was performed, and a 350 ml beer can-sized seamless can was produced. With respect to the can body thus obtained, the mold releasability, galling resistance and the quality of the inner surface of the can were examined by the QTV test, and the evaluation results are shown in Tables 3 to 4.
[0063]
From Tables 1 to 4, Tests 2 to 4 corresponding to Examples 1 to 3 of the present invention show that there is no cracking of the resin film at the bottom corner of the cup obtained by drawing, and mold separation during ironing Both the moldability and the galling property of the outer surface of the can are good, showing a low QTV value, and it can be seen that a good can body is obtained.
On the other hand, in Test 1, which is Comparative Example 1 in which only the lubricating oil (B) is applied to the laminate plate and formed, the bottom of the can is scattered by drawing, and the drawability is compared with Examples 1 to 3 of the present invention. You can see that it is inferior. Further, in Tests 5 and 6, which are Comparative Examples 2 and 3 in which the mixing weight part ratio of the lubricating oil (A) in the mixed lubricating oil exceeds 50, mold releasability during ironing and galling resistance of the outer surface of the can Both are inferior to the embodiments of the present invention and have a high QTV value. In particular, in the case of Test 7 of Comparative Example 4 in which only the lubricating oil (A) was applied, the can body was frequently cut by ironing.
[0064]
In the following table, * 1 to * 8 are as described below.
* 1 Moisture A indicates lubricating oil A.
* 2 The term “mixing ratio” indicates the mixing ratio of the lubricating oil A and the lubricating oil B in weight ratio.
* 3 Moisture B indicates lubricating oil B.
* 4 The coating amount indicates the amount of lubricating oil applied to one side, and the unit is mg / m. 2 It is.
* 5 Shows the drawing process with the addition of stretch and / or ironing in the first step.
* 6 Redrawing process with stretch and / or ironing in the second process.
* 7 Indicates the ironing process of the third process.
* 8 Regarding the display items of Examples and Comparative Examples, Examples 1, 2,... Are displayed as Real 1, Real 2,.
[0065]
[Table 1]
Figure 0003949283
[0066]
[Table 2]
Figure 0003949283
[0067]
[Table 3]
Figure 0003949283
[0068]
[Table 4]
Figure 0003949283
[0069]
Experimental example 2
Using the amorphized polyester resin film laminate plate prepared in Experimental Example 1, as a molding lubricant on both sides, a lubricating oil (A) having a pour point of 2.5 ° C. and a lubricating oil having a melting point of 57 ° C. (B ) With a mixing ratio of 30:70 by weight (ratio 8), lubricating oil (A) with a pour point of −7.5 ° C. and lubricating oil (B) with a melting point of 57 ° C. 30:70 parts by weight of lubricating oil (Test 9), pour point of -12.5 ° C. lubricating oil (A) and melting point of 57 ° C. lubricating oil (B) at a mixing ratio of 30:70 by weight Lubricating oil (Test 10), lubricating oil (A) having a pour point of -17.5 ° C. and lubricating oil (B) having a melting point of 57 ° C. and a mixing ratio of 30:70 parts by weight (Test 11). ), A lubricating oil (A) having a pour point of −20.0 ° C. and a lubricating oil (B) having a melting point of 57 ° C. and having a mixing ratio of 30:70 by weight (test 12) It was coated oil by gravure roll to warmed liquid form. The amount of oil coating is shown in Tables 5-6.
[0070]
The temperature of the oil-coated laminate plate thus obtained was set to 70 ° C., and drawing was performed with ironing having a processing degree of 5%.
The microcrack generation state of the resin film at the bottom corner of the cup obtained at this time was examined, and the results are shown in Tables 7-8.
Next, the temperature of the cup obtained was set to 70 ° C., and after performing redrawing processing with a stretch processing and ironing processing having a processing degree of 15%, the temperature of the cup obtained by redrawing processing was set to 50 ° C. The mold temperature was kept at 80 ° C. and the ironing process with a final processing degree of 60% was performed to produce a seamless can of 350 ml beer can size. The can body thus obtained was examined by a QTV test for mold releasability, galling resistance, and quality of the inner surface of the can. The evaluation results are shown in Tables 7-8.
[0071]
From Tables 5 to 8, Tests 8 to 12 corresponding to Examples 4 to 8 of the present invention show that there is no occurrence of cracks in the resin film at the bottom corner of the cup obtained by drawing, and mold separation during ironing Both the moldability and the galling property of the outer surface of the can are good, showing a low QTV value, and it can be seen that a good can body is obtained.
[0072]
[Table 5]
Figure 0003949283
[0073]
[Table 6]
Figure 0003949283
[0074]
[Table 7]
Figure 0003949283
[0075]
[Table 8]
Figure 0003949283
[0076]
Experimental example 3
Using the amorphized polyester resin film laminate plate prepared in Experimental Example 1, as a molding lubricant on both sides, a lubricating oil (A) having a pour point of −12.5 ° C. and a lubricating oil having a melting point of 50 ° C. ( B) is a lubricating oil having a mixing ratio of 30:70 by weight (test 13), a lubricating oil (A) having a pour point of −12.5 ° C. and a lubricating oil (B) having a melting point of 54 ° C. 30:70 parts by weight of lubricating oil (test 14), lubricating oil (A) having a pour point of −12.5 ° C. and lubricating oil (B) having a melting point of 63 ° C. 70 lubricating oil (test 15), lubricating oil (A) having a pour point of −12.5 ° C. and lubricating oil (B) having a melting point of 75 ° C., with a mixing ratio of 30:70 by weight (test) 16) Lubricating oil (A) having a pour point of −12.5 ° C. and lubricating oil (B) having a melting point of 84 ° C. DOO 17), was coated oil with heated gravure roll in the liquid. The amount of oil coating is shown in Tables 9-10.
[0077]
The temperature of the oil-coated laminate plate thus obtained was set to 70 ° C., and a drawing process was performed with a stretch process and an ironing process with a processing degree of 7%. The occurrence of microcracks in the resin film at the bottom corner of the cup obtained at this time was examined, and the results are shown in Tables 11-12. Next, the temperature of the obtained cup was set to 70 ° C., and after performing redrawing processing with a stretch degree and ironing processing having a processing degree of 15%, the temperature of the cup obtained by redrawing processing was set to 40 ° C., The mold temperature was maintained at 100 ° C., and the ironing process with a final processing degree of 60% was performed to create a seamless can of 350 ml beer can size. The can body thus obtained was examined by a QTV test for mold releasability, galling resistance, and quality of the inner surface of the can. The evaluation results are shown in Tables 11-12.
[0078]
From Tables 9 to 12, Tests 13 to 17 corresponding to Examples 9 to 13 of the present invention show that there is no cracking of the resin film at the bottom corner of the cup obtained by drawing, and mold separation during ironing Both moldability and galling resistance of the outer surface of the can are good, showing a low QTV value, indicating that a good can body is obtained.
[0079]
[Table 9]
Figure 0003949283
[0080]
[Table 10]
Figure 0003949283
[0081]
[Table 11]
Figure 0003949283
[0082]
[Table 12]
Figure 0003949283
[0083]
Experimental Example 4
Using the amorphized polyester resin film laminate plate prepared in Experimental Example 1, as a molding lubricant on both sides, a lubricating oil (A) having a pour point of −7.5 ° C. and a lubricating oil having a melting point of 57 ° C. ( B) The lubricating oil with a mixing ratio of 30:70 by weight is heated to a liquid and sprayed, and the amount of oil applied on one side is 23 mg / m. 2 (Test 18), 44 mg / m 2 (Test 19), 67 mg / m 2 (Test 20), 93 mg / m 2 (Test 21), 122 mg / m 2 (Test 22) 158 mg / m 2 (Test 23), 187 mg / m 2 (Test 24) was applied. The amount of oil coating is shown in Tables 13-14.
[0084]
The temperature of the oil-coated laminate plate thus obtained was set to 70 ° C., and a drawing process was performed with a stretch process and an ironing process with a processing degree of 7%. The state of microcracks in the resin film at the bottom corner of the cup obtained at this time was examined, and the results are shown in Tables 15-16. Next, after the temperature of the obtained cup was set to 70 ° C. and the redrawing process was performed by adding stretch processing and ironing processing with a processing degree of 22%, the temperature of the cup obtained by redrawing was set to 50 ° C. The mold temperature was kept at 80 ° C. and the ironing process with a final processing degree of 60% was performed to produce a seamless can of 350 ml beer can size. With respect to the can body thus obtained, the mold releasability, galling property, and quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 15-16.
[0085]
From Tables 13-16, Tests 19-24, which are Examples 14-19 of the present invention, show no cracks in the resin film at the bottom corner of the cup obtained by drawing, and the mold separation during ironing-resistant processing Both moldability and galling resistance of the outer surface of the can are good, showing a low QTV value, indicating that a good can body is obtained.
On the other hand, in Test 18 of Comparative Example 5, a slight crack occurred in the resin film at the bottom corner of the cup obtained by drawing. In addition, the mold releasability during ironing and the anti-galling resistance of the outer surface of the can were inferior to those of Examples 14 to 19 of the present invention, and the QTV value was also high.
[0086]
[Table 13]
Figure 0003949283
[0087]
[Table 14]
Figure 0003949283
[0088]
[Table 15]
Figure 0003949283
[0089]
[Table 16]
Figure 0003949283
[0090]
Experimental Example 5
26 mg / m as the amount of film C on the surface 2 A glass transition temperature (Tg) of 67 ° C. and a cold crystallization temperature (Tc) on both surfaces of a 0.28 mm thick aluminum plate (3004 alloy) having an organic-inorganic composite chemical conversion treatment film of phosphoric acid-phenol resin. ) Is 123 ° C. and the melting point is 238 ° C. The thickness of the polyester resin film is 8 μm (Test 25), 15 μm (Test 26), 20 μm (Test 27), 30 μm (Test 28), 40 μm (Test 29), 50 μm (Test 30). The biaxially stretched film was bonded by thermocompression bonding, and then heated and cooled to prepare 6 types of amorphized polyester resin film-coated laminates. Next, a lubricating oil (A) having a pour point of −12.5 ° C. and a lubricating oil (B) having a melting point of 57 ° C. were heated and mixed on both surfaces of the laminate plate at a weight ratio of 30:70. Oiled with a gravure roll. The density and the amount of oil coating of the polyester resin film of the obtained laminate are shown in Tables 17-18.
[0091]
The temperature of the oil-coated laminate plate thus obtained was set to 70 ° C., and a drawing process was performed with a stretch process and an ironing process with a processing degree of 7%. The state of microcracks in the resin film at the bottom corner of the cup obtained at this time was examined, and the results are shown in Tables 19-20. Next, after the temperature of the obtained cup was set to 70 ° C. and the redrawing process was performed by adding stretch processing and ironing processing with a processing degree of 15%, the temperature of the cup obtained by redrawing was set to 50 ° C. The mold temperature was maintained at 80 ° C. and the ironing process with a final processing degree of 63% was performed to create a seamless can of 350 ml beer can size. The can body thus obtained was examined by a QTV test for mold releasability, galling resistance, and quality of the inner surface of the can. The evaluation results are shown in Tables 19-20.
[0092]
From Tables 17-20, Tests 26-30, which are Examples 20-24 of the present invention, show no cracking of the resin film at the bottom corner of the cup obtained by drawing, and mold release during ironing The galling property and the galling resistance of the outer surface of the can are good, showing a low QTV value, indicating that a good can body is obtained. On the other hand, Test 25 of Comparative Example 6 shows that there is no cracking in the resin film at the bottom corner of the cup obtained by drawing, and both mold releasability during ironing and galling resistance on the outer surface of the can are good. However, it shows a high QTV value, and it can be seen that the inner surface quality cannot be ensured if the resin film thickness is less than the lower limit of the present invention.
[0093]
[Table 17]
Figure 0003949283
[0094]
[Table 18]
Figure 0003949283
[0095]
[Table 19]
Figure 0003949283
[0096]
[Table 20]
Figure 0003949283
[0097]
Experimental Example 6
A resin film having a melting point of 193 ° C. (test 31), a melting point of 205 ° C. (test 32), and a melting point of 218 ° C. on both surfaces of the aluminum plate having the organic / inorganic composite chemical conversion treatment film used in Experimental Example 5. Film (test 33), film having a melting point of 230 ° C. (test 34), film having a melting point of 242 ° C. (test 35), film having a melting point of 252 ° C. (test 36), film having a melting point of 261 ° C. (test 37) The biaxially stretched polyester resin films each having a thickness of 20 μm were bonded by thermocompression bonding, and then heated and cooled to prepare 7 types of amorphized polyester resin film-coated laminates.
[0098]
Next, a lubricating oil (A) having a pour point of −12.5 ° C. and a lubricating oil (B) having a melting point of 57 ° C. are heated and mixed on both surfaces of the laminate plate, and the lubricating oil (A) and the lubricating oil (B The molding lubricant having a mixing ratio of 30) by weight ratio of 30) was heated to a liquid and oiled with a gravure roll. Tables 21 to 22 show the resin film density and the amount of oil applied to each test plate.
[0099]
The temperature of the oil-coated laminate plate thus obtained was set to 75 ° C., and a drawing process was performed by adding a stretch process with a processing degree of 5%. The occurrence of microcracks in the resin film at the bottom corner of the cup obtained at this time was examined.
Next, the temperature of the obtained cup was set to 75 ° C., and after redrawing with a 22% stretch and ironing process, the temperature of the cup obtained by redrawing was set to 40 ° C. The mold temperature was maintained at 80 ° C. and the ironing process with a final processing degree of 63% was performed to create a seamless can of 350 ml beer can size. The can body thus obtained was examined by a QTV test for mold releasability, galling resistance, and quality of the inner surface of the can. The evaluation results are shown in Tables 23-24.
[0100]
From Tables 21 to 24, Tests 32 to 36 corresponding to Examples 25 to 29 of the present invention show that there is no cracking of the resin film at the bottom corner of the cup obtained by drawing, and mold separation during ironing Both moldability and galling resistance of the outer surface of the can are good, showing a low QTV value, indicating that a good can body is obtained. On the other hand, the test 31 of Comparative Example 7 is good without cracking of the resin film at the bottom corner of the cup obtained by drawing, but both the mold releasability during ironing and the galling resistance of the outer surface of the can. It was inferior to Examples 25 to 29 of the present invention, and the QTV value was also high. In the case of Test 37 of Comparative Example 8, the occurrence of cracks in the resin film at the bottom corner of the cup obtained by drawing is slightly inferior to Examples 25 to 29 of the present invention. Although the mold releasability and galling resistance of the outer surface of the can were both good, a high QTV value was exhibited.
[0101]
[Table 21]
Figure 0003949283
[0102]
[Table 22]
Figure 0003949283
[0103]
[Table 23]
Figure 0003949283
[0104]
[Table 24]
Figure 0003949283
[0105]
Experimental Example 7
23 mg / m as the amount of film C on the surface 2 The film used in Test 35 of Experimental Example 6 was bonded to both surfaces of an aluminum plate (3004 series alloy) having a thickness of 0.28 mm having a composite chemical conversion treatment film of phosphoric acid-phenol resin by changing the thermocompression bonding conditions. Then, it heat-cooled as needed and produced the polyester resin film covering laminated board from which a density differs.
The density of the resin film of the obtained laminate plate was 1.342 (test 38), 1.357 (test 39), 1.365 (test 40), and 1.381 (test 41). Next, a lubricating oil (A) having a pour point of −12.5 ° C. and a lubricating oil (B) having a melting point of 57 ° C. were heated and mixed on both surfaces of these laminates at a weight ratio of 30:70. Then it was liquefied and oiled with a spray. The amount of oil applied to the laminate used in each test is shown in Table 25.
[0106]
The temperature of the oil-coated laminate obtained in this manner was set to 70 ° C., and redrawing was performed by adding a stretch process with a processing degree of 5%. The occurrence of microcracks in the resin film at the bottom corner of the cup obtained at this time was examined, and the results are shown in Table 26. Next, after the temperature of the obtained cup was set to 70 ° C. and the redrawing process was performed by adding stretch processing and ironing processing with a processing degree of 22%, the temperature of the cup obtained by redrawing was set to 40 ° C. The mold temperature was maintained at 80 ° C. and the ironing process with a final processing degree of 63% was performed to create a seamless can of 350 ml beer can size. With respect to the can body thus obtained, the mold releasability, galling property, and quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Table 26.
[0107]
From Tables 25 to 26, tests 38 and 39, which are Examples 30 to 31 of the present invention, are free from cracks in the resin film at the bottom corner of the cup obtained by drawing, and mold release during ironing The galling property and the galling resistance of the outer surface of the can are good, showing a low QTV value, indicating that a good can body is obtained. On the other hand, in tests 40 and 41 of Comparative Examples 9 to 10, the resin film cracks at the bottom corners of the cup obtained by drawing are good without cracks, and the mold releasability during ironing, the outer surface of the can Although the anti-galling property of both the mold releasability during ironing and the anti-galling property of the outer surface of the can are good, the high QTV value is shown and the inner surface quality is inferior to that of Examples 30 and 31 of the present invention.
[0108]
[Table 25]
Figure 0003949283
[0109]
[Table 26]
Figure 0003949283
[0110]
Experimental Example 8
Lubricating oil (A) having a pour point of −12.5 ° C. and a lubricating oil having a melting point of 57 ° C. as a molding lubricant on both sides using the amorphized polyester resin film-coated laminate plate prepared in Experimental Example 1 (B) was heated in a lubricating oil having a mixing ratio of 30:70 by weight to make it into a liquid state, and oiled by spraying. The amount of oil coating is shown in Tables 27-31.
[0111]
The temperature of the oil-coated laminate thus obtained was 50 ° C. (Test 42), 70 ° C. (Test 43), 90 ° C. (Test 44), 110 ° C. (Test 45), 120 ° C. (Test 46), 130 ° C. (Test 47). ) Under the conditions of), each was subjected to drawing with a processing degree of 5% with ironing added. The state of microcracks in the resin film at the bottom corner of the cup obtained at this time was observed, and the results are shown in Tables 32-36. Next, after the temperature of the obtained cup was set to 70 ° C. and redrawing with a degree of processing of 15% added with stretch processing and ironing processing, the temperature of the cup obtained by redrawing was set to 40 ° C. Then, ironing with a mold temperature of 80 ° C. and a final processing degree of 60% was performed to prepare a 350 ml beer can-sized seamless can. Further, the redrawing cup temperature obtained in the test 43 is set to 30 ° C. (test 48), 40 ° C. (test 49), 50 ° C. (test 50), 60 ° C. (test 51), and 70 ° C., respectively. After (Test 52), the mold temperature was maintained at 100 ° C. and the ironing process with a final processing degree of 60% was performed to create a 350 ml beer can-sized seamless can.
[0112]
For comparison, the temperature of the drawn cup obtained in the test 47 is set to 70 ° C., and after redrawing with a degree of processing of 15% with the addition of stretch processing and ironing, the temperature of the cup is set to 40 ° C. ( Test 53), 60 ° C. (Test 54), and using a mold whose mold temperature was kept at 100 ° C., ironing with a final processing degree of 60% was performed to create a 350 ml beer can-sized seamless can . Further, for comparison, the temperature of the drawn cup obtained in the test 43 is set to 70 ° C., and after performing the redrawing process with a degree of processing of 15% to which stretch processing and ironing processing are added, the temperature of the cup is set to 40 ° C., Each of the mold temperatures is 70 ° C. (test 55), 100 ° C. (test 56), 120 ° C. (test 57), and 140 ° C. (test 58). A seamless can of beer can size was created.
[0113]
The can body thus obtained was examined by a QTV test for mold releasability, galling resistance, and quality of the inner surface of the can. The evaluation results are shown in Tables 32-36.
[0114]
From Tables 27 to 36, Tests 43 to 46, which are Examples 32 to 35 of the present invention, showed no cracking of the resin film at the bottom corner of the cup obtained by drawing, and mold release during ironing The galling property and the galling resistance of the outer surface of the can are good, showing a low QTV value, indicating that a good can body is obtained. On the other hand, Tests 42 and 47 which are Comparative Examples 11 and 12 have good mold releasability during ironing and galling resistance of the outer surface of the can, but the resin at the bottom corner of the cup obtained by drawing. The occurrence of cracks in the film is inferior to that of Examples 32 to 35, and as a result, the QTV value is high and the inner surface quality is also inferior to that of Examples 32 to 35.
Tests 48 to 50, which are Examples 36 to 38 of the present invention, show that there is no cracking of the resin film at the bottom corner of the cup obtained by drawing, the mold releasability during ironing, and the outer surface of the can The galling resistance is good, and a low QTV value is shown, indicating that a good can body is obtained. On the other hand, in Tests 51 and 52 which are Comparative Examples 13 and 14, the occurrence of cracks in the resin film at the bottom corner of the cup obtained by drawing is not observed, but the mold releasability during ironing and the outer surface of the can Both galling resistances are inferior and high QTV values are shown, indicating that the can inner surface quality is inferior to Examples 36 to 38.
In the case of test 54 of Comparative Example 16, cracks occurred in the resin film at the bottom corner of the cup obtained by drawing, and both mold releasability during ironing and galling resistance on the outer surface of the can were inferior. It shows that the QTV value is high, and the inner surface quality of the can is inferior to that of Examples 36 to 37. The test 53 of the comparative example 15 is a reproduction evaluation of the test 47 of the comparative example 12 described above.
Further, in the tests 55 to 57 of Examples 39 to 41 of the present invention, there is no occurrence of cracks in the resin film at the bottom corner portion of the cup obtained by drawing, the mold releasability during ironing, and the outer surface of the can It shows that the galling resistance is good and shows a low QTV value, and a good can body is obtained. On the other hand, in the test 58 of Comparative Example 17, cracks were not observed in the resin film at the bottom corner of the cup obtained by drawing, but both the mold releasability during ironing and the galling resistance of the outer surface of the can were both. It shows an inferior high QTV value, and it can be seen that the can inner surface quality is inferior to Examples 39 to 41 of the present invention.
[0115]
[Table 27]
Figure 0003949283
[0116]
[Table 28]
Figure 0003949283
[0117]
[Table 29]
Figure 0003949283
[0118]
[Table 30]
Figure 0003949283
[0119]
[Table 31]
Figure 0003949283
[0120]
[Table 32]
Figure 0003949283
[0121]
[Table 33]
Figure 0003949283
[0122]
[Table 34]
Figure 0003949283
[0123]
[Table 35]
Figure 0003949283
[0124]
[Table 36]
Figure 0003949283
[0125]
Experimental Example 9
Lubricating oil (A) having a pour point of −12.5 ° C. and a lubricating oil having a melting point of 57 ° C. as a molding lubricant on both sides using the amorphized polyester resin film-coated laminate plate prepared in Experimental Example 1 (B) was heated in a lubricating oil having a mixing ratio of 30:70 by weight to make it into a liquid state, and oiled by spraying. The amount of oil coating is shown in Tables 37-38.
[0126]
The oil-coated laminate sheet thus obtained had a mold temperature of 50 ° C. (test 59), 70 ° C. (test 60), 90 ° C. (test 61), 110 ° C. (test 62), 120 ° C. (test 63), 130 ° C. ( Under the conditions of the test 64), each of the drawing operations with a processing degree of 5% added with ironing was performed. The occurrence of microcracks in the resin film at the bottom corner of the cup obtained at this time was observed.
Next, the obtained cup was redrawn at a mold temperature of 80 ° C. and the degree of processing added with stretch processing and ironing processing was 15%, and then the cup obtained by redrawing was processed. The temperature was 40 ° C., the mold temperature was 80 ° C., and the ironing process with a final processing degree of 60% was performed to produce a 350 ml beer can-sized seamless can. With respect to the can thus obtained, the mold releasability, galling resistance and the quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 39-40.
[0127]
From Tables 37 to 40, Tests 60 to 63, which are Examples 42 to 45 of the present invention, showed no cracking of the resin film at the bottom corner of the cup obtained by drawing, and mold release during ironing The galling property and the galling resistance of the outer surface of the can are good, showing a low QTV value, indicating that a good can body is obtained. However, tests 43 to 46, which are Examples 32 to 35, were performed by changing the temperature of the laminated plate and cup as shown in Experimental Example 8 from the glass transition temperature (Tg) to the cold crystallization temperature (Tc). Compared to the above, the quality of the inner surface is slightly inferior, but it is sufficiently practical.
On the other hand, in Tests 59 and 64 which are Comparative Examples 18 and 19, both the mold releasability during ironing and the galling resistance of the outer surface of the can are both good, but the resin at the bottom corner of the cup obtained by drawing. The occurrence of cracks in the film is inferior to those in Examples 42 to 45, and as a result, a high QTV value is exhibited and the inner surface quality is also inferior to those in Examples 42 to 45.
[0128]
[Table 37]
Figure 0003949283
[0129]
[Table 38]
Figure 0003949283
[0130]
[Table 39]
Figure 0003949283
[0131]
[Table 40]
Figure 0003949283
[0132]
【The invention's effect】
As described above, by implementing the present invention, since the polyester resin film on the inner surface of the can obtained has excellent film soundness, a highly corrosion-resistant aluminum seamless can can be obtained.
Therefore, since it is possible to fill various contents, the unification of varieties can be handled with peace of mind, which is economically advantageous and has great social significance.

Claims (3)

板厚が0.20mm〜0.32mmのアルミニウム板の両面に、厚み10〜50μm、融点(Tm)200℃〜260℃、密度1.36未満である熱可塑性ポリエステル樹脂フィルムで被覆されたラミネート板の樹脂フィルム被覆面に、流動点が5℃以下である潤滑油(A)を重量部で5〜50部と、融点が40℃以上である潤滑油(B)を重量部で95〜50部の混合比で混合されている混合潤滑油を、片面の付着量として30〜200mg/m2塗油したことを特徴とするシームレス缶用ポリエステル樹脂被覆アルミニウム板。Laminate plate coated on both sides of an aluminum plate having a thickness of 0.20 mm to 0.32 mm with a thermoplastic polyester resin film having a thickness of 10 to 50 μm, a melting point (Tm) of 200 ° C. to 260 ° C., and a density of less than 1.36. 5 to 50 parts by weight of lubricating oil (A) having a pour point of 5 ° C. or lower and 95 to 50 parts by weight of lubricating oil (B) having a melting point of 40 ° C. or higher on the resin film-coated surface. A polyester resin-coated aluminum plate for seamless cans, which is obtained by applying 30 to 200 mg / m 2 of mixed lubricating oil mixed at a mixing ratio of 30 to 200 mg / m 2 as the amount of adhesion on one side. 板厚が0.20mm〜0.32mmのアルミニウム板の両面に、厚み10〜50μm、融点(Tm)200℃〜260℃、密度1.36未満であるポリエステル樹脂で被覆されたラミネート板を用いてシームレス缶を製造するに際し、該ラミネート板の樹脂フィルム被覆面に、流動点が5℃以下である潤滑油(A)を重量部で5〜50部と、融点が40℃以上である潤滑油(B)を重量部で95〜50部の混合比で混合されている混合潤滑油を、片面の付着量として30〜200mg/m2塗油した後、該ポリエステル樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲でストレッチ加工および/またはしごき加工を付加した絞り加工(第1工程)を行い、次いで、第1工程の絞り加工で得たカップを該ポリエステル樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲でストレッチ加工および/またはしごき加工を付加した再絞り加工(第2工程)を行い、次いで、第2工程で得た再絞りカップの温度を潤滑油(B)の融点以下にし、加工金型の温度を120℃以下に保持してしごき加工(第3工程)を行うことを特徴とするポリエステル樹脂被覆アルミニウムシームレス缶の製造方法。Using laminate plates coated with a polyester resin having a thickness of 10 to 50 μm, a melting point (Tm) of 200 ° C. to 260 ° C., and a density of less than 1.36 on both sides of an aluminum plate having a thickness of 0.20 mm to 0.32 mm. When producing a seamless can, the lubricating oil (A) having a pour point of 5 ° C. or less and 5 to 50 parts by weight and a melting point of 40 ° C. or more on the resin film-coated surface of the laminate plate ( B) is mixed at a mixing ratio of 95 to 50 parts by weight with a mixed lubricating oil of 30 to 200 mg / m 2 as the amount of adhesion on one side, and then the glass transition temperature (Tg) of the polyester resin film. To a cold crystallization temperature (Tc) in the range of stretch processing and / or ironing processing (first step), and then the cup obtained by the first step of drawing is used as the polyester resin. Redrawing (second step) with stretching and / or ironing applied in the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the film, followed by the redrawing obtained in the second step A method for producing a polyester resin-coated aluminum seamless can characterized in that the temperature of the cup is kept below the melting point of the lubricating oil (B) and the temperature of the working mold is kept at 120 ° C. or below for ironing (third step). . 第1工程のストレッチ加工および/またはしごき加工を付加した絞り加工を、胴壁部の最も薄い部位のアルミニウム板の厚み(Wt)と缶底部のアルミニウム板の厚み(Bt)との関係において、下記式(1)
Figure 0003949283
から求められる加工度の値が10%以内になるように行い、次いでストレッチ加工および/またはしごき加工を付加した第2工程の再絞り加工を、第1工程の絞り加工の加工度と合わせて、式(1)から求められる全体の加工度の値が25%以内になるように行い、次いで第3工程のしごき加工を、第1工程の絞り加工の加工度および第2工程の再絞り加工の加工度と合わせて、式(1)から求められる全体の加工度が50〜70%になるように成形加工を行う請求項2記載のポリエステル樹脂被覆アルミニウムシームレス缶の製造方法。
In the relationship between the thickness (Wt) of the aluminum plate at the thinnest part of the body wall and the thickness (Bt) of the aluminum plate at the bottom of the can, the drawing process with the stretch process and / or the ironing process in the first step is performed as follows. Formula (1)
Figure 0003949283
The redrawing process in the second step with the addition of the stretch process and / or the ironing process is performed together with the process degree of the drawing process in the first process, The total degree of processing obtained from the equation (1) is performed so that it is within 25%, and then the third step of ironing is performed by the drawing step of the first step and the redrawing step of the second step. The method for producing a polyester resin-coated aluminum seamless can according to claim 2, wherein the forming is performed so that the total degree of processing obtained from the formula (1) is 50 to 70% in combination with the degree of processing.
JP20871998A 1998-07-08 1998-07-08 Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans Expired - Fee Related JP3949283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20871998A JP3949283B2 (en) 1998-07-08 1998-07-08 Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20871998A JP3949283B2 (en) 1998-07-08 1998-07-08 Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans

Publications (2)

Publication Number Publication Date
JP2000024722A JP2000024722A (en) 2000-01-25
JP3949283B2 true JP3949283B2 (en) 2007-07-25

Family

ID=16560959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20871998A Expired - Fee Related JP3949283B2 (en) 1998-07-08 1998-07-08 Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans

Country Status (1)

Country Link
JP (1) JP3949283B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235128B (en) * 2001-06-25 2005-07-01 Toyo Seikan Kaisha Ltd Resin-coated seamless can
CN102347117B (en) * 2010-08-04 2013-06-19 无锡市科麦特光电材料有限公司 Aluminium foil polyester composite belt lubrication processing method
CN107957129B (en) * 2017-11-29 2020-06-09 海信(山东)空调有限公司 Spacing cardboard of tuber pipe machine water collector and tuber pipe machine
JP7242193B2 (en) * 2018-04-27 2023-03-20 大和製罐株式会社 Tubs, can lids and methods of manufacturing can lids

Also Published As

Publication number Publication date
JP2000024722A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
JP3046217B2 (en) Resin-coated aluminum plate for dry drawing and ironing can
JP4278271B2 (en) Laminated seamless can
JP3949283B2 (en) Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans
JP3986170B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP4103974B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
WO2011045833A1 (en) Method for producing resin-coated metal plate
JP4319358B2 (en) Polyester resin-coated metal plate and can using the same
JP2803854B2 (en) Composite steel sheet excellent in formability of drawn and ironed cans
JP4445787B2 (en) Polyester resin film coated metal plate and polyester resin film coated metal can
JP7333315B2 (en) Thermoplastic resin film, thermoplastic resin-coated metal plate, and thermoplastic resin-coated metal container
JP4226103B2 (en) Manufacturing method of resin-coated aluminum seamless cans
JP2937788B2 (en) Manufacturing method of resin-coated steel sheet for dry drawing and ironing can
JP4278272B2 (en) Film-coated two-piece can
JP3140929B2 (en) Resin-coated steel sheet for dry drawing and ironing can
JP4226104B2 (en) Manufacturing method of resin-coated aluminum seamless cans
JP4405301B2 (en) Polyester resin film coated metal plate with excellent galling resistance
JP4102145B2 (en) Resin-coated steel sheet and seamless can body for dry-drawing and ironing cans
JP4278270B2 (en) Film laminated two-piece can
JP2000033430A (en) Polyester resin-coated aluminum sheet for seamless can and production of seamless can using the sheet
JP4278273B2 (en) Film-coated seamless can
JP4297779B2 (en) Method for producing polyester film-coated metal sheet
JP2003277886A (en) Resin-coated steel sheet for shear spun can, method of producing resin-coated steel sheet for shear spun can and shear spun can produced by using the same
JPH04105931A (en) Composite steel plate for eoe and preparation thereof
JPH09287044A (en) Resin coated aluminum alloy sheet for drawn and ironed can
KR20000005343A (en) Manufacturing method for resin-coated aluminum alloy plate for drawing and ironing can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees