JP2000033430A - Polyester resin-coated aluminum sheet for seamless can and production of seamless can using the sheet - Google Patents

Polyester resin-coated aluminum sheet for seamless can and production of seamless can using the sheet

Info

Publication number
JP2000033430A
JP2000033430A JP10221094A JP22109498A JP2000033430A JP 2000033430 A JP2000033430 A JP 2000033430A JP 10221094 A JP10221094 A JP 10221094A JP 22109498 A JP22109498 A JP 22109498A JP 2000033430 A JP2000033430 A JP 2000033430A
Authority
JP
Japan
Prior art keywords
temperature
resin film
ironing
lubricating oil
cup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10221094A
Other languages
Japanese (ja)
Inventor
Katsumasa Matsunami
克優 松波
Shuichi Furuta
修一 古田
Masatoshi Yamamoto
正俊 山本
Eiichiro Kasado
英一郎 笠戸
Tomohiko Hayashi
知彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP10221094A priority Critical patent/JP2000033430A/en
Publication of JP2000033430A publication Critical patent/JP2000033430A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a thermoplastic resin-coated aluminum can high into corrosion resistance and high in qualuity without causing any film defect in a high yield. SOLUTION: On the resin film-coated face of a laminated aluminum sheet whose thickness is 0.20-0.30 mm and which is coated with a thermoplastic resin film having 10-50 μm thickness, 200-260 deg.C melting point (Tm), <1.36 density on both faces thereof, the lubricant oil A which is a liquid under a working enviroment temp. is applied in 20-120 mg/m2, and the lubricant oil B which is not a liquid under a working environmet temp. is applied in 10-80 mg/m2 thereon, that is, in a total coating oil quantity of 30-200 mg/m2 of one side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シームレス缶用ポ
リエステル樹脂被覆アルミニウム板およびそれを用いた
シームレス缶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester resin-coated aluminum plate for a seamless can and a method for producing a seamless can using the same.

【0002】[0002]

【従来の技術】アルミニウムやスチールを素材とした金
属缶・容器は、その形状からスリーピース缶とツーピー
ス缶とに大別される。スリーピース缶は、地蓋、缶胴、
天蓋から成るためスリーピース缶と呼ばれている。一
方、ツーピース缶は、地蓋と缶胴とが一体となったもの
で、それに天蓋とから成るためツーピース缶、又は、缶
胴部に接合部がないことから、シームレス缶とも呼ばれ
ている。
2. Description of the Related Art Metal cans and containers made of aluminum or steel are roughly classified into three-piece cans and two-piece cans according to their shapes. Three-piece cans,
It is called a three-piece can because it consists of a canopy. On the other hand, a two-piece can is a unit in which a ground lid and a can body are integrated, and is also called a two-piece can or a seamless can because the can body has no joints because of the canopy.

【0003】金属缶の場合、缶内面には耐食性の確保か
ら塗装が施され使用されているが、近年、熱可塑性樹脂
フィルムを積層したラミネート缶が開発され、ビールや
例えばコーラのような炭酸飲料を充填した飲料缶分野で
市場に出回っている。ラミネート缶は、金属素材に熱可
塑性樹脂フィルムを積層させたものから、缶体成形加工
を行うものが主であり、特にツーピース缶を得るには高
度な成形加工技術を必要とする。かかる意味において
も、ツーピースのラミネート缶に関わる技術は、例えば
特開平7−2241号公報、特開平7−195619号
公報、特開平8−244750号公報等、数多く提案さ
れ、開示されている。
[0003] In the case of metal cans, the inner surfaces of the cans are coated and used to ensure corrosion resistance. In recent years, laminated cans having laminated thermoplastic resin films have been developed, and beer and carbonated beverages such as cola have been developed. In the field of beverage cans filled with. Laminated cans are mainly formed by laminating a thermoplastic resin film on a metal material and then performing a can body forming process. Particularly, obtaining a two-piece can requires advanced forming technology. Also in this sense, many techniques relating to two-piece laminated cans have been proposed and disclosed, for example, in Japanese Patent Application Laid-Open Nos. Hei 7-2241, Hei 7-195519, and Hei 8-244750.

【0004】ラミネート缶のメリットは、消費者側から
見た場合、適用する熱可塑性樹脂フィルムにもよるが、
耐内容物性、特に内容物の味、風味と言ったフレーバー
性に優れている点が第一に挙げられている。一方、デメ
リットとしては、今度は製缶メーカー側からであるが、
前述したようにツーピース缶の場合、熱可塑性樹脂フィ
ルム被覆金属板の加工度(又は変形度合)が大きいの
で、成形時に内面樹脂フィルムに傷が入ったりした場
合、缶内面の品質確保ができなくなるため、缶体の品質
検査を厳重に行う必要があることと、製品歩留まりが現
行の塗装缶に比べて劣るといった点が挙げられる。
[0004] The advantage of the laminated can depends on the applied thermoplastic resin film from the consumer's point of view,
First, it is pointed out that it has excellent content resistance, especially excellent flavor such as taste and flavor of the content. On the other hand, as a disadvantage, this time from the can maker side,
As described above, in the case of a two-piece can, since the degree of processing (or the degree of deformation) of the thermoplastic resin film-coated metal plate is large, if the inner resin film is damaged during molding, the quality of the inner surface of the can cannot be ensured. In addition, the quality of the can body must be strictly inspected, and the product yield is inferior to the current painted can.

【0005】特に、スチール素材を用いたツーピースラ
ミネート缶の場合、上記の傾向が大きいが、アルミニウ
ム合金を素材としたツーピースラミネート缶でも同様な
ことが起こる。こうしたラミネート缶の内面樹脂フィル
ムの被膜欠陥は、前述したように缶成形加工時に入るも
のであり、この欠陥を最小限に抑えることは、品質、製
品歩留まりの点から重要な技術課題であることは言うま
でもない。しかし、しごき加工を伴うツーピース缶成形
の、特に高加工率の場合の内面の樹脂フィルムに傷その
他の欠陥を入れることなく成形する適切手段がないのが
現状である。
[0005] Particularly, in the case of a two-piece laminated can using a steel material, the above tendency is large, but the same occurs in a two-piece laminated can made of an aluminum alloy. As described above, the film defects of the resin film on the inner surface of the laminated can enter into the can forming process as described above, and minimizing the defects is an important technical problem in terms of quality and product yield. Needless to say. However, at present, there is no appropriate means for forming two-piece cans with ironing, particularly without forming scratches or other defects on the inner resin film at a high processing rate.

【0006】[0006]

【発明が解決しようとする課題】本発明は、こうした実
状に鑑みなされたもので、被膜欠陥のない高耐食性、高
品質な熱可塑性樹脂被覆アルミニウムシームレス缶を歩
留まりよく提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-corrosion-resistant, high-quality thermoplastic resin-coated aluminum seamless can having no coating defects with a high yield. It is.

【0007】[0007]

【課題を解決するための手段】本発明の第一は、板厚が
0.20mm〜0.32mmのアルミニウム板の両面
に、厚み10〜50μm、融点(Tm)200℃〜26
0℃、密度1.36未満である熱可塑性ポリエステル樹
脂フィルムで被覆されたラミネートアルミニウム板の樹
脂フィルム被覆面に、片面の付着量として、作業環境下
で液状でない潤滑油(A)を20〜120mg/m2
その上層に、作業環境下で液状である潤滑油(B)を1
0〜80mg/m2、総塗油量として、片面の付着量3
0〜200mg/m2の塗油を施したことを特徴とする
シームレス缶用ポリエステル樹脂被覆アルミニウム板に
関する。
The first aspect of the present invention is that an aluminum plate having a plate thickness of 0.20 mm to 0.32 mm has a thickness of 10 to 50 μm and a melting point (Tm) of 200 ° C. to 26 ° C.
On a resin film-coated surface of a laminated aluminum plate coated with a thermoplastic polyester resin film having a density of less than 1.degree. / M 2 ,
The lubricating oil (B) which is liquid under the working environment is
0 to 80 mg / m 2 , the total amount of oil applied, 3
The present invention relates to a polyester resin-coated aluminum plate for seamless cans, which is coated with 0 to 200 mg / m 2 of oil.

【0008】本発明の第二は、板厚が0.20mm〜
0.32mmのアルミニウム板の両面に、厚み10〜5
0μm、融点(Tm)200℃〜260℃、密度1.3
6未満である熱可塑性ポリエステル樹脂で被覆されたラ
ミネートアルミニウム板を用いてシームレス缶を製造す
るに際し、該ラミネートアルミニウム板の樹脂フィルム
被覆面に、片面の付着量として、融点が40℃以上であ
る潤滑油(A)を20〜120mg/m2、その上層
に、流動点が5℃以下である潤滑油(B)を10〜80
mg/m2、総塗油量として、片面の付着量30〜20
0mg/m2の塗油を施した後、該ポリエステル樹脂フ
ィルムのガラス転移温度(Tg)から冷結晶化温度(T
c)の範囲でストレッチ加工および/またはしごき加工
を付加した絞り加工(第1工程)を行い、次いで、第1
工程の絞り加工で得たカップを該ポリエステル樹脂フィ
ルムのガラス転移温度(Tg)から冷結晶化温度(T
c)の範囲でストレッチ加工および/またはしごき加工
を付加した再絞り加工(第2工程)を行い、次いで、第
2工程で得た再絞りカップの温度を潤滑油(A)の融点
以下にし、加工金型の温度を120℃以下に保持してし
ごき加工(第3工程)を行うことを特徴とするポリエス
テル樹脂被覆アルミニウムシームレス缶の製造方法に関
する。
[0008] A second aspect of the present invention is that the sheet thickness is 0.20 mm or more.
10-5 thickness on both sides of 0.32mm aluminum plate
0 μm, melting point (Tm) 200 ° C. to 260 ° C., density 1.3
When manufacturing a seamless can using a laminated aluminum plate coated with a thermoplastic polyester resin having a melting point of less than 6, lubricating material having a melting point of 40 ° C. or more as a single-sided adhesion amount on the resin film-coated surface of the laminated aluminum plate. 20 to 120 mg / m 2 of the oil (A), and a lubricating oil (B) having a pour point of 5 ° C. or less
mg / m 2 , the amount of adhesion on one side is 30 to 20 as the total amount of oil applied.
After applying 0 mg / m 2 oil, the glass transition temperature (Tg) of the polyester resin film was changed to the cold crystallization temperature (Tg).
In the range of c), a drawing process (first step) to which a stretching process and / or an ironing process is added is performed.
The cup obtained by the drawing process in the step is cooled from the glass transition temperature (Tg) of the polyester resin film to the cold crystallization temperature (Tg).
In the range of c), a re-drawing process (second step) to which stretching and / or ironing is added is performed, and then the temperature of the re-drawing cup obtained in the second step is set to the melting point of the lubricating oil (A) or lower, The present invention relates to a method for producing a polyester resin-coated aluminum seamless can characterized by performing ironing (third step) while maintaining the temperature of a processing die at 120 ° C. or lower.

【0009】[0009]

【発明の実施の形態】以下、本発明の方法の実施形態に
ついて詳細に説明する。まず、本発明におけるアルミニ
ウム板について述べる。本発明に適用されるアルミニウ
ム板は、特に制限するものではなく、アルミニウム板や
その合金板が用いられるが、とくに通常缶容器の製造に
用いられる3004系アルミ合金、5052系アルミ合
金、5182系アルミ合金等種々のアルミニウム合金が
好ましい。アルミニウムの板厚としては、0.20mm
〜0.32mmのものが適用される。板厚が0.20m
m以下では、炭酸飲料やビール等を充填・密封する内圧
缶の場合、耐圧強度が十分でなく缶底部が張り出した状
態(バックリング)になる場合があり、好ましくない。
一方、0.32mm以上では、缶の耐圧強度は十分に確
保されるが、実質的には品質過剰であり、経済的でな
い。板厚の限定理由は、上述のように缶の耐圧強度から
限定したものである。従って、適用するアルミニウム板
の機械的特性、特に耐力強度と関わりがあり、耐力強度
が高い場合は板厚の薄手化が可能となる。実際に本発明
を実施する際は、板厚は缶全体の強度バランスを考慮
し、適宜選択することが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the method of the present invention will be described in detail. First, the aluminum plate according to the present invention will be described. The aluminum plate applied to the present invention is not particularly limited, and an aluminum plate or an alloy plate thereof is used. Particularly, a 3004 series aluminum alloy, a 5052 series aluminum alloy, and a 5182 series aluminum alloy which are usually used for manufacturing cans are used. Various aluminum alloys such as alloys are preferred. The thickness of aluminum is 0.20mm
の も の 0.32 mm is applied. 0.20m thickness
Below m, in the case of an internal pressure can filled and sealed with carbonated beverages or beer, the pressure resistance is not sufficient, and the bottom of the can may protrude (buckling), which is not preferable.
On the other hand, if it is 0.32 mm or more, the pressure resistance of the can is sufficiently ensured, but the quality is substantially excessive and is not economical. The reason for limiting the plate thickness is limited by the pressure resistance of the can as described above. Therefore, there is a relationship with the mechanical properties of the applied aluminum plate, especially the proof strength, and when the proof strength is high, the thickness of the plate can be reduced. When actually carrying out the present invention, it is desirable to appropriately select the plate thickness in consideration of the strength balance of the entire can.

【0010】本発明では、熱可塑性ポリエステル樹脂フ
ィルムとの密着性を確保する目的で、アルミニウム板表
面に表面処理を施したものを使用することが好ましい。
表面処理としては、通常アルミニウム板の絞りしごき缶
の成形加工後の表面処理として使用されている、リン酸
クロム酸処理や、リン酸ジルコニウム処理が適用される
が、特に、缶壁部の板厚減少度が大きい高加工度の場合
は、リン酸またはリン酸ジルコニウムと有機樹脂との有
機無機複合型化成処理が有効である。有機無機複合型化
成処理の場合、付着量は被膜中C量として5〜50mg
/m2が良く、5mg/m2以下では被覆性が劣り、防食
作用および密着性が共に不十分となり、缶体成形加工後
に樹脂フィルムが局部的に剥離する、いわゆるデラミが
起こったり局部的な腐食が起こったり、また、デント性
も劣り好ましくない。一方、50mg/m2を超える
と、被覆性は良好であるが、加工度が大きい缶体成形加
工の場合、被膜が凝集破壊を起こし密着性が低下し、樹
脂フィルムが剥離するといった場合があるので好ましく
ない。表面処理被膜量としては、被膜C量として10〜
40mg/m2が好適である。
In the present invention, it is preferable to use an aluminum plate whose surface has been subjected to a surface treatment in order to ensure adhesion to the thermoplastic polyester resin film.
As the surface treatment, a chromic phosphate treatment or a zirconium phosphate treatment, which is usually used as a surface treatment after forming a drawn and ironed can of an aluminum plate, is applied. In the case of a high workability with a large reduction, an organic-inorganic composite chemical conversion treatment of phosphoric acid or zirconium phosphate and an organic resin is effective. In the case of the organic-inorganic composite chemical conversion treatment, the amount of adhesion is 5 to 50 mg as the amount of C in the film.
/ M 2 is good and if it is 5 mg / m 2 or less, the coating properties are poor, the anticorrosion action and the adhesion are both insufficient, and the resin film is locally peeled off after forming the can body. Corrosion occurs and the dent property is poor, which is not preferable. On the other hand, if it exceeds 50 mg / m 2 , the coatability is good, but in the case of a can forming process with a high degree of processing, the coating may undergo cohesive failure, the adhesion may be reduced, and the resin film may peel off. It is not preferable. The amount of the surface treatment film is 10 to
40 mg / m 2 is preferred.

【0011】アルミニウム板の表面処理方法としては、
例えば上記の有機無機複合型化成処理の場合、リン酸ま
たはリン酸とフッ化ジルコニウムと水溶性有機樹脂、例
えば水溶性フェノール樹脂、水溶性アクリル樹脂等を含
む水溶液に、反応性を促進させるためにフッ酸、ポリリ
ン酸を添加した処理液を、アルミニウム板にロール塗布
した後、水洗、乾燥し硬化させる方法や、処理液をアル
ミニウム板にスプレー塗布した後、水洗、乾燥し硬化さ
せる方法等が適宜適用できる。乾燥硬化方法としては熱
風での乾燥、電気炉での乾燥等の方法が適用でき、温度
は150℃〜250℃で乾燥時間は10秒〜2分程度で
ある。
As a method for surface treatment of an aluminum plate,
For example, in the case of the above-mentioned organic-inorganic composite type chemical conversion treatment, phosphoric acid or an aqueous solution containing phosphoric acid and zirconium fluoride and a water-soluble organic resin, such as a water-soluble phenol resin and a water-soluble acrylic resin, in order to promote the reactivity. A method of applying a treatment liquid containing hydrofluoric acid or polyphosphoric acid to a roll of aluminum, followed by washing with water, drying and curing, or a method of spraying the treatment liquid onto an aluminum plate, followed by washing with water, drying and curing as appropriate. Applicable. As the drying and curing method, methods such as drying with hot air and drying in an electric furnace can be applied. The temperature is 150 ° C. to 250 ° C., and the drying time is about 10 seconds to 2 minutes.

【0012】本発明において、アルミニウム板を被覆す
る樹脂フィルムとしては熱可塑性ポリエステル樹脂フィ
ルムを用いるが、その理由は、耐熱性が良い、内容
物のフレーバーが確保される、といった、例えばポリエ
チレンやポリプロピレンなどのポリオレフィン系樹脂フ
ィルムにはない、缶用途に適した特性を有しているから
である。
In the present invention, a thermoplastic polyester resin film is used as the resin film for covering the aluminum plate, because the heat resistance is good and the flavor of the contents is secured, such as polyethylene or polypropylene. This is because it has characteristics suitable for can use, which are not found in polyolefin-based resin films.

【0013】ポリエステル樹脂としては、例えばポリエ
チレンテレフタレート(PET)、ポリブチレンテレフ
タレート(PBT)、ポリエチレンイソフタレート(P
EI)のようなホモポリマーや、例えばポリエチレンテ
レフタレートとポリエチレンイソフタレートとの共重合
樹脂であるコポリマーや、こうしたホモポリマーやコポ
リマーなどのブレンド樹脂等が適用される。
As the polyester resin, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene isophthalate (P
A homopolymer such as EI), a copolymer which is a copolymer resin of polyethylene terephthalate and polyethylene isophthalate, a blend resin of such a homopolymer or copolymer, or the like is applied.

【0014】アルミニウム板の表面を被覆する熱可塑性
ポリエステル樹脂フィルムの厚みは、10〜50μm、
好ましくは12〜40μmのものを用いる。缶の内面に
当たる面に積層されるフィルム厚みは、缶内面の耐食性
の観点から限定されるものであり、10μm以下では缶
の成形加工後で充填する内容物にもよるが、十分な耐食
性を確保するのは難しい場合がある。一方、50μmを
超えると、ほとんどの内容物に対し耐食性は十分確保さ
れるが、実質的に過剰品質となり、経済的でない。
The thickness of the thermoplastic polyester resin film covering the surface of the aluminum plate is 10 to 50 μm,
Preferably, those having a thickness of 12 to 40 μm are used. The thickness of the film laminated on the surface corresponding to the inner surface of the can is limited from the viewpoint of the corrosion resistance of the inner surface of the can. If it is 10 μm or less, it depends on the contents to be filled after the can is formed, but sufficient corrosion resistance is secured. It can be difficult to do. On the other hand, if it exceeds 50 μm, the corrosion resistance is sufficiently ensured for most contents, but the quality is substantially excessive and is not economical.

【0015】また、本発明を実施する際のフィルム厚み
の選定は、後述する缶壁部の薄肉化の加工度との関係が
あることも選定の際の重要な要素である。即ち、加工度
が高い場合は、当然その加工度に応じてフィルムの厚み
も薄くなるため、その結果として、缶内面の防食性能は
低下する。従って、加工度が高い場合は予め厚手のフィ
ルムを使用することが望ましい。一方、加工度が低い場
合はそれに応じて予め薄手のフィルムを使用することが
可能となる。
An important factor in the selection of the film thickness when implementing the present invention is that it has a relationship with the degree of work for reducing the wall thickness of the can wall described later. That is, when the degree of processing is high, the thickness of the film is naturally reduced in accordance with the degree of processing, and as a result, the anticorrosion performance of the inner surface of the can is reduced. Therefore, when the degree of processing is high, it is desirable to use a thick film in advance. On the other hand, if the degree of processing is low, a thin film can be used in advance.

【0016】本発明で使用する熱可塑性ポリエステル樹
脂フィルムは、融点(Tm)が200℃〜260℃の樹
脂フィルムである。成形加工時には、金属の加工熱が発
生し、缶体はかなりの温度となる。特にしごき加工の際
に発生する金属の加工熱は、樹脂フィルムの特性を大き
く変化させる。この熱による樹脂フィルムの特性変化の
一つに樹脂フィルムの軟化がある。樹脂フィルムが軟化
すると、しごき加工時に内外面の樹脂フィルムを傷つけ
る原因となる。即ち、内面側の樹脂フィルムは、パンチ
に付着してしまいパンチが抜け難くなる、いわゆる離型
性不良が起こり、内面の樹脂フィルムを傷つける原因と
なる。また、離型性不良が甚だしい場合は、缶体の開口
部近傍が座屈し、正規の缶体高さが得られない事態が起
こったりする。
The thermoplastic polyester resin film used in the present invention has a melting point (Tm) of 200 ° C. to 260 ° C. During the forming process, processing heat of the metal is generated, and the temperature of the can body becomes considerable. In particular, metal processing heat generated during ironing greatly changes the characteristics of the resin film. One of the characteristic changes of the resin film due to the heat is softening of the resin film. Softening of the resin film causes damage to the resin film on the inner and outer surfaces during ironing. That is, the resin film on the inner surface side adheres to the punch and the punch hardly comes off, so-called poor releasability occurs, which causes damage to the resin film on the inner surface. Further, when the releasability is extremely poor, the vicinity of the opening of the can body buckles, and a situation in which a proper can body height cannot be obtained may occur.

【0017】一方、外面側の樹脂フィルムは、しごきダ
イスによる「かじり」と言われる缶高さ方向への直線的
な傷が入り易くなる。外面の「かじり」による傷が入っ
た場合は、その後施される印刷の仕上がり外観を損ねる
結果となる。
On the other hand, the resin film on the outer surface side is liable to be linearly damaged in the height direction of the can, which is called "galling" by an ironing die. Scratching due to "galling" on the outer surface results in a loss of the finished appearance of subsequent prints.

【0018】この樹脂フィルムの熱による軟化の程度
は、樹脂の融点(Tm)とかかわっており、融点が下限
値の200℃以下では、たとえ本発明で適用される潤滑
油が塗布されていても離型性や耐かじり性が劣り、好ま
しくない。一方、上限値の260℃以上では、高融点化
に伴う離型性や耐かじり性の更なる改善は期待できず、
効果は飽和する。樹脂フィルムの融点(Tm)は、上記
の離型性や耐かじり性の観点から限定したものである
が、しごき加工時の発熱量は後述する加工度との関係も
あり、樹脂フィルムの融点だけで離型性や耐かじり性の
良否を決められるものではないが、基本的には融点は高
い方が有利であり、本発明で使用する樹脂フィルムの融
点は、210〜255℃が好ましく、特に220〜25
5℃が好適である。
The degree of softening of the resin film by heat is related to the melting point (Tm) of the resin. When the melting point is lower than the lower limit of 200 ° C., even if the lubricating oil used in the present invention is applied. The releasability and galling resistance are poor, which is not preferable. On the other hand, above the upper limit of 260 ° C., no further improvement in mold releasability and galling resistance due to the higher melting point can be expected,
The effect saturates. Although the melting point (Tm) of the resin film is limited from the viewpoint of the above-mentioned releasability and galling resistance, the amount of heat generated during ironing also has a relationship with the degree of processing described later. Although it is not possible to determine whether the releasability or galling resistance is good or not, it is basically advantageous that the melting point is higher, and the melting point of the resin film used in the present invention is preferably from 210 to 255 ° C., particularly 220-25
5 ° C. is preferred.

【0019】本発明のラミネート板およびシームレス缶
を被覆しているポリエステル樹脂フィルムの密度は、
1.36未満である。密度は樹脂の結晶状態を示す指標
となり、例えば、延伸された樹脂フィルム等の結晶化度
が高い場合は、密度は大きくなる。密度が1.36未満
であるということは、熱可塑性ポリエステル樹脂フィル
ムの結晶状態としては、実質的に非晶質であることを示
す。
The density of the polyester resin film covering the laminated plate and the seamless can of the present invention is as follows:
It is less than 1.36. The density is an index indicating the crystalline state of the resin. For example, when the crystallinity of a stretched resin film or the like is high, the density increases. The fact that the density is less than 1.36 indicates that the crystalline state of the thermoplastic polyester resin film is substantially amorphous.

【0020】ラミネート板に被覆した樹脂フィルムを非
晶質にする理由は、その後行うカップの絞り加工、カッ
プの再絞り加工、更にしごき加工において、樹脂フィル
ムの加工性を十分に確保することを目的にしたもので、
密度が1.36以上になると、結晶性の低いポリエステ
ル樹脂フィルムでも、成形加工にフィルムが耐えられず
亀裂欠陥が激しく起こる場合があり好ましくない。特
に、加工度が大きい時は、しごき加工時の発熱と併せて
引き延ばし加工により、樹脂フィルムの配向結晶化が一
層進み、その結果、樹脂フィルムがアルミニウム板の加
工に追随し難くなり、上記の挙動が顕著に現れ、缶体の
耐食性が十分に確保できない場合がしばしば起こる。従
って、密度が大きい、結晶化した状態からの成形加工
は、特に、加工度が高くなると極めて難しく不適であ
る。密度を1.36未満と限定した理由は、上記の理由
からで、特に、第1工程の絞り加工の前の密度として
は、1.35未満が好ましい。
The reason why the resin film coated on the laminate plate is made amorphous is to ensure sufficient workability of the resin film in the subsequent drawing of the cup, redrawing of the cup, and further ironing. In what
If the density is 1.36 or more, even if the polyester resin film has low crystallinity, the film may not be able to withstand the molding process, and crack defects may occur severely, which is not preferable. In particular, when the degree of processing is large, the orientation and crystallization of the resin film are further promoted by elongation together with the heat generated during ironing, and as a result, the resin film becomes difficult to follow the processing of the aluminum plate, and the above behavior Often appears, and often the corrosion resistance of the can body cannot be sufficiently ensured. Therefore, forming from a crystallized state having a high density is extremely difficult and unsuitable, especially when the working degree is high. The reason for limiting the density to less than 1.36 is from the above reason, and in particular, the density before the drawing in the first step is preferably less than 1.35.

【0021】熱可塑性ポリエステル樹脂フィルム被覆ラ
ミネートアルミニウム板を得る製造方法としては、加熱
されたアルミニウム板の表面に樹脂フィルムを供給して
ロール間で圧着し積層させた後、直ちに急冷してポリエ
ステル樹脂フィルムを非晶質にする方法や、溶融した樹
脂を押し出し、アルミニウム板に供給し積層させ、直ち
に急冷してポリエステル樹脂フィルムを非晶質にする方
法や、例えば二軸延伸フィルムの場合は、一度積層した
ポリエステル樹脂フィルムを、必要に応じ更に樹脂の融
点以上に加熱した後直ちに急冷して、ポリエステル樹脂
フィルムを非晶質にする方法等が適用できる。
As a method for producing a laminated aluminum plate coated with a thermoplastic polyester resin film, a resin film is supplied to the surface of a heated aluminum plate, pressed and laminated between rolls, and immediately quenched to immediately cool the polyester resin film. Or a method of extruding a molten resin, supplying it to an aluminum plate and laminating it, and immediately quenching to make the polyester resin film amorphous, or in the case of a biaxially stretched film, for example, laminating once. If necessary, the polyester resin film may be further heated to a temperature not lower than the melting point of the resin, and then rapidly cooled to make the polyester resin film amorphous.

【0022】アルミニウム板の加熱方法としては、電気
炉中で加熱する方法、熱風による加熱方法、加熱ロール
に接触させて加熱する方法、等の常用の加熱方法が採用
できる。
As a method for heating the aluminum plate, a conventional heating method such as a method of heating in an electric furnace, a method of heating with hot air, and a method of heating by contacting with a heating roll can be adopted.

【0023】次に、本発明に適用される潤滑油について
説明する。本発明において使用される潤滑油は、作業環
境温度下で液状でない潤滑油(A)、好ましくは融点が
40℃以上である潤滑油(A)を、熱可塑性ポリエステ
ル樹脂フィルム被覆面に、片面の塗油量20〜120m
g/m2、その上層に、作業環境温度下で液状である潤
滑油(B)、好ましくは流動点が5℃以下である潤滑油
(B)を10〜80mg/m2、総塗油量として、片面
の塗油量30〜200mg/m2の量を塗油する。
Next, the lubricating oil applied to the present invention will be described. The lubricating oil used in the present invention is prepared by adding a lubricating oil (A) which is not liquid at the working environment temperature, preferably a lubricating oil (A) having a melting point of 40 ° C. or more, to the surface coated with the thermoplastic polyester resin film, Oiling amount 20-120m
g / m 2 , and a lubricating oil (B) that is liquid at the working environment temperature, preferably a lubricating oil (B) having a pour point of 5 ° C. or less, is 10 to 80 mg / m 2 , and the total amount of the applied oil is Is applied in an amount of 30 to 200 mg / m 2 on one side.

【0024】潤滑油(A)は、作業環境温度下、すなわ
ち室温下では液体でなく、好ましくは、融点40℃以上
のものである。一方、潤滑油(B)は、作業環境温度
下、すなわち室温下では液体であるものであり、好まし
くは流動点が5℃以下のものである。この2種類の潤滑
油を、潤滑油(A)を下層に、潤滑油(B)を上層とし
て塗油することで、後述する缶の加工手段との組み合わ
せにおいて、良好な特性を発揮することが、発明者等の
研究結果から明らかになり、本発明に至ったものであ
る。何故、上記のように潤滑油(A)を下層にし、潤滑
油(B)を上層にして層状に塗油することで、後述する
缶の加工手段との組み合わせにおいて、良好な特性を発
揮するかは、次のように考えられる。
The lubricating oil (A) is not liquid at the working environment temperature, that is, at room temperature, and preferably has a melting point of 40 ° C. or higher. On the other hand, the lubricating oil (B) is a liquid at the working environment temperature, that is, at room temperature, and preferably has a pour point of 5 ° C. or less. By applying these two types of lubricating oils with the lubricating oil (A) as the lower layer and the lubricating oil (B) as the upper layer, good characteristics can be exhibited in combination with the can processing means described later. The present invention has been clarified from the research results of the inventors and has led to the present invention. Why the lubricating oil (A) is used as the lower layer and the lubricating oil (B) is used as the upper layer to apply the layered oil, thereby exhibiting good characteristics in combination with the can processing means described later. Is considered as follows.

【0025】本発明におけるシームレス缶の成形加工
は、ポリエステル樹脂被覆アルミニウム板に対して、絞
り加工としごき加工と言った、異なる加工を組み合わせ
て行なう。絞り加工では、ストレッチ加工または/およ
びしごき加工を付加するが、基本的には絞り加工であ
る。絞り加工は、第1工程のカップ絞り加工、更には第
2工程での第1工程で得られたカップの再絞り加工より
なるが、この絞り加工では、加工と同時に材料は成形さ
れるカップへの流れ込みが起こる。この時、しわ押え部
の摩擦力が大きく材料の流れ込みが不充分な場合、カッ
プは底部のコーナー部から破断する、いわゆる抜けが起
こったり、また缶胴の途中から破断したりする。一方、
摩擦力が小さく、流れ込みが過剰な場合は、しわが発生
する。いずれの場合も正常なカップは得られない。
The forming process of the seamless can in the present invention is performed by combining different processes such as drawing and ironing on a polyester resin-coated aluminum plate. In the drawing process, a stretching process and / or an ironing process are added, but the drawing process is basically performed. The drawing process includes a cup drawing process in the first step, and a redrawing process of the cup obtained in the first step in the second step. In this drawing process, the material is simultaneously formed into the cup to be formed. Occurs. At this time, if the frictional force of the wrinkle holding portion is large and the material does not flow sufficiently, the cup breaks from the corner at the bottom, that is, breaks off, or breaks from the middle of the can body. on the other hand,
When the frictional force is small and the flow is excessive, wrinkles occur. In each case, a normal cup cannot be obtained.

【0026】材料の流れ込みの程度は、しわ押さえ力と
しわ押さえ部全体の表面潤滑のバランスによって決まる
が、使用する表面潤滑の影響が大きいことは周知であ
り、かかる意味においてプレス成形加工では、一般的に
は表面潤滑的特性や、もしくは境界潤滑的特性を有する
潤滑剤が用いられている。また、本発明のように、樹脂
フィルムを被覆したラミネートアルミニウム板を、絞り
加工でカップ状に成形する場合、潤滑油の不適合によっ
ては、カップ底部のコーナーにマイクロクラックが発生
する時もあり、潤滑剤の選定は重要な要素となってい
る。
The degree of material inflow is determined by the balance between the wrinkle holding force and the surface lubrication of the entire wrinkle holding portion. It is well known that the effect of the surface lubrication used is great. Specifically, a lubricant having surface lubricating properties or boundary lubricating properties is used. In addition, when a laminated aluminum plate coated with a resin film is formed into a cup shape by drawing as in the present invention, microcracks may occur at the corners of the bottom portion of the cup depending on the incompatibility of the lubricating oil. The choice of agent is an important factor.

【0027】一方、しごき加工は、胴壁部のみを、その
胴壁部の厚さより狭い間隔を有する、パンチとしごきダ
イスのクリアランス部を通し、胴壁部の板厚を減少させ
る加工であるため、むしろ適度な摩擦力によって胴壁部
の板厚を薄くする加工となっている。従って、余り流動
性を有する潤滑剤ではパンチとしごきダイスのクリアラ
ンス部を通る時、缶の成形方向と逆の方向に潤滑剤が寄
っていってしまい、潤滑剤を必要とする部位での欠如が
起こり、缶胴が破断すると言った現象が起こり易い。そ
のためしごき加工では、極圧潤滑的な作用が必要である
と考えられる。
On the other hand, the ironing process is a process in which only the body wall portion is passed through a clearance portion of a punch and an ironing die having an interval smaller than the thickness of the body wall portion to reduce the thickness of the body wall portion. Rather, the thickness of the body wall is reduced by an appropriate frictional force. Therefore, when a lubricant having excessive fluidity passes through the clearance between the punch and the ironing die, the lubricant is shifted in a direction opposite to the molding direction of the can, and lacks in a portion requiring the lubricant. This can easily cause the phenomenon that the can body is broken. Therefore, in ironing, it is considered that an extreme pressure lubricating action is required.

【0028】しごき加工における潤滑剤不適合の場合の
問題点としては、上記の缶胴の破断と言った問題だけで
なく、前述した離型性不良による内面樹脂フィルムの欠
陥や、かじりによる外面フィルムの欠陥につながる問題
も、併せ持っている。こうしたしごき加工時の問題は、
前述した樹脂フィルムの融点や後述する成形加工とも関
係があり、潤滑油だけの問題ではないが、潤滑油の影響
も小さくなく、かかる意味においても、潤滑油の選定は
品質確保の点から重要な要素となっている。
Problems in the case of lubricant incompatibility in the ironing process include not only the problem of breakage of the can body described above, but also the defect of the inner resin film due to the above-mentioned poor releasability and the outer film due to galling. There are also problems that lead to defects. The problem with such ironing is that
It is related to the melting point of the resin film described above and the molding process described later, and it is not only a problem of the lubricating oil, but the influence of the lubricating oil is not small.In this sense, the selection of the lubricating oil is important from the viewpoint of quality assurance. Element.

【0029】本発明における潤滑油(B)は、ストレッ
チ加工または/およびしごき加工を付加した絞り加工に
対し有効に作用し、また潤滑油(A)はしごき加工に有
効に作用しているものと考えられる。従って、外気温度
下(製缶工場内の温度下)において液体か液体でないか
は重要で、上層となる潤滑油(B)は年間を通して液体
の状態であることが、また潤滑油(A)は年間を通して
液体でない状態であることが、融点および流動点から限
定した理由である。特にしごき加工において、極圧潤滑
的な作用を持たせるためには、少なくとも加工に供する
前の状態が液体でないことが重要である。
The lubricating oil (B) according to the present invention effectively acts on drawing work to which stretch processing and / or ironing processing is added, and the lubricating oil (A) effectively acts on ironing processing. Conceivable. Therefore, it is important to determine whether or not the liquid is liquid or not at the temperature of the outside air (the temperature in the canning factory). The lubricant (B) as the upper layer is in a liquid state throughout the year. Non-liquid state throughout the year is the reason for the limited melting point and pour point. In particular, in ironing, it is important that at least the state before being subjected to the processing is not liquid in order to have an extreme pressure lubricating effect.

【0030】本発明では、潤滑油(A)の必要な塗油量
は、片面の塗油量として20〜120mg/m2であ
る。潤滑油(A)の付着量が20mg/m2未満場合
は、しごき加工で缶胴破断が起こり易くなり好ましくな
い。一方、付着量が120mg/m2超の場合は、しご
き加工は問題ないが、潤滑油(B)が少ない場合は絞り
加工でカップの底が抜けたり、また缶胴が途中から破断
すると言った危険性が高くなり、それを避けるためには
潤滑油(B)の塗油量も多くする必要があり、経済的で
はない。また、潤滑油(B)の必要な塗油量は片面の塗
油量として10〜80mg/m2である。潤滑油(B)
の付着量が10mg/m2未満の場合は、絞り加工でカ
ップの底が抜けたり、また缶胴が途中から破断すると言
った危険性が高くなり、好ましくない。一方、付着量が
80g/m2超の場合は、絞り加工は問題ないが、潤滑
油(A)が少ない場合はしごき加工の際、缶胴破断が起
こり易くなり好ましくない。
In the present invention, the required amount of lubricating oil (A) is 20 to 120 mg / m 2 as the amount of oil applied to one surface. If the amount of the lubricating oil (A) is less than 20 mg / m 2 , the can body is likely to break during ironing, which is not preferable. On the other hand, when the amount of adhesion is more than 120 mg / m 2 , ironing is not a problem, but when the amount of lubricating oil (B) is small, the bottom of the cup comes off by drawing and the can body breaks in the middle. The risk increases, and in order to avoid the risk, it is necessary to increase the amount of lubricating oil (B) applied, which is not economical. The required amount of lubricating oil (B) is 10 to 80 mg / m 2 as the amount of oil applied on one side. Lubricating oil (B)
Is less than 10 mg / m 2 , there is a high danger that the bottom of the cup may be pulled out by drawing and the body may be broken midway. On the other hand, when the amount of adhesion is more than 80 g / m 2 , there is no problem in drawing, but when the amount of the lubricating oil (A) is small, the can body is likely to break during ironing, which is not preferable.

【0031】更に、潤滑油(A)と(B)の総塗油量
は、片面の塗油量として30〜200mg/m2の量を
塗油する。下限値の30mg/m2未満では、第1工程
の絞り加工および第2工程の再絞り加工で、潤滑油の寄
りが起こり、しごき加工で必要な潤滑油量が確保されな
いこともあるため、缶胴破断につながることもあり好ま
しくない。一方、上限値の200mg/m2を超えて
も、効果は飽和しており、経済的でない。また、塗油量
が多いと脱脂性が悪くなるという問題が生じる可能性も
あり好ましくない。
Further, the total amount of the lubricating oils (A) and (B) applied is 30 to 200 mg / m 2 as the amount of oil applied on one side. If the lower limit is less than 30 mg / m 2 , the lubricating oil may shift during the drawing in the first step and the re-drawing in the second step, and the required amount of the lubricating oil may not be secured by ironing. It is not preferable because it may lead to a body break. On the other hand, even if it exceeds the upper limit of 200 mg / m 2 , the effect is saturated and not economical. Further, if the amount of oil applied is large, there is a possibility that a problem that degreasing property is deteriorated may occur, which is not preferable.

【0032】即ち、本発明で得られたしごき加工後缶体
は、缶上端部を切断して正規の缶高さにするトリミング
を行った後、脱脂工程、外面印刷工程、缶開口部を縮径
にするネック加工と天蓋を巻き締めるために必要な開口
部上端部分を外方へ曲げるフランジ加工等の工程を経
て、内容物が充填される缶体となる。上記の脱脂が不十
分な場合は、外面の印刷でインキがはじいたり、内面で
は内容物のフレーバー性に影響したりして、問題とな
る。従って、脱脂不良は避けねばならない事柄である。
That is, the ironed can body obtained by the ironing process of the present invention is trimmed to a regular can height by cutting the upper end of the can, and then the degreasing step, the outer surface printing step, and the opening of the can are reduced. Through a process such as a necking process for reducing the diameter and a flange forming process for bending an upper end portion of the opening portion required for winding the canopy outward, the can is filled with the contents. If the above degreasing is insufficient, there is a problem that the ink is repelled by printing on the outer surface or the flavor of the content is affected on the inner surface. Therefore, poor degreasing is a matter to be avoided.

【0033】脱脂はアルカリ水溶液のスプレーによる脱
脂や、加熱による揮発脱脂等、周知慣用の手段が適用で
きるが、本発明における潤滑油の塗油量の上限値である
200mg/m2を超えると、脱脂時間が長く要するた
め、生産性の点で不利である。最適な塗油量としては、
成形加工性および脱脂性の観点から、好ましくは40〜
150mg/m2、更に好ましくは40〜100mg/
2であるが、特にしごき加工の加工度が高い場合は若
干多目にすることが望ましい。
For degreasing, known and commonly used means such as degreasing by spraying an alkaline aqueous solution and volatilizing degreasing by heating can be applied, but if it exceeds 200 mg / m 2 which is the upper limit of the amount of lubricating oil applied in the present invention. Since the degreasing time is long, it is disadvantageous in terms of productivity. For optimal oiling amount,
From the viewpoint of moldability and degreasing properties, preferably 40 to
150 mg / m 2 , more preferably 40 to 100 mg /
Although it is m 2 , it is desirable to make it slightly larger especially when the degree of ironing is high.

【0034】融点が40℃以上である潤滑油(A)とし
ては、白色ワセリン(別名、ペトロラタム)、パラフィ
ンワックス、マクロクリスタリンワックス等があり、ま
た、流動点が5℃以下である潤滑油(B)としては、例
えば流動パラフィン等があり、これらのものが本発明で
は使用される。なお、潤滑油(A)の融点は、JIS−
K2235の試験法に準じて測定し、一方の潤滑油
(B)の流動点は、JIS−K2269の試験法に準じ
て測定したものである。
Examples of the lubricating oil (A) having a melting point of 40 ° C. or more include white petrolatum (also called petrolatum), paraffin wax, and macrocrystalline wax, and lubricating oil (B) having a pour point of 5 ° C. or less. ) Includes, for example, liquid paraffin, and these are used in the present invention. The melting point of the lubricating oil (A) is determined according to JIS-
The lubricating oil (B) was measured according to the JIS-K2269 test method, while the pour point of the lubricating oil (B) was measured according to the test method of K2235.

【0035】潤滑油のラミネート板への塗布方法として
は、潤滑油(A)は常温で液体でないため加温して液体
にして、平滑ロールによる塗布、グラビアロールによる
塗布、スプレーによる塗布等の常用の手段が適用され
る。また、潤滑油(B)は常温で液体であるため、その
ままロールによる塗布、グラビアロールによる塗布、ス
プレーによる塗布等の常用の手段が適用される。
As a method of applying the lubricating oil to the laminate plate, the lubricating oil (A) is not liquid at room temperature, so that it is heated to be a liquid, and is usually used such as coating with a smooth roll, coating with a gravure roll, coating with a spray, and the like. Means are applied. Further, since the lubricating oil (B) is liquid at room temperature, common means such as application by a roll, application by a gravure roll, application by a spray, etc. are applied.

【0036】次に、本発明の方法である、缶の成形加工
方法について述べる。本発明の方法では、ポリエステル
樹脂フィルム被覆したラミネートアルミニウム板を、絞
り加工にてカップ状に成形する第1工程と、次いで第1
工程で得たカップを更に再絞り加工し、第1工程で得た
カップより缶径が小さく、缶高さの高いカップを成形す
る第2工程と、次いでこのカップの缶壁部をパンチとし
ごきダイスの間に通し、缶壁を薄く伸ばすしごき加工を
行う第3工程からなっている。上記の成形加工方法のう
ち、第1工程の絞り加工、第2工程の再絞り加工、第3
工程のしごき加工は、いずれも缶壁部の板厚減少を伴っ
た加工であるが、第4工程のネック加工・フランジ加工
は、事実上板厚減少は伴わない加工である。従って、シ
ームレス缶として成形加工されたものは、第3工程後の
缶体が最終缶体となる。
Next, the method of forming a can according to the present invention will be described. In the method of the present invention, a first step of forming a laminated aluminum plate coated with a polyester resin film into a cup shape by drawing, and then a first step
The cup obtained in the step is further redrawn, a second step of forming a cup having a smaller can diameter and a higher can height than the cup obtained in the first step, and then punching the can wall of the cup with an iron. It comprises a third step of ironing by passing between the dies and thinning the can wall. Among the above-mentioned forming methods, the first step drawing, the second step redrawing, the third step
The ironing process in the process is a process accompanied by a reduction in the thickness of the can wall, but the necking / flanging process in the fourth process is a process in which the thickness is not substantially reduced. Therefore, in the case of the seamless can, the can after the third step is the final can.

【0037】第1工程の絞り加工は、ラミネート板の温
度を被覆樹脂フィルムのガラス転移温度(Tg)から冷
結晶化温度(Tc)の範囲で、ストレッチ加工および/
またはしごき加工を付加し、加工度として、前記式
(1)から求められる値として10%以内になるように
行う。
In the drawing process in the first step, the temperature of the laminate is stretched and / or stretched in the range from the glass transition temperature (Tg) of the coated resin film to the cold crystallization temperature (Tc).
Alternatively, ironing is performed so that the degree of processing is within 10% as a value obtained from the above equation (1).

【0038】また、第2工程の再絞り加工も、第1工程
で得たカップの温度を被覆樹脂フィルムのガラス転移温
度(Tg)から冷結晶化温度(Tc)の範囲で、ストレ
ッチ加工および/またはしごき加工を付加し、加工度と
して式(1)で求められる値として第1工程の加工度と
合わせて25%以内で行う。
Also, in the redrawing in the second step, the temperature of the cup obtained in the first step is stretched and / or reduced within the range from the glass transition temperature (Tg) of the coated resin film to the cold crystallization temperature (Tc). Alternatively, ironing is added, and the processing is performed within 25% as a value obtained by the equation (1) as the processing degree, together with the processing degree in the first step.

【0039】第3工程のしごき加工は、絞り加工で得た
カップの缶体温度を潤滑油(A)の融点以下にした後、
加工金型の温度を120℃以下に保持し、しごき加工後
の最終缶体の加工度として50〜70%の範囲になるよ
う成形加工を行う。
In the ironing process of the third step, the temperature of the can body of the cup obtained by drawing is adjusted to the melting point of the lubricating oil (A) or less.
The temperature of the working mold is kept at 120 ° C. or lower, and the forming is performed so that the working degree of the final can after ironing is in the range of 50 to 70%.

【0040】まず、本発明の缶体成形方法における加工
温度の限定について述べる。本発明の方法における、第
1工程の絞り加工および第2工程の再絞り加工を、被覆
樹脂フィルムのガラス転移温度(Tg)から冷結晶化温
度(Tc)の範囲に限定した理由は、絞り加工によるカ
ップ底部コーナーの被膜健全性を確保するためである。
First, the limitation of the processing temperature in the can forming method of the present invention will be described. The reason why the drawing in the first step and the redrawing in the second step in the method of the present invention are limited to the range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the coated resin film is as follows. This is to ensure the soundness of the film at the bottom corner of the cup.

【0041】カップ底部コーナーの樹脂フィルムは、パ
ンチが最初に当たる個所であり、高い衝撃が掛かる。そ
して、この部位では樹脂フィルムにマイクロクラックが
生じ易い。特に、第1工程の絞り加工によるカップ底部
コーナーは、第2工程の再絞り加工後はカップ胴壁部
(側壁部)となり、更に第3工程のしごき加工で延伸さ
れるため、第1工程の絞り加工でカップ底部コーナーの
樹脂フィルムにマイクロクラックが生じた場合、その後
の加工で、激しい被膜欠陥となってしまう危険性が高く
なり好ましくない。従って、特に絞り加工によるカップ
底部コーナーの被膜健全性確保は、缶体の内面品質の点
で重要な要素となる。かかる意味において、樹脂フィル
ムのガラス転移温度(Tg)以下での絞り加工は、カッ
プの缶底部コーナーの樹脂フィルムにマイクロクラック
が生じ易く、好ましくない。
The resin film in the corner at the bottom of the cup is a place where the punch first hits, and a high impact is applied. And microcracks are easily generated in the resin film at this portion. In particular, the bottom corner of the cup formed by drawing in the first step becomes a cup body wall (side wall part) after redrawing in the second step, and is further stretched by ironing in the third step. If microcracks occur in the resin film at the bottom corners of the cup during drawing, the risk of severe film defects in subsequent processing increases, which is not preferable. Accordingly, ensuring the soundness of the coating at the bottom corner of the cup, especially by drawing, is an important factor in terms of the inner surface quality of the can body. In this sense, drawing at or below the glass transition temperature (Tg) of the resin film is not preferable because microcracks tend to occur in the resin film at the bottom corner of the can of the cup.

【0042】一方、冷結晶化温度(Tc)以上で絞り加
工を行った場合は、樹脂の熱結晶化が起こり易くなり、
樹脂フィルムの衝撃強度が低下し、カップ底部コーナー
の樹脂フィルムにマイクロクラックが生じ易いこと、更
には、前述したように熱結晶化が起こり易くなることは
しごき加工で被膜欠陥の発生につながる危険性が高くな
ること等から、好ましくない。第1工程の絞り加工およ
び第2工程の再絞り加工を、被覆樹脂フィルムのガラス
転移温度(Tg)から冷結晶化温度(Tc)の範囲に限
定したのは、上記の理由からで、好ましくはガラス転移
温度(Tg)+5℃から冷結晶化温度(Tc)−10℃
の範囲が良い。
On the other hand, when drawing is performed at a temperature higher than the cold crystallization temperature (Tc), thermal crystallization of the resin tends to occur,
The impact strength of the resin film decreases, microcracks are likely to occur in the resin film at the corners of the bottom of the cup, and as described above, thermal crystallization is more likely to occur. Is undesirably high. The reason why the drawing in the first step and the redrawing in the second step are limited to the range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the coating resin film is preferably for the above-mentioned reason. Glass transition temperature (Tg) + 5 ° C to cold crystallization temperature (Tc) -10 ° C
Good range.

【0043】絞り加工および再絞り加工に供するラミネ
ート板やカップの温度とは、接触式温度計等で測定され
る表面温度を指し、ラミネート板やカップの温度を、被
覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化
温度(Tc)の範囲に制御する手段としては、ラミネー
ト板やカップを電気炉中で加熱する方法や熱風で加熱す
る方法等、常用の手段が適用される。
The temperature of the laminated plate or cup used for drawing and redrawing refers to the surface temperature measured by a contact thermometer or the like, and the temperature of the laminated plate or cup is determined by the glass transition temperature ( As means for controlling the temperature within a range from Tg) to the cold crystallization temperature (Tc), conventional means such as a method of heating a laminate plate or a cup in an electric furnace or a method of heating with a hot air are applied.

【0044】また、絞り加工や再絞り加工を行う金型の
表面温度を、ガラス転移温度(Tg)から冷結晶化温度
(Tc)の範囲に加熱して成形加工する加温加工方法
も、ラミネート板やカップを加熱した場合と同様な効果
が得られるが、この場合は、絞り加工や再絞り加工を行
う前のラミネート板やカップの表面温度により、加工金
型の設定温度を決める必要があるが、ラミネート板やカ
ップの表面温度が、例えば常温の場合は、設定温度はガ
ラス転移温度(Tg)より10〜15℃高めに設定する
と良い。
Also, a heating method in which the surface temperature of a mold for performing drawing and redrawing is heated to a range from a glass transition temperature (Tg) to a cold crystallization temperature (Tc) to carry out forming processing is also known. The same effect as when the plate or cup is heated can be obtained, but in this case, it is necessary to determine the set temperature of the processing die according to the surface temperature of the laminate plate or cup before performing the drawing or redrawing. However, when the surface temperature of the laminate plate or the cup is, for example, normal temperature, the set temperature is preferably set to be 10 to 15 ° C. higher than the glass transition temperature (Tg).

【0045】上記の常用の手段でラミネート板やカップ
の加熱を、ガラス転移温度(Tg)から冷結晶化温度
(Tc)の範囲にして成形加工する方法と、加工を行う
金型の表面温度を、ガラス転移温度(Tg)から冷結晶
化温度(Tc)の範囲に加熱して成形加工する加温加工
方法の併用も可能であり、設備にあった手段が採用でき
る。
A method of forming a laminate plate or a cup by the above-mentioned usual means in a range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc), In addition, it is also possible to use a heating processing method of heating and molding in a range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc), and a means suitable for the equipment can be used.

【0046】第1工程の絞り加工、第2工程の再絞り加
工に次いで行う第3工程のしごき加工は、再絞り加工で
得たカップの温度を潤滑油(A)の融点以下にした後、
加工金型の温度を120℃以下に保持して行う。なお、
ここでいう再絞り加工で得たカップの温度とは、カップ
の表面温度を指し、加工金型の温度とは、金型の表面温
度を指す。
The ironing in the third step, which is performed after the drawing in the first step and the redrawing in the second step, is performed after the temperature of the cup obtained by the redrawing is reduced to the melting point of the lubricating oil (A).
This is performed while maintaining the temperature of the processing die at 120 ° C. or lower. In addition,
Here, the temperature of the cup obtained by the redrawing refers to the surface temperature of the cup, and the temperature of the working mold refers to the surface temperature of the mold.

【0047】前述したように、樹脂フィルムの欠陥は、
内外面共、しごき加工で最も起こり易い。しごき加工
は、缶壁部のみを、その胴壁部の厚さより狭い間隔を有
するパンチとしごきダイスの間のクリアランス部を瞬時
に通し、薄肉化する加工であるため、加工の際には金属
の激しい加工熱が発生し、樹脂フィルムの特性を大きく
変化させる。熱による樹脂フィルムの特性変化は、
(1)樹脂フィルムの軟化、(2)樹脂フィルムの結晶
化、等があるがいずれの特性変化も成形加工による被膜
欠陥の発生原因となることは前述した通りである。従っ
て、このしごき加工の温度制御は樹脂フィルムの欠陥発
生防止の点から重要である。そこで、本発明の方法で
は、第2工程の再絞り加工で得たカップの温度を潤滑油
(A)の融点以下にしてしごき加工に供すると共に、併
せて加工金型の温度を120℃以下に保持して成形加工
を行う。なお、ここでいう再絞り加工で得たカップの温
度とは、カップの表面温度を指し、加工金型の温度と
は、金型の表面温度を指す。
As described above, the defect of the resin film is as follows.
Ironing is most likely to occur on the inside and outside surfaces. Ironing is a process in which only the can wall is thinned instantaneously by passing through the clearance between the punch and the ironing die with a gap narrower than the thickness of the body wall, thereby reducing the thickness of the metal. Intense processing heat is generated, greatly changing the characteristics of the resin film. The characteristic change of the resin film due to heat is
There are (1) softening of the resin film, (2) crystallization of the resin film, and the like. However, as described above, any change in the characteristics causes film defects due to molding. Therefore, the temperature control of the ironing process is important from the viewpoint of preventing the occurrence of defects in the resin film. Therefore, in the method of the present invention, the temperature of the cup obtained by the re-drawing in the second step is reduced to the melting point of the lubricating oil (A) or less, and the iron is used for ironing. Hold and perform molding. Here, the temperature of the cup obtained by the redrawing processing refers to the surface temperature of the cup, and the temperature of the processing die refers to the surface temperature of the die.

【0048】カップの温度が潤滑油(A)の融点温度を
超えると、付着している潤滑油は液体となっており、そ
の結果、樹脂フィルムと成形加工金型との離型性が悪く
なり、樹脂フィルムが傷つき易く、また、缶外面側は
「かじり」が入り易くなるので好ましくない。
When the temperature of the cup exceeds the melting point temperature of the lubricating oil (A), the adhering lubricating oil becomes liquid, and as a result, the releasability between the resin film and the molding die deteriorates. In addition, the resin film is easily damaged and the outer surface of the can is apt to bite, which is not preferable.

【0049】また、加工金型の温度は、120℃以下で
しごき加工を行うが、120℃を超える温度では、缶内
面側では樹脂フィルムと成形加工金型との離型性が悪
く、樹脂フィルムの傷つきが激しくなって、缶内面側は
耐食性確保が難しいと共に、場合によっては樹脂フィル
ムと成形加工金型との離型の際に缶胴部が座屈し、正常
な缶体が得られないと言った事態が発生することがあ
る。更に、しごき加工における加工金型が120℃を超
える温度では、ポリエステル樹脂フィルムの配向結晶化
が急激に進み、その結果、樹脂フィルムの亀裂欠陥が発
生し易くなる危険性が高くなる。また、外面側の樹脂フ
ィルムは、前述した「かじり」が激しく入り、その後行
われる印刷での外観性が劣るだけでなく、場合によって
は「かじり」部を起点とする缶胴の破断が起こる。
Ironing is performed at a temperature of the working mold of 120 ° C. or less. However, at a temperature exceeding 120 ° C., the releasability between the resin film and the forming mold is poor on the inner side of the can, and The inside of the can is difficult to secure corrosion resistance, and in some cases, the can body buckles during release from the resin film and the molding die, and a normal can body cannot be obtained. The situation described may occur. Furthermore, when the temperature of the working mold in ironing exceeds 120 ° C., the orientation crystallization of the polyester resin film rapidly proceeds, and as a result, there is a high risk that crack defects in the resin film are likely to occur. Further, the resin film on the outer surface side is severely subjected to the above-mentioned "galling", and not only deteriorates the appearance in the subsequent printing, but also occasionally causes breakage of the can body starting from the "galling" portion.

【0050】従って、しごき加工における加工温度は、
缶体の内外面の品質確保の点から極めて重要で、本発明
のようにポリエステル樹脂フィルムを被覆したラミネー
トアルミニウム板から、絞りしごき加工によって良好な
品質を有する缶体を得るには、加工金型の温度を120
℃以下に保持することが重要である。本発明の方法にお
いて、しごき加工の際の加工金型の温度を120℃以下
に保持して行うと、限定した理由は上記の理由からであ
る。
Therefore, the working temperature in the ironing work is
It is extremely important from the viewpoint of ensuring the quality of the inner and outer surfaces of the can body. From a laminated aluminum plate coated with a polyester resin film as in the present invention, in order to obtain a can body having good quality by drawing and ironing, a processing die The temperature of 120
It is important to keep it below ° C. In the method of the present invention, when the temperature of the working mold at the time of ironing is kept at 120 ° C. or lower, the reason for the limitation is the above reason.

【0051】しごき加工は、加工金型全体の温度を12
0℃以下に保持して行うのが好ましいが、特に加工度が
低い場合は加工パンチの温度を120℃以下に保持する
だけでも樹脂フィルムの欠陥防止効果は得られる。しご
き加工の際の加工金型または加工パンチの温度は、基本
的には低い方が良く、好適な温度としては100℃以下
にするのが好ましい。なお、しごき加工は、しごきダイ
スを一枚で行う1段しごき加工法や、二枚乃至は三枚で
行う多段しごき加工法などが適用出来る。
For ironing, the temperature of the entire processing die is set to 12
It is preferable to perform the process while maintaining the temperature at 0 ° C. or lower. However, particularly when the degree of processing is low, the effect of preventing the resin film from being defective can be obtained simply by maintaining the temperature of the processing punch at 120 ° C. or lower. The temperature of the working mold or working punch during ironing is basically preferably lower, and the preferred temperature is preferably 100 ° C. or lower. The ironing can be performed by a one-step ironing method using one ironing die, a multi-step ironing method using two or three ironing dies, or the like.

【0052】再絞り加工で得たカップの温度を潤滑油
(A)の融点以下にする手段としては、絞り加工で得た
カップの温度が潤滑油(A)の融点を超えている場合は
冷風を当てる等の手法が採用でき、また、加工金型の温
度を120℃以下にする手段としては、金型に冷却水を
通す方法、水、又は潤滑成分を水に溶解または分散させ
たものを吹きかけて冷却する方法、更にはこれらの併用
と言った方法が採用できる。どの手法を採用するかは、
設備との関係で適宜選択することが好ましい。
As a means for lowering the temperature of the cup obtained by the redrawing process to the melting point of the lubricating oil (A) or less, if the temperature of the cup obtained by the drawing process exceeds the melting point of the lubricating oil (A), Can be adopted, and as a means for lowering the temperature of the working mold to 120 ° C. or less, a method of passing cooling water through the mold, water, or a solution in which a lubricating component is dissolved or dispersed in water. A method of cooling by spraying, and a method of using these in combination can be adopted. Which method to use depends on
It is preferable to select appropriately in relation to the equipment.

【0053】次に、本発明の缶体成形方法における加工
度の限定について述べる。第1工程の絞り加工の加工度
は、下記の式(1)から求められる値として10%以内
になるように行い、第2工程の再絞り加工の加工度は、
式(1)から求められる値として第1工程での加工度と
合わせて25%以内になるように成形加工を行い、第3
工程のしごき加工の加工度は、式(1)から求められる
加工度として第1工程および第2工程での加工度と合わ
せて50〜70%の範囲で成形加工を行うものである。
Next, the limitation of the degree of processing in the can body forming method of the present invention will be described. The degree of work of the drawing in the first step is performed so as to be within 10% as a value obtained from the following equation (1).
Forming is performed so that the value obtained from the equation (1) is within 25% together with the degree of processing in the first step.
The working degree of the ironing process in the process is to perform the forming process in a range of 50 to 70% in combination with the working degree in the first step and the second step as the working degree obtained from the equation (1).

【数2】 加工度(%)=〔(Bt−Wt)/Bt〕×100 ……(1) Bt:缶底部のアルミニウム板の板厚 Wt:缶胴側壁部のアルミニウム板の最も薄い部位の板
## EQU2 ## Degree of work (%) = [(Bt−Wt) / Bt] × 100 (1) Bt: thickness of aluminum plate at bottom of can Wt: thickness of thinnest aluminum plate at side wall of can body Board thickness

【0054】式(1)から求められる値として、第1工
程の絞り加工の加工度が10%以内になるように、第2
工程の再絞り加工後の加工度が第1工程での加工度と合
わせて25%以内になるように行う理由は、前述したよ
うに、通常の絞り加工ではカップの側壁部は元板厚(本
発明では、缶底部の板厚を指す)より厚くなるため、こ
の状態からしごき加工、特に高加工度のしごき加工を行
うと、加工時の熱と伸ばし加工により、樹脂フィルムが
配向結晶化し、成形に耐えられずフィルムに亀裂が発生
する場合があるからである。従って、それを避けるため
には、上記のように順次加工度を上げた加工を行い、最
終のしごき加工の加工度はなるべく低く抑える方が良
い。
The value obtained from the equation (1) is set so that the degree of work of the drawing in the first step is within 10%.
The reason why the working ratio after the re-drawing process in the process is set to be within 25% together with the working ratio in the first process is that, as described above, the side wall portion of the cup in the normal drawing process has the original plate thickness ( In the present invention, since the thickness of the bottom of the can is indicated), when ironing is performed from this state, particularly when ironing is performed with a high degree of processing, the resin film is oriented and crystallized by heat and stretching during processing, This is because the film may not withstand molding and cracks may occur in the film. Therefore, in order to avoid this, it is better to carry out the processing in which the degree of processing is sequentially increased as described above, and to suppress the degree of processing of the final ironing as low as possible.

【0055】かかる意味から本発明の方法であれば、缶
内外面の樹脂フィルムの健全性が確保される成形加工が
可能となる。特に、第2工程終了時の再絞りカップの段
階で、側壁部の樹脂フィルムが完全に結晶化していない
状態にしておくことが、第3工程のしごき加工後の缶体
内面の樹脂フィルムの健全性確保には重要であり、再絞
り加工後の加工度として25%以内であれば、しごき加
工後の内外面の樹脂フィルムの健全性は確保される。
In this sense, according to the method of the present invention, it is possible to perform a molding process for ensuring the soundness of the resin film on the inner and outer surfaces of the can. In particular, at the stage of the re-drawing cup at the end of the second step, it is necessary to keep the resin film on the side wall portion not completely crystallized, because the soundness of the resin film on the inner surface of the can after the ironing in the third step is improved. It is important for ensuring the resilience, and if the working degree after redrawing is within 25%, the soundness of the resin film on the inner and outer surfaces after ironing is ensured.

【0056】なお本発明の方法では、上記の第1工程お
よび第2工程で行う、ストレッチ加工および/またはし
ごき加工を付加した絞り加工および再絞り加工は、スト
レッチ加工のみを付加した方法、しごき加工を付加した
方法、ストレッチ加工としごき加工の両者を付加した方
法、のいずれの方法でも良く、適宜適用される。
In the method of the present invention, the drawing and redrawing with the stretching and / or ironing performed in the first and second steps are a method to which only the stretching is added, and the ironing. , Or a method to which both the stretching and the ironing are added, and the method is appropriately applied.

【0057】[0057]

【実施例】以下、実施例にて、本発明の方法の効果を具
体的に説明するが、その前に本発明の方法で行った評価
方法について述べる。 (1)潤滑油の流動点の測定は、JIS−K2269の
試験法に準じて測定を行った。 (2)潤滑油の融点の測定は、JIS−K2235の試
験法に準じて測定を行った。 (3)樹脂フィルムの密度は、密度勾配管法にて測定し
た。 (4)樹脂フィルムのガラス転移温度(Tg)、冷結晶
化温度(Tc)、融点(Tm)は示差走査熱量計(DS
C)で、10℃/分の昇温速度で測定し、ガラス転移温
度は転移の始まる点をその温度とし、冷結晶化温度(T
c)、融点(Tm)は、それぞれのピーク温度を冷結晶
化温度および融点とした。 (5)カップの絞り加工後の缶底部コーナーのマイクロ
クラックについては、光学顕微鏡で観察しその程度を評
価した。評価は次のように評価基準を設定し行った。 ○:クラックなく良好 □:軽微なクラック発生 △:明確なクラック発生 ×:激しいクラック発生 (6)フィルムと加工パンチの離型性は、成形缶上部に
起こる缶体の座屈程度を観察し評価した。離型性の評価
は、次のように評価基準を設定し行った。 ○:缶開口部の座屈なく良好 □:缶開口部に軽微な座屈あり △:開口部円周の1/3未満の座屈 ×:開口部円周の1/3以上の座屈 (7)缶外面の耐かじり性は、成形した缶体胴壁部外面
のかじり発生程度を観察して評価した。 ○:かじりなく良好 □:軽微なかじり発生 △:外面の1/3未満にかじり発生 ×:外面の1/3以上に激しいかじり発生 (8)缶内面の樹脂フィルムの傷付き程度については、
1.0重量%食塩水に界面活性剤を0.1重量%添加し
た電解液で、缶体を陽極、陰極を銅線とし、印加電圧6
Vで3秒後の電流値を測定し、樹脂フィルムの被膜の健
全性を評価した(以降、この評価法をQTV試験と称す
る)。
EXAMPLES The effects of the method of the present invention will be specifically described below with reference to examples, but before that, the evaluation method performed by the method of the present invention will be described. (1) The pour point of the lubricating oil was measured according to the test method of JIS-K2269. (2) The melting point of the lubricating oil was measured according to the test method of JIS-K2235. (3) The density of the resin film was measured by a density gradient tube method. (4) The glass transition temperature (Tg), the cold crystallization temperature (Tc), and the melting point (Tm) of the resin film were measured using a differential scanning calorimeter (DS).
C), the glass transition temperature was measured at a heating rate of 10 ° C./min. The glass transition temperature was defined as the temperature at which the transition started, and the cold crystallization temperature (T
c) For the melting point (Tm), the respective peak temperatures were defined as the cold crystallization temperature and the melting point. (5) Microcracks at the bottom corners of the can after drawing of the cup were observed with an optical microscope to evaluate the degree. The evaluation was performed by setting evaluation criteria as follows. :: good without cracks □: slight cracks generated △: clear cracks generated ×: severe cracks generated (6) The releasability of the film and the processing punch was evaluated by observing the degree of buckling of the can body occurring at the top of the molded can. did. The releasability was evaluated by setting evaluation criteria as follows. :: good without buckling of can opening □: slight buckling at can opening △: buckling less than 1/3 of opening circumference ×: buckling of 1/3 or more of opening circumference ( 7) The galling resistance of the outer surface of the can was evaluated by observing the degree of galling on the outer surface of the molded body wall. :: Good without galling □: Slight galling occurred △: Galling occurred on less than 1/3 of the outer surface ×: Violent galling occurred on 1/3 or more of the outer surface (8) Regarding the degree of damage to the resin film on the inner surface of the can,
An electrolytic solution prepared by adding 0.1% by weight of a surfactant to 1.0% by weight of a saline solution was used.
The current value after 3 seconds was measured at V, and the soundness of the resin film coating was evaluated (hereinafter, this evaluation method is referred to as a QTV test).

【0058】実験例1 表面に被膜C量として16mg/m2のリン酸−フェノ
ール樹脂の有機無機複合型化成処理被膜を有する、板厚
0.26mmのアルミニウム板(3004系合金)の両
面に、ガラス転移温度(Tg)が64℃、冷結晶化温度
(Tc)が122℃、融点が241℃、厚み20μmの
二軸延伸ポリエステル樹脂フイルムを熱圧着法で接着し
た後、加熱・冷却し、非晶質化ポリエステル樹脂フイル
ム被覆ラミネート板を作成した。得られたラミネート板
のポリエステル樹脂フイルムの密度は、表1〜2に示し
た。
Experimental Example 1 An aluminum plate (3004 series alloy) having a thickness of 0.26 mm having an organic-inorganic composite chemical conversion coating film of phosphoric acid-phenol resin having a coating C amount of 16 mg / m 2 on both surfaces, A biaxially stretched polyester resin film having a glass transition temperature (Tg) of 64 ° C., a cold crystallization temperature (Tc) of 122 ° C., a melting point of 241 ° C., and a thickness of 20 μm is bonded by a thermocompression bonding method, and then heated and cooled. A crystallized polyester resin film-coated laminate was prepared. The densities of the polyester resin films of the obtained laminates are shown in Tables 1 and 2.

【0059】次いで、上記のポリエステル樹脂フイルム
を被覆したラミネート板のフイルム面の両面に成形用潤
滑剤として、融点が57℃の潤滑油(A)は加温し液状
にしてスプレーにより塗油し、更にその上層に、流動点
が−12.5℃の潤滑油(B)をスプレーにより塗油し
た。(A)と(B)のそれぞれの塗油量は、63mg/
2と0mg/m2で総塗油量は63mg/m2(テスト
1)、49mg/m2と12mg/m2で総塗油量61m
g/m2(テスト2)、39mg/m2と18mg/m2
で総塗油量57mg/m2(テスト3)、33mg/m2
と32mg/m2で総塗油量65mg/m2(テスト
4)、22mg/m2と39mg/m2で総塗油量61m
g/m2(テスト5)、13mg/m2と52mg/m2
で総塗油量65mg/m2(テスト6)、0mg/m2
58mg/m2で総塗油量58mg/m2(テスト7)と
した。
Next, as a molding lubricant, lubricating oil (A) having a melting point of 57 ° C. was heated and made into a liquid state, and then applied by spraying to both sides of the film surface of the laminated plate coated with the above polyester resin film, Further, a lubricating oil (B) having a pour point of -12.5 ° C was applied to the upper layer by spraying. (A) and (B) each oiling amount is 63 mg /
m 2 and the total coating amount of oil in the 0 mg / m 2 is 63 mg / m 2 (Test 1), the total coating amount of oil at 49 mg / m 2 and 12 mg / m 2 61m
g / m 2 (Test 2), 39 mg / m 2 and 18 mg / m 2
57 g / m 2 (Test 3), 33 mg / m 2
And 32 mg / m 2 for a total lubrication amount of 65 mg / m 2 (Test 4), 22 mg / m 2 and 39 mg / m 2 for a total lubrication amount of 61 m
g / m 2 (Test 5), 13 mg / m 2 and 52 mg / m 2
In total coating amount of oil 65 mg / m 2 (test 6), and at 0 mg / m 2 and 58 mg / m 2 and the total coating amount of oil 58 mg / m 2 (test 7).

【0060】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が7%のストレッチ加工およびしご
き加工を付加した絞り加工を行った。この時得られたカ
ップの、缶底部コーナーの樹脂フイルムのマイクロクラ
ック発生状況について調べその結果を表3〜4に示し
た。次いで、得られたカップの温度を70℃にして、加
工度が22%のストレッチ加工およびしごき加工を付加
した再絞り加工を行った後、再絞り加工で得られたカッ
プの温度を40℃した後、金型温度を80℃に保持し最
終加工度が60%のしごき加工を行い、350mlビー
ル缶サイズのシームレス缶を作成した。こうして得られ
た缶体について、金型離型性、耐かじり性および缶内面
の品質をQTV試験で調べた。その評価結果を表3〜4
に示した。表1〜4から、本発明の実施例1〜4である
テスト2〜5は、絞り加工で得られるカップの底部コー
ナー部の樹脂フイルムのクラック発生もなく、またしご
き加工時の金型離型性、缶外面の耐かじり性共に良好
で、低いQTV値を示しており、良好な缶体が得られて
いることが分かる。一方、比較例1のテスト1はカップ
の絞り加工で、底部の抜けが散発し、絞り加工性が実施
例1〜4に比べ劣っていた。また、比較例2のテスト6
は、しごき加工で缶胴部の破断が散発し、比較例3のテ
スト7はしごき加工で缶胴部の破断が多発し、共にしご
き加工性が実施例1〜4に比べ劣っていた。
The temperature of the oil-laminated plate thus obtained was 7
The temperature was set to 0 ° C., and the drawing was performed by adding stretch processing and ironing processing at a processing degree of 7%. The cup obtained at this time was examined for the occurrence of microcracks in the resin film at the bottom corner of the can, and the results are shown in Tables 3 and 4. Next, the temperature of the obtained cup was set to 70 ° C., and after performing redrawing with stretching and ironing at a working ratio of 22%, the temperature of the cup obtained by redrawing was set to 40 ° C. Thereafter, the die temperature was maintained at 80 ° C., and ironing was performed at a final processing degree of 60%, to produce a 350 ml beer can-sized seamless can. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. Tables 3 and 4 show the evaluation results.
It was shown to. From Tables 1 to 4, Tests 2 to 5, which are Examples 1 to 4 of the present invention, showed that the resin film at the bottom corner of the cup obtained by drawing did not crack and that the mold was released during ironing. Both the properties and the galling resistance of the outer surface of the can were good, and the QTV value was low, indicating that a good can body was obtained. On the other hand, in Test 1 of Comparative Example 1, the draw-out of the bottom was caused by drawing of the cup, and the drawability was inferior to Examples 1-4. Test 6 of Comparative Example 2
In the ironing, the can body part was broken by spattering, and in Test 7 of Comparative Example 3, the can body part was frequently broken by ironing, and both were inferior in ironing workability to Examples 1-4.

【0061】下記表中、*1〜*8は下記の説明のとお
りである。 *1 潤Aは潤滑油Aを示す。 *2 塗油量の単位はmg/m2である。 *3 潤Bは潤滑油Bを示す。 *4 総塗油量は、片面に塗布された潤滑油の量を示
し、単位はmg/m2である。 *5 第1工程のストレッチ加工および/またはしごき
加工を付加した絞り加工工程を示す。 *6 第2工程のストレッチ加工および/またはしごき
加工を付加した再絞り加工工程を示す。 *7 第3工程のしごき加工工程を示す。 *8 実施例および比較例の表示の項については、実施
例1、2、…を実1、実2、…と、比較例1、2、…を
比1、比2…と表示した。
In the following table, * 1 to * 8 are as described below. * 1 Moisture A indicates lubricating oil A. * 2 The unit of oil application is mg / m 2 . * 3 Moisture B indicates lubricating oil B. * 4 The total amount of lubricating oil indicates the amount of lubricating oil applied to one side, and the unit is mg / m 2 . * 5 Indicates a drawing process to which stretching and / or ironing of the first process is added. * 6 Indicates the re-drawing process to which the stretching process and / or ironing process of the second process is added. * 7 Indicates the third ironing process. * 8 In Examples and Comparative Examples, Examples 1 and 2,..., Are shown as Real 1, Real 2,..., And Comparative Examples 1, 2,.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 (1):カップ絞り加工で底抜けが散発した[Table 3] (1): Bottom break-out spattered by cup drawing

【0065】[0065]

【表4】 (2):しごき加工で缶胴の破断が散発 (3):しごき加工で缶胴の破断が多発[Table 4] (2): Can body breaks frequently during ironing. (3): Can body breaks frequently during ironing.

【0066】実験例2 実験例1で作成した非晶質化ポリエステル樹脂フイルム
ラミネート板を用いて、実験例1の手順に準じて、両面
に成形用潤滑剤として融点が57℃の潤滑油(A)は加
温し液状にしてスプレーで塗油し、更にその上層に流動
点が−12.5℃の潤滑油(B)をスプレーで塗油し
た。(A)、(B)それぞれの塗油量は、17mg/m
2と9mg/m2で総塗油量は26mg/m2(テスト
8)、26mg/m2と12mg/m2で総塗油量38m
g/m2(テスト9)、46mg/m2と20mg/m2
で総塗油量66mg/m2(テスト10)、66mg/
2と25mg/m2で総塗油量91mg/m2(テスト
11)、83mg/m2と42mg/m2で総塗油量12
5mg/m2(テスト12)、107mg/m2と61m
g/m2で総塗油量168mg/m2(テスト13)、1
18mg/m2と75mg/m2で総塗油量193mg/
2(テスト14)とした。
Experimental Example 2 A lubricating oil (A) having a melting point of 57 ° C. was used as a molding lubricant on both sides using the amorphized polyester resin film laminate prepared in Experimental Example 1 in accordance with the procedure of Experimental Example 1. ) Was heated to be in a liquid state, sprayed with oil, and the upper layer was further sprayed with lubricating oil (B) having a pour point of -12.5 ° C. (A), (B) each oiling amount is 17mg / m
2 and 9 mg / total coating amount of oil in m 2, 26 mg / m 2 (Test 8), the total coating amount of oil at 26 mg / m 2 and 12 mg / m 2 38m
g / m 2 (test 9), 46 mg / m 2 and 20 mg / m 2
And the total oiling amount is 66 mg / m 2 (Test 10), 66 mg / m 2
m 2 and 25 mg / m 2 , total oiling 91 mg / m 2 (Test 11), 83 mg / m 2 and 42 mg / m 2 total oiling 12
5 mg / m 2 (Test 12), 107 mg / m 2 and 61 m
g / m 2 168 mg / m 2 (Test 13), 1
18 mg / m 2 and 75 mg / m 2 at a total oiling amount of 193 mg / m 2
m 2 (test 14).

【0067】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が7%のストレッチ加工およびしご
き加工を付加した絞り加工を行った。この時得られたカ
ップの、底部コーナーの樹脂フイルムのマイクロクラッ
ク発生状況について調べその結果を表7〜8に示した。
次いで、得られたカップの温度を70℃にして、加工度
が15%のストレッチ加工およびしごき加工を付加した
再絞り加工を行った後、再絞り加工で得られたカップの
温度を40℃にした後、金型温度を80℃に保持し最終
加工度が60%のしごき加工を行い、350mlビール
缶サイズのシームレス缶を作成した。こうして得られた
缶体について、金型離型性、耐かじり性および缶内面の
品質をQTV試験で調べた。その評価結果を表7〜8に
示した。
The temperature of the oil-laminated plate thus obtained was 7
The temperature was set to 0 ° C., and the drawing was performed by adding stretch processing and ironing processing at a processing degree of 7%. The cup obtained at this time was examined for the occurrence of microcracks in the resin film at the bottom corner, and the results are shown in Tables 7 and 8.
Next, the temperature of the obtained cup was set to 70 ° C., and a redrawing process with a stretch rate of 15% and an ironing process was performed. Then, the temperature of the cup obtained by the redrawing process was set to 40 ° C. After that, the mold temperature was maintained at 80 ° C., and ironing was performed at a final processing degree of 60%, to produce a 350 ml beer can-sized seamless can. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 7 and 8.

【0068】表5〜8から、本発明の実施例5〜10で
あるテスト9〜14は絞り加工で得られるカップの底部
コーナー部の樹脂フイルムのクラック発生もなく、また
しごき加工時の金型離型性、缶外面の耐かじり性共に良
好で、低いQTV値を示しており、良好な缶体が得られ
ていることが分かる。一方、比較例4のテスト8は、絞
り加工で得られるカップの底部コーナー部の樹脂フイル
ムに僅かにクラックが発生した。またしごき加工時の金
型離型性、缶外面の耐かじり性共に実施例5〜10に比
べ劣り、QTV値も高い値を示した。
As can be seen from Tables 5 to 8, Tests 9 to 14, which are Examples 5 to 10 of the present invention, show no cracking of the resin film at the bottom corner of the cup obtained by drawing, and a mold during ironing. Both the releasability and the galling resistance of the outer surface of the can were good, and the QTV value was low, indicating that a good can body was obtained. On the other hand, in Test 8 of Comparative Example 4, a slight crack occurred in the resin film at the bottom corner of the cup obtained by drawing. In addition, the mold releasability during ironing and the galling resistance of the outer surface of the can were inferior to those of Examples 5 to 10, and the QTV value also showed a high value.

【0069】[0069]

【表5】 [Table 5]

【0070】[0070]

【表6】 [Table 6]

【0071】[0071]

【表7】 [Table 7]

【0072】[0072]

【表8】 [Table 8]

【0073】実験例3 実験例1で作成した非晶質化ポリエステル樹脂フイルム
ラミネート板を用いて、実験例1の手順に準じて、両面
に成形用潤滑剤として、融点が57℃の潤滑油(A)は
加温し液状にしてスプレーにより塗油し、更にその上層
に、スプレーにより下記の流動点が−20.0℃〜2.
5℃の潤滑油(B)を塗油した。流動点が2.5℃の潤
滑油(B)(テスト15)、流動点が−7.5℃の潤滑
油(B)(テスト16)、流動点が−12.5℃の潤滑
油(B)(テスト17)、流動点が−17.5℃の潤滑
油(B)(テスト18)、流動点が−20.0℃の潤滑
油(B)(テスト19)を用い、それぞれの塗油量は表
9〜10に示した。
EXPERIMENTAL EXAMPLE 3 Using the amorphized polyester resin film laminate prepared in Experimental Example 1, according to the procedure of Experimental Example 1, lubricating oil having a melting point of 57.degree. A) is heated to be in a liquid state, spray-coated with oil, and the following pour point is sprayed on the upper layer by spraying from -20.0 ° C. to 2.0.
Lubricating oil (B) at 5 ° C. was applied. Lubricating oil (B) having a pour point of 2.5 ° C (Test 15), lubricating oil (B) having a pour point of -7.5 ° C (Test 16), and lubricating oil (B having a pour point of -12.5 ° C (B) ) (Test 17), using lubricating oil (B) having a pour point of -17.5 ° C. (Test 18) and lubricating oil (B) having a pour point of −20.0 ° C. (Test 19). The amounts are shown in Tables 9-10.

【0074】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が5%のしごき加工を付加した絞り
加工を行った。この時得られたカップの、底部コーナー
の樹脂フイルムのマイクロクラック発生状況について調
べ、その結果は表11〜12に示した。次いで、得られ
たカップの温度を70℃にして、加工度が15%のスト
レッチ加工およびしごき加工を付加した再絞り加工を行
った後、再絞り加工で得られたカップの温度を50℃に
した後、金型温度を80℃に保持し最終加工度が60%
のしごき加工を行い、350mlビール缶サイズのシー
ムレス缶を作成した。こうして得られた缶体について、
金型離型性、耐かじり性および缶内面の品質をQTV試
験で調べた。その評価結果を表11〜12に示した。
The temperature of the oil-coated laminate thus obtained was set at 7
At 0 ° C., drawing was performed by adding ironing with a working ratio of 5%. The state of the micro-cracks generated in the resin film at the bottom corner of the cup obtained at this time was examined. The results are shown in Tables 11 to 12. Next, the temperature of the obtained cup was set to 70 ° C., and after performing redrawing with stretch processing and ironing at a working ratio of 15%, the temperature of the cup obtained by redrawing was set to 50 ° C. After that, the mold temperature is kept at 80 ° C and the final working degree is 60%
Ironing was performed to produce a 350 ml beer-size seamless can. About the can body thus obtained,
The mold release property, galling resistance and quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 11 to 12.

【0075】表9〜12から、本発明の実施例11〜1
5であるテスト15〜19は絞り加工で得られるカップ
の缶底コーナー部の樹脂フイルムのクラック発生もな
く、またしごき加工時の金型離型性、缶外面の耐かじり
性共に良好で、低いQTV値を示しており、良好な缶体
が得られていることが分かる。
From Tables 9 to 12, it can be seen from Examples 11 to 1 of the present invention.
Tests 15 to 19, which are No. 5, have no cracks in the resin film at the corner of the bottom of the cup obtained by drawing, and have good mold release properties during ironing and good galling resistance on the outer surface of the can. It shows a QTV value, and it can be seen that a good can was obtained.

【0076】[0076]

【表9】 [Table 9]

【0077】[0077]

【表10】 [Table 10]

【0078】[0078]

【表11】 [Table 11]

【0079】[0079]

【表12】 [Table 12]

【0080】実験例4 実験例1で作成した非晶質化ポリエステル樹脂フイルム
ラミネート板を用いて、実験例1の手順に準じて、両面
に成形用潤滑剤として、潤滑油(A)は加温し液状にし
てスプレーにより塗油し、その上層に潤滑油(B)をス
プレーにより塗油した。評価した潤滑油は、融点50℃
の潤滑油(A)と流動点−12.5℃の潤滑油(B)
(テスト20)、融点54℃の潤滑油(A)と流動点−
12.5℃の潤滑油(B)(テスト21)、融点63℃
の潤滑油(A)と流動点−12.5℃の潤滑油(B)
(テスト22)、融点75℃の潤滑油(A)と流動点−
12.5℃の潤滑油(B)(テスト23)、融点84℃
の潤滑油(A)と流動点−12.5℃の潤滑油(B)
(テスト24)で、それぞれの塗油量は表13〜14に
示した。
Experimental Example 4 Using the amorphized polyester resin film laminate prepared in Experimental Example 1, according to the procedure of Experimental Example 1, lubricating oil (A) was heated on both sides as a forming lubricant. The mixture was liquidized and sprayed, and the upper layer was lubricated with a lubricating oil (B). The lubricating oil evaluated has a melting point of 50 ° C.
Lubricating oil (A) and lubricating oil with a pour point of -12.5 ° C (B)
(Test 20), lubricating oil (A) with a melting point of 54 ° C and pour point-
12.5 ° C lubricating oil (B) (test 21), melting point 63 ° C
Lubricating oil (A) and lubricating oil with a pour point of -12.5 ° C (B)
(Test 22), lubricating oil (A) with a melting point of 75 ° C and pour point-
12.5 ° C lubricating oil (B) (test 23), melting point 84 ° C
Lubricating oil (A) and lubricating oil with a pour point of -12.5 ° C (B)
In (Test 24), the amounts of oil applied are shown in Tables 13 and 14.

【0081】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が7%のストレッチ加工およびしご
き加工を付加した絞り加工を行った。この時得られたカ
ップの、底部コーナーの樹脂フイルムのマイクロクラッ
ク発生状況について調べ、その結果を表15〜16に示
した。次いで、得られたカップの温度を70℃にして、
加工度が15%のストレッチ加工およびしごき加工を付
加した再絞り加工を行った後、再絞り加工で得られたカ
ップの温度を50℃にした後、金型温度を100℃に保
持し最終加工度が60%のしごき加工を行い、350m
lビール缶サイズのシームレス缶を作成した。こうして
得た缶体について、金型離型性、耐かじり性および缶内
面の品質をQTV試験で調べた。その評価結果を表15
〜16に示した。
The temperature of the oil-laminated plate thus obtained was 7
The temperature was set to 0 ° C., and the drawing was performed by adding stretch processing and ironing processing at a processing degree of 7%. The occurrence of microcracks in the resin film at the bottom corner of the cup obtained at this time was examined, and the results are shown in Tables 15 and 16. Then, the temperature of the obtained cup was set to 70 ° C.,
After performing re-drawing with a stretch rate of 15% and ironing, the temperature of the cup obtained by the re-drawing is set to 50 ° C., and the mold temperature is kept at 100 ° C. for final processing. Ironing process with a degree of 60%, 350m
A seamless can of 1 beer can size was made. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. Table 15 shows the evaluation results.
~ 16.

【0082】表13〜16から、本発明の実施例16〜
20であるテスト20〜24は、絞り加工で得られるカ
ップの底部コーナー部の樹脂フイルムのクラック発生も
なく、またしごき加工時の金型離型性、缶外面の耐かじ
り性共に良好で、低いQTV値を示しており、良好な缶
体が得られていることが分かる。
Tables 13 to 16 show that Examples 16 to
In Tests 20 to 24, which were 20, no cracks occurred in the resin film at the bottom corner of the cup obtained by drawing, and the mold releasing property during ironing and the galling resistance of the outer surface of the can were both good and low. It shows a QTV value, and it can be seen that a good can was obtained.

【0083】[0083]

【表13】 [Table 13]

【0084】[0084]

【表14】 [Table 14]

【0085】[0085]

【表15】 [Table 15]

【0086】[0086]

【表16】 [Table 16]

【0087】実験例5 実験例1で作成した非晶質化ポリエステル樹脂フイルム
ラミネート板を用いて、実験例1の手順に準じて、両面
に成形用潤滑剤として融点が57℃の潤滑油(A)は加
温し液状にしてスプレーにより38mg/m2塗油し、
更にその上層に流動点が−12.5℃の潤滑油(B)を
スプレーにより18mg/m2、総塗油量として56m
g/m2、塗油した。
Experimental Example 5 Using the amorphized polyester resin film laminate prepared in Experimental Example 1, a lubricating oil having a melting point of 57 ° C. (A) was used as a molding lubricant on both sides according to the procedure of Experimental Example 1. ) Is heated to a liquid state and sprayed with 38 mg / m 2 oil,
Further, the lubricating oil (B) having a pour point of -12.5 ° C. was sprayed on the upper layer by 18 mg / m 2 , and the total oil amount was 56 m.
g / m 2 .

【0088】こうして得た塗油ラミネート板の温度を5
0℃(テスト25)、70℃(テスト26)、90℃
(テスト27)、110℃(テスト28)、120℃
(テスト29)、130℃(テスト30)にしたものに
対し、しごき加工を付加した加工度が5%の絞り加工を
行った。この時得られたカップの、底部コーナーの樹脂
フイルムのマイクロクラック発生状況について観察し、
その結果を表22〜26に示した。次いで、得られたカ
ップの温度を70℃にして、ストレッチ加工およびしご
き加工を付加した加工度が15%の再絞り加工を行った
後、再絞り加工で得られたカップの温度を40℃にした
後、金型温度を80℃に保持し最終加工度が60%のし
ごき加工を行い、350mlビール缶サイズのシームレ
ス缶を作成した。
The temperature of the oil-laminated plate thus obtained was 5
0 ° C (Test 25), 70 ° C (Test 26), 90 ° C
(Test 27), 110 ° C (Test 28), 120 ° C
(Test 29) A 130 ° C. (Test 30) was subjected to drawing at a workability of 5% with the addition of ironing. Observing the microcrack occurrence of the resin film at the bottom corner of the cup obtained at this time,
The results are shown in Tables 22 to 26. Next, the temperature of the obtained cup was set to 70 ° C., and redrawing was performed at a working ratio of 15% with the addition of stretching and ironing, and then the temperature of the cup obtained by redrawing was set to 40 ° C. After that, the mold temperature was maintained at 80 ° C., and ironing was performed at a final processing degree of 60%, to produce a 350 ml beer can-sized seamless can.

【0089】また、上記のテスト26で得られた再絞り
加工のカップについて、温度をそれぞれ30℃(テスト
31)、40℃(テスト32)、50℃(テスト3
3)、60℃(テスト34)、70℃(テスト35)に
した後、金型温度を80℃に保持し最終加工度が60%
のしごき加工を行い、350mlビール缶サイズのシー
ムレス缶を作成した。比較のため上記のテスト30で得
た絞りカップの温度を70℃にし、ストレッチ加工およ
びしごき加工を付加した加工度が15%の再絞り加工を
行った後、再絞りカップの温度をそれぞれ40℃(テス
ト36)、60℃(テスト37)にしたものに対し、金
型温度を100℃に保持し最終加工度が60%のしごき
加工を行い、350mlビール缶サイズのシームレス缶
を作成した。
Further, with respect to the cups obtained by the redrawing process obtained in the above Test 26, the temperatures were 30 ° C. (Test 31), 40 ° C. (Test 32) and 50 ° C. (Test 3), respectively.
3) After the temperature was raised to 60 ° C (test 34) and 70 ° C (test 35), the mold temperature was kept at 80 ° C and the final workability was 60%.
Ironing was performed to produce a 350 ml beer-size seamless can. For comparison, the temperature of the drawing cup obtained in the above test 30 was set to 70 ° C., and after performing re-drawing with a working ratio of 15% with the addition of stretching and ironing, the temperature of the re-drawing cup was set to 40 ° C. respectively. (Test 36) After the temperature was raised to 60 ° C. (Test 37), the mold temperature was kept at 100 ° C., and ironing was performed at a final working degree of 60%, thereby producing a 350 ml beer can-sized seamless can.

【0090】また、比較のため上記テスト26で得た絞
りカップの温度を70℃にして、ストレッチ加工および
しごき加工を付加した加工度が15%の再絞り加工を行
った後、再絞りカップの温度を40℃にして、金型温度
をそれぞれ70℃(テスト38)、100℃(テスト3
9)、120℃(テスト40)、140℃(テスト4
1)に保持したものを使用し、最終加工度が60%のし
ごき加工を行い、350mlビール缶サイズのシームレ
ス缶を作成した。
Further, for comparison, the temperature of the drawn cup obtained in the above Test 26 was set to 70 ° C., and redrawing was performed with a working ratio of 15% after stretching and ironing. The temperature was set to 40 ° C., and the mold temperature was set to 70 ° C. (test 38) and 100 ° C. (test 3).
9), 120 ° C (Test 40), 140 ° C (Test 4)
Using the material held in 1), ironing was performed at a final processing degree of 60%, and a seamless can of 350 ml beer can size was prepared.

【0091】こうして得た缶体について、金型離型性、
耐かじり性および缶内面の品質をQTV試験で調べた。
その評価結果を表22〜26に示した。
[0091] The can body thus obtained was subjected to mold release,
The galling resistance and the quality of the inner surface of the can were examined by a QTV test.
The evaluation results are shown in Tables 22 to 26.

【0092】表17〜26から、本発明の実施例21〜
24であるテスト26〜29は、絞り加工で得られるカ
ップの底部コーナーの樹脂フイルムのクラック発生もな
く、またしごき加工時の金型離型性、缶外面の耐かじり
性共に良好で、低いQTV値を示しており、良好な缶体
が得られていることが分かる。一方、比較例5、6であ
るテスト25、30は、しごき加工時の金型離型性、缶
外面の耐かじり性は共に良好であるが、絞り加工で得ら
れるカップの底部コーナーの樹脂フイルムのクラック発
生は、実施例21〜24に比べ劣り、その結果QTV値
は高い値を示し、内面品質は実施例21〜24に比べ劣
る。
Tables 17 to 26 show that Examples 21 to 21 of the present invention were obtained.
Tests 26 to 29, No. 24, showed no cracking of the resin film at the bottom corner of the cup obtained by drawing, good mold release during ironing, good galling resistance on the outer surface of the can, and low QTV. It shows that a good can was obtained. On the other hand, in Tests 25 and 30, which are Comparative Examples 5 and 6, the mold release property during ironing and the galling resistance of the outer surface of the can were both good, but the resin film at the bottom corner of the cup obtained by drawing was used. Is inferior to Examples 21 to 24, as a result, the QTV value is high, and the inner surface quality is inferior to Examples 21 to 24.

【0093】また、本発明の実施例25〜27であるテ
スト31〜33は、絞り加工で得られるカップの底部コ
ーナーの樹脂フイルムのクラック発生もなく、またしご
き加工時の金型離型性、缶外面の耐かじり性共に良好
で、低いQTV値を示しており、良好な缶体が得られて
いることが分かる。一方、比較例7、8であるテスト3
4、35は、絞り加工で得られるカップの底部コーナー
の樹脂フイルムのクラック発生は見られないが、しごき
加工時の金型離型性、缶外面の耐かじり性は共に劣り高
いQTV値を示しており、缶内品質が実施例25〜27
に比べ劣ることが分かる。
Tests 31 to 33, which are Examples 25 to 27 of the present invention, show that the resin film at the bottom corner of the cup obtained by drawing does not crack, the mold releasability at the time of ironing, Both the galling resistance of the outer surface of the can was good and the QTV value was low, indicating that a good can body was obtained. On the other hand, Test 3 which is Comparative Examples 7 and 8
In Nos. 4 and 35, no cracking of the resin film at the bottom corner of the cup obtained by drawing was observed, but the mold releasability during ironing and the galling resistance of the outer surface of the can were both inferior and high QTV values. And the quality in the can was as shown in Examples 25-27.
It turns out that it is inferior to.

【0094】比較例10のテスト37の場合は、絞り加
工で得られるカップの底部コーナー部の樹脂フイルムに
クラックが発生し、また、しごき加工時の金型離型性、
缶外面の耐かじり性は共に劣り、高いQTV値を示して
おり、缶内面品質がどの実施例に比べても劣ることが分
かる。しかも、比較例6と比べても金型離型性、耐かじ
り性、缶内面品質が劣ることが分かる。比較例9のテス
ト36は前述した比較例6のテスト30の再現評価であ
る。
In the case of Test 37 of Comparative Example 10, cracks occurred in the resin film at the bottom corners of the cup obtained by drawing, and the mold releasability during ironing was reduced.
Both the galling resistance of the outer surface of the can was inferior and the QTV value was high, indicating that the inner surface quality of the can was inferior to any of the examples. Moreover, it can be seen that the mold release properties, galling resistance, and inner surface quality of the can are inferior even in comparison with Comparative Example 6. Test 36 of Comparative Example 9 is a reproduction evaluation of Test 30 of Comparative Example 6 described above.

【0095】更に、本発明の実施例28〜30のテスト
38〜40は、絞り加工で得られるカップの底部コーナ
ーの樹脂フイルムのクラック発生もなく、またしごき加
工時の金型離型性、缶外面の耐かじり性共に良好で、低
いQTV値を示しており、良好な缶体が得られているこ
とが分かる。一方、比較例11のテスト41は、絞り加
工で得られるカップの底部コーナー部の樹脂フイルムの
クラック発生は見られないが、しごき加工時の金型離型
性、缶外面の耐かじり性は共に劣り高いQTV値を示し
ており、缶内面品質が実施例28〜31に比べ劣ること
が分かる。
Further, Tests 38 to 40 in Examples 28 to 30 of the present invention showed that the resin film at the bottom corner of the cup obtained by drawing did not crack, the mold releasability at the time of ironing, and Both the galling resistance of the outer surface is good and the QTV value is low, indicating that a good can was obtained. On the other hand, in Test 41 of Comparative Example 11, no cracking of the resin film at the bottom corner of the cup obtained by drawing was observed, but both the mold releasability during ironing and the galling resistance of the outer surface of the can were low. It shows an inferiorly high QTV value, indicating that the inner surface quality of the can is inferior to those of Examples 28 to 31.

【0096】[0096]

【表17】 [Table 17]

【0097】[0097]

【表18】 [Table 18]

【0098】[0098]

【表19】 [Table 19]

【0099】[0099]

【表20】 [Table 20]

【0100】[0100]

【表21】 [Table 21]

【0101】[0101]

【表22】 [Table 22]

【0102】[0102]

【表23】 [Table 23]

【0103】[0103]

【表24】 [Table 24]

【0104】[0104]

【表25】 [Table 25]

【0105】[0105]

【表26】 [Table 26]

【0106】実験例6 表面に被膜C量として26mg/m2のリン酸−フェノ
ール樹脂の有機無機複合型化成処理被膜を有する、板厚
0.28mmのアルミニウム板(3004系合金)の両
面に、ガラス転移温度(Tg)が67℃、冷結晶化温度
(Tc)が123℃、融点が238℃のポリエステル樹
脂フイルムの厚みがそれぞれ、8μm(テスト42)、
15μm(テスト43)、20μm(テスト44)、3
0μm(テスト45)、40μm(テスト46)、50
μm(テスト47)の二軸延伸フイルムを熱圧着法で接
着した後、加熱・冷却し5種類の非晶質化ポリエステル
樹脂フイルム被覆ラミネート板を作成した。これら5種
類の非晶質化ポリエステル樹脂フイルムの密度は、表2
7〜28に示した。
Experimental Example 6 A 0.28 mm-thick aluminum plate (3004 series alloy) having a phosphoric acid-phenol resin organic-inorganic composite chemical conversion coating film having a coating C amount of 26 mg / m 2 on both surfaces, A polyester resin film having a glass transition temperature (Tg) of 67 ° C., a cold crystallization temperature (Tc) of 123 ° C., and a melting point of 238 ° C. has a thickness of 8 μm (Test 42), respectively.
15 μm (test 43), 20 μm (test 44), 3
0 μm (test 45), 40 μm (test 46), 50
After bonding a biaxially stretched film of μm (Test 47) by a thermocompression bonding method, the film was heated and cooled to prepare five types of amorphized polyester resin film-coated laminates. The densities of these five types of amorphized polyester resin films are shown in Table 2.
7 to 28.

【0107】次いで、実験例1の手順に準じて、両面に
成形用潤滑剤として融点が57℃の潤滑油(A)は加温
し液状にしてグラビアロールにより塗油をし、更にその
上層に流動点が−7.5℃の潤滑油(B)をグラビアロ
ールにより塗油した。塗油量は表27〜28に示した。
こうして得た塗油ラミネート板の温度を70℃にして、
加工度が7%のストレッチ加工およびしごき加工を付加
した絞り加工を行った。この時得られたカップの、缶底
部コーナーの樹脂フイルムのマイクロクラック発生状況
について調べ、その結果を表29〜30に示した。
Next, in accordance with the procedure of Experimental Example 1, lubricating oil (A) having a melting point of 57 ° C. as a molding lubricant on both surfaces was heated to be in a liquid state, coated with gravure rolls, and further coated on the upper layer. The lubricating oil (B) having a pour point of -7.5 ° C was applied with a gravure roll. The amount of oil applied is shown in Tables 27 to 28.
The temperature of the oil-coated laminate thus obtained was set to 70 ° C.
Stretching with a working ratio of 7% and drawing with the addition of ironing were performed. The cup obtained at this time was examined for the occurrence of microcracks in the resin film at the bottom corner of the can, and the results are shown in Tables 29 to 30.

【0108】次いで、得られたカップの温度を70℃に
して、加工度が22%のストレッチ加工およびしごき加
工を付加した再絞り加工を行った後、再絞り加工で得ら
れたカップの温度を40℃にした後、金型温度を80℃
に保持し最終加工度が63%のしごき加工を行い、35
0mlビール缶サイズのシームレス缶を作成した。こう
して得た缶体について、金型離型性、耐かじり性および
缶内面の品質をQTV試験で調べた。その評価結果を表
29〜30に示した。表27〜30から、本発明の実施
例31〜35のテスト42〜47は、絞り加工で得られ
るカップの底部コーナーの樹脂フイルムのクラック発生
もなく、またしごき加工時の金型離型性、缶外面の耐か
じり性共に良好で、低いQTV値を示しており、良好な
缶体が得られていることが分かる。一方、比較例12の
テスト42は、絞り加工で得られるカップの底部コーナ
ーの樹脂フイルムのクラック発生はなく良好で、しごき
加工時の金型離型性、缶外面の耐かじり性も共に良好だ
が、QTV値は高い値を示した。
Next, the temperature of the obtained cup was set to 70 ° C., and redrawing was performed with a stretch ratio of 22% and ironing, followed by raising the temperature of the cup obtained by the redrawing process. After the temperature is 40 ° C, the mold temperature is 80 ° C
And ironing processing with a final processing degree of 63%
A 0 ml beer can-sized seamless can was made. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 29 to 30. From Tables 27 to 30, Tests 42 to 47 of Examples 31 to 35 of the present invention showed that the resin film at the bottom corner of the cup obtained by drawing did not crack, the mold releasability at the time of ironing, Both the galling resistance of the outer surface of the can was good and the QTV value was low, indicating that a good can body was obtained. On the other hand, in Test 42 of Comparative Example 12, the resin film at the bottom corner of the cup obtained by drawing was free of cracks, and the mold releasing property during ironing and the galling resistance of the outer surface of the can were both good. , QTV values showed high values.

【0109】[0109]

【表27】 [Table 27]

【0110】[0110]

【表28】 [Table 28]

【0111】[0111]

【表29】 [Table 29]

【0112】[0112]

【表30】 [Table 30]

【0113】実験例7 実験例6で用いた有機無機複合型化成処理被膜を有する
アルミニウム板の両面に、樹脂フイルムの融点が193
℃のフイルム(テスト48)、融点が205℃のフイル
ム(テスト49)、218℃のフイルム(テスト5
0)、融点が230℃のフイルム(テスト51)、融点
が242℃のフイルム(テスト52)、融点が252℃
のフイルム(テスト53)、融点が261℃のフイルム
(テスト54)の、それぞれ厚みが20μmの二軸延伸
ポリエステル樹脂フイルムを熱圧着法で接着した後、加
熱・冷却し7種類の非晶質化ポリエステル樹脂フイルム
被覆ラミネート板を作成した。各テスト板の樹脂フイル
ムのガラス転移温度(Tg)、冷結晶化温度(Tc)お
よびラミネート板の樹脂フイルムの密度は、表31〜3
2に示した。
EXPERIMENTAL EXAMPLE 7 The melting point of the resin film was 193 on both sides of the aluminum plate having the organic-inorganic composite chemical conversion coating used in Experimental Example 6.
C. film (Test 48), a film with a melting point of 205.degree. C. (Test 49), and a 218.degree. C. film (Test 5).
0), a film having a melting point of 230 ° C. (test 51), a film having a melting point of 242 ° C. (test 52), and a melting point of 252 ° C.
A film (test 53) and a film having a melting point of 261 ° C. (test 54) were bonded by a thermocompression bonding method to a biaxially stretched polyester resin film having a thickness of 20 μm. A polyester resin film-coated laminate was prepared. The glass transition temperature (Tg), the cold crystallization temperature (Tc) of the resin film of each test plate and the density of the resin film of the laminate plate are shown in Tables 31 to 3.
2 is shown.

【0114】次いで、実験例1の手順に準じて、両面に
成形用潤滑剤として融点が57℃の潤滑油(A)は加温
し液状にして、グラビアロールにより塗油をし、更にそ
の上層に流動点が−12.5℃の潤滑油(B)をグラビ
アロールにより塗油した。塗油量は表31〜32に示し
た。こうして得た塗油ラミネート板の温度を75℃にし
て、加工度が5%のストレッチ加工を付加した絞り加工
を行った。この時得られたカップの、底部コーナーの樹
脂フイルムのマイクロクラック発生状況について調べ、
その結果を表33〜34に示した。
Next, in accordance with the procedure of Experimental Example 1, lubricating oil (A) having a melting point of 57 ° C. as a molding lubricant was heated on both sides to a liquid state, and then applied with a gravure roll, and the upper layer was further coated. Was lubricated with a lubricating oil (B) having a pour point of -12.5 ° C using a gravure roll. The amount of oil applied is shown in Tables 31 to 32. The temperature of the oil-laminated plate thus obtained was set to 75 ° C., and a drawing process with a stretch ratio of 5% was performed. The cup obtained at this time was examined for the occurrence of microcracks in the resin film at the bottom corner,
The results are shown in Tables 33 to 34.

【0115】次いで、得られたカップの温度を75℃に
して、加工度が22%のストレッチ加工およびしごき加
工を付加した再絞り加工を行った後、再絞り加工で得ら
れたカップの温度を40℃にした後、金型温度を80℃
に保持し最終加工度が63%のしごき加工を行い、35
0mlビール缶サイズのシームレス缶を作成した。こう
して得た缶体について、金型離型性、耐かじり性および
缶内面の品質をQTV試験で調べた。その評価結果を表
33〜34に示した。
Next, the temperature of the obtained cup was raised to 75 ° C., and redrawing was performed with stretching and ironing at a working ratio of 22%, and then the temperature of the cup obtained by redrawing was increased. After the temperature is 40 ° C, the mold temperature is 80 ° C
And ironing processing with a final processing degree of 63%
A 0 ml beer can-sized seamless can was made. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 33 to 34.

【0116】表31〜34から、本発明の実施例36〜
40のテスト49〜53は、絞り加工で得られるカップ
の底部コーナーの樹脂フイルムのクラック発生もなく、
またしごき加工時の金型離型性、缶外面の耐かじり性共
に良好で、低いQTV値を示しており、良好な缶体が得
られていることが分かる。一方、比較例13のテスト4
8は、絞り加工で得られるカップの缶底コーナー部の樹
脂フイルムのクラックは発生もなく良好だが、しごき加
工時の金型離型性、缶外面の耐かじり性は共に実施例3
6〜40に比べ劣り、QTV値も高い値を示した。また
比較例14のテスト54の場合は、絞り加工で得られる
カップの底部コーナーの樹脂フイルムのクラック発生
は、実施例36〜40に比べ若干劣る程度であったが、
しごき加工時の金型離型性、缶外面の耐かじり性は共に
良好にもかかわらず、高いQTV値を示した。
From Tables 31 to 34, it can be seen from Examples 36 to 36 of the present invention.
The tests 49 to 53 of No. 40 were conducted without cracking of the resin film at the bottom corner of the cup obtained by drawing.
In addition, the mold releasing property during ironing and the galling resistance of the outer surface of the can are both good, exhibiting a low QTV value, indicating that a good can body has been obtained. On the other hand, Test 4 of Comparative Example 13
No. 8 shows that the resin film in the corner of the can bottom of the cup obtained by the drawing process was good without cracking, but the mold releasability during ironing and the galling resistance of the outer surface of the can were both Example 3.
It was inferior to 6 to 40, and also showed a high QTV value. In the case of Test 54 of Comparative Example 14, cracking of the resin film at the bottom corner of the cup obtained by drawing was slightly inferior to Examples 36 to 40.
Although the mold release property during ironing and the galling resistance of the outer surface of the can were both good, a high QTV value was exhibited.

【0117】[0117]

【表31】 [Table 31]

【0118】[0118]

【表32】 [Table 32]

【0119】[0119]

【表33】 [Table 33]

【0120】[0120]

【表34】 [Table 34]

【0121】実験例8 表面に被膜C量として23mg/m2のリン酸−フェノ
ール樹脂の複合化成処理被膜を有する、板厚0.24m
mのアルミニウム板(3052系合金)の両面に、実験
例6のテスト44で用いたポリエステル樹脂フイルムを
圧着条件を変えて被覆した後、必要に応じ加熱冷却し、
密度の異なるポリエステル樹脂フイルム被覆ラミネート
板を作成した。得られたラミネート板の樹脂フイルムの
密度は、1.343(テスト55)、1.352(テス
ト56)、1.368(テスト57)、1.385(テ
スト58)であった。次いで、実験例1の手順に準じ
て、両面に成形用潤滑剤として融点が57℃の潤滑油
(A)は加温し液状にしてグラビアロールにより塗油
し、更にその上層に流動点が−12.5℃の潤滑油
(B)をグラビアロールにより塗油した。塗油量は表3
5に示した。
Experimental Example 8 A 0.24 m-thick phosphoric acid-phenol resin composite chemical conversion coating having a coating C amount of 23 mg / m 2 on the surface.
After coating the polyester resin film used in Test 44 of Experimental Example 6 under different pressure bonding conditions on both surfaces of an aluminum plate (3052 series alloy) having a thickness of 30 m, heating and cooling as necessary,
Polyester resin film-coated laminates having different densities were prepared. The densities of the resin films of the obtained laminate were 1.343 (test 55), 1.352 (test 56), 1.368 (test 57), and 1.385 (test 58). Then, in accordance with the procedure of Experimental Example 1, lubricating oil (A) having a melting point of 57 ° C. was heated as a lubricant on both sides to form a liquid, and was liquefied and applied with a gravure roll. Lubricating oil (B) at 12.5 ° C. was applied with a gravure roll. Table 3 shows the amount of oil applied.
5 is shown.

【0122】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が5%のストレッチ加工を付加した
絞り加工を行った。この時得られたカップの、底部コー
ナーの樹脂フイルムのマイクロクラック発生状況につい
て調べ、その結果を表36に示した。次いで、得られた
カップの温度を70℃にして、加工度が22%のストレ
ッチ加工およびしごき加工を付加した再絞り加工を行っ
た後、再絞り加工で得られたカップの温度を40℃にし
た後、金型温度を80℃に保持し最終加工度が56%の
しごき加工を行い、350mlビール缶サイズのシーム
レス缶を作成した。こうして得られた缶体について、金
型離型性、耐かじり性および缶内面の品質をQTV試験
で調べた。その評価結果を表36に示した。
The temperature of the oil-laminated plate thus obtained was 7
The temperature was reduced to 0 ° C., and a drawing process was performed with a stretch process of 5% added. The cup obtained at this time was examined for the occurrence of microcracks in the resin film at the bottom corner, and the results are shown in Table 36. Next, the temperature of the obtained cup was set to 70 ° C., and redrawing was performed with a stretch ratio of 22% and ironing, followed by raising the temperature of the cup obtained by redrawing to 40 ° C. After that, the mold temperature was maintained at 80 ° C., and ironing was performed at a final processing degree of 56%, thereby producing a 350 ml beer-sized seamless can. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. Table 36 shows the evaluation results.

【0123】表35〜36から、本発明の実施例41、
42のテスト55、56は、絞り加工で得られるカップ
の底部コーナーの樹脂フイルムのクラック発生もなく、
またしごき加工時の金型離型性、缶外面の耐かじり性共
に良好で、低いQTV値を示しており、良好な缶体が得
られていることが分かる。一方、比較例15、16のテ
スト57、58は、絞り加工で得られるカップの缶底コ
ーナー部の樹脂フイルムのクラックは発生もなく良好で
あり、またしごき加工時の金型離型性、缶外面の耐かじ
り性は共に良好にもかかわらず、高いQTV値を示し内
面品質は実施例41、42に比べ劣る。
From Tables 35 to 36, Example 41 of the present invention,
The tests 55 and 56 of No. 42 showed no cracking of the resin film at the bottom corner of the cup obtained by drawing.
In addition, the mold releasing property during ironing and the galling resistance of the outer surface of the can are both good, exhibiting a low QTV value, indicating that a good can body has been obtained. On the other hand, in Tests 57 and 58 of Comparative Examples 15 and 16, the resin film at the corner of the bottom of the cup obtained by drawing was good without cracking, and the mold releasing property during ironing was good. Although the galling resistance of the outer surface is good, a high QTV value is exhibited and the inner surface quality is inferior to those of Examples 41 and 42.

【0124】[0124]

【表35】 [Table 35]

【0125】[0125]

【表36】 [Table 36]

【0126】実験例9 実験例1で作成した非晶質化ポリエステル樹脂フイルム
被覆ラミネート板を用いて、実験例1の手順に準じて、
両面に成形用潤滑剤として融点が57℃の潤滑油(A)
は加温し液状にしてスプレーにより38mg/m2塗油
し、更にその上層に流動点が−12.5℃の潤滑油
(B)をスプレーにより18mg/m2、総塗油量とし
て56mg/m2、塗油した。こうして得た塗油ラミネ
ート板を、金型温度をそれぞれ50℃(テスト59)、
70℃(テスト60)、90℃(テスト61)、110
℃(テスト62)、120℃(テスト63)、130℃
(テスト64)にしたものに対し、しごき加工を付加し
た加工度が5%の絞り加工を行った。この時得られたカ
ップの、底部コーナーの樹脂フイルムのマイクロクラッ
ク発生状況について観察し、表39〜40に示した。
EXPERIMENTAL EXAMPLE 9 Using the amorphized polyester resin film-coated laminate prepared in Experimental Example 1, according to the procedure of Experimental Example 1,
Lubricating oil having a melting point of 57 ° C as a molding lubricant on both sides (A)
Is heated to be in a liquid state and sprayed with 38 mg / m 2 of oil, and a lubricant (B) having a pour point of -12.5 ° C. is sprayed on the upper layer at 18 mg / m 2 with a total oiling amount of 56 mg / m 2 . m 2 , oiling. The thus-obtained oil-laminated plate was subjected to a mold temperature of 50 ° C. (test 59),
70 ° C (Test 60), 90 ° C (Test 61), 110
° C (Test 62), 120 ° C (Test 63), 130 ° C
(Test 64) was subjected to drawing with a workability of 5% with the addition of ironing. Observations were made on the occurrence of microcracks in the resin film at the bottom corner of the cup obtained at this time, and the results are shown in Tables 39 to 40.

【0127】次いで、得られたカップを金型温度を75
℃にして、ストレッチ加工およびしごき加工を付加した
加工度が15%の再絞り加工を行った後、再絞り加工で
得られたカップの温度を40℃にした後、金型温度を8
0℃に保持し最終加工度が60%のしごき加工を行い、
350mlビール缶サイズのシームレス缶を作成した。
こうして得られた缶体について、金型離型性、耐かじり
性および缶内面の品質をQTV試験で調べた。その評価
結果を表39〜40に示した。
Next, the obtained cup was heated to a mold temperature of 75.
° C, and after performing redrawing at a working ratio of 15% with the addition of stretching and ironing, the temperature of the cup obtained by the redrawing is set at 40 ° C, and the mold temperature is set at 8 ° C.
Hold iron at 0 ° C and ironing work with final processing degree of 60%
A seamless can of 350 ml beer can size was prepared.
With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 39 to 40.

【0128】表37〜40から、本発明の実施例43〜
46のテスト60〜63は、絞り加工で得られるカップ
の底部コーナーの樹脂フイルムのクラック発生もなく、
またしごき加工時の金型離型性、缶外面の耐かじり性共
に良好で、低いQTV値を示しており、良好な缶体が得
られていることが分かる。しかし、ラミネート板および
カップの温度をガラス転移温度(Tg)から冷結晶化温
度(Tc)にして成形加工を行った実施例21〜24の
テスト26〜29に比べると、内面品質の点で若干劣る
が、十分実用性を有しているレベルである。一方、比較
例17、18のテスト59、64は、しごき加工時の金
型離型性、缶外面の耐かじり性は共に良好であるが、絞
り加工で得られるカップの底部コーナーの樹脂フイルム
のクラック発生は、実施例21〜24に比べ劣り、その
結果QTV値は高い値を示し、内面品質は実施例43〜
46に比べ劣る。
From Tables 37 to 40, it can be seen from Examples 43 to 43 of the present invention.
Tests 60 to 63 of 46 showed that the resin film at the bottom corner of the cup obtained by drawing did not crack,
In addition, the mold releasing property during ironing and the galling resistance of the outer surface of the can are both good, exhibiting a low QTV value, indicating that a good can body has been obtained. However, as compared with the tests 26 to 29 of Examples 21 to 24 in which the temperature of the laminate plate and the cup was changed from the glass transition temperature (Tg) to the cold crystallization temperature (Tc), the inner surface quality was slightly higher. Although it is inferior, it is a level that has sufficient practicality. On the other hand, the tests 59 and 64 of Comparative Examples 17 and 18 showed that the mold release property during ironing and the galling resistance of the outer surface of the can were both good, but the resin film at the bottom corner of the cup obtained by drawing was not good. Crack generation was inferior to Examples 21 to 24. As a result, the QTV value was high, and the inner surface quality was as high as Examples 43 to 24.
Inferior to 46.

【0129】[0129]

【表37】 [Table 37]

【0130】[0130]

【表38】 [Table 38]

【0131】[0131]

【表39】 [Table 39]

【0132】[0132]

【表40】 [Table 40]

【0133】[0133]

【発明の効果】以上、説明したように、本発明を実施す
ることで、得られる缶体内面のポリエステル樹脂フイル
ムは優れた被膜健全性を有しており、その結果高耐食性
のアルミニウムシームレス缶が得られる。従って、種々
の内容物を充填することが可能であり、缶品種の統合が
安心してできるので、そのコスト削減効果は大きい。
As described above, by carrying out the present invention, the obtained polyester resin film on the inner surface of the can has excellent coating soundness, and as a result, a highly corrosion-resistant aluminum seamless can is obtained. can get. Therefore, various contents can be filled, and the integration of can types can be carried out with a sense of security.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B65D 1/16 B65D 1/16 1/28 1/28 (72)発明者 山本 正俊 神奈川県相模原市西橋本5丁目5番1号 大和製罐株式会社内 (72)発明者 笠戸 英一郎 神奈川県相模原市西橋本5丁目5番1号 大和製罐株式会社内 (72)発明者 林 知彦 神奈川県相模原市西橋本5丁目5番1号 大和製罐株式会社内 Fターム(参考) 3E033 AA06 BA09 BA17 BA18 BB08 EA10 EA12 FA10 GA02 4F100 AB10A AJ10H AK41B AK41C BA03 BA06 BA08 BA10B BA10C CA19 DA11 EA021 EC011 EC031 EH462 EJ262 GB16 JA04B JA04C JA13B JA13C JB02 JB16B JB16C JL02 YY00B YY00C ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) B65D 1/16 B65D 1/16 1/28 1/28 (72) Inventor Masatoshi Yamamoto Nishihashimoto, Sagamihara City, Kanagawa Prefecture 5-5-1, Daiwa Seikan Co., Ltd. (72) Eiichiro Kasado, Inventor 5-5-1 Nishihashimoto, Sagamihara City, Kanagawa Prefecture 5-5-1 Hashimoto F-term in Daiwa Seikan Co., Ltd. (reference) 3E033 AA06 BA09 BA17 BA18 BB08 EA10 EA12 FA10 GA02 4F100 AB10A AJ10H AK41B AK41C BA03 BA06 BA08 BA10B BA10C CA19 DA11 EA021 EC011 EC031E04B JA13 EA13J04 JB02 JB16B JB16C JL02 YY00B YY00C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 板厚が0.20mm〜0.32mmのア
ルミニウム板の両面に、厚み10〜50μm、融点(T
m)200℃〜260℃、密度1.36未満である熱可
塑性ポリエステル樹脂フィルムで被覆されたラミネート
アルミニウム板の樹脂フィルム被覆面に、片面の付着量
として、作業環境温度下で液状でない潤滑油(A)を2
0〜120mg/m2、その上層に、作業環境温度下で
液状である潤滑油(B)を10〜80mg/m2、総塗
油量として、片面の付着量30〜200mg/m2の塗
油を施したことを特徴とするシームレス缶用ポリエステ
ル樹脂被覆アルミニウム板。
1. An aluminum plate having a thickness of 0.20 mm to 0.32 mm, a thickness of 10 to 50 μm and a melting point (T
m) A lubricating oil that is not liquid at the working environment temperature as the amount of adhesion on one side of the resin film-coated surface of the laminated aluminum plate coated with a thermoplastic polyester resin film having a temperature of 200 ° C to 260 ° C and a density of less than 1.36 ( A) 2
0~120mg / m 2, thereon, working liquid in which the lubricating oil in the environment temperature (B) a 10 to 80 mg / m 2, as the total coating amount of oil, of one side of the adhesion amount 30 to 200 mg / m 2 coating A polyester resin-coated aluminum plate for a seamless can, characterized by applying oil.
【請求項2】 板厚が0.20mm〜0.32mmのア
ルミニウム板の両面に、厚み10〜50μm、融点(T
m)200℃〜260℃、密度1.36未満である熱可
塑性ポリエステル樹脂で被覆されたラミネートアルミニ
ウム板を用いてシームレス缶を製造するに際し、該ラミ
ネートアルミニウム板の樹脂フィルム被覆面に、片面の
付着量として、融点が40℃以上である潤滑油(A)を
20〜120mg/m2、その上層に、流動点が5℃以
下である潤滑油(B)を10〜80mg/m2、総塗油
量として、片面の付着量30〜200mg/m2の塗油
を施した後、該ポリエステル樹脂フィルムのガラス転移
温度(Tg)から冷結晶化温度(Tc)の範囲でストレ
ッチ加工および/またはしごき加工を付加した絞り加工
(第1工程)を行い、次いで、第1工程の絞り加工で得
たカップを該ポリエステル樹脂フィルムのガラス転移温
度(Tg)から冷結晶化温度(Tc)の範囲でストレッ
チ加工および/またはしごき加工を付加した再絞り加工
(第2工程)を行い、次いで、第2工程で得た再絞りカ
ップの温度を潤滑油(A)の融点以下にし、加工金型の
温度を120℃以下に保持してしごき加工(第3工程)
を行うことを特徴とするポリエステル樹脂被覆アルミニ
ウムシームレス缶の製造方法。
2. An aluminum plate having a thickness of 0.20 mm to 0.32 mm, a thickness of 10 to 50 μm and a melting point (T
m) When manufacturing a seamless can using a laminated aluminum plate coated with a thermoplastic polyester resin having a temperature of 200 ° C. to 260 ° C. and a density of less than 1.36, one side of the laminated aluminum plate is adhered to the resin film-coated surface. as the amount, the lubricating oil melting point of 40 ° C. or higher (a) a 20~120mg / m 2, in the upper layer, the lubricant pour point of 5 ° C. or less (B) 10~80mg / m 2, the total coating After applying an oil amount of 30 to 200 mg / m 2 as an oil amount, the polyester resin film is stretched and / or ironed within a range from a glass transition temperature (Tg) to a cold crystallization temperature (Tc). A drawing process (first step) with additional processing is performed, and then the cup obtained by the drawing process in the first step is cooled from the glass transition temperature (Tg) of the polyester resin film. In the range of the crystallization temperature (Tc), a re-drawing process (second step) to which stretching and / or ironing is added is performed, and then the temperature of the re-drawing cup obtained in the second step is changed to the lubricating oil (A). Ironing below the melting point, keeping the temperature of the working die below 120 ° C (third step)
And producing a seamless aluminum can coated with a polyester resin.
【請求項3】 第1工程のストレッチ加工および/また
はしごき加工を付加した絞り加工を、胴壁部の最も薄い
部位のアルミニウム板の厚み(Wt)と底部のアルミニ
ウム板の厚み(Bt)との関係において、下記式(1) 【数1】 加工度(%)=〔(Bt−Wt)/Bt〕×100 ……(1) から求められる加工度の値が10%以内になるように行
い、次いでストレッチ加工および/またはしごき加工を
付加した第2工程の再絞り加工を、第1工程の絞り加工
の加工度と合わせて、式(1)から求められる全体の加
工度の値25%以内になるように行い、次いで第3工程
のしごき加工を、第1工程の絞り加工の加工度および第
2工程の再絞り加工の加工度と合わせて、式(1)から
求められる全体の加工度が50〜70%になるように行
う請求項2記載のポリエステル樹脂被覆アルミニウムシ
ームレス缶の製造方法。
3. A drawing process to which a stretching process and / or an ironing process in the first step are added is performed by using a thickness (Wt) of an aluminum plate at a thinnest portion of a body wall portion and a thickness (Bt) of an aluminum plate at a bottom portion. In the relation, the processing degree (%) = [(Bt−Wt) / Bt] × 100 (1). Then, the redrawing in the second step to which the stretching and / or ironing processing is added is combined with the degree of the drawing in the first step, and the value of the entire degree of processing obtained from the equation (1) is within 25%. Then, the ironing in the third step is performed together with the degree of drawing in the first step and the degree of redrawing in the second step, and the overall degree of processing obtained from equation (1) To be 50-70% A method for producing a polyester resin-coated aluminum seamless can according to claim 2.
JP10221094A 1998-07-21 1998-07-21 Polyester resin-coated aluminum sheet for seamless can and production of seamless can using the sheet Withdrawn JP2000033430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10221094A JP2000033430A (en) 1998-07-21 1998-07-21 Polyester resin-coated aluminum sheet for seamless can and production of seamless can using the sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10221094A JP2000033430A (en) 1998-07-21 1998-07-21 Polyester resin-coated aluminum sheet for seamless can and production of seamless can using the sheet

Publications (1)

Publication Number Publication Date
JP2000033430A true JP2000033430A (en) 2000-02-02

Family

ID=16761404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10221094A Withdrawn JP2000033430A (en) 1998-07-21 1998-07-21 Polyester resin-coated aluminum sheet for seamless can and production of seamless can using the sheet

Country Status (1)

Country Link
JP (1) JP2000033430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008739A (en) * 2012-07-02 2014-01-20 Jfe Steel Corp Resin coating metal plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008739A (en) * 2012-07-02 2014-01-20 Jfe Steel Corp Resin coating metal plate

Similar Documents

Publication Publication Date Title
US5950468A (en) Resin film laminated steel sheet for can by dry forming
JP4278271B2 (en) Laminated seamless can
JP2000024722A (en) Polyester resin coated aluminum plate for seamless can, and manufacture of seamless can
JP2000006967A (en) Polyester resin-coated aluminum seamless can and manufacture thereof
JP2711947B2 (en) Method for producing resin-coated tin-plated steel sheet for thinned deep drawn cans with excellent processing corrosion resistance
JP2803854B2 (en) Composite steel sheet excellent in formability of drawn and ironed cans
JP2000033430A (en) Polyester resin-coated aluminum sheet for seamless can and production of seamless can using the sheet
JP3986170B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP3887009B2 (en) Steel plate for thinned deep-drawn ironing can and manufacturing method thereof
JP4226103B2 (en) Manufacturing method of resin-coated aluminum seamless cans
JP2937788B2 (en) Manufacturing method of resin-coated steel sheet for dry drawing and ironing can
JP4445787B2 (en) Polyester resin film coated metal plate and polyester resin film coated metal can
JP4278272B2 (en) Film-coated two-piece can
JP3140929B2 (en) Resin-coated steel sheet for dry drawing and ironing can
JP4226104B2 (en) Manufacturing method of resin-coated aluminum seamless cans
JP4405301B2 (en) Polyester resin film coated metal plate with excellent galling resistance
JP2001162718A (en) Method for manufacturing resin coated aluminum panel excellent in adhesion and processability
JPH09285827A (en) Manufacture of drawing and ironing can
JP2003277886A (en) Resin-coated steel sheet for shear spun can, method of producing resin-coated steel sheet for shear spun can and shear spun can produced by using the same
JP2790647B2 (en) Composite coated steel sheet excellent in DI formability and method for producing the same
KR100300218B1 (en) Process for producing resin-coated aluminum alloy sheet for drawn/ironed cans
KR20000005343A (en) Manufacturing method for resin-coated aluminum alloy plate for drawing and ironing can
JP4278270B2 (en) Film laminated two-piece can
JP4278273B2 (en) Film-coated seamless can
JPH02169246A (en) Composite steel plate for can and processed can

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004