JP4278270B2 - Film laminated two-piece can - Google Patents

Film laminated two-piece can Download PDF

Info

Publication number
JP4278270B2
JP4278270B2 JP2000079582A JP2000079582A JP4278270B2 JP 4278270 B2 JP4278270 B2 JP 4278270B2 JP 2000079582 A JP2000079582 A JP 2000079582A JP 2000079582 A JP2000079582 A JP 2000079582A JP 4278270 B2 JP4278270 B2 JP 4278270B2
Authority
JP
Japan
Prior art keywords
film
resin film
polyester resin
processing
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000079582A
Other languages
Japanese (ja)
Other versions
JP2001262370A (en
Inventor
知彦 林
秀紀 宇都宮
和弘 辻本
博一 横矢
茂 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Nippon Steel Corp
Original Assignee
Daiwa Can Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd, Nippon Steel Corp filed Critical Daiwa Can Co Ltd
Priority to JP2000079582A priority Critical patent/JP4278270B2/en
Publication of JP2001262370A publication Critical patent/JP2001262370A/en
Application granted granted Critical
Publication of JP4278270B2 publication Critical patent/JP4278270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スチールを素材としたポリエステル樹脂被覆シームレス缶に関するものである。
【0002】
【従来の技術】
スチールやアルミニウムを素材とした金属缶・容器は、その形状からスリーピース缶とツーピース缶とに大別される。スリーピース缶は、地蓋、缶胴、天蓋から成るためスリーピース缶と呼ばれており、製胴方法が現在はシーム溶接や接着が主であることから、価格の安いスチールが使用されている。
一方、ツーピース缶は、地蓋と缶胴とが一体となったもので、それに天蓋とから成るためツーピース缶、又は、缶胴部に接合部がないことからシームレス缶とも呼ばれ、スチールとアルミニウムが使用されている。金属缶の場合、缶内面側には耐食性を確保するために塗装が施されたものが使用されているが、近年、熱可塑性樹脂フィルムを積層した、ラミネート缶が開発され市場に出回っている。ラミネート缶は、金属板に熱可塑性樹脂フィルムを被覆させたものから、缶体成形加工を行うものが主であり、特にツーピース缶を得るには高度な成形加工技術を必要とする。
【0003】
かかる意味においても、ツーピースのラミネート缶に関わる技術は、例えば特開平7−2241号公報、特開平7−195619号公報、特開平8−244750号公報等、数多く提案され開示されている。ラミネート缶のメリットは、消費者側から見た場合、適用する熱可塑性樹脂フィルムにもよるが、耐内容物性、特に内容物の味、風味と言ったフレーバー性に優れている点が第一に上げられている。
一方、デメリットとしては、今度は製缶メーカー側からであるが、前述したようにツーピース缶の場合、熱可塑性樹脂フィルム被覆金属板の加工度(又は変形度合)が大きいので、成形時に缶内面側の樹脂フィルムに傷が入ったりした場合、缶内面の品質確保ができなくなるため、缶体の品質検査を厳重に行う必要があることと、製品歩留まりが現行の塗装缶に比べて劣るといった点が上げられる。
【0004】
特に、スチール素材を用いたツーピースラミネート缶の場合、上記の傾向が大きい。こうしたラミネート缶の内面側の樹脂フィルムの皮膜欠陥は、前述したように缶成形加工時に入るものであり、この欠陥を最小限に抑えることは、品質、製品歩留まりの点から重要な技術課題であることは言うまでもない。
一方、トータル缶コストの低減化の観点から、使用金属板の板厚の低減化や缶蓋である開口容易缶蓋(イージーオープンエンド、通称EOE)の径を小さくすることが進められている。開口容易缶蓋について言えば、例えば、缶胴が350mlのビール缶の場合、通称211と呼ばれ、缶胴内径は約65.9mmであり、当然巻締める缶蓋も211用のものであるが、現在この缶胴に使用する缶蓋は206用のものや204用のものとなっており、更に202用のものを使用する試みが進められている。
【0005】
このことは、必然的に缶胴の開口部をより小さい径に絞る、いわゆる縮径化となり、従って缶胴に用いられている金属は勿論、その表面に被覆されている樹脂フィルムにとっても厳しい加工を受けることになる。
しかし、しごき加工を伴うツーピース缶成形加工の、特に高加工率の場合の内面側の熱可塑性樹脂フィルムの剥離や傷その他の欠陥が入り難く、また高縮径化のためのネック加工やフランジ加工で樹脂フィルムを剥離することなく、また傷その他の欠陥を入れることなく成形加工できる、適切なフィルムラミネート材が見い出されていないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明は、こうした実状に鑑みなされたもので、皮膜欠陥のない高耐食性、高品質な樹脂フィルム被覆スチールツーピース缶を歩留まりよく提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、少なくとも缶の内面に当たる鋼板の表面に厚みが15〜50μm、融点(Tm)が225〜260℃、極限粘度(IV)が0.60以上の非晶質化された熱可塑性ポリエステル樹脂フィルム層で被覆されている、フィルムラミネートツーピース缶に関するものである。更に詳しく述べると、前記ポリエステル樹脂フィルムを被覆する前の前記鋼板の表面には、片面付着量として20〜2000mg/m2 のNiめっき層、その上層に片面の付着C量として1〜100mg/m2 の有機樹脂を主体とする化成処理皮膜層を形成しておく必要がある。特に、缶外面側となる鋼板の表面上に被覆されているポリエステル樹脂フィルム層が、厚み12〜20μmで融点が235℃以上で平均粒子径0.72.0μmの酸化チタン顔料を量%として5〜20%含有しており、加工度とし50〜70%であるフィルムラミネートツーピース缶とするのが好ましい。
【0008】
【発明の実施の形態】
以下、本発明のツーピース缶の実施形態について詳細に説明する。
まず、本発明における鋼板について述べる。
本発明における鋼板は、両面に片面の付着量として20〜2000mg/m2 のNiめっき層、その上層に片面付着C量として1〜100mg/m2 の有機樹脂を主体とする化成処理皮膜層を有するものである。Niめっきおよび化成処理前の鋼板は特に限定されるものではなく、通常製缶用鋼板として使用されているものが適用される。しかし、選定する際には缶体の強度、特にボトム耐圧強度には留意する必要があり、ビール缶においてはボトム耐圧は最大で618kPa以上、コーラ等の炭酸飲料缶においてはボトム耐圧686kPa以上でないと缶底部のドームが缶外方へ突出するといった現象が起こる。この現象を回避するには、使用鋼板の硬度やボトム形状との関係もあるが、現状では鋼板板厚が0.15mm以下では難しい。一方、鋼板板厚が0.22mmあれば使用鋼板の硬度が低くても缶底部のドームが缶外方へ突出するといった現象は起こらない。従って、鋼板の板厚は0.15〜0.22mmとするのが好ましい。
【0009】
次に、鋼板の表面に施されているNiめっきや化成処理皮膜の表面処理について述べる。
本発明において、鋼板表面にまずNiを付着させる理由について述べる。本発明のような樹脂フィルムを被覆した鋼板を絞り−しごき加工して得るツーピース缶の場合、鋼板表面に形成させた金属めっき皮膜や化成処理皮膜は、その加工程度に応じて破壊され、加工前の特性は減じるものである。本発明のように樹脂フィルムを積層させた鋼板から成形加工する場合の鋼板の表面処理として、鋼板に金属クロム、その上層に水和酸化クロムを形成させる電解クロム酸処理が施されたTFS−CT(ティンフリースチールクロミウムタイプ)が良く知られているが、こうした表面処理皮膜での例外でなく、絞り−しごき成形加工後には表面処理皮膜の一部が破壊される。その結果、缶の開口部といった鉄が露出している箇所を起点として糸状腐食が起こる場合がある。糸状腐食が起こった缶は当然商品としての価値は消失してしまい、問題である。
【0010】
糸状腐食は、腐食箇所が糸状に成長することから名付けられたが、鉄やアルミニウムで起こりその腐食の成長は酸素の還元反応を駆動力としている。前述した鋼板に施される電解クロム酸処理皮膜はこの酸素の還元反応が起こり難い皮膜であるため、皮膜が健全な場合は糸状腐食は極めて起こり難い。しかし、絞り−しごき成形加工後には、表面処理皮膜は破壊されるため、糸状腐食は起こってしまう。Niは糸状腐食が起こらない金属として知られており、こうした金属で鉄素地を被覆することは、鋼板の糸状腐食の防止に有効であるが、前述した電解クロム酸処理皮膜同様、絞り−しごき成形加工後には皮膜の健全性は確保されなくなるため、本発明ではNiめっきの付着量は、片面の付着量として20〜2000mg/m2 とする。
【0011】
下限値の20mg/m2 未満では、本発明の缶の板厚減少率の最小値である50%でも、糸状腐食が発生するため好ましくない。また、前述した204(内径約54.9mm)や202(内径約52.4mm)等の高縮径ネック加工において、めっき皮膜が破壊して鉄面が露出することに起因して被覆ポリエステル樹脂フィルムが剥離する場合があり、好ましくない。
更に、Ni付着量が下限値の20mg/m2 未満では、万が一缶内面側の被覆フィルムに欠陥が発生した場合、内容物によっては素地の鉄が溶解し穿孔缶となる危険性もあり好ましくない。従って、Ni付着量は20mg/m2 以上は必要で、Niの効果を十分に発揮させるには片面の付着量として100mg/m2 以上のNiめっきを施すことが望ましい。
【0012】
一方、上限値である2000mg/m2 超では本発明の缶の板厚減少率の最大値である70%でも糸状腐食の発生や密着性の確保等の効果は飽和する。なお、Niが缶外面の鋼板面に存在することで、白さが若干向上し、缶外面となる面を被覆するポリエステル樹脂への白色顔料の混入量や印刷・塗装時に行われる白色塗装や白インキの塗布量を低減出来るといった経済的効果もある。
こうしたことを総合的に勘案すると、Ni付着量は20〜2000mg/m2 が適当な範囲であり、好ましくは100〜2000mg/m2 が最適である。
鋼板へのNi付着方法としては周知の電気めっきや無電解めっき方法が適用できる。
【0013】
次に、化成処理皮膜について述べる。
本発明の鋼板は、Niめっきの上層に有機樹脂を主体とする化成処理皮膜を有するものである。有機樹脂を主体とする化成処理皮膜は乾燥時に高分子化が起こり、Niめっき面を一様に覆うため、第一にその上層に積層させるポリエステル樹脂皮膜との密着性を強固にすることができる。第二に前述した糸状腐食の駆動力となる酸素の還元反応を抑制することができるため、糸状腐食が防止される等の優れた性能を示す。
また、有機樹脂を主体とする化成処理皮膜層は、特にポリエステル樹脂フィルムとの密着性が良好であるため、高加工度の絞り−しごき加工を受けても、密着性不十分によって起こるフィルム剥離(通称デラミ)や、激しいデラミを起因とする破胴といったことはなく、良好な缶体が得られる。
【0014】
化成処理皮膜の付着量は、C量として例えば、(株)島津製作所製のTOTAL ORGANIC CARBON ANALYZER TOC−5000で測定した値で、1〜100mg/m2 である。下限値である1mg/m2 未満では被覆性が劣り、腐食作用および密着性が共に不十分となる。また、本発明の缶の板厚減少率の最小値である50%でも成形加工後に樹脂フィルムが局部的に剥離する、いわゆるデラミが起こったり成形加工後の缶体には開口部から糸状腐食が発生し、好ましくない。しかし、有機樹脂を主体とする化成処理皮膜をC量として1mg/m2 以上施すことにより密着性は向上し、5mg/m2 以上で十分な密着性が確保される。
【0015】
一方、上限値の100mg/m2 を超えると、糸状腐食の発生はないが、本発明の缶の板厚減少率の最大値である70%の成形加工で化成処理皮膜自身の凝集破壊と思われる密着性低下がやはり起こる場合があり、好ましくない。有機樹脂を主体とする化成処理皮膜量をC量として100mg/m2 以下にすることで成形加工での密着性低下を防止することが可能となる。従って、有機樹脂を主体とする化成処理皮膜厚は、C量として1〜100mg/m2 の範囲であるが、工業製品としての安定生産性を考慮すると、C量として5〜50mg/m2 の範囲が好ましく最適である。
【0016】
鋼板への処理方法としては、例えばリン酸及びその塩、縮合リン酸及びその塩、リン酸ジルコニウム、リン酸チタニウムのようなリン酸系化合物や、例えばビニルエトキシシラン、アミノプロピルトリエトキシシラン等のシランカップリング剤のような有機ケイ素化合物と、例えば水溶性フェノール樹脂、水溶性アクリル樹脂のような水溶性有機樹脂を主体とする水溶液を、前記処理液をNiめっき鋼板にスプレー塗布し絞りロールで付着量を調整した後、乾燥し硬化させる方法、処理液にNiめっき鋼板を浸漬し絞りロールで付着量を調整した後、乾燥し硬化させる方法等が適宜適用できる。乾燥硬化方法としては熱風での乾燥、電気炉での乾燥等の方法が適用でき、温度は150〜250℃で乾燥時間は10秒〜2分程度である。
【0017】
次に、本発明の方法に適用される缶内面側のポリエステル樹脂フィルムについて説明する。
本発明ではポリエステル樹脂フィルムは、熱可塑性ポリエステル樹脂フィルムが適用される。本発明において、被覆する樹脂フィルムを熱可塑性ポリエステル樹脂フィルムに限定した理由は、▲1▼耐熱性が良い、▲2▼缶内面用としては内容物のフレーバーが確保される、と言った、例えばポリエチレンやポリプロピレンなどのポリオレフィン系樹脂フィルムにない、缶用途に適した特性を有しているからである。
【0018】
被覆されたポリエステル樹脂フィルムとしては、酸成分としてテレフタル酸、イソフタル酸、アジピン酸、セバシン酸等の酸成分と、エチレングリコール、ブチレングリコール等のアルコール成分からなるポリエステル樹脂で、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンイソフタレート(PEI)のようなホモポリマーや、例えばエチレンテレフタレートとエチレンイソフタレートとの共重合樹脂であるコーポリマーや、またこうしたホモポリマー同士のブレンド、ホモポリマーとコーポリマーのブレンド、コーポリマー同士のブレンドといったブレンド樹脂等から得られるフィルムが適用される。樹脂フィルムの融点(Tm)や冷結晶化熱(Hc)は、こうした酸成分とアルコール成分の選定、コーポリマーの程度、ブレンドする樹脂の選定とそのブレンド比等適宜選定することで得ることができる。樹脂フィルムの厚みは、15〜50μmである。
【0019】
缶の内面に当たる鋼板面に被覆されるフィルム厚みは、缶内面の耐食性の点から限定されるものであり、15μm未満では缶の成形加工後で充填する内容物にもよるが、十分な耐食性を確保するのは難しい場合がある。
一方、50μmを超えると、ほとんど内容物に対し耐食性は十分確保されるが、実質的に過剰品質となり、経済的でない。フィルム厚みとしては、18〜40μmが品質および経済性からは好ましい範囲である。
また、本発明を実施する際のフィルム厚の選定は、後述する缶壁部の薄肉化の加工度との関係があることも選定の際の重要な要素である。
【0020】
即ち、加工度が高い場合は、当然その加工度に応じてフィルムの厚みも薄くなるため、その結果として、缶内面の防食性能は低下する。従って、加工度が高い場合は予め厚手のフィルムを適用することが望ましいし、一方、加工度が低い場合はそれに応じて予め薄手のフィルムを適用することが可能となる。
本発明ではポリエステル樹脂フィルムは、融点(Tm)が225〜260℃の樹脂フィルムである。
【0021】
成形加工時には、金属の加工熱が発生し、缶体はかなりの温度となる。特にしごき加工の際に発生する金属の加工熱は、樹脂フィルムの特性を大きく変化させる。この熱による樹脂フィルムの特性変化の一つに樹脂フィルムの軟化があり、樹脂フィルムが軟化すると、しごき加工時に缶内面側の樹脂フィルムがパンチに付着してしまい、パンチが缶体から抜け難くなる、いわゆる離型性不良が起こり、内面の樹脂フィルムを傷つける原因となる。また、離型性不良がひどい場合は、缶体の開口部近傍が座屈し、正規の缶体高さが得られない事態が起こる場合もある。
【0022】
樹脂フィルムの融点(Tm)が225℃未満の場合はこの離型性不良が起こり、内面フィルムを傷付け耐食性低下に繋がり、激しい場合は成形加工ができないことがあり、好ましくない。一方、上限値の260℃超では、高融点化に伴う離型性の更なる効果は期待できず飽和する。缶内面側のポリエステル樹脂フィルムの融点(Tm)は、上記の離型性から限定したものであるが、しごき加工時の発熱量は後述する加工度との関係もあり、樹脂フィルムの融点だけで離型性の良否を決められものではないが、基本的には融点は高い方が有利であり、好ましくは230〜255℃、更に好ましくは235〜255℃が好適である。
【0023】
更に、本発明においては、少なくとも缶内面側のポリエステル樹脂フィルムの極限粘度(通称IV)は0.60以上である。極限粘度(IV)は、樹脂の平均分子量を示す指標であるが、極限粘度が0.60未満では樹脂フィルムの衝撃強度が小さく、内容物が充填された缶体を落とした場合、その部位に衝撃が加わり材料が変形するばかりでなく、同時にその衝撃と変形で樹脂フィルムにクラックが入り、激しい場合はそこが缶体金属の腐食起点となる。
【0024】
こうした状況に対する特性を耐デント性と呼ぶが、腐食の激しい内容物の場合穿孔缶となることもあり、耐デント性が劣ることは、重大な問題となる要因を有しており好ましくない。耐デント性は極限粘度が高い程良好であり、0.60以上であれば多くの場合実用上問題のない品質が確保されるが、腐食性の強い内容物に対しては高い方が安心であり、好ましくは0.65以上、更に好ましくは0.70以上が良い。本発明に適用されるポリエステル樹脂フィルムの結晶状態は非晶質であり、密度としては、1.36g/cm3 未満が好適である。
【0025】
ラミネート板における樹脂フィルムを非晶質とする理由は、その後行うカップの絞り加工、カップの再絞り加工、更にしごき加工において、樹脂フィルムの加工性を十分に確保することを目的にしたもので、密度が1.36g/cm3 を超えると、結晶性の低いポリエステル樹脂フィルムでも、成形加工にフィルムが耐えられずフィルムに亀裂欠陥が激しく起こる場合があり好ましくないからである。特に、加工度が大きい時は、しごき加工時の発熱と併せて引き延ばし加工により、樹脂フィルムの配向結晶化が一層進み、その結果、加工に追随し難くなり、上記の挙動が顕著に現れ、缶体の耐食性が十分に確保できない場合がしばしば起こる。従って、密度が大きい、結晶化した状態からの成形加工は、特に高加工度の場合には極めて難しく不適である。
【0026】
更に、本発明では、カップの絞り加工、カップの再絞り加工、更にしごき加工の缶成形加工を施した後、得られた缶体を加熱・冷却し再度樹脂フィルムを非晶質にした後、ネック加工およびフランジ加工を行う。カップの絞り加工、カップの再絞り加工、更にしごき加工を経て得られる缶体は、この時の加工により、樹脂フィルムの密着性は著しく低下しており、この状態でネック加工およびフランジ加工を行うと、樹脂フィルムは剥離し易い。そこで、本発明では、缶体を加熱・冷却し再度樹脂フィルムを非晶質にした後、ネック加工およびフランジ加工に供するものである。
【0027】
ポリエステル樹脂フィルムの結晶状態を非晶質化することで、樹脂フィルムは剥離やクラックが発生することなく高縮径のネック加工およびフランジ加工を行うことができる。特に、ネック加工率が高い、高縮径化への対応については、樹脂フィルムの高加工密着性が一層必要となり、この場合樹脂フィルムの密度は低い方が非晶質化度が高いため、良好となる。ポリエステル樹脂フィルムの結晶状態を非晶質と限定した理由は上記の理由からで、特に、第1工程の絞り加工前のラミネート板の状態やネック加工およびフランジ加工前の状態として、好ましくは密度としては1.35g/cm3 未満が好適である。
【0028】
次に、本発明の方法に適用される缶外面のポリエステル樹脂フィルムについて説明する。
缶外面は、しごき加工の際、缶内面と異なりカップの側壁はしごきダイスを通過しながら板厚が薄くなるため、缶外面のポリエステル樹脂フィルムは缶高さ方向に削られたような傷が入り易くなる。こうした現象は「かじり」と言われ、樹脂フィルム表面の擦過傷程度の軽微なものから、激しいものでは缶高さ方向に直線的にえぐれたような傷が入る場合がある。缶外面側の「かじり」による傷が入った場合は、その後施される印刷の仕上がり外観を損ねることになるだけでなく、こうした「かじり」は、缶胴の破胴の原因にもなり、単なる製品のロスだけでなく、生産上のトラブルになり、好ましくない。
【0029】
缶外面側に適用されるポリエステル樹脂フィルムは、樹脂としては缶内面用のものと基本的には同じで、酸成分としてテレフタル酸、イソフタル酸、アジピン酸、セバシン酸等の酸成分と、エチレングリコール、ブチレングリコール等のアルコール成分からなるポリエステル樹脂で、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンイソフタレート(PEI)のようなホモポリマーや、例えばエチレンテレフタレートとエチレンイソフタレートとの共重合樹脂であるコーポリマーや、またこうしたホモポリマー同士のブレンド、ホモポリマーとコーポリマーのブレンド、コーポリマー同士のブレンドといったブレンド樹脂等が適用される。樹脂フィルムの融点(Tm)は、こうした酸成分とアルコール成分の選定、コーポリマーの程度、ブレンドする樹脂の選定とそのブレンド比等適宜選定することができる。
【0030】
「かじり」はフィルム厚みが厚いほどは起こり易く、かかる意味において、缶外面側の樹脂フィルムの厚みは12〜20μmが最適である。また、ポリエステル樹脂フィルムの融点(Tm)は235℃以上が良く、235℃未満ではしごき加工時の加工熱でフィルムが軟化し「かじり」が起こり易くなる。また、缶外面側のポリエステル樹脂フィルムは、白色顔料を含有するフィルムを適用することも可能で、この場合は平均粒子径が0.72.0μmの酸化チタン顔料を重量%として5〜20%含有するフィルムが適用される。
【0031】
ポリエステル樹脂フィルムに酸化チタン顔料を添加して白色化する理由は、現行の鋼板のツーピース缶は外面の缶胴部に対しては印刷の色調や鮮明にするために白色塗装もしくは白色インキ、またはその併用を行っており、また、缶底部には耐錆性の点からスプレーでボトム塗装を行っており、その工程省略を狙いとするものである。
しかし、特に酸化チタン顔料を含有するフィルムは缶胴部はしごき加工時の「かじり」が起こり易い傾向にあり、この傾向は基本的には含有する酸化チタンの平均粒子径が大きい程、また添加量が多いほど「かじり」が起こり易い傾向にある。
【0032】
本発明では、酸化チタン顔料の粒子径は0.72.0μmである。粒子径が0.7μmより小さい場合には、むしろ粒子が凝集して大きな固まりとなってしまうことがあり、激しい「かじり」や時には破胴となる危険性があり、好ましくない。また分散性を厳密に管理する必要があり、工程が増え経済的ではない。
また、酸化チタン顔料の粒子径が2.0μmを超えると、最初は擦過傷のような軽微な「かじり」であるが、「かじり」かすがダイスに蓄積し、突然大きな激しい「かじり」になることが度々あり、好ましくない。酸化チタン顔料の粒子径は、性能面および経済面から、0.7〜2.0μmが好適である。
【0033】
酸化チタン顔料の含有量は、重量%として5〜20%である。酸化チタン顔料の含有量は前述した「かじり」と前述した外面の印刷・塗装工程の省略化の兼ね合いから限定されるもので、含有量が5重量%未満では、「かじり」は問題ないが白さが不十分過ぎて、結局現行の工程通り行う必要があり不経済である。一方、含有量が20重量%を超えると、現行の工程の内、白さを確保するための工程が軽減され、生産効率は上がるが、「かじり」が激しくなり、製品価値が低下し、問題となる。こうした「かじり」や白さの確保は、前述した加工度と直接関わっており、加工度が小さいほど「かじり」は発生し難くなり、また白さも確保される方向になるが、本発明の加工度である50〜70の範囲では、白さの確保と「かじり」の回避の兼備からは、酸化チタン顔料の含有量としては重量%として8〜18%が好ましい。
【0034】
なお、ポリエステル樹脂フィルム被覆ラミネート鋼板の製造方法としては、加熱された鋼板の表面に樹脂フィルムを供給してロール間で熱圧着し被覆させた後、直ちに急冷して、非晶質にする方法や、溶融した樹脂を押し出し、鋼板に供給し被覆させ、直ちに急冷して、非晶質にする方法や、例えば二軸延伸されたフィルムを適用する場合は、一度被覆したポリエステル樹脂を、必要に応じ更に樹脂の融点以上に加熱した後、直ちに急冷して非晶質にする方法等が適用できる。
鋼板の加熱方法としては、電気炉中で加熱する方法、熱風による加熱方法、加熱ロールに接触させて加熱する方法、高周波で誘導加熱する方法等の加熱方法が採用できる。
【0035】
次に、本発明の缶体の加工度、即ち缶壁部の板厚減少率について述べる。
本発明の缶体の加工度は、下記に示した式(1)から求められる値として、50〜70%である。
加工度(%)={(Tb−Tw)/Tb}×100 …… (1)
Tb:缶底部の鋼板の板厚 Tw:缶壁部の鋼板の最も薄い部位の板厚
加工度としては、現在スチール素材やアルミニウム素材から製造されているDI缶の範疇のもので特別なものではないが、加工度が50%未満では、被覆された内外面のポリエステル樹脂フィルムの加工による損傷は全くなく、良好な缶体が得られるが、特に、鋼板の元板厚(缶底部の鋼板厚みに相当)が厚い場合は、缶重量が重くなり経済的でない。
【0036】
一方、加工度が70%を超えると、内面はポリエステル樹脂フィルムとパンチの離型性が劣り、樹脂フィルムの傷付きにより耐食性を確保するのが難しくなる場合が多々起こり易くなる。また、外面のポリエステル樹脂フィルムも「かじり」易くなり、好ましくない。更に、特に、鋼板の元板厚(缶底部の鋼板厚みに相当)が薄い場合は、後述するネック加工でしわが入ったり、フランジ加工で缶体の開口部が割れる、いわゆるフランジ割れが起こったりして好ましくない。
加工度の限定は上記の理由によるもので、50〜70%が最適である。
【0037】
次に、本発明の缶体の成形加工方法について述べる。
本発明の缶体は、ポリエステル樹脂フィルムで被覆されたラミネート鋼板を、絞り加工にてカップ状に成形する第1工程と、次いで第1工程で得たカップを更に再絞り加工し、第1工程で得たカップより缶径が小さく、缶高さの高いカップを成形する第2工程と、次いでこのカップの缶壁部(缶胴側壁部)をパンチとしごきダイスの間に通し、缶壁を薄く伸ばすいわゆるしごき加工を行う第3工程と、次いで缶底部のドーム成形を行う第4工程、次いで第4工程で得た缶体を正規な缶高さに切断するトリミングを行った後、缶開口部を縮径するネック加工と天蓋を巻き締めるのに必要なフランジ加工を行う第5工程から成っている。
【0038】
前記の成形加工方法における、第1工程の絞り加工、第2工程の再絞り加工、第3工程のしごき加工は、いずれも缶壁部の板厚の増減を伴った加工であるが、第4工程の缶底部のドーム成形加工および第5工程のネック加工・フランジ加工は、事実上板厚の増減は伴わない加工である。従って、シームレス缶として成形加工されたものは、第3工程後の缶体が最終缶体となる。
本発明の缶体を得る加工方法としては、現在スチール素材やアルミニウム素材から製造されているDI缶の加工方法と特別大きく変わるものではないが、本発明の缶体の性能を十分に確保するためには、次の手段を採用することが望ましい。
【0039】
即ち、第1工程の絞り加工および第2工程の再絞り加工は、ラミネート鋼板やカップの温度または金型の温度を被覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化温度(Tc)の範囲で行うのが、カップ底部コーナーの樹脂フィルムの健全性を確保するためには望ましい。
更に、第1工程の絞り加工および第2工程の再絞り加工では、第3工程で行うしごき加工での被覆された樹脂フィルムの負荷を軽減するために、ストレッチ加工や軽度なしごき加工を付加して絞り加工や再絞り加工するのが望ましい。
【0040】
第3工程のしごき加工は、第2工程の再絞り加工で得たカップの温度を50℃以下にした後、加工金型の温度を100℃以下、できることなら缶内面に被覆されている樹脂フィルムのガラス転移温度(Tg)以下に保持して行うのが、樹脂フィルムの結晶化による欠陥発生を抑制し、またパンチとの離型性もよいことから望ましい。なお、しごき加工はしごきダイスを1枚で行う1段しごき加工や、2枚乃至は3枚で行う多段しごき加工などが適用出来るが、加工時の熱の蓄積を考慮するとしごきダイスは少ない方が良く、しごきダイスを1枚で行う1段しごき加工が望ましい。
【0041】
【実施例】
以下、実施例にて、本発明の方法の効果を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、本実施例で行った評価法は以下の通りである。
(1)樹脂フィルムの密度は、密度勾配管法にて測定した。
(2)樹脂フィルムの冷結晶化熱(Hc)、融点(Tm)は示差走査熱量計(DSC)で、10℃/分の昇温速度で測定し、冷結晶化熱(Tc)ピークの面積を冷結晶化熱、また融点(Tm)は、ピーク温度を融点とした。
(3)樹脂フィルムの極限粘度(IV)は、ウベローデ粘度計でフェノールとテトラクロロエタンの重量比6:4の溶液に樹脂フィルムを0.100±0.003g溶解し、30.0±0.1℃で測定した。
【0042】
(4)カップの絞り加工後の缶底部コーナーのマイクロクラックについては、光学顕微鏡で観察しその程度を評価した。
評価は次のように評価基準を設定し行った。
○:クラックなく良好
□:軽微なクラック発生
△:明確なクラック発生
×:激しいクラック発生
【0043】
(5)フィルムと加工パンチの離型性は、成形缶上部に起こる缶体の座屈程度を観察し評価した。
離型性の評価は、次のように評価基準を設定し行った。
○:缶開口部の座屈なく良好
□:軽微な缶開口部の座屈あり
△:開口部円周の1/3程度座屈
×:開口部円周の1/3以上座屈
【0044】
(6)ネック加工およびフランジ加工での樹脂フィルムの状態については、剥離状況やクラック発生状況を肉眼観察や光学顕微鏡で観察し評価した。
剥離状況やクラック発生状況の評価は、次のように評価基準を設定し行った。
○:剥離やクラックなく良好
□:軽微な剥離および微細なクラック発生
△:一部剥離やクラック発生
×:剥離発生
(7)缶内面の樹脂フィルムの傷付き程度については、1.0%食塩水に界面活性剤を0.1%添加した電解液で、缶体を陽極、陰極を銅線とし印加電圧6Vで3秒後の電流値を測定し、樹脂フィルムの皮膜の健全性を評価とした。(以降、この評価法をQTV試験と称する)
【0045】
(8)缶外面の耐かじり性は、成形した缶体胴壁部外面のかじり発生程度を観察して評価した。
○:かじりなく良好
□:軽微なかじり発生
△:外面の1/3未満にかじり発生
×:外面の1/3以上に激しいかじり発生
【0046】
(9)耐デント性の評価については、350ml缶に水を充填し、125℃で30分レトルト処理を行った後、5℃で1日冷やし、高さ80cmの位置から角度60°で缶底部を下に落下させ、開缶乾燥した後、衝撃変形部以外を絶縁塗料でシールし、衝撃変形部の樹脂フィルムの欠陥発生程度をQTV試験に用いる電解液で、サンプルを陽極、陰極を銅線とし印加電圧6Vで3秒後の電流値を測定し、樹脂フィルムの皮膜の健全性の評価とした。
(以降、耐デント性はこの手法による評価結果を示す)
【0047】
(10)糸状腐食
糸状腐食性の評価については、缶体の缶胴部にカッターで素地鋼板に達するクロスカットを入れた後、塩水噴霧試験を1時間行った後、30℃、85%RHの環境で2週間暴露し、糸状腐食の発生状況を観察して評価した。
○:糸状腐食の発生なく良好
□:糸状腐食僅かに発生
△:糸状腐食の発生中程度
×:糸状腐食の発生大
【0048】
(実施例1)
板厚0.20mmの鋼板の両面に、片面のNi付着量として10mg/m2 (No.1)、35mg/m2 (No.2)、235mg/m2 (No.3)、420mg/m2 (No.4)、780mg/m2 (No.5)、1670mg/m2 (No.6)のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として10mg/m2 となるようにNo.1からNo.6のNiめっき鋼板に化成処理を施し、表面処理鋼板を作成した。
【0049】
次いで、上記No.1〜No.6の表面処理鋼板をジャッケトロールで加熱し板温が255℃の状態で、缶の内面に相当する鋼板表面には融点が241℃、極限粘度0.65の厚み25μmのポリエステル樹脂フィルムを、また、缶の外面に当たる鋼板表面には、融点が248℃で平均顔料粒子径が1.2μmの酸化チタンを15重量%含有する16μmのポリエステル樹脂フィルムをそれぞれ熱圧着法で被覆した後、更に鋼板を255〜260℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。
【0050】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度50℃に保持し最終加工度が68%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。こうして得た缶体について、樹脂フィルムの金型離型性および外面樹脂フィルムの耐かじり性を調べた。
更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、255℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、耐デント性、ネック・フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質についてはQTV試験で調べた。
【0051】
実施例1に用いたラミネート鋼板の内容およびその評価結果は表1に示した。
表1から分かるように、本発明例の1〜5(No.2〜No.6)は、糸状腐食の発生も殆どまたは全くなく、また、内外面フィルムの密着性も良好でネック加工やフランジ加工でのフィルム剥離は殆ど見られない。更に内面フィルムのデント性や他の性能についても良好であり、バランスのとれた良好な性能を示す。それに対し、比較例1(No.1)は糸状腐食の発生、内外面フィルムのネック加工やフランジ加工でのフィルム剥離、耐デント性等が本発明例に比べ劣る。
【0052】
【表1】

Figure 0004278270
【0053】
(実施例2)
板厚0.18mmの鋼板の両面に、片面のNi付着量として530mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂とアミノプロピルトリエトキシシランを含有する化成処理液を塗布・乾燥し、片面のC付着量として0.3mg/m2 (No.7)、2mg/m2 (No.8)、8mg/m2 (No.9)、38mg/m2 (No.10)、87mg/m2 (No.11)、120mg/m2 (No.12)の表面処理鋼板を作成した。
次いで、上記テNo.7〜No.12の表面処理鋼板に対し、実施例1で用いた内面用および外面用のポリエステル樹脂フィルムを、実施例1と同じ条件で鋼板に被覆し、ラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。
【0054】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度50℃に保持し最終加工度が68%のしごき加工を行い、350mlビール缶サイズの缶を作成した。こうして得た缶体について、樹脂フィルムの金型離型性および外面樹脂フィルムの耐かじり程度を調べた。
更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、255℃に加熱後直ちに急冷しポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、耐かじり性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質についてはQTV試験で調べた。
【0055】
実施例2に用いたラミネート鋼板の内容およびその評価結果は表2に示した。
表2から、本発明例の6〜9(No.8〜No.11)は、糸状腐食の発生も殆どまたは全くなく、良好である。また、内外面フィルムの密着性も良好でネック加工やフランジ加工でのフィルム剥離は殆ど見られず、更にその他の特性も良く、バランスのとれた良好な性能を有していることが分かる。
それに対し、比較例2(No.7)は糸状腐食の発生が起こり、比較例3(No.12)は内外面フィルムのネック加工やフランジ加工でのフィルムが剥離するなど、比較例は本発明例に劣ることが分かる。
【0056】
【表2】
Figure 0004278270
【0057】
(実施例3)
板厚0.19mmの鋼板の両面に、片面のNi付着量として470mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として15mg/m2 の表面処理鋼板を作成した。
次いで、上記の表面処理鋼板をジャッケトロールで加熱し板温が250℃で、缶の内面用フィルムとして融点が242℃で極限粘度が0.67のポリエステル樹脂の厚みとして12μmのフィルム(No.13)、16μmのフィルム(No.14)、25μmのフィルム(No.15)、35μmのフィルム(No.16)、40μmのフィルム(No.17)、48μmのフィルム(No.18)、55μmの フィルム(No.19)を、外面用としては実施例1で用いたポリエステル樹脂フィルムを用いて表面処理鋼板の両面を被覆した後、更に板温を255〜260℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。
【0058】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度50℃に保持し最終加工度が60%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。
こうして得た缶体について、樹脂フィルムの金型離型性および外面樹脂フィルムの耐かじり性を調べた。
【0059】
更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングした後、255〜260℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質についてはQTV試験を調べた。
実施例3に用いたラミネート鋼板の内容およびその評価結果は表3に示した。
【0060】
表3から分かるように、本発明例の10〜14(No.14〜No.18)は、内面フィルムのカップ缶底部のクラック発生はなく、また金型離型性や外面の耐かじり性も良好であり、更には得られた缶体のQTV値や耐デント性その他の性能も良好で、バランスのとれた良好な性能を有している。それに対し、比較例4(No.13)は内面フィルムのカップ缶底部にクラック発生が見られ、また得られた缶体のQTV値や耐デント性も劣る。そして、比較例5(No.19)は、内面フィルムのカップ缶底部にクラック発生は見られなく、また得られた缶体のQTV値や耐デント性は良好であるが、内面フィルムの金型離型性や外面フィルムの耐かじり性が劣る。
【0061】
【表3】
Figure 0004278270
【0062】
(実施例4)
板厚0.18mmの鋼板の両面に、片面のNi付着量として470mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂と縮合リン酸を含有する化成処理液を塗布・乾燥し、片面のC付着量として12mg/m2 の表面処理鋼板を作成した。次いで、上記の表面処理鋼板をジャッケトロールで加熱し板温が225〜275℃で、缶内面用のフィルム厚みが30μmと各例ともに一定にした、そのポリエステル樹脂の融点が218℃のフィルムと、缶外面用のフィルム厚みが20μm、平均顔料粒子径が2.0μmの酸化チタン含有量が18重量%と各例ともに一定にし、その融点が218℃のポリエステル樹脂のフィルム同士の組み合わせ(No.20)、同じく融点が227℃のポリエステル樹脂フィルム同士の組み合わせ(No.21)、同じく融点が248℃のポリエステル樹脂フィルム同士の組み合わせ(No.22)、同じく融点が255℃のポリエステル樹脂フィルム同士の組み合わせ(No.23)、同じく融点が262℃ののポリエステル樹脂フィルム同士の組み合わせ(No.24)とし、それぞれの組合せのポリエステル樹脂フィルムを用いて熱圧着法により表面処理鋼板を被覆した後、更にこれら鋼板を230〜275℃に加熱後直ちに急冷し、非晶質ポリエステル樹脂フィルムラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温75℃でストレッチ加工を付加した絞り加工を行った。
【0063】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、得たカップの温度を75℃にし、しごき加工を付加した再絞り加工を行った後、金型温度35℃に保持し最終加工度が66%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。こうして得た缶体について、樹脂フィルムの金型離型性および外面樹脂フィルムの耐かじり性を調べた。
更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングし、255℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質についてはQTV試験で調べた。
【0064】
実施例4に用いたラミネート鋼板の内容およびその評価結果は表4に示した。
表4から、本発明例の15〜18(No.21〜No.24)は、内面フィルムの金型離型性や外面フィルムの耐かじり性は良好であり、また得られた缶体のQTV値やその他も良好で、バランスのとれた良好な性能を有していることが分かる。 それに対し、比較例6(No.20)は内面フィルムの金型離型性が劣り、その結果得られた缶体のQTV値も高い値を示す。また、外面フィルムの耐かじり性も劣ることが分かる。
【0065】
【表4】
Figure 0004278270
【0066】
(実施例5)
板厚0.16mmの鋼板の両面に、片面のNi付着量として470mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂とアミノプロピルトリエトキシシランを含有する化成処理液を塗布・乾燥し、片面のC付着量として12mg/m2 の表面処理鋼板を作成した。
次いで、上記の表面処理鋼板をジャッケトロールで加熱し板温が245℃で、缶の内面用フィルムとして融点が236℃でフィルム厚みが25μmで、極限粘度のみを、それぞれ0.53(No.25)、0.63(No.26)、0.72(No.27)、0.84(No.28)、1.03(No.29)と変えたポリエステル樹脂フィルムと、缶外面用フィルムは、フィルム厚みが15μmと、一定にした融点が238℃で平均顔料粒子径が0.7μmの酸化チタンを8重量%含有するポリエステル樹脂フィルムとを用いて、前記表面処理鋼板を熱圧着法で被覆した後、更に鋼板を250℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温80℃でストレッチ加工を付加した絞り加工を行った。
【0067】
この時得たカップの、缶底コーナー部の樹脂フィルムのマイクロクラック発生状況について調べた。
次いで、得たカップの温度を80℃にし、しごき加工を付加した再絞り加工を行った後、金型温度50℃に保持し最終加工度が53%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。こうして得た缶体について、樹脂フィルムの金型離型性および外面樹脂フィルムの耐かじり性を調べた。
更に、前記の缶体を正規の350mlビール缶サイズに開口部をトリミングした後、250〜255℃に加熱後直ちに急冷し、ポリエステル樹脂フィルムを非晶質にした後、204のネック加工およびフランジ加工を行った。こうして得た、正規の缶体について、耐デント性、ネック/フランジ加工部のフィルム剥離状況、缶体の糸状腐食性、また缶内面品質についてはQTV試験で調べた。
【0068】
実施例5に用いたラミネート鋼板の内容およびその評価結果は表5に示した。
表5から、本発明例の19〜22(No.26〜No.29)は、内面フィルムのカップ缶底部のクラックはなく、耐デント性や他の性能も良く、バランスのとれた良好な性能を示していることが分かる。
それに対し、比較例7(No.25)は、内面フィルムのカップ缶底部にクラックが発生し、耐デント性も劣ることが分かる。
【0069】
【表5】
Figure 0004278270
【0070】
(実施例6)
板厚0.21mmの鋼板の両面に、片面のNi付着量として470mg/m2 のNiめっき鋼板をワット浴にて電気めっき法で作成した後、フェノール樹脂とアミノプロピルトリエトキシシランを含有する化成処理液を塗布・乾燥し、片面のC付着量として12mg/m2 の表面処理鋼板を作成した。
次いで、上記の表面処理鋼板をジャッケトロールで加熱し板温が260℃で、缶の外面用フィルムとして融点が248℃で、フィルム厚みが16μmで、平均顔料粒子径が2.0μmの酸化チタンを重量%としてそれぞれ8%(No.30)、15%(No.31)、18%(No.32)、25%(No.33)の割合で含有するポリエステル樹脂フィルムと、また缶の内面用フィルムとしては厚み30μmで融点が252℃のポリエステル樹脂フィルムとを用いて表面処理鋼板を熱圧着法で被覆した後、更に鋼板を265〜270℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。
【0071】
また、上記の缶の外面用ポリエステル樹脂に、平均顔料粒子径が2.0μmの酸化チタンを重量%として15%含有する、厚みが10μmのフィルム(No.34)、厚みが14μmのフィルム(No.35)、厚みが18μmのフィルム(No.36)、厚みが22μmのフィルム(No.37)とを、それぞれ上記の缶の内面用フィルムと共に上記の条件で上記表面処理鋼板に対して熱圧着法で被覆した後、更に鋼板を265〜270℃に加熱後直ちに急冷し、非晶質化ポリエステル樹脂フィルムラミネート鋼板を作成した。こうして得たラミネート鋼板に成形用潤滑剤を塗油した後加熱し、板温90℃でストレッチ加工を付加した絞り加工を行った後、カップの温度を90℃にし、しごき加工を付加した再絞り加工を行った後、金型温度60℃に保持し最終加工度が68%のしごき加工を行い、350mlビール缶サイズのツーピース缶を作成した。こうして得た缶体について、外面樹脂フィルムの耐かじり性及びネック・フランジ加工部のフィルム剥離状況を調べた。
【0072】
実施例6に用いたラミネート鋼板の内容およびその評価結果は表6に示した。
表6から、本発明例の23〜25(No.30〜No.32)および本発明例の26〜28(No.34〜No.36)は、外面フィルムのかじりはなく、またネック加工やフランジ加工でのフィルム剥離は見られず、良好な性能を有していることが分かる。
それに対し、比較例8(No.33)は、外面フィルムの耐かじり性やネック加工やフランジ加工でのフィルム密着性が劣ることが分かる。また、比較例9(No.37)は、外面フィルムの耐かじり性が劣ることが分かる。
【0073】
【表6】
Figure 0004278270
【0074】
【発明の効果】
以上、説明したように、本発明を実施することで、得られる缶体内面のポリエステル樹脂フィルムは優れた皮膜健全性を有していることから、高耐食性のフィルムラミネートツーピース缶が得られる。
従って、種々の内容物を充填することが可能であることから、品種の統一化に安心して対応出来ることから、経済的に有利となり、その社会的意義は大きいものがある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester resin-coated seamless can made of steel.
[0002]
[Prior art]
Metal cans / containers made of steel or aluminum are roughly classified into three-piece cans and two-piece cans based on their shapes. Three-piece cans are called three-piece cans because they consist of a ground cover, a can body, and a canopy, and steel making methods are currently mainly used for seam welding and bonding, so inexpensive steel is used.
On the other hand, the two-piece can is an integrated body and can body, and because it consists of a canopy, it is also called a two-piece can or a seamless can because there is no joint in the can body, and steel and aluminum. Is used. In the case of metal cans, those coated on the inner surface side of the can to ensure corrosion resistance are used. In recent years, laminated cans in which a thermoplastic resin film is laminated have been developed and are on the market. Laminate cans are mainly those in which a metal plate is coated with a thermoplastic resin film and subjected to a can molding process. In particular, in order to obtain a two-piece can, an advanced molding technique is required.
[0003]
Also in this sense, many techniques relating to the two-piece laminate can have been proposed and disclosed, for example, in Japanese Patent Application Laid-Open Nos. 7-2241, 7-195619, and 8-244750. The merit of laminated cans depends on the thermoplastic resin film to be applied from the consumer's side, but first of all, it has excellent content resistance, especially flavor, such as taste and flavor of the contents. Has been raised.
On the other hand, as a demerit, this time is from the side of the can manufacturer, but as described above, in the case of the two-piece can, since the degree of processing (or degree of deformation) of the thermoplastic resin film-coated metal plate is large, the inner surface of the can during molding If the resin film is scratched, the quality of the inner surface of the can cannot be ensured. Therefore, it is necessary to strictly inspect the quality of the can body, and the product yield is inferior to the current paint can. Raised.
[0004]
In particular, in the case of a two-piece laminate can using a steel material, the above tendency is large. The film defects of the resin film on the inner surface side of such a laminate can are entered during the can molding process as described above, and minimizing this defect is an important technical issue in terms of quality and product yield. Needless to say.
On the other hand, from the viewpoint of reducing the total can cost, it has been promoted to reduce the thickness of the metal plate used and to reduce the diameter of the easy-to-open can lid (easy open end, commonly known as EOE). Speaking of easy-to-open can lids, for example, when the can body is a 350 ml beer can, it is commonly called 211, the inner diameter of the can body is about 65.9 mm, and naturally the can lid is also for 211. At present, the can lid used for the can body is for 206 and 204, and an attempt to use 202 can lid is underway.
[0005]
This inevitably results in a so-called diameter reduction by narrowing the opening of the can body to a smaller diameter, and therefore severe processing is required not only for the metal used in the can body but also for the resin film coated on the surface thereof. Will receive.
However, in the two-piece can molding process with ironing, especially when the processing rate is high, peeling of the thermoplastic resin film on the inner side, scratches and other defects are difficult to enter, and neck processing and flange processing for high diameter reduction However, the present situation is that no suitable film laminate material has been found that can be molded without peeling off the resin film and without introducing scratches or other defects.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and an object thereof is to provide a high-corrosion resistance, high-quality resin film-coated steel two-piece can having no coating defects with a high yield.
[0007]
[Means for Solving the Problems]
The present invention relates to an amorphous thermoplastic polyester resin having a thickness of 15 to 50 μm, a melting point (Tm) of 225 to 260 ° C., and an intrinsic viscosity (IV) of 0.60 or more at least on the surface of a steel plate corresponding to the inner surface of the can. The present invention relates to a film laminated two-piece can covered with a film layer. More specifically, the surface of the steel plate before coating with the polyester resin film has a surface adhesion amount of 20 to 2000 mg / m. 2 Ni plating layer of 1 to 100 mg / m as the amount of adhesion C on one side to the upper layer 2 It is necessary to form a chemical conversion film layer mainly composed of the organic resin. In particular, the polyester resin film layer coated on the surface of the steel sheet on the outer surface side of the can has a thickness of 12 to 20 μm, a melting point of 235 ° C. or higher, and an average particle diameter. 0.7 ~ 2.0 μm titanium oxide pigment quality It is preferable to use a film laminate two-piece can containing 5 to 20% as the amount% and having a processing degree of 50 to 70%.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the two-piece can of the present invention will be described in detail.
First, the steel plate in the present invention will be described.
The steel plate in the present invention is 20 to 2000 mg / m as the amount of adhesion on one side on both sides. 2 Ni plating layer of 1 to 100 mg / m as the amount of C deposited on one side of the Ni plating layer 2 It has a chemical conversion treatment film layer mainly composed of organic resin. The steel plate before Ni plating and chemical conversion treatment is not particularly limited, and those usually used as steel plates for cans are applied. However, when selecting, it is necessary to pay attention to the strength of the can body, in particular, the bottom pressure strength. In the beer can, the bottom pressure strength is 618 kPa or more at the maximum. A phenomenon occurs in which the dome at the bottom of the can protrudes outside the can. In order to avoid this phenomenon, there is a relationship with the hardness and bottom shape of the steel plate used, but at present, it is difficult when the steel plate thickness is 0.15 mm or less. On the other hand, if the steel plate thickness is 0.22 mm, the phenomenon that the dome at the bottom of the can protrudes outward from the can does not occur even if the hardness of the used steel plate is low. Accordingly, the thickness of the steel plate is preferably 0.15 to 0.22 mm.
[0009]
Next, the surface treatment of Ni plating or chemical conversion coating applied to the surface of the steel sheet will be described.
In the present invention, the reason why Ni is first adhered to the steel sheet surface will be described. In the case of a two-piece can obtained by drawing and ironing a steel sheet coated with a resin film as in the present invention, the metal plating film or chemical conversion film formed on the surface of the steel sheet is destroyed according to the degree of processing, and before processing. The characteristics of are reduced. As a surface treatment of a steel sheet when forming from a steel sheet laminated with a resin film as in the present invention, TFS-CT subjected to electrolytic chromic acid treatment for forming metallic chromium on the steel sheet and hydrated chromium oxide on the upper layer thereof (Tin-free steel chromium type) is well known, but it is not an exception in such a surface treatment film, and a part of the surface treatment film is destroyed after drawing-ironing forming. As a result, thread-like corrosion may occur starting from a location where iron is exposed, such as an opening of a can. Naturally, the cans that have undergone thread-like corrosion lose their value as a product, which is a problem.
[0010]
Filiform corrosion is named because the corrosion site grows in a filamentous form, but occurs in iron and aluminum, and the growth of the corrosion is driven by the reduction reaction of oxygen. The electrolytic chromic acid-treated film applied to the steel sheet described above is a film in which this oxygen reduction reaction is unlikely to occur. Therefore, when the film is healthy, filamentous corrosion is extremely unlikely. However, after the drawing-ironing forming process, the surface treatment film is destroyed, and thus thread-like corrosion occurs. Ni is known as a metal that does not cause filiform corrosion. Covering an iron substrate with such a metal is effective in preventing filiform corrosion of a steel sheet. Like the electrolytic chromic acid-treated film described above, drawing-ironing is formed. Since the soundness of the film is not ensured after processing, in the present invention, the adhesion amount of Ni plating is 20 to 2000 mg / m as the adhesion amount on one side. 2 And
[0011]
Lower limit of 20 mg / m 2 If it is less than 50%, the minimum value of the plate thickness reduction rate of the can of the present invention is 50%, which is not preferable because thread-like corrosion occurs. Further, in the above-described high-reduction neck processing such as 204 (inner diameter of about 54.9 mm) and 202 (inner diameter of about 52.4 mm), the coated polyester resin film is caused by the destruction of the plating film and the exposure of the iron surface. May peel off, which is not preferable.
Furthermore, the Ni adhesion amount is the lower limit of 20 mg / m 2 If it is less than this, if a defect occurs in the coating film on the inner surface side of the can, depending on the contents, there is a risk that the base iron dissolves to form a perforated can. Therefore, the Ni adhesion amount is 20 mg / m. 2 The above is necessary, and in order to fully exhibit the effect of Ni, the amount of adhesion on one side is 100 mg / m. 2 It is desirable to perform the above Ni plating.
[0012]
On the other hand, the upper limit is 2000 mg / m 2 If it is more than 70%, which is the maximum value of the plate thickness reduction rate of the can of the present invention, the effects such as the occurrence of thread corrosion and the securing of adhesion are saturated. The presence of Ni on the steel plate surface of the outer surface of the can slightly improves whiteness, and the amount of white pigment mixed into the polyester resin covering the surface that becomes the outer surface of the can and white or white coating performed during printing / painting. There is also an economic effect that the amount of ink applied can be reduced.
Considering these things comprehensively, the Ni adhesion amount is 20 to 2000 mg / m. 2 Is a suitable range, preferably 100-2000 mg / m 2 Is the best.
As a method for attaching Ni to the steel plate, a well-known electroplating or electroless plating method can be applied.
[0013]
Next, the chemical conversion treatment film will be described.
The steel sheet of the present invention has a chemical conversion treatment film mainly composed of an organic resin on the upper layer of Ni plating. The chemical conversion film mainly composed of an organic resin is polymerized when dried and uniformly covers the Ni-plated surface, so that firstly the adhesion with the polyester resin film laminated on the upper layer can be strengthened. . Secondly, since the oxygen reduction reaction that serves as the driving force for the above-described filamentous corrosion can be suppressed, excellent performance such as prevention of filamentous corrosion is exhibited.
In addition, the chemical conversion film layer mainly composed of an organic resin has particularly good adhesion with a polyester resin film, and therefore, film peeling caused by insufficient adhesion even when subjected to high-drawing and ironing processing ( There is no such thing as delamination) or a broken case caused by severe delamination, and a good can body can be obtained.
[0014]
The adhesion amount of the chemical conversion coating is 1 to 100 mg / m as a C amount, for example, a value measured with TOTAL ORGANIC CARBON ANALYZER TOC-5000 manufactured by Shimadzu Corporation. 2 It is. The lower limit is 1 mg / m 2 If it is less than 1, the covering property is inferior, and both the corrosive action and the adhesiveness become insufficient. Further, even when the plate thickness reduction rate of the can of the present invention is 50% which is the minimum value, the resin film is locally peeled after the molding process, so-called delamination occurs or the can body after the molding process is corroded from the opening. Occurs and is not preferred. However, the chemical conversion film mainly composed of organic resin is 1 mg / m as C amount. 2 Adhesion is improved by applying more than 5 mg / m. 2 As described above, sufficient adhesion is ensured.
[0015]
On the other hand, the upper limit of 100 mg / m 2 Exceeding the above, there is no occurrence of thread-like corrosion, but there may be a case where the adhesion reduction, which is considered to be cohesive failure of the chemical conversion coating itself, may occur in the molding process of 70% which is the maximum value of the reduction rate of the thickness of the can of the present invention. Yes, not preferred. The amount of chemical conversion coating mainly composed of organic resin is 100 mg / m with C content. 2 By making it below, it becomes possible to prevent a decrease in adhesion in the molding process. Therefore, the chemical conversion film thickness mainly composed of organic resin is 1 to 100 mg / m as the amount of C. 2 However, in consideration of stable productivity as an industrial product, the amount of C is 5 to 50 mg / m. 2 The range of is preferably optimal.
[0016]
As a method for treating the steel sheet, for example, phosphoric acid and its salt, condensed phosphoric acid and its salt, zirconium phosphate, phosphoric acid compound such as titanium phosphate, and vinyl ethoxysilane, aminopropyltriethoxysilane, etc. An aqueous solution mainly composed of an organic silicon compound such as a silane coupling agent and a water-soluble organic resin such as a water-soluble phenol resin or a water-soluble acrylic resin is spray-applied to the Ni-plated steel sheet, and is drawn with a squeeze roll. After adjusting the amount of adhesion, a method of drying and curing, a method of immersing a Ni-plated steel sheet in a processing solution and adjusting the amount of adhesion with a drawing roll, and then drying and curing can be applied as appropriate. As a drying and curing method, a method such as drying with hot air or drying in an electric furnace can be applied, the temperature is 150 to 250 ° C., and the drying time is about 10 seconds to 2 minutes.
[0017]
Next, the polyester resin film on the inner surface side of the can applied to the method of the present invention will be described.
In the present invention, a thermoplastic polyester resin film is applied as the polyester resin film. In the present invention, the reason why the resin film to be coated is limited to the thermoplastic polyester resin film is that (1) heat resistance is good, (2) the flavor of the contents is secured for the inner surface of the can, for example, This is because it has characteristics suitable for can applications that are not found in polyolefin resin films such as polyethylene and polypropylene.
[0018]
The coated polyester resin film is a polyester resin comprising an acid component such as terephthalic acid, isophthalic acid, adipic acid, or sebacic acid as an acid component, and an alcohol component such as ethylene glycol or butylene glycol, such as polyethylene terephthalate (PET). , Homopolymers such as polybutylene terephthalate (PBT) and polyethylene isophthalate (PEI), copolymers such as copolymers of ethylene terephthalate and ethylene isophthalate, blends of such homopolymers, homopolymers and A film obtained from a blend resin such as a blend of copolymer and a blend of copolymer is applied. The melting point (Tm) and heat of cold crystallization (Hc) of the resin film can be obtained by appropriately selecting such acid component and alcohol component, the degree of copolymer, selection of resin to be blended and blend ratio thereof. . The thickness of the resin film is 15 to 50 μm.
[0019]
The thickness of the film coated on the steel plate surface that hits the inner surface of the can is limited from the point of corrosion resistance of the inner surface of the can, and if it is less than 15 μm, depending on the contents to be filled after the can molding process, sufficient corrosion resistance is provided. It can be difficult to secure.
On the other hand, if it exceeds 50 μm, corrosion resistance is almost ensured for the contents, but it is substantially excessive quality and is not economical. As film thickness, 18-40 micrometers is a preferable range from quality and economical efficiency.
In addition, the selection of the film thickness when carrying out the present invention is also an important factor in the selection, since it has a relationship with the degree of processing of the thinning of the can wall portion described later.
[0020]
That is, when the degree of processing is high, the thickness of the film is naturally reduced according to the degree of processing, and as a result, the anticorrosion performance of the inner surface of the can is lowered. Therefore, when the degree of processing is high, it is desirable to apply a thick film in advance. On the other hand, when the degree of processing is low, it is possible to apply a thin film in advance accordingly.
In the present invention, the polyester resin film is a resin film having a melting point (Tm) of 225 to 260 ° C.
[0021]
At the time of forming, metal processing heat is generated, and the can body becomes a considerable temperature. In particular, the metal processing heat generated during ironing greatly changes the characteristics of the resin film. One of the characteristic changes of the resin film due to heat is softening of the resin film. When the resin film is softened, the resin film on the inner surface of the can adheres to the punch during the ironing process, and the punch is difficult to come off from the can body. In other words, so-called releasability failure occurs, which causes damage to the resin film on the inner surface. In addition, when the releasability is severe, the vicinity of the opening of the can body may buckle, and there may be a situation in which the normal can body height cannot be obtained.
[0022]
When the melting point (Tm) of the resin film is lower than 225 ° C., this releasability is poor, which damages the inner surface film and leads to a decrease in corrosion resistance. On the other hand, if the upper limit value exceeds 260 ° C., no further effect of releasability associated with higher melting point can be expected and saturation occurs. The melting point (Tm) of the polyester resin film on the inner surface side of the can is limited from the above releasability, but the calorific value at the time of ironing is also related to the degree of processing described later, only the melting point of the resin film. Although the quality of releasability is not determined, basically a higher melting point is advantageous, preferably 230 to 255 ° C, more preferably 235 to 255 ° C.
[0023]
Furthermore, in this invention, the intrinsic viscosity (common name IV) of the polyester resin film of the can inner surface side is 0.60 or more. Intrinsic viscosity (IV) is an index indicating the average molecular weight of the resin, but if the intrinsic viscosity is less than 0.60, the impact strength of the resin film is small, and when a can filled with the contents is dropped, it is placed at that site. Not only is the material deformed due to the impact, but at the same time, the resin film is cracked by the impact and deformation, and when it is severe, this is the starting point for corrosion of the can body metal.
[0024]
Although the characteristic for such a situation is called dent resistance, in the case of a highly corrosive content, it may become a perforated can, and inferior dent resistance has a serious problem and is not preferable. The higher the intrinsic viscosity is, the better the dent resistance is, and if it is 0.60 or more, in many cases the quality without any practical problems is ensured, but the higher one is more secure for highly corrosive contents. Yes, preferably 0.65 or more, more preferably 0.70 or more. The crystalline state of the polyester resin film applied to the present invention is amorphous, and the density is 1.36 g / cm. Three Less than is suitable.
[0025]
The reason for making the resin film amorphous in the laminate is to ensure sufficient processability of the resin film in the subsequent cup drawing, cup redrawing, and ironing. Density is 1.36 g / cm Three This is because even if the polyester resin film has a low crystallinity, the film cannot withstand the molding process, and crack defects may occur severely in the film, which is not preferable. In particular, when the degree of processing is large, the orientation crystallization of the resin film further progresses due to the stretching process combined with the heat generation during the ironing process, and as a result, it becomes difficult to follow the process, and the above behavior appears remarkably. Often, the body's corrosion resistance cannot be ensured sufficiently. Therefore, molding from a crystallized state having a high density is extremely difficult and unsuitable, particularly in the case of a high degree of processing.
[0026]
Furthermore, in the present invention, after performing cup drawing, cup redrawing, and ironing can molding, the resulting can body was heated and cooled to make the resin film amorphous again, Neck processing and flange processing are performed. The can obtained by drawing the cup, redrawing the cup, and further squeezing has significantly reduced the adhesion of the resin film due to the processing at this time. In this state, the neck processing and the flange processing are performed. And a resin film is easy to peel. Therefore, in the present invention, the can body is heated and cooled to make the resin film amorphous again, and then subjected to neck processing and flange processing.
[0027]
By making the crystalline state of the polyester resin film amorphous, the resin film can be subjected to neck processing and flange processing with a high diameter reduction without peeling or cracking. In particular, in order to cope with a high neck processing rate and high diameter reduction, it is necessary to have a high processing adhesion of the resin film. In this case, the lower the density of the resin film, the higher the degree of amorphization. It becomes. The reason why the crystalline state of the polyester resin film is limited to the amorphous state is as described above. In particular, as the state of the laminate plate before the drawing process and the state before the neck process and the flange process in the first step, preferably as the density 1.35 g / cm Three Less than is suitable.
[0028]
Next, the polyester resin film on the outer surface of the can applied to the method of the present invention will be described.
Unlike the inner surface of the can, the outer surface of the can becomes thinner while the side wall of the cup passes through the ironing die, so the polyester resin film on the outer surface of the can is scratched as if it was cut in the can height direction. It becomes easy. Such a phenomenon is called “galling”, and from a slight scratch such as a scratch on the surface of the resin film, a severe one may cause scratches that are swept linearly in the can height direction. If the outer surface of the can is scratched, it will not only impair the appearance of the finished printing, but it will also cause the can to be broken, Not only product loss but also production problems are undesirable.
[0029]
The polyester resin film applied to the outer surface of the can is basically the same as the resin for the inner surface of the can. The acid component is an acid component such as terephthalic acid, isophthalic acid, adipic acid, or sebacic acid, and ethylene glycol. Polyester resin composed of an alcohol component such as butylene glycol, for example, a homopolymer such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene isophthalate (PEI), or a copolymer of ethylene terephthalate and ethylene isophthalate. Copolymers that are polymerized resins, blend resins such as blends of homopolymers, blends of homopolymers and copolymers, blends of copolymers, and the like are applied. The melting point (Tm) of the resin film can be appropriately selected such as the selection of the acid component and the alcohol component, the degree of the copolymer, the selection of the resin to be blended, and the blend ratio thereof.
[0030]
The “galling” is more likely to occur as the film thickness is thicker. In this sense, the thickness of the resin film on the outer surface of the can is optimally 12 to 20 μm. Further, the melting point (Tm) of the polyester resin film is preferably 235 ° C. or more, and if it is less than 235 ° C., the film is softened by the processing heat during the ironing process, and “galling” easily occurs. In addition, as the polyester resin film on the outer surface side of the can, a film containing a white pigment can be applied. In this case, the average particle diameter is 0.7 ~ 2.0 A film containing 5 to 20% by weight of a titanium oxide pigment of μm is applied.
[0031]
The reason why the polyester resin film is whitened by adding a titanium oxide pigment is that the current two-piece can of steel plate is white coating or white ink or its In addition, the bottom of the can is bottom-coated with a spray from the viewpoint of rust resistance, and the aim is to omit the process.
However, in particular, films containing titanium oxide pigments tend to cause "galling" during the ironing process of the can body. This tendency basically increases as the average particle size of the titanium oxide contained increases. There is a tendency that “galling” tends to occur as the amount increases.
[0032]
In the present invention, the particle size of the titanium oxide pigment is 0.7 ~ 2.0 μm . grain The diameter is 0.7 If it is smaller than μm, the particles may agglomerate into a large mass, which is not preferable because there is a risk of severe galling and sometimes breaking. In addition, it is necessary to strictly control dispersibility, which increases the number of processes and is not economical.
The particle size of the titanium oxide pigment is 2.0 If it exceeds μm, a slight “galling” such as scratches is initially observed, but “galling” debris accumulates in the die and often becomes a large and intense “galling”, which is not preferable. The particle size of the titanium oxide pigment is 0.7 ˜2.0 μm is preferred.
[0033]
The content of the titanium oxide pigment is 5 to 20% by weight. The content of the titanium oxide pigment is limited by the balance between the above-mentioned “Kajiri” and the above-described omission of the printing / painting process on the outer surface. When the content is less than 5% by weight, there is no problem with “galling” but white Insufficiently, it is necessary to carry out according to the current process, which is uneconomical. On the other hand, when the content exceeds 20% by weight, the process for securing whiteness is reduced among the current processes, and the production efficiency is increased, but the “galling” becomes severe and the product value decreases, which is a problem. It becomes. Ensuring such “galling” and whiteness is directly related to the degree of processing described above. The smaller the degree of processing, the less likely “galling” occurs and the more whiteness is ensured. In the range of 50 to 70 degrees, the content of the titanium oxide pigment is preferably 8 to 18% in terms of weight% from the viewpoint of ensuring whiteness and avoiding “galling”.
[0034]
In addition, as a manufacturing method of the polyester resin film-coated laminated steel sheet, a method of supplying a resin film to the surface of a heated steel sheet, coating it by thermocompression bonding between rolls, and immediately quenching to make it amorphous or , Extrude the molten resin, supply it to the steel sheet, coat it, immediately cool it down to make it amorphous, for example when applying a biaxially stretched film, once coated polyester resin, if necessary Furthermore, after heating to the melting point or more of the resin, a method of rapidly cooling to make it amorphous can be applied.
As a method for heating the steel sheet, a heating method such as a method of heating in an electric furnace, a method of heating with hot air, a method of heating by contacting with a heating roll, a method of induction heating at a high frequency can be adopted.
[0035]
Next, the processing degree of the can body of the present invention, that is, the thickness reduction rate of the can wall portion will be described.
The degree of processing of the can of the present invention is 50 to 70% as a value obtained from the following formula (1).
Degree of processing (%) = {(Tb−Tw) / Tb} × 100 (1)
Tb: Plate thickness of the steel plate at the bottom of the can Tw: Plate thickness of the thinnest portion of the steel plate at the can wall
The degree of processing is in the range of DI cans currently manufactured from steel and aluminum materials, but it is not special, but if the degree of processing is less than 50%, it is due to processing of the coated polyester resin film on the inner and outer surfaces There is no damage and a good can body can be obtained. However, particularly when the original plate thickness of the steel plate (corresponding to the thickness of the steel plate at the bottom of the can) is large, the weight of the can becomes heavy and it is not economical.
[0036]
On the other hand, when the degree of processing exceeds 70%, the inner surface is inferior in the releasability of the polyester resin film and the punch, and it is often difficult to ensure the corrosion resistance due to scratches on the resin film. Moreover, the polyester resin film on the outer surface is also not preferable because it becomes easy to “galize”. Furthermore, especially when the original plate thickness of the steel plate (corresponding to the thickness of the steel plate at the bottom of the can) is thin, wrinkles may occur in the neck processing described later, or so-called flange cracks may occur in which the opening of the can body breaks during flange processing. It is not preferable.
The limitation of the degree of processing is due to the above reason, and 50 to 70% is optimal.
[0037]
Next, a method for forming a can body according to the present invention will be described.
The can body of the present invention is a first step in which a laminated steel sheet coated with a polyester resin film is formed into a cup shape by drawing, and then the cup obtained in the first step is further drawn again, and the first step The second step of forming a cup having a smaller can diameter and a higher can height than the cup obtained in the above step, and then passing the can wall portion (can body side wall portion) of this cup between a punch and an ironing die, After performing the trimming that cuts the can body obtained in the third step, which is the so-called ironing process, and then the fourth step, which forms the dome of the bottom of the can, and then the fourth step, into the normal can height, It consists of a fifth process of performing a neck process for reducing the diameter of the part and a flange process necessary for tightening the canopy.
[0038]
In the molding method, the drawing process in the first step, the redrawing process in the second step, and the ironing process in the third step are all processes involving an increase or decrease in the plate thickness of the can wall. The dome forming process at the bottom of the process and the neck process / flange process in the fifth process are processes that do not substantially increase or decrease the plate thickness. Therefore, in the case where the seamless can is molded, the can after the third step becomes the final can.
The processing method for obtaining the can body of the present invention is not significantly different from the processing method for DI cans currently manufactured from steel materials and aluminum materials, but in order to sufficiently ensure the performance of the can body of the present invention. It is desirable to adopt the following means.
[0039]
That is, in the drawing process in the first step and the redrawing process in the second step, the temperature of the laminated steel plate or cup or the temperature of the mold is in the range from the glass transition temperature (Tg) of the coated resin film to the cold crystallization temperature (Tc). It is desirable to carry out in order to ensure the soundness of the resin film at the bottom corner of the cup.
Furthermore, the drawing process in the first process and the redrawing process in the second process add a stretch process or a light ironing process to reduce the load of the coated resin film in the ironing process performed in the third process. It is desirable to draw or redraw.
[0040]
In the ironing process of the third step, the temperature of the cup obtained by the redrawing process of the second step is set to 50 ° C. or less, and then the temperature of the processing mold is set to 100 ° C. or less. It is desirable that the temperature be kept below the glass transition temperature (Tg) because it suppresses the generation of defects due to crystallization of the resin film and the mold releasability is good. For ironing, one-step ironing with one ironing die or multi-stage ironing with two or three can be applied, but considering the heat accumulation during processing, the one with fewer ironing dies should be used. A one-step ironing process in which a single ironing die is used is desirable.
[0041]
【Example】
Hereinafter, the effects of the method of the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. The evaluation methods performed in this example are as follows.
(1) The density of the resin film was measured by a density gradient tube method.
(2) Cold crystallization heat (Hc) and melting point (Tm) of the resin film were measured with a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min, and the area of the cold crystallization heat (Tc) peak The heat of cold crystallization and the melting point (Tm) were the peak temperature.
(3) The intrinsic viscosity (IV) of the resin film was obtained by dissolving 0.100 ± 0.003 g of the resin film in a 6: 4 weight ratio of phenol and tetrachloroethane by an Ubbelohde viscometer. Measured at ° C.
[0042]
(4) About the microcrack of the can bottom part corner after drawing of a cup, it observed with the optical microscope and evaluated the grade.
Evaluation was performed by setting evaluation criteria as follows.
○: Good without cracks
□: Minor crack generation
Δ: Clear crack occurrence
×: Severe cracking occurred
[0043]
(5) The releasability of the film and the processing punch was evaluated by observing the degree of buckling of the can body occurring at the upper part of the molded can.
Evaluation of releasability was performed by setting evaluation criteria as follows.
○: Good without buckling of can opening
□: Minor can opening buckled
Δ: Buckling about 1/3 of the circumference of the opening
×: Buckling of 1/3 or more of the circumference of the opening
[0044]
(6) About the state of the resin film in neck processing and flange processing, the peeling state and the crack generation state were observed and evaluated by visual observation or an optical microscope.
Evaluation of the peeling situation and crack occurrence situation was performed by setting evaluation criteria as follows.
○: Good without peeling or cracking
□: Minor peeling and generation of fine cracks
Δ: Partial peeling or cracking
×: Peeling occurred
(7) About the degree of damage to the resin film on the inner surface of the can, it is an electrolytic solution in which 0.1% of a surfactant is added to 1.0% saline, the can body is an anode, the cathode is a copper wire, and the applied voltage is 6V. The current value after 3 seconds was measured, and the soundness of the resin film was evaluated. (Hereafter, this evaluation method is called QTV test)
[0045]
(8) The galling resistance of the outer surface of the can was evaluated by observing the degree of galling on the outer surface of the molded can body wall.
○: Good without galling
□: Slight galling occurs
Δ: Scoring occurs at less than 1/3 of the outer surface.
×: Severe galling occurred to 1/3 or more of the outer surface
[0046]
(9) For evaluation of dent resistance, a 350 ml can was filled with water, subjected to retort treatment at 125 ° C. for 30 minutes, then cooled at 5 ° C. for 1 day, and the bottom of the can at an angle of 60 ° from a position of 80 cm in height. After dropping the container and drying the can, seal the parts other than the impact deformation part with insulating paint, and use the electrolyte solution used for the QTV test to determine the degree of defect occurrence of the resin film in the impact deformation part. Then, the current value after 3 seconds was measured at an applied voltage of 6 V to evaluate the soundness of the resin film.
(Hereafter, the dent resistance indicates the evaluation result by this method)
[0047]
(10) Filamentous corrosion
For the evaluation of thread corrosivity, after putting a cross cut reaching the base steel plate with a cutter in the can body of the can body, the salt spray test was conducted for 1 hour, and then exposed to an environment of 30 ° C. and 85% RH for 2 weeks. Then, the occurrence of filamentous corrosion was observed and evaluated.
○: Good without occurrence of filamentous corrosion
□: Slight occurrence of filamentous corrosion
Δ: Moderate occurrence of thread corrosion
×: Large occurrence of thread corrosion
[0048]
(Example 1)
On both sides of a steel plate with a thickness of 0.20 mm, the Ni adhesion amount on one side is 10 mg / m 2 (No. 1), 35 mg / m 2 (No. 2) 235 mg / m 2 (No. 3), 420 mg / m 2 (No. 4), 780 mg / m 2 (No. 5), 1670 mg / m 2 After the Ni-plated steel sheet (No. 6) was prepared by electroplating in a Watt bath, a chemical conversion treatment solution containing a phenol resin and condensed phosphoric acid was applied and dried, and the C adhesion amount on one side was 10 mg / m. 2 No. 1 to No. 6 Ni-plated steel sheet was subjected to chemical conversion treatment to prepare a surface-treated steel sheet.
[0049]
Then, the above No. 1-No. 6 is heated with a jacket roll and the plate temperature is 255 ° C., and a polyester resin film having a melting point of 241 ° C. and an intrinsic viscosity of 0.65 is applied to the surface of the steel plate corresponding to the inner surface of the can. The steel sheet surface that hits the outer surface of the can was coated with a 16 μm polyester resin film containing 15% by weight of titanium oxide having a melting point of 248 ° C. and an average pigment particle diameter of 1.2 μm by thermocompression bonding. Immediately after heating to 255-260 ° C., it was quenched to prepare an amorphized polyester resin film laminated steel sheet. The laminated steel sheet thus obtained was coated with a forming lubricant and then heated, and a drawing process was performed by adding a stretch process at a plate temperature of 75 ° C.
[0050]
The occurrence of microcracks in the resin film at the corner of the bottom of the can bottom of the cup obtained at this time was examined.
Next, the temperature of the obtained cup was changed to 75 ° C., and after redrawing with addition of ironing, ironing was performed at a mold temperature of 50 ° C. and the final degree of processing was 68%. A two-piece can was created. The can body thus obtained was examined for mold releasability of the resin film and galling resistance of the outer surface resin film.
Further, the opening of the above can body was trimmed to a regular 350 ml beer can size, immediately heated to 255 ° C. and then immediately cooled to make the polyester resin film amorphous, and then subjected to 204 neck processing and flange processing. . With respect to the regular can body thus obtained, the dent resistance, the film peeling state of the neck / flange processed portion, the thread corrosiveness of the can body, and the inner surface quality of the can were examined by the QTV test.
[0051]
The contents of the laminated steel sheet used in Example 1 and the evaluation results are shown in Table 1.
As can be seen from Table 1, Examples 1 to 5 (No. 2 to No. 6) of the present invention have little or no occurrence of thread-like corrosion, good adhesion between the inner and outer surface films, and neck processing and flanges. There is almost no film peeling during processing. Furthermore, the dent property of the inner surface film and other performances are also good, and a well-balanced good performance is exhibited. On the other hand, Comparative Example 1 (No. 1) is inferior to the examples of the present invention in terms of occurrence of thread-like corrosion, film peeling in the necking and flange processing of the inner and outer film, and dent resistance.
[0052]
[Table 1]
Figure 0004278270
[0053]
(Example 2)
On both sides of a steel plate with a thickness of 0.18 mm, the Ni adhesion amount on one side is 530 mg / m 2 A Ni-plated steel sheet was prepared by electroplating in a Watt bath, and then a chemical conversion treatment solution containing a phenol resin and aminopropyltriethoxysilane was applied and dried, and the C adhesion amount on one side was 0.3 mg / m. 2 (No. 7) 2 mg / m 2 (No. 8), 8 mg / m 2 (No. 9), 38 mg / m 2 (No. 10), 87 mg / m 2 (No. 11), 120 mg / m 2 A surface-treated steel sheet (No. 12) was prepared.
Next, the above Te No. 7-No. 12 surface-treated steel sheets were coated with the inner and outer polyester resin films used in Example 1 on the same conditions as in Example 1 to prepare laminated steel sheets. The laminated steel sheet thus obtained was coated with a forming lubricant and then heated, and a drawing process was performed by adding a stretch process at a plate temperature of 75 ° C.
[0054]
The occurrence of microcracks in the resin film at the corner of the bottom of the can bottom of the cup obtained at this time was examined.
Next, the temperature of the obtained cup was changed to 75 ° C., and after redrawing with addition of ironing, ironing was performed at a mold temperature of 50 ° C. and the final degree of processing was 68%. I made a can. The can body thus obtained was examined for mold releasability of the resin film and galling resistance of the outer surface resin film.
Further, the opening of the above can body was trimmed to a regular 350 ml beer can size, heated to 255 ° C. and immediately cooled to make the polyester resin film amorphous, and then subjected to 204 neck processing and flange processing. With respect to the regular can body thus obtained, the galling resistance, the film peeling state of the neck / flange processed portion, the thread corrosivity of the can body, and the inner surface quality of the can were examined by the QTV test.
[0055]
The contents of the laminated steel sheet used in Example 2 and the evaluation results are shown in Table 2.
From Table 2, Examples 6 to 9 (Nos. 8 to 11) of the present invention are good with little or no occurrence of filamentous corrosion. Further, it can be seen that the adhesion between the inner and outer surface films is good, almost no film peeling is observed in necking or flange processing, and other properties are also good and the balance has good performance.
On the other hand, in Comparative Example 2 (No. 7), the occurrence of thread-like corrosion occurs, and in Comparative Example 3 (No. 12), the film is peeled off in the neck processing or flange processing of the inner and outer surface films. It turns out that it is inferior to an example.
[0056]
[Table 2]
Figure 0004278270
[0057]
(Example 3)
On both sides of a steel sheet with a thickness of 0.19 mm, the amount of Ni attached on one side is 470 mg / m. 2 A Ni-plated steel sheet was prepared by electroplating in a Watt bath, and then a chemical conversion treatment solution containing a phenol resin and condensed phosphoric acid was applied and dried, and the amount of C deposited on one side was 15 mg / m. 2 A surface-treated steel sheet was prepared.
Next, the surface-treated steel sheet was heated with a jacket roll, the plate temperature was 250 ° C., the film for the inner surface of the can, the melting point was 242 ° C., and the polyester resin had a thickness of 12 μm (No. 13) ), 16 μm film (No. 14), 25 μm film (No. 15), 35 μm film (No. 16), 40 μm film (No. 17), 48 μm film (No. 18), 55 μm film After coating both surfaces of the surface-treated steel sheet using the polyester resin film used in Example 1 for the outer surface (No. 19), the sheet temperature was further quenched immediately after heating to 255 to 260 ° C. A textured polyester resin film laminated steel sheet was prepared. The laminated steel sheet thus obtained was coated with a forming lubricant and then heated, and a drawing process was performed by adding a stretch process at a plate temperature of 75 ° C.
[0058]
The occurrence of microcracks in the resin film at the corner of the bottom of the can bottom of the cup obtained at this time was examined.
Next, the temperature of the obtained cup was set to 75 ° C., and after redrawing with addition of ironing, ironing was performed at a mold temperature of 50 ° C. and the final degree of processing was 60%. A two-piece can was created.
The can body thus obtained was examined for mold releasability of the resin film and galling resistance of the outer surface resin film.
[0059]
Furthermore, after trimming the opening of the above can body to a regular 350 ml beer can size, it was rapidly cooled after heating to 255-260 ° C., and the polyester resin film was made amorphous, and then 204 neck processing and flange processing Went. The normal can body thus obtained was examined by the QTV test for dent resistance, film peeling of the neck / flange processed portion, thread corrosivity of the can body, and can inner surface quality.
The contents of the laminated steel plate used in Example 3 and the evaluation results are shown in Table 3.
[0060]
As can be seen from Table 3, in Examples 10 to 14 (No. 14 to No. 18) of the present invention, there is no occurrence of cracks at the bottom of the cup can of the inner film, and mold releasability and galling resistance of the outer surface are also observed. Further, the obtained can body has good QTV value, dent resistance and other performances, and has a well-balanced performance. On the other hand, in Comparative Example 4 (No. 13), cracks were observed at the bottom of the cup can of the inner surface film, and the QTV value and dent resistance of the obtained can body were inferior. In Comparative Example 5 (No. 19), no crack was observed at the bottom of the cup can of the inner surface film, and the QTV value and dent resistance of the obtained can body were good. The mold release property and the galling resistance of the outer film are inferior.
[0061]
[Table 3]
Figure 0004278270
[0062]
(Example 4)
On both sides of a steel plate having a thickness of 0.18 mm, the amount of Ni attached on one side is 470 mg / m. 2 A Ni-plated steel sheet was prepared by electroplating in a watt bath, and then a chemical conversion treatment solution containing a phenol resin and condensed phosphoric acid was applied and dried, and the amount of C deposited on one side was 12 mg / m. 2 A surface-treated steel sheet was prepared. Next, the surface-treated steel sheet is heated with a jacket roll, the plate temperature is 225 to 275 ° C., the film thickness for the inner surface of the can is constant at 30 μm, and the polyester resin has a melting point of 218 ° C. A combination of polyester resin films having a melting point of 218 ° C. and a film thickness for a can outer surface of 20 μm, an average pigment particle diameter of 2.0 μm and a constant titanium oxide content of 18% by weight in each example (No. 20 ), A combination of polyester resin films having a melting point of 227 ° C. (No. 21), a combination of polyester resin films having a melting point of 248 ° C. (No. 22), and a combination of polyester resin films having a melting point of 255 ° C. (No. 23), a combination of polyester resin films having a melting point of 262 ° C. (No. 24) After coating the surface-treated steel sheets by the thermocompression bonding method using the polyester resin films of the respective combinations, the steel sheets were further rapidly cooled after being heated to 230 to 275 ° C. A film laminated steel sheet was prepared. The laminated steel sheet thus obtained was coated with a forming lubricant and then heated, and a drawing process was performed by adding a stretch process at a plate temperature of 75 ° C.
[0063]
The occurrence of microcracks in the resin film at the corner of the bottom of the can bottom of the cup obtained at this time was examined.
Next, the temperature of the obtained cup was changed to 75 ° C., and after redrawing with addition of ironing, ironing was performed at a mold temperature of 35 ° C. and the final degree of processing was 66%. A two-piece can was created. The can body thus obtained was examined for mold releasability of the resin film and galling resistance of the outer surface resin film.
Further, the opening of the above can body was trimmed to a regular 350 ml beer can size, immediately heated to 255 ° C. and then immediately cooled to make the polyester resin film amorphous, and then subjected to 204 neck processing and flange processing. . With respect to the regular can body thus obtained, the dent resistance, the film peeling state of the neck / flange processed portion, the thread corrosiveness of the can body, and the inner surface quality of the can were examined by a QTV test.
[0064]
The contents of the laminated steel plate used in Example 4 and the evaluation results are shown in Table 4.
From Table 4, 15-18 (No.21-No.24) of the example of this invention has the mold release property of an inner surface film, and the galling resistance of an outer surface film, and QTV of the obtained can body. The values and others are good, and it can be seen that they have a well-balanced and good performance. On the other hand, Comparative Example 6 (No. 20) is inferior in mold releasability of the inner surface film, and the QTV value of the resulting can body shows a high value. Moreover, it turns out that the galling resistance of an outer surface film is also inferior.
[0065]
[Table 4]
Figure 0004278270
[0066]
(Example 5)
On both sides of a steel plate with a thickness of 0.16 mm, the amount of Ni deposited on one side is 470 mg / m. 2 A Ni-plated steel sheet was prepared by electroplating in a Watt bath, and then a chemical conversion treatment solution containing a phenol resin and aminopropyltriethoxysilane was applied and dried, and the amount of C deposited on one side was 12 mg / m. 2 A surface-treated steel sheet was prepared.
Next, the surface-treated steel sheet was heated with a jacket roll, the plate temperature was 245 ° C., the melting point was 236 ° C. as the film for the inner surface of the can, the film thickness was 25 μm, and only the intrinsic viscosity was 0.53 (No. 25). ), 0.63 (No. 26), 0.72 (No. 27), 0.84 (No. 28), and 1.03 (No. 29), the polyester resin film and the can outer surface film are The surface-treated steel sheet is coated by a thermocompression bonding method using a polyester resin film containing 15% of a film thickness and 8% by weight of titanium oxide having a constant melting point of 238 ° C. and an average pigment particle diameter of 0.7 μm. Thereafter, the steel sheet was further heated to 250 ° C. and then immediately cooled to prepare an amorphized polyester resin film laminated steel sheet. The laminated steel sheet thus obtained was coated with a forming lubricant and then heated, and a drawing process was performed by adding a stretch process at a plate temperature of 80 ° C.
[0067]
The occurrence of microcracks in the resin film at the corner of the bottom of the can bottom of the cup obtained at this time was examined.
Next, the temperature of the obtained cup was set to 80 ° C., and after redrawing with addition of ironing, ironing was performed at a mold temperature of 50 ° C. and the final degree of processing was 53%. A two-piece can was created. The can body thus obtained was examined for mold releasability of the resin film and galling resistance of the outer surface resin film.
Further, after trimming the opening to the size of a regular 350 ml beer can, the can body was immediately cooled after being heated to 250 to 255 ° C. to make the polyester resin film amorphous, and then neck processing and flange processing of 204 Went. With respect to the regular can body thus obtained, the dent resistance, the film peeling state of the neck / flange processed portion, the thread corrosiveness of the can body, and the inner surface quality of the can were examined by a QTV test.
[0068]
The contents of the laminated steel plate used in Example 5 and the evaluation results are shown in Table 5.
From Table 5, 19-22 of this invention example (No.26-No.29) does not have the crack of the cup can bottom part of an inner surface film, dent resistance and other performance are also good, and good performance with good balance. It can be seen that
On the other hand, it can be seen that Comparative Example 7 (No. 25) is cracked at the bottom of the cup can of the inner film and inferior in dent resistance.
[0069]
[Table 5]
Figure 0004278270
[0070]
(Example 6)
On both sides of a steel plate with a thickness of 0.21 mm, the amount of Ni deposited on one side is 470 mg / m. 2 A Ni-plated steel sheet was prepared by electroplating in a Watt bath, and then a chemical conversion treatment solution containing a phenol resin and aminopropyltriethoxysilane was applied and dried, and the amount of C deposited on one side was 12 mg / m. 2 A surface-treated steel sheet was prepared.
Next, the surface-treated steel sheet is heated with a jacket roll, the plate temperature is 260 ° C., the melting point is 248 ° C., the film thickness is 16 μm, and the average pigment particle diameter is 2.0 μm as a can outer film. Polyester resin film containing 8% (No. 30), 15% (No. 31), 18% (No. 32), and 25% (No. 33) as weight percents, and for the inner surface of the can After coating the surface-treated steel sheet with a thermocompression bonding method using a polyester resin film having a thickness of 30 μm and a melting point of 252 ° C. as the film, the steel plate was further heated to 265-270 ° C. and then immediately cooled to obtain an amorphous polyester resin. A film laminated steel sheet was prepared.
[0071]
In addition, the polyester resin for the outer surface of the can described above contains 15% by weight of titanium oxide having an average pigment particle diameter of 2.0 μm as a weight percentage, a film having a thickness of 10 μm (No. 34), and a film having a thickness of 14 μm (No. .35), a film (No. 36) having a thickness of 18 μm, and a film (No. 37) having a thickness of 22 μm, together with the film for the inner surface of the can, respectively, are thermocompression bonded to the surface-treated steel sheet under the above conditions. After coating by the method, the steel plate was further heated to 265-270 ° C. and then immediately cooled to prepare an amorphized polyester resin film laminated steel plate. After applying the forming lubricant to the laminated steel sheet thus obtained and heating it, drawing was performed by adding a stretch process at a sheet temperature of 90 ° C, then the cup temperature was changed to 90 ° C and redrawing with an ironing process added. After processing, ironing was performed at a mold temperature of 60 ° C. and a final processing degree of 68%, to produce a 350 ml beer can-sized two-piece can. The can body thus obtained was examined for galling resistance of the outer surface resin film and the film peeling state of the neck / flange processed portion.
[0072]
The contents of the laminated steel sheet used in Example 6 and the evaluation results are shown in Table 6.
From Table 6, 23-25 of the example of this invention (No.30-No.32) and 26-28 of the example of this invention (No.34-No.36) have no galling of an outer surface film, and neck processing or It can be seen that there is no film peeling in the flange processing, and the film has good performance.
On the other hand, it can be seen that Comparative Example 8 (No. 33) is inferior in the anti-galling resistance of the outer film and in the film adhesion in the neck processing and the flange processing. Moreover, it turns out that the comparative example 9 (No. 37) is inferior in the galling resistance of an outer surface film.
[0073]
[Table 6]
Figure 0004278270
[0074]
【The invention's effect】
As described above, by carrying out the present invention, the polyester resin film on the inner surface of the resulting can body has excellent film soundness, so that a highly corrosion-resistant film laminated two-piece can is obtained.
Accordingly, since various contents can be filled, it is possible to deal with unification of varieties with peace of mind, which is economically advantageous and has great social significance.

Claims (1)

フィルムラミネート金属板を絞り−しごき加工して得るツーピース缶において、鋼板の両面に、片面付着量として20〜2000mg/m2 のNiめっき層、その上層に片面の付着C量として1〜100mg/m2 の有機樹脂を主体とする化成処理皮膜層、缶内面に当たる面には更にその上層に厚みが15〜50μm、融点(Tm)が225〜260℃、極限粘度(IV)が0.60以上の非晶質化されたポリエステル樹脂フィルム層を有し、缶外面に当たる面には該化成処理皮膜層の上層に厚み12〜20μmで融点が235℃以上で平均粒子径0.7〜2.0μmの酸化チタン顔料を質量%として5〜20%含有している非晶質化されたポリエステル樹脂フィルム層を有するラミネート鋼板から絞り−しごき加工によって、缶壁部鋼板の最も薄い部位の板厚(Tw)が、缶底部の鋼板板厚(Tb)との関係における板厚減少率(加工度)として、下記式(1)の範囲にある缶に成形され、更に成形加工後の缶体を前記ポリエステル樹脂フィルムの融点以上に加熱・急冷し、ポリエステル樹脂フィルムが非晶質化されていることを特徴とするフィルムラミネートツーピース缶。
{(Tb−Tw)/Tb}×100=50〜70% …… (1)
In a two-piece can obtained by squeezing and ironing a film-laminated metal plate, a Ni plating layer of 20 to 2000 mg / m 2 as a single-side adhesion amount on both surfaces of a steel plate, and an adhesion C amount of one side as an upper layer from 1 to 100 mg / m The surface of the chemical conversion treatment film layer mainly composed of the organic resin 2 and the inner surface of the can has a thickness of 15 to 50 μm, a melting point (Tm) of 225 to 260 ° C., and an intrinsic viscosity (IV) of 0.60 or more. have a polyester resin film layer which is amorphized, melting point thickness 12~20μm the upper layer of chemical conversion coating layer on the surface which corresponds to Kangaimen the average particle diameter 0.7~2.0μm at 235 ° C. or higher stop the laminated steel sheet to have a polyester resin film layer which is amorphous and contains 5-20% titanium oxide pigment as the mass% - by ironing, most of the can wall steel plate The plate thickness (Tw) of the thin part is formed into a can in the range of the following formula (1) as the plate thickness reduction rate (degree of processing) in relation to the steel plate thickness (Tb) at the bottom of the can, and further forming processing A film laminate two-piece can characterized in that the subsequent can body is heated and rapidly cooled above the melting point of the polyester resin film to make the polyester resin film amorphous.
{(Tb−Tw) / Tb} × 100 = 50 to 70% (1)
JP2000079582A 2000-03-22 2000-03-22 Film laminated two-piece can Expired - Fee Related JP4278270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079582A JP4278270B2 (en) 2000-03-22 2000-03-22 Film laminated two-piece can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079582A JP4278270B2 (en) 2000-03-22 2000-03-22 Film laminated two-piece can

Publications (2)

Publication Number Publication Date
JP2001262370A JP2001262370A (en) 2001-09-26
JP4278270B2 true JP4278270B2 (en) 2009-06-10

Family

ID=18596815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079582A Expired - Fee Related JP4278270B2 (en) 2000-03-22 2000-03-22 Film laminated two-piece can

Country Status (1)

Country Link
JP (1) JP4278270B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045238B1 (en) * 2013-09-11 2018-07-04 Daiwa Can Company Method of manufacturing two-piece food can
CN108367542B (en) * 2015-12-09 2021-03-30 杰富意钢铁株式会社 Laminated steel sheet for double-sided resin-coated container

Also Published As

Publication number Publication date
JP2001262370A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP4487651B2 (en) Surface-treated metal material and surface treatment method thereof, resin-coated metal material, metal can, metal lid
WO1990014179A1 (en) Manufacture of drawn/ironed can
JP4278271B2 (en) Laminated seamless can
CN102470952A (en) Draw-ironed aluminum can and method of producing the same
JP2005097712A (en) Surface-treated metallic material, method of surface treating therefor and resin-coated metallic material, metal can and can lid
JP4631111B2 (en) Aluminum can materials, cans and can lids
JP4278270B2 (en) Film laminated two-piece can
JP4278272B2 (en) Film-coated two-piece can
JP2803854B2 (en) Composite steel sheet excellent in formability of drawn and ironed cans
JP4103974B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP4445787B2 (en) Polyester resin film coated metal plate and polyester resin film coated metal can
JP3986170B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP4278273B2 (en) Film-coated seamless can
JP4226103B2 (en) Manufacturing method of resin-coated aluminum seamless cans
JP3949283B2 (en) Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans
JP4405300B2 (en) Polyester film-coated metal plate and polyester film-coated metal can excellent in dent resistance
JP3858140B2 (en) Resin film for laminating metal plate, laminated metal plate and method for producing the same
JPH04105931A (en) Composite steel plate for eoe and preparation thereof
JP2790647B2 (en) Composite coated steel sheet excellent in DI formability and method for producing the same
JP4297779B2 (en) Method for producing polyester film-coated metal sheet
JP2803837B2 (en) Manufacturing method of polyester resin film laminated steel sheet
JP2003277886A (en) Resin-coated steel sheet for shear spun can, method of producing resin-coated steel sheet for shear spun can and shear spun can produced by using the same
JP4405299B2 (en) Polyester resin film coated metal plate and metal can for metal can molding with excellent dent resistance
JP4226104B2 (en) Manufacturing method of resin-coated aluminum seamless cans
JP3282994B2 (en) Surface treatment method of steel sheet, surface treated steel sheet, and thermoplastic resin coated steel sheet using the surface treated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4278270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees