JP2000024722A - Polyester resin coated aluminum plate for seamless can, and manufacture of seamless can - Google Patents

Polyester resin coated aluminum plate for seamless can, and manufacture of seamless can

Info

Publication number
JP2000024722A
JP2000024722A JP10208719A JP20871998A JP2000024722A JP 2000024722 A JP2000024722 A JP 2000024722A JP 10208719 A JP10208719 A JP 10208719A JP 20871998 A JP20871998 A JP 20871998A JP 2000024722 A JP2000024722 A JP 2000024722A
Authority
JP
Japan
Prior art keywords
lubricating oil
resin film
ironing
temperature
cup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10208719A
Other languages
Japanese (ja)
Other versions
JP3949283B2 (en
Inventor
Shuichi Furuta
修一 古田
Katsumasa Matsunami
克優 松波
Masatoshi Yamamoto
正俊 山本
Eiichiro Kasado
英一郎 笠戸
Tomohiko Hayashi
知彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP20871998A priority Critical patent/JP3949283B2/en
Publication of JP2000024722A publication Critical patent/JP2000024722A/en
Application granted granted Critical
Publication of JP3949283B2 publication Critical patent/JP3949283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic coated aluminum seamless can which is free from film defects and has high corrosion resistance and high quality with excellent yield. SOLUTION: In a polyester resin coated aluminum sheet for a seamless can, a mixed lubricating oil in which 5-50 pts.wt. lubricating oil whose pour-point is <=5 deg.C and 95-50 pts.wt. lubricating oil whose melting point is >=40 deg.C are mixed, is applied to a resin film coated surface of a laminate sheet in which a thermoplastic polyester resin film of 10-50 μm in thickness, 200-260 deg.C in melting point (TM) and below 1.36 in density is coated, on both surfaces of an aluminum sheet of 0.20-0.32 mm in thickness by 30-200 mg/m2 in adhered amount on one surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シームレス缶用ポ
リエステル樹脂被覆アルミニウム板およびシームレス缶
の製造方法に関する。
The present invention relates to a polyester resin-coated aluminum plate for a seamless can and a method for producing a seamless can.

【0002】[0002]

【従来の技術】アルミニウムやスチールを素材とした金
属缶・容器は、その形状からスリーピース缶とツーピー
ス缶とに大別される。スリーピース缶は、地蓋、缶胴、
天蓋から成るためスリーピース缶と呼ばれている。一
方、ツーピース缶は、地蓋と缶胴とが一体となったもの
で、それに天蓋とから成るためツーピース缶、又は、缶
胴部に接合部がないことから、シームレス缶とも呼ばれ
ている。
2. Description of the Related Art Metal cans and containers made of aluminum or steel are roughly classified into three-piece cans and two-piece cans according to their shapes. Three-piece cans,
It is called a three-piece can because it consists of a canopy. On the other hand, a two-piece can is a unit in which a ground lid and a can body are integrated, and is also called a two-piece can or a seamless can because the can body has no joints because of the canopy.

【0003】金属缶の場合、缶内面には耐食性の確保か
ら塗装が施され使用されているが、近年、熱可塑性樹脂
フィルムを積層したラミネート缶が開発され、ビールや
例えばコーラのような炭酸飲料を充填した飲料缶分野で
市場に出回っている。ラミネート缶は、金属素材に熱可
塑性樹脂フィルムを積層させたものから、缶体成形加工
を行うものが主であり、特にツーピース缶を得るには高
度な成形加工技術を必要とする。かかる意味において
も、ツーピースのラミネート缶に関わる技術は、例えば
特開平7−2241号公報、特開平7−195619号
公報、特開平8−244750号公報等、数多く提案さ
れ、開示されている。
[0003] In the case of metal cans, the inner surfaces of the cans are coated and used to ensure corrosion resistance. In recent years, laminated cans having laminated thermoplastic resin films have been developed, and beer and carbonated beverages such as cola have been developed. In the field of beverage cans filled with. Laminated cans are mainly formed by laminating a thermoplastic resin film on a metal material and then performing a can body forming process. Particularly, obtaining a two-piece can requires advanced forming technology. Also in this sense, many techniques relating to two-piece laminated cans have been proposed and disclosed, for example, in Japanese Patent Application Laid-Open Nos. Hei 7-2241, Hei 7-195519, and Hei 8-244750.

【0004】ラミネート缶のメリットは、消費者側から
見た場合、適用する熱可塑性樹脂フィルムにもよるが、
耐内容物性、特に内容物の味、風味と言ったフレーバー
性に優れている点が第一に挙げられている。一方、デメ
リットとしては、今度は製缶メーカー側からであるが、
前述したようにツーピース缶の場合、熱可塑性樹脂フィ
ルム被覆金属板の加工度(又は変形度合)が大きいの
で、成形時に内面樹脂フィルムに傷が入ったりした場
合、缶内面の品質確保ができなくなるため、缶体の品質
検査を厳重に行う必要があることと、製品歩留まりが現
行の塗装缶に比べて劣るといった点が挙げられる。
[0004] The advantage of the laminated can depends on the applied thermoplastic resin film from the consumer's point of view,
First, it is pointed out that it has excellent content resistance, especially excellent flavor such as taste and flavor of the content. On the other hand, as a disadvantage, this time from the can maker side,
As described above, in the case of a two-piece can, since the degree of processing (or the degree of deformation) of the thermoplastic resin film-coated metal plate is large, if the inner resin film is damaged during molding, the quality of the inner surface of the can cannot be ensured. In addition, the quality of the can body must be strictly inspected, and the product yield is inferior to the current painted can.

【0005】特に、スチール素材を用いたツーピースラ
ミネート缶の場合、上記の傾向が大きいが、アルミニウ
ム合金を素材としたツーピースラミネート缶でも同様な
ことが起こる。こうしたラミネート缶の内面樹脂フィル
ムの皮膜欠陥は、前述したように缶成形加工時に入るも
のであり、この欠陥を最小限に抑えることは、品質、製
品歩留まりの点から重要な技術課題であることは言うま
でもない。しかし、しごき加工を伴うツーピース缶成形
の、特に高加工率の場合の内面の樹脂フィルムに傷その
他の欠陥を入れることなく成形する適切手段がないのが
現状である。
[0005] Particularly, in the case of a two-piece laminated can using a steel material, the above tendency is large, but the same occurs in a two-piece laminated can made of an aluminum alloy. As described above, such film defects of the resin film on the inner surface of the laminated can enter into the can forming process, and minimizing such defects is an important technical problem from the viewpoint of quality and product yield. Needless to say. However, at present, there is no appropriate means for forming two-piece cans with ironing, particularly without forming scratches or other defects on the inner resin film at a high processing rate.

【0006】[0006]

【発明が解決しようとする課題】本発明は、こうした実
状に鑑みなされたもので、皮膜欠陥のない高耐食性、高
品質な熱可塑性樹脂被覆アルミニウムシームレス缶を歩
留まりよく提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a highly corrosion-resistant, high-quality thermoplastic resin-coated aluminum seamless can having no film defects with a high yield. It is.

【0007】[0007]

【課題を解決するための手段】本発明の第一は、板厚が
0.20mm〜0.32mmのアルミニウム板の両面
に、厚み10〜50μm、融点(Tm)200℃〜26
0℃、密度1.36未満である熱可塑性ポリエステル樹
脂フィルムで被覆されたラミネート板の樹脂フィルム被
覆面に、流動点が5℃以下である潤滑油(A)を重量部
で5〜50部と、融点が40℃以上である潤滑油(B)
を重量部で95〜50部の混合比で混合されている混合
潤滑油を、片面の付着量として30〜200mg/m2
塗油したことを特徴とするシームレス缶用ポリエステル
樹脂被覆アルミニウム板に関する。
The first aspect of the present invention is that an aluminum plate having a plate thickness of 0.20 mm to 0.32 mm has a thickness of 10 to 50 μm and a melting point (Tm) of 200 ° C. to 26 ° C.
The lubricating oil (A) having a pour point of 5 ° C. or less is coated on the resin film-coated surface of a laminate coated with a thermoplastic polyester resin film having a density of 0 ° C. and less than 1.36 by 5 to 50 parts by weight. Lubricating oil having melting point of 40 ° C. or more (B)
Of lubricating oil mixed in a mixing ratio of 95 to 50 parts by weight as 30 parts to 200 mg / m 2 as the amount of adhesion on one side.
The present invention relates to a polyester resin-coated aluminum plate for a seamless can, which is coated with oil.

【0008】本発明の第二は、板厚が0.20mm〜
0.32mmのアルミニウム板の両面に、厚み10〜5
0μm、融点(Tm)200℃〜260℃、密度1.3
6未満であるポリエステル樹脂で被覆されたラミネート
板を用いてシームレス缶を製造するに際し、該ラミネー
ト板の樹脂フィルム被覆面に、流動点が5℃以下である
潤滑油(A)を重量部で5〜50部と、融点が40℃以
上である潤滑油(B)を重量部で95〜50部の混合比
で混合されている混合潤滑油を、片面の付着量として3
0〜200mg/m2塗油した後、該ポリエステル樹脂
フィルムのガラス転移温度(Tg)から冷結晶化温度
(Tc)の範囲でストレッチ加工および/またはしごき
加工を付加した絞り加工(第1工程)を行い、次いで、
第1工程の絞り加工で得たカップを該ポリエステル樹脂
フィルムのガラス転移温度(Tg)から冷結晶化温度
(Tc)の範囲でストレッチ加工および/またはしごき
加工を付加した再絞り加工(第2工程)を行い、次い
で、第2工程で得た再絞りカップの温度を潤滑油(B)
の融点以下にし、加工金型の温度を120℃以下に保持
してしごき加工(第3工程)を行うことを特徴とするポ
リエステル樹脂被覆アルミニウムシームレス缶の製造方
法に関する。
[0008] A second aspect of the present invention is that the sheet thickness is 0.20 mm or more.
10-5 thickness on both sides of 0.32mm aluminum plate
0 μm, melting point (Tm) 200 ° C. to 260 ° C., density 1.3
When producing a seamless can using a laminated plate coated with a polyester resin having a particle size of less than 6, a lubricating oil (A) having a pour point of 5 ° C. or less is coated on a resin film-coated surface of the laminated plate with a weight of 5 parts by weight. And 50 parts by weight of a lubricating oil (B) having a melting point of 40 ° C. or more, and a mixing ratio of 95 to 50 parts by weight.
After oiling 0 to 200 mg / m 2 , drawing (stretching and / or ironing) of the polyester resin film in the range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc) (first step) And then
The cup obtained by the drawing in the first step is subjected to stretching and / or ironing in the range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the polyester resin film. ), And then adjust the temperature of the redraw cup obtained in the second step to lubricating oil (B).
The present invention relates to a method for producing a polyester resin-coated aluminum seamless can, characterized by performing ironing (third step) while maintaining the temperature of a processing die at 120 ° C. or lower while maintaining the melting point at or below the melting point.

【0009】[0009]

【発明の実施の形態】以下、本発明の方法の実施形態に
ついて詳細に説明する。まず、本発明におけるアルミニ
ウム板について述べる。本発明に適用されるアルミニウ
ム板は、特に制限するものではなく、アルミニウム板や
その合金板が用いられるが、とくに通常缶容器の製造に
用いられる3004系アルミ合金、5052系アルミ合
金、5182系アルミ合金等種々のアルミニウム合金が
好ましい。アルミニウムの板厚としては、0.20mm
〜0.32mmのものが適用される。板厚が0.20m
m以下では、炭酸飲料やビール等を充填・密封する内圧
缶の場合、耐圧強度が十分でなく缶底部が張り出した状
態(バックリング)になる場合があり、好ましくない。
一方、0.32mm以上では、缶の耐圧強度は十分に確
保されるが、実質的には品質過剰であり、経済的でな
い。板厚の限定理由は、上述のように缶の耐圧強度から
限定したものである。従って、適用するアルミニウム板
の機械的特性、特に耐力強度と関わりがあり、耐力強度
が高い場合は板厚の薄手化が可能となる。実際に本発明
を実施する際は、板厚は缶全体の強度バランスを考慮
し、適宜選択することが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the method of the present invention will be described in detail. First, the aluminum plate according to the present invention will be described. The aluminum plate applied to the present invention is not particularly limited, and an aluminum plate or an alloy plate thereof is used. Particularly, a 3004 series aluminum alloy, a 5052 series aluminum alloy, and a 5182 series aluminum alloy which are usually used for manufacturing cans are used. Various aluminum alloys such as alloys are preferred. The thickness of aluminum is 0.20mm
の も の 0.32 mm is applied. 0.20m thickness
Below m, in the case of an internal pressure can filled and sealed with carbonated beverages or beer, the pressure resistance is not sufficient, and the bottom of the can may protrude (buckling), which is not preferable.
On the other hand, if it is 0.32 mm or more, the pressure resistance of the can is sufficiently ensured, but the quality is substantially excessive and is not economical. The reason for limiting the plate thickness is limited by the pressure resistance of the can as described above. Therefore, there is a relationship with the mechanical properties of the applied aluminum plate, especially the proof strength, and when the proof strength is high, the thickness of the plate can be reduced. When actually carrying out the present invention, it is desirable to appropriately select the plate thickness in consideration of the strength balance of the entire can.

【0010】本発明では、熱可塑性ポリエステル樹脂フ
ィルムとの密着性を確保する目的で、アルミニウム板表
面に表面処理を施したものを使用することが好ましい。
表面処理としては、通常アルミニウム板の絞りしごき缶
の成形加工後の表面処理として使用されている、リン酸
クロム酸処理や、リン酸ジルコニウム処理が適用される
が、特に、缶壁部の板厚減少度が大きい高加工度の場合
は、リン酸またはリン酸ジルコニウムと有機樹脂との有
機無機複合型化成処理が有効である。有機無機複合型化
成処理の場合、付着量は皮膜中C量として5〜50mg
/m2が良く、5mg/m2以下では被覆性が劣り、防食
作用および密着性が共に不十分となり、缶体成形加工後
に樹脂フィルムが局部的に剥離する、いわゆるデラミが
起こったり局部的な腐食が起こったり、また、デント性
も劣り好ましくない。一方、50mg/m2を超える
と、被覆性は良好であるが、加工度が大きい缶体成形加
工の場合、皮膜が凝集破壊を起こし密着性が低下し、樹
脂フィルムが剥離するといった場合があるので好ましく
ない。表面処理皮膜量としては、皮膜C量として10〜
40mg/m2が好適である。
In the present invention, it is preferable to use an aluminum plate whose surface has been subjected to a surface treatment in order to ensure adhesion to the thermoplastic polyester resin film.
As the surface treatment, a chromic phosphate treatment or a zirconium phosphate treatment, which is usually used as a surface treatment after forming a drawn and ironed can of an aluminum plate, is applied. In the case of a high workability with a large reduction, an organic-inorganic composite chemical conversion treatment of phosphoric acid or zirconium phosphate and an organic resin is effective. In the case of the organic-inorganic composite chemical conversion treatment, the amount of adhesion is 5 to 50 mg as the amount of C in the film.
/ M 2 is good and if it is 5 mg / m 2 or less, the coating properties are poor, the anticorrosion action and the adhesion are both insufficient, and the resin film is locally peeled off after forming the can body. Corrosion occurs and the dent property is poor, which is not preferable. On the other hand, if it exceeds 50 mg / m 2 , the coatability is good, but in the case of a can forming process with a high degree of processing, the film may undergo cohesive failure, the adhesion may be reduced, and the resin film may peel off. It is not preferable. As the amount of the surface treatment film, the amount of the film C is 10 to 10.
40 mg / m 2 is preferred.

【0011】アルミニウム板の表面処理方法としては、
例えば上記の有機無機複合型化成処理の場合、リン酸ま
たはリン酸とフッ化ジルコニウムと水溶性有機樹脂、例
えば水溶性フェノール樹脂、水溶性アクリル樹脂等を含
む水溶液に、反応性を促進させるためにフッ酸、ポリリ
ン酸を添加した処理液を、アルミニウム板にロール塗布
した後、水洗、乾燥し硬化させる方法や、処理液をアル
ミニウム板にスプレー塗布した後、水洗、乾燥し硬化さ
せる方法等が適宜適用できる。乾燥硬化方法としては熱
風での乾燥、電気炉での乾燥等の方法が適用でき、温度
は150℃〜250℃で乾燥時間は10秒〜2分程度で
ある。
As a method for surface treatment of an aluminum plate,
For example, in the case of the above-mentioned organic-inorganic composite type chemical conversion treatment, phosphoric acid or an aqueous solution containing phosphoric acid and zirconium fluoride and a water-soluble organic resin, such as a water-soluble phenol resin and a water-soluble acrylic resin, in order to promote the reactivity. A method of applying a treatment liquid containing hydrofluoric acid or polyphosphoric acid to a roll of aluminum, followed by washing with water, drying and curing, or a method of spraying the treatment liquid onto an aluminum plate, followed by washing with water, drying and curing as appropriate. Applicable. As the drying and curing method, methods such as drying with hot air and drying in an electric furnace can be applied. The temperature is 150 ° C. to 250 ° C., and the drying time is about 10 seconds to 2 minutes.

【0012】本発明において、アルミニウム板を被覆す
る樹脂フィルムとしては熱可塑性ポリエステル樹脂フィ
ルムを用いるが、その理由は、耐熱性が良い、内容
物のフレーバーが確保される、といった、例えばポリエ
チレンやポリプロピレンなどのポリオレフィン系樹脂フ
ィルムにはない、缶用途に適した特性を有しているから
である。
In the present invention, a thermoplastic polyester resin film is used as the resin film for covering the aluminum plate, because the heat resistance is good and the flavor of the contents is secured, such as polyethylene or polypropylene. This is because it has characteristics suitable for can use, which are not found in polyolefin-based resin films.

【0013】ポリエステル樹脂としては、例えばポリエ
チレンテレフタレート(PET)、ポリブチレンテレフ
タレート(PBT)、ポリエチレンイソフタレート(P
EI)のようなホモポリマーや、例えばポリエチレンテ
レフタレートとポリエチレンイソフタレートとの共重合
樹脂であるコポリマーや、またこうしたホモポリマーや
コポリマーのブレンド樹脂等が適用される。
As the polyester resin, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene isophthalate (P
A homopolymer such as EI), a copolymer which is a copolymer resin of polyethylene terephthalate and polyethylene isophthalate, a blend resin of such a homopolymer or copolymer, or the like is applied.

【0014】アルミニウム板の表面を被覆する熱可塑性
ポリエステル樹脂フィルムの厚みは、10〜50μm、
好ましくは12〜40μmのものを用いる。缶の内面に
当たる面に積層されるフィルム厚みは、缶内面の耐食性
の観点から限定されるものであり、10μm以下では缶
の成形加工後で充填する内容物にもよるが、十分な耐食
性を確保するのは難しい場合がある。一方、50μmを
超えると、ほとんどの内容物に対し耐食性は十分確保さ
れるが、実質的に過剰品質となり、経済的でない。
The thickness of the thermoplastic polyester resin film covering the surface of the aluminum plate is 10 to 50 μm,
Preferably, those having a thickness of 12 to 40 μm are used. The thickness of the film laminated on the surface corresponding to the inner surface of the can is limited from the viewpoint of the corrosion resistance of the inner surface of the can. If it is 10 μm or less, it depends on the contents to be filled after the can is formed, but sufficient corrosion resistance is secured. It can be difficult to do. On the other hand, if it exceeds 50 μm, the corrosion resistance is sufficiently ensured for most contents, but the quality is substantially excessive and is not economical.

【0015】また、本発明を実施する際のフィルム厚み
の選定は、後述する缶壁部の薄肉化の加工度との関係が
あることも選定の際の重要な要素である。即ち、加工度
が高い場合は、当然その加工度に応じてフィルムの厚み
も薄くなるため、その結果として、缶内面の防食性能は
低下する。従って、加工度が高い場合は予め厚手のフィ
ルムを使用することが望ましい。一方、加工度が低い場
合はそれに応じて予め薄手のフィルムを使用することが
可能となる。
An important factor in the selection of the film thickness when implementing the present invention is that it has a relationship with the degree of work for reducing the wall thickness of the can wall described later. That is, when the degree of processing is high, the thickness of the film is naturally reduced in accordance with the degree of processing, and as a result, the anticorrosion performance of the inner surface of the can is reduced. Therefore, when the degree of processing is high, it is desirable to use a thick film in advance. On the other hand, if the degree of processing is low, a thin film can be used in advance.

【0016】本発明で使用する熱可塑性ポリエステル樹
脂フィルムは、融点(Tm)が200℃〜260℃の樹
脂フィルムである。成形加工時には、金属の加工熱が発
生し、缶体はかなりの温度となる。特にしごき加工の際
に発生する金属の加工熱は、樹脂フィルムの特性を大き
く変化させる。この熱による樹脂フィルムの特性変化の
一つに樹脂フィルムの軟化がある。樹脂フィルムが軟化
すると、しごき加工時に内外面の樹脂フィルムを傷つけ
る原因となる。即ち、内面側の樹脂フィルムは、パンチ
に付着してしまいパンチが抜け難くなる、いわゆる離型
性不良が起こり、内面の樹脂フィルムを傷つける原因と
なる。また、離型性不良が甚だしい場合は、缶体の開口
部近傍が座屈し、正規の缶体高さが得られない事態が起
こったりする。
The thermoplastic polyester resin film used in the present invention has a melting point (Tm) of 200 ° C. to 260 ° C. During the forming process, processing heat of the metal is generated, and the temperature of the can body becomes considerable. In particular, metal processing heat generated during ironing greatly changes the characteristics of the resin film. One of the characteristic changes of the resin film due to the heat is softening of the resin film. Softening of the resin film causes damage to the resin film on the inner and outer surfaces during ironing. That is, the resin film on the inner surface side adheres to the punch and the punch hardly comes off, so-called poor releasability occurs, which causes damage to the resin film on the inner surface. Further, when the releasability is extremely poor, the vicinity of the opening of the can body buckles, and a situation in which a proper can body height cannot be obtained may occur.

【0017】一方、外面側の樹脂フィルムは、しごきダ
イスによる「かじり」と言われる缶高さ方向への直線的
な傷が入り易くなる。外面の「かじり」による傷が入っ
た場合は、その後施される印刷の仕上がり外観を損ねる
結果となる。
On the other hand, the resin film on the outer surface side is liable to be linearly damaged in the height direction of the can, which is called "galling" by an ironing die. Scratching due to "galling" on the outer surface results in a loss of the finished appearance of subsequent prints.

【0018】この樹脂フィルムの熱による軟化の程度
は、樹脂の融点(Tm)とかかわっており、融点が下限
値の200℃以下では、たとえ本発明で適用される潤滑
油が塗布されていても離型性やかじり性が劣り、好まし
くない。一方、上限値の260℃以上では、高融点化に
伴う離型性やかじり性の更なる改善は期待できず、効果
は飽和する。樹脂フィルムの融点(Tm)は、上記の離
型性やかじり性の観点から限定したものであるが、しご
き加工時の発熱量は後述する加工度との関係もあり、樹
脂フィルムの融点だけで離型性やかじり性の良否を決め
られるものではないが、基本的には融点は高い方が有利
であり、本発明で使用する樹脂フィルムの融点は、21
0〜255℃が好ましく、特に220〜255℃が好適
である。
The degree of softening of the resin film by heat is related to the melting point (Tm) of the resin. When the melting point is lower than the lower limit of 200 ° C., even if the lubricating oil used in the present invention is applied. The releasability and galling properties are poor, which is not preferable. On the other hand, if the upper limit is 260 ° C. or more, further improvement in mold releasability and galling due to the increase in melting point cannot be expected, and the effect is saturated. Although the melting point (Tm) of the resin film is limited from the viewpoint of the above-mentioned releasability and galling property, the calorific value during ironing also has a relationship with the degree of processing described later. Although it is not possible to determine whether the releasability or galling property is good, it is basically advantageous that the melting point is higher, and the melting point of the resin film used in the present invention is 21.
The temperature is preferably from 0 to 255 ° C, and particularly preferably from 220 to 255 ° C.

【0019】本発明のラミネート板およびシームレス缶
を被覆しているポリエステル樹脂フィルムの密度は、
1.36未満である。密度は樹脂の結晶状態を示す指標
となり、例えば、延伸された樹脂フィルム等の結晶化度
が高い場合は、密度は大きくなる。密度が1.36未満
であるということは、熱可塑性ポリエステル樹脂フィル
ムの結晶状態としては、実質的に非晶質であることを示
す。
The density of the polyester resin film covering the laminated plate and the seamless can of the present invention is as follows:
It is less than 1.36. The density is an index indicating the crystalline state of the resin. For example, when the crystallinity of a stretched resin film or the like is high, the density increases. The fact that the density is less than 1.36 indicates that the crystalline state of the thermoplastic polyester resin film is substantially amorphous.

【0020】ラミネート板に被覆した樹脂フィルムを非
晶質にする理由は、その後行うカップの絞り加工、カッ
プの再絞り加工、更にしごき加工において、樹脂フィル
ムの加工性を十分に確保することを目的にしたもので、
密度が1.36以上になると、結晶性の低いポリエステ
ル樹脂フィルムでも、成形加工にフィルムが耐えられず
亀裂欠陥が激しく起こる場合があり好ましくない。特
に、加工度が大きい時は、しごき加工時の発熱と併せて
引き延ばし加工により、樹脂フィルムの配向結晶化が一
層進み、その結果、樹脂フィルムがアルミニウム板の加
工に追随し難くなり、上記の挙動が顕著に現れ、缶体の
耐食性が十分に確保できない場合がしばしば起こる。従
って、密度が大きい、結晶化した状態からの成形加工
は、特に、加工度が高くなると極めて難しく不適であ
る。密度を1.36未満と限定した理由は、上記の理由
からで、特に、第1工程の絞り加工の前の密度として
は、1.35未満が好ましい。
The reason why the resin film coated on the laminate plate is made amorphous is to ensure sufficient workability of the resin film in the subsequent drawing of the cup, redrawing of the cup, and further ironing. In what
If the density is 1.36 or more, even if the polyester resin film has low crystallinity, the film may not be able to withstand the molding process, and crack defects may occur severely, which is not preferable. In particular, when the degree of processing is large, the orientation and crystallization of the resin film are further promoted by elongation together with the heat generated during ironing, and as a result, the resin film becomes difficult to follow the processing of the aluminum plate, and the above behavior Often appears, and often the corrosion resistance of the can body cannot be sufficiently ensured. Therefore, forming from a crystallized state having a high density is extremely difficult and unsuitable, especially when the working degree is high. The reason for limiting the density to less than 1.36 is from the above reason, and in particular, the density before the drawing in the first step is preferably less than 1.35.

【0021】熱可塑性ポリエステル樹脂フィルム被覆ラ
ミネートアルミニウム板を得る製造方法としては、加熱
されたアルミニウム板の表面に樹脂フィルムを供給して
ロール間で圧着し積層させた後、直ちに急冷してポリエ
ステル樹脂フィルムを非晶質にする方法や、溶融した樹
脂を押し出し、アルミニウム板に供給し積層させ、直ち
に急冷してポリエステル樹脂フィルムを非晶質にする方
法や、例えば二軸延伸フィルムの場合は、一度積層した
ポリエステル樹脂フィルムを、必要に応じ更に樹脂の融
点以上に加熱した後直ちに急冷して、ポリエステル樹脂
フィルムを非晶質にする方法等が適用できる。
As a method for producing a laminated aluminum plate coated with a thermoplastic polyester resin film, a resin film is supplied to the surface of a heated aluminum plate, pressed and laminated between rolls, and immediately quenched to immediately cool the polyester resin film. Or a method of extruding a molten resin, supplying it to an aluminum plate and laminating it, and immediately quenching to make the polyester resin film amorphous, or in the case of a biaxially stretched film, for example, laminating once. If necessary, the polyester resin film may be further heated to a temperature not lower than the melting point of the resin, and then rapidly cooled to make the polyester resin film amorphous.

【0022】アルミニウム板の加熱方法としては、電気
炉中で加熱する方法、熱風による加熱方法、加熱ロール
に接触させて加熱する方法、等の常用の加熱方法が採用
できる。
As a method for heating the aluminum plate, a conventional heating method such as a method of heating in an electric furnace, a method of heating with hot air, and a method of heating by contacting with a heating roll can be adopted.

【0023】次に、本発明に適用される潤滑油について
説明する。本発明において適用される潤滑油は、流動点
が5℃以下である潤滑油(A)を重量部で5〜50部
と、融点が40℃以上である潤滑油(B)を重量部で9
5〜50部の範囲で混合されている混合潤滑油を、ラミ
ネート板の樹脂フィルム被覆された面に、片面の付着量
として30〜200mg/m2塗油するものである。潤
滑油(A)は、流動点が5℃以下であり、これは常温下
では液体である。一方、潤滑油(B)は、融点が40℃
以上であり、これは常温下では液体ではない。この2種
類の潤滑油を重量部で潤滑油(A)を5〜50部、潤滑
油(B)を95〜50部の範囲に混合した混合潤滑油に
することで、後述する缶の加工手段との組み合わせにお
いて、良好な特性を発揮することが、発明者等の研究結
果から明らかになり、本発明に至ったものである。
Next, the lubricating oil applied to the present invention will be described. The lubricating oil applied in the present invention is a lubricating oil (A) having a pour point of 5 ° C. or less, 5 to 50 parts by weight, and a lubricating oil (B) having a melting point of 40 ° C. or more, 9 parts by weight.
The mixed lubricating oil mixed in the range of 5 to 50 parts is applied to the surface of the laminate plate coated with the resin film in an amount of 30 to 200 mg / m 2 as the amount of adhesion on one side. Lubricating oil (A) has a pour point of 5 ° C. or less, which is a liquid at normal temperature. On the other hand, the lubricating oil (B) has a melting point of 40 ° C.
This is not liquid at normal temperature. The two kinds of lubricating oils are mixed lubricating oils in which the lubricating oil (A) is mixed in a range of 5 to 50 parts by weight and the lubricating oil (B) in a range of 95 to 50 parts by weight, so that a can processing means described later can be used. It has been clarified from the research results of the inventors that the combination of the present invention and the present invention exerts good characteristics, which has led to the present invention.

【0024】何故、潤滑油(A)と潤滑油(B)を上記
のような混合比で混合した混合潤滑油にすることで、後
述する缶の加工手段との組み合わせにおいて、良好な特
性を発揮するかは、次のように考えられる。即ち、本発
明におけるシームレス缶の成形加工は、ポリエステル樹
脂被覆アルミニウム板に対して、絞り加工としごき加工
と言った、異なる加工を組み合わせて行う。
[0024] The reason why the lubricating oil (A) and the lubricating oil (B) are mixed at the above mixing ratio to form a mixed lubricating oil exhibits excellent characteristics in combination with a can processing means described later. It is considered as follows. That is, the forming process of the seamless can in the present invention is performed by combining different processes such as drawing and ironing on a polyester resin-coated aluminum plate.

【0025】絞り加工では、ストレッチ加工または/お
よびしごき加工を付加するが、基本的には絞り加工であ
る。絞り加工は、第1工程のカップ絞り加工、更には第
2工程では第1工程で得られたカップの再絞り加工を行
うが、この絞り加工では、加工と同時に材料は成形され
るカップへの流れ込みが起こり、その結果、例えばカッ
プの場合絞り加工後の胴壁部の板厚は、カップ開口部に
なる程加工前の板厚より厚くなる。この時、しわ押さえ
部の摩擦力が大きく材料の流れ込みが不十分な場合、カ
ップは底部のコーナー部から破断する、いわゆる抜けが
起こったり、また缶胴の途中から破断したりする。一
方、摩擦力が小さく、流れ込みが過剰な場合は、しわが
発生する。いずれの場合も正常なカップは得られない。
In the drawing process, a stretching process and / or an ironing process are added, but the drawing process is basically performed. In the drawing process, the cup drawing process in the first step is performed, and further in the second step, the cup obtained in the first step is redrawn. As a result, for example, in the case of a cup, the wall thickness of the body wall after drawing becomes larger than the thickness before processing toward the cup opening. At this time, when the frictional force of the wrinkle holding portion is large and the material does not flow sufficiently, the cup breaks from the corner at the bottom, that is, breaks out, or breaks from the middle of the can body. On the other hand, when the frictional force is small and the inflow is excessive, wrinkles occur. In each case, a normal cup cannot be obtained.

【0026】材料の流れ込みの程度は、しわ押さえ力と
しわ押さえ部全体の表面潤滑のバランスによって決まる
が、使用する表面潤滑の影響が大きいことは周知であ
り、かかる意味においてプレス成形加工では、一般的に
は表面潤滑的特性や、もしくは境界潤滑的特性を有する
潤滑剤が用いられている。
The degree of material inflow is determined by the balance between the wrinkle holding force and the surface lubrication of the entire wrinkle holding portion. It is well known that the effect of the surface lubrication used is great. Specifically, a lubricant having surface lubricating properties or boundary lubricating properties is used.

【0027】また、本発明のように、樹脂フィルムを被
覆したラミネート板を、絞り加工でカップ状に成形する
場合、潤滑油の不適合によっては、カップ底部のコーナ
ーにマイクロクラックが発生する時もあり、潤滑剤の選
定は重要な要素となっている。
Further, when a laminated plate coated with a resin film is formed into a cup shape by drawing as in the present invention, microcracks may be generated at corners of the bottom portion of the cup depending on incompatibility of lubricating oil. The selection of the lubricant is an important factor.

【0028】一方、しごき加工は、胴壁部のみを、その
胴壁部の厚さより狭い間隔を有する、パンチとしごきダ
イスのクリアランス部を通し、胴壁部の板厚を減少させ
る加工であるため、むしろ適度な摩擦力によって胴壁部
の板厚を薄くする加工となっている。
On the other hand, the ironing process is a process of reducing the thickness of the body wall only by passing only the body wall through a clearance portion of a punch and an ironing die having an interval smaller than the thickness of the body wall. Rather, the thickness of the body wall is reduced by an appropriate frictional force.

【0029】従って、余り流動性を有する潤滑剤ではパ
ンチとしごきダイスのクリアランス部を通る時、缶の成
形方向と逆の方向に潤滑剤が寄っていってしまい、潤滑
剤を必要とする部位での欠如が起こり、缶胴が破断する
と言った現象が起こり易い。そのためしごき加工では、
極圧潤滑的な作用が必要であると考えられている。
Therefore, when the lubricant having a sufficient fluidity passes through the clearance between the punch and the ironing die, the lubricant tends to move in the direction opposite to the molding direction of the can. Occurs, and the phenomenon that the can body is broken easily occurs. Therefore, in ironing,
It is believed that extreme pressure lubrication is required.

【0030】しごき加工における潤滑剤不適合の場合の
問題点としては、上記の缶胴の破断と言った問題だけで
なく、前述した離型性不良による内面樹脂フィルムの欠
陥や、かじりによる外面フィルムの欠陥につながる問題
も、併せ持っている。こうしたしごき加工時の問題は、
前述した樹脂フィルムの融点や後述する成形加工とも関
係があり、潤滑油だけの問題ではないが、潤滑油の影響
も小さくなく、かかる意味においても、潤滑油の選定は
品質確保の点から重要な要素となっている。
The problems in the case of lubricant incompatibility in ironing include not only the problem of breakage of the can body described above, but also the defect of the inner surface resin film due to the above-mentioned poor releasability and the outer surface film due to galling. There are also problems that lead to defects. The problem with such ironing is that
It is related to the melting point of the resin film described above and the molding process described later, and it is not only a problem of the lubricating oil, but the influence of the lubricating oil is not small.In this sense, the selection of the lubricating oil is important from the viewpoint of quality assurance. Element.

【0031】本発明における潤滑油(A)は、ストレッ
チ加工または/およびしごき加工を付加した絞り加工に
対し有効に作用し、また潤滑油(B)はしごき加工に有
効に作用しているものと考えられる。本発明では、潤滑
油(A)を重量部で5〜50部と潤滑油(B)を重量部
で95〜50部の混合比で混合するが、潤滑油(A)が
5重量部未満では絞り加工および再絞り加工の際に表面
潤滑性が不十分で、カップの底が抜けたり、また途中か
ら破断する危険性が高く好ましくない。一方、潤滑油
(A)が50重量部を超えると、今度はしごき加工で缶
胴破断が起こり易くなり好ましくない。潤滑油(B)の
場合は、潤滑油(A)と逆で、50重量部未満ではしご
き加工で缶胴破断が起こり易く、一方、95重量部を超
えると、絞り加工および再絞り加工の際に、カップの底
が抜けたり、また途中から破断し易くなり、好ましくな
い。潤滑油(A)と潤滑油(B)との混合は、重量部で
潤滑油(A)10〜40部、潤滑油(B)90〜60の
混合比の範囲が好ましく、特に、しごき加工の加工度が
高い場合は、重量部でそれぞれ10〜30部、70〜9
0部の混合比の範囲が好ましい。
The lubricating oil (A) according to the present invention effectively acts on the drawing work to which stretch processing and / or ironing processing is added, and the lubricating oil (B) effectively acts on the ironing processing. Conceivable. In the present invention, the lubricating oil (A) is mixed at a mixing ratio of 5 to 50 parts by weight and the lubricating oil (B) at a mixing ratio of 95 to 50 parts by weight. During drawing and redrawing, the surface lubricity is insufficient, and there is a high risk that the bottom of the cup may fall off or break midway, which is not preferable. On the other hand, when the lubricating oil (A) exceeds 50 parts by weight, the can body is likely to break in the ironing process, which is not preferable. In the case of the lubricating oil (B), contrary to the lubricating oil (A), if the amount is less than 50 parts by weight, the body can be easily broken by ironing. In addition, the bottom of the cup tends to come off or break easily in the middle, which is not preferable. The mixing ratio of the lubricating oil (A) and the lubricating oil (B) is preferably in the range of 10 to 40 parts by weight of the lubricating oil (A) and 90 to 60 of the lubricating oil (B). When the degree of processing is high, 10 to 30 parts by weight and 70 to 9 parts by weight, respectively.
A mixing ratio range of 0 parts is preferred.

【0032】また、塗油量としては、片面の塗油量で3
0〜200mg/m2を塗油するが、下限値の30mg
/m2未満では、第1工程の絞り加工および第2工程の
再絞り加工で、潤滑油の寄りが起こり、しごき加工で必
要な潤滑油量が確保されないこともあるため、缶胴の破
断につながる場合もあり好ましくない。一方、上限値の
200mg/m2を超えても、効果は飽和しており、経
済的でない。また、塗油量が多いと脱脂性が悪くなると
いう問題が生じる可能性もあり好ましくはない。
In addition, the amount of oil applied is 3
0 to 200 mg / m 2 is applied.
If it is less than / m 2 , the lubricating oil may shift during the drawing in the first step and the re-drawing in the second step, and the required amount of the lubricating oil may not be secured by ironing. In some cases, this is not preferable. On the other hand, even if it exceeds the upper limit of 200 mg / m 2 , the effect is saturated and not economical. In addition, if the amount of oil applied is large, there is a possibility that a problem that degreasing property is deteriorated may occur, which is not preferable.

【0033】即ち、本発明で得られたしごき加工後缶体
は、缶上端部を切断して正規の缶高さにするトリミング
を行った後、脱脂工程、外面印刷工程、缶開口部を縮径
にするネック加工と天蓋を巻き締めるために必要な開口
部上端部分を外方へ曲げるフランジ加工等の工程を経
て、内容物が充填される缶体となる。上記の脱脂が不十
分な場合は、外面の印刷でインキがはじいたり、内面で
は内容物のフレーバー性に影響したりして、問題とな
る。従って、脱脂不良は避けねばならない事柄である。
That is, the ironed can body obtained by the ironing process of the present invention is trimmed to a regular can height by cutting the upper end of the can, and then the degreasing step, the outer surface printing step, and the opening of the can are reduced. Through a process such as a necking process for reducing the diameter and a flange forming process for bending an upper end portion of the opening portion required for winding the canopy outward, the can is filled with the contents. If the above degreasing is insufficient, there is a problem that the ink is repelled by printing on the outer surface or the flavor of the content is affected on the inner surface. Therefore, poor degreasing is a matter to be avoided.

【0034】脱脂はアルカリ水溶液のスプレーによる脱
脂や、加熱による揮発脱脂等、周知慣用の手段が適用で
きるが、本発明における潤滑油の塗油量の上限値である
200mg/m2を超えると、脱脂時間が長く要するた
め、生産性の点で不利である。最適な塗油量としては、
成形加工性および脱脂性の観点から、好ましくは40〜
150mg/m2、更に好ましくは40〜100mg/
2であるが、特にしごき加工の加工度が高い場合は若
干多目にすることが望ましい。
For degreasing, well-known and conventional means such as degreasing by spraying an alkaline aqueous solution and volatilization degreasing by heating can be applied. If the amount exceeds 200 mg / m 2 , which is the upper limit of the amount of lubricating oil applied in the present invention, Since the degreasing time is long, it is disadvantageous in terms of productivity. For optimal oiling amount,
From the viewpoint of moldability and degreasing properties, preferably 40 to
150 mg / m 2 , more preferably 40 to 100 mg /
Although it is m 2 , it is desirable to make it slightly larger especially when the degree of ironing is high.

【0035】流動点が5℃以下である潤滑油(A)とし
ては、例えば流動パラフィンがあり、また、融点が40
℃以上である潤滑油(B)としては、白色ワセリン(別
名、ペトロラタム)、パラフィンワックス、マクロクリ
スタリンワックス等があり、これらのものが本発明では
使用される。なお、潤滑油(A)の流動点は、JIS−
K2269の試験法に準じて測定したもので、一方の潤
滑油(B)の融点は、JIS−K2235の試験法に準
じて測定したものである。
The lubricating oil (A) having a pour point of 5 ° C. or less includes, for example, liquid paraffin and has a melting point of 40 ° C.
Examples of the lubricating oil (B) having a temperature of not less than ° C include white petrolatum (also known as petrolatum), paraffin wax, and macrocrystalline wax, and these are used in the present invention. The pour point of the lubricating oil (A) is determined by JIS-
The melting point of one lubricating oil (B) was measured according to the test method of JIS-K2235.

【0036】潤滑油のラミネート板への塗布方法として
は、潤滑油(B)は常温では液体でないため、加温して
液体にした後、潤滑油(A)と最適混合比で混合すると
か、予め最適混合比の量を一緒にし、加温し混合するこ
とが望ましく、混合した後は必要に応じ加温しながら、
平滑ロールによる塗布、グラビアロールによる塗布、ス
プレーによる塗布等、常用の手段が適用される。
As a method for applying the lubricating oil to the laminate plate, since the lubricating oil (B) is not liquid at room temperature, it is heated to be a liquid and then mixed with the lubricating oil (A) at an optimum mixing ratio. It is desirable to combine the amounts of the optimum mixing ratio in advance, and to mix by heating, and after mixing, while heating as necessary,
Conventional means such as coating with a smooth roll, coating with a gravure roll, and coating with a spray are applied.

【0037】次に、本発明の方法である、缶の成形加工
方法について述べる。本発明の方法では、ポリエステル
樹脂フィルム被覆したラミネートアルミニウム板を、絞
り加工にてカップ状に成形する第1工程と、次いで第1
工程で得たカップを更に再絞り加工し、第1工程で得た
カップより缶径が小さく、缶高さの高いカップを成形す
る第2工程と、次いでこのカップの缶壁部をパンチとし
ごきダイスの間に通し、缶壁を薄く伸ばすしごき加工を
行う第3工程からなっている。
Next, the method of forming a can according to the present invention will be described. In the method of the present invention, a first step of forming a laminated aluminum plate coated with a polyester resin film into a cup shape by drawing, and then a first step
The cup obtained in the step is further redrawn, a second step of forming a cup having a smaller can diameter and a higher can height than the cup obtained in the first step, and then punching the can wall of the cup with an iron. It comprises a third step of ironing by passing between the dies and thinning the can wall.

【0038】上記の成形加工方法の内、第1工程の絞り
加工、第2工程の再絞り加工、第3工程のしごき加工
は、いずれも缶壁部の板厚減少を伴った加工であるが、
第4工程のネック加工・フランジ加工は、事実上板厚減
少は伴わない加工である。従って、シームレス缶として
成形加工されたものは、第3工程後の缶体が最終缶体と
なる。
Among the above-mentioned forming methods, the drawing in the first step, the redrawing in the second step, and the ironing in the third step are all processings accompanied by a reduction in the thickness of the can wall. ,
The necking / flanging in the fourth step is a processing that does not substantially involve a reduction in sheet thickness. Therefore, in the case of the seamless can, the can after the third step is the final can.

【0039】第1工程の絞り加工は、ラミネート板の温
度を被覆樹脂フィルムのガラス転移温度(Tg)から冷
結晶化温度(Tc)の範囲で、ストレッチ加工および/
またはしごき加工を付加し、加工度として、前記式
(1)から求められる値として10%以内になるように
行う。
In the drawing process in the first step, the temperature of the laminate is stretched and / or reduced within the range from the glass transition temperature (Tg) of the coated resin film to the cold crystallization temperature (Tc).
Alternatively, ironing is performed so that the degree of processing is within 10% as a value obtained from the above equation (1).

【0040】また、第2工程の再絞り加工も、第1工程
で得たカップの温度を被覆樹脂フィルムのガラス転移温
度(Tg)から冷結晶化温度(Tc)の範囲で、ストレ
ッチ加工および/またはしごき加工を付加し、加工度と
して式(1)で求められる値として第1工程の加工度と
合わせて25%以内で行う。
Also, in the re-drawing in the second step, the temperature of the cup obtained in the first step is stretched and / or reduced within the range from the glass transition temperature (Tg) of the coated resin film to the cold crystallization temperature (Tc). Alternatively, ironing is added, and the processing is performed within 25% as a value obtained by the equation (1) as the processing degree, together with the processing degree in the first step.

【0041】第3工程のしごき加工は、絞り加工で得た
カップの缶体温度を潤滑油(B)の融点以下、好ましく
は50℃以下〔潤滑油(B)の融点が50℃以下の場合
はさらにその融点以下の温度とする〕にした後、加工金
型の温度を120℃以下に保持し、しごき加工後の最終
缶体の加工度として50〜70%の範囲になるよう成形
加工を行う。
In the ironing process of the third step, the temperature of the can body of the cup obtained by drawing is not more than the melting point of the lubricating oil (B), preferably not more than 50 ° C. [when the melting point of the lubricating oil (B) is not more than 50 ° C. Is maintained at a temperature equal to or lower than the melting point thereof]. Then, the temperature of the working mold is maintained at 120 ° C. or lower, and the forming process is performed so that the working degree of the final can after ironing is in the range of 50 to 70%. Do.

【0042】まず、本発明の缶体成形方法における加工
温度の限定について述べる。本発明の方法における、第
1工程の絞り加工および第2工程の再絞り加工を、被覆
樹脂フィルムのガラス転移温度(Tg)から冷結晶化温
度(Tc)の範囲に限定した理由は、絞り加工によるカ
ップ底部コーナーの被膜健全性を確保するためである。
First, the limitation of the processing temperature in the method for forming a can according to the present invention will be described. The reason why the drawing in the first step and the redrawing in the second step in the method of the present invention are limited to the range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the coated resin film is as follows. This is to ensure the soundness of the film at the bottom corner of the cup.

【0043】カップ底部コーナーの樹脂フィルムは、パ
ンチが最初に当たる個所であり、高い衝撃が掛かる。そ
して、この部位では樹脂フィルムにマイクロクラックが
生じ易い。特に、第1工程の絞り加工によるカップ底部
コーナーは、第2工程の再絞り加工後はカップ胴壁部
(側壁部)となり、更に第3工程のしごき加工で延伸さ
れるため、第1工程の絞り加工でカップ底部コーナーの
樹脂フィルムにマイクロクラックが生じた場合、その後
の加工で、激しい被膜欠陥となってしまう危険性が高く
なり好ましくない。従って、特に絞り加工によるカップ
底部コーナーの被膜健全性確保は、缶体の内面品質の点
で重要な要素となる。かかる意味において、樹脂フィル
ムのガラス転移温度(Tg)以下での絞り加工は、カッ
プの缶底部コーナーの樹脂フィルムにマイクロクラック
が生じ易く、好ましくない。
The resin film in the corner at the bottom of the cup is the place where the punch first hits, and a high impact is applied. And microcracks are easily generated in the resin film at this portion. In particular, the bottom corner of the cup formed by drawing in the first step becomes a cup body wall (side wall part) after redrawing in the second step, and is further stretched by ironing in the third step. If microcracks occur in the resin film at the bottom corners of the cup during drawing, the risk of severe film defects in subsequent processing increases, which is not preferable. Accordingly, ensuring the soundness of the coating at the bottom corner of the cup, especially by drawing, is an important factor in terms of the inner surface quality of the can body. In this sense, drawing at or below the glass transition temperature (Tg) of the resin film is not preferable because microcracks tend to occur in the resin film at the bottom corner of the can of the cup.

【0044】一方、冷結晶化温度(Tc)以上で絞り加
工を行った場合は、樹脂の熱結晶化が起こり易くなり、
樹脂フィルムの衝撃強度が低下し、カップ底部コーナー
の樹脂フィルムにマイクロクラックが生じ易いこと、更
には、前述したように熱結晶化が起こり易くなることは
しごき加工で被膜欠陥の発生につながる危険性が高くな
ること等から、好ましくない。第1工程の絞り加工およ
び第2工程の再絞り加工を、被覆樹脂フィルムのガラス
転移温度(Tg)から冷結晶化温度(Tc)の範囲に限
定したのは、上記の理由からで、好ましくはガラス転移
温度(Tg)+5℃から冷結晶化温度(Tc)−10℃
の範囲が良い。
On the other hand, when drawing is performed at a temperature higher than the cold crystallization temperature (Tc), thermal crystallization of the resin is likely to occur.
The impact strength of the resin film decreases, microcracks are likely to occur in the resin film at the corners of the bottom of the cup, and as described above, thermal crystallization is more likely to occur. Is undesirably high. The reason why the drawing in the first step and the redrawing in the second step are limited to the range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the coating resin film is preferably for the above-mentioned reason. Glass transition temperature (Tg) + 5 ° C to cold crystallization temperature (Tc) -10 ° C
Good range.

【0045】絞り加工および再絞り加工に供するラミネ
ート板やカップの温度とは、接触式温度計等で測定され
る表面温度を指し、ラミネート板やカップの温度を、被
覆樹脂フィルムのガラス転移温度(Tg)から冷結晶化
温度(Tc)の範囲に制御する手段としては、ラミネー
ト板やカップを電気炉中で加熱する方法や熱風で加熱す
る方法等、常用の手段が適用される。
The temperature of the laminated plate or cup used for drawing and redrawing refers to the surface temperature measured by a contact-type thermometer or the like, and the temperature of the laminated plate or cup is determined by the glass transition temperature ( As means for controlling the temperature within a range from Tg) to the cold crystallization temperature (Tc), conventional means such as a method of heating a laminate plate or a cup in an electric furnace or a method of heating with a hot air are applied.

【0046】また、絞り加工や再絞り加工を行う金型の
表面温度を、ガラス転移温度(Tg)から冷結晶化温度
(Tc)の範囲に加熱して成形加工する加温加工方法
も、ラミネート板やカップを加熱した場合と同様な効果
が得られるが、この場合は、絞り加工や再絞り加工を行
う前のラミネート板やカップの表面温度により、加工金
型の設定温度を決める必要があるが、ラミネート板やカ
ップの表面温度が、例えば常温の場合は、設定温度はガ
ラス転移温度(Tg)より10〜15℃高めに設定する
と良い。
Also, a heating method in which the surface temperature of a die for performing drawing and redrawing is heated to a range from a glass transition temperature (Tg) to a cold crystallization temperature (Tc) to carry out forming processing is also known. The same effect as when the plate or cup is heated can be obtained, but in this case, it is necessary to determine the set temperature of the processing die according to the surface temperature of the laminate plate or cup before performing the drawing or redrawing. However, when the surface temperature of the laminate plate or the cup is, for example, normal temperature, the set temperature is preferably set to be 10 to 15 ° C. higher than the glass transition temperature (Tg).

【0047】上記の常用の手段でラミネート板やカップ
の加熱を、ガラス転移温度(Tg)から冷結晶化温度
(Tc)の範囲にして成形加工する方法と、加工を行う
金型の表面温度を、ガラス転移温度(Tg)から冷結晶
化温度(Tc)の範囲に加熱して成形加工する加温加工
方法の併用も可能であり、設備にあった手段が採用でき
る。
A method of forming a laminate plate or a cup by heating in the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tc) by the above-mentioned conventional means, In addition, it is also possible to use a heating processing method of heating and molding in a range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc), and a means suitable for the equipment can be used.

【0048】第1工程の絞り加工、第2工程の再絞り加
工に次いで行う第3工程のしごき加工は、再絞り加工で
得たカップの温度を潤滑油(B)の融点以下にした後、
加工金型の温度を120℃以下に保持して行う。なお、
ここでいう再絞り加工で得たカップの温度とは、カップ
の表面温度を指し、加工金型の温度とは、金型の表面温
度を指す。
The ironing in the third step, which is performed after the drawing in the first step and the redrawing in the second step, is performed after the temperature of the cup obtained by the redrawing is reduced to the melting point of the lubricating oil (B).
This is performed while maintaining the temperature of the processing die at 120 ° C. or lower. In addition,
Here, the temperature of the cup obtained by the redrawing refers to the surface temperature of the cup, and the temperature of the working mold refers to the surface temperature of the mold.

【0049】前述したように、樹脂フィルムの欠陥は、
内外面共、しごき加工で最も起こり易い。しごき加工
は、缶壁部のみをパンチとしごきダイスの間のクリアラ
ンスを瞬時の通し薄肉化する加工であるため、加工の際
には金属の激しい加工熱が発生し、樹脂フィルムの特性
を大きく変化させる。熱による樹脂フィルムの特性変化
は、(1)樹脂フィルムの軟化、(2)樹脂フィルムの
結晶化等があるが、いずれの特性変化も成形加工による
皮膜欠陥の発生原因となることは前述した通りである。
従って、このしごき加工の温度制御は樹脂フィルムの欠
陥発生防止の点から重要である。そこで、本発明の方法
では、第2工程の再絞り加工で得たカップの温度を潤滑
油(B)の融点以下にしてしごき加工に供すると共に、
併せて加工金型の温度を120℃以下に保持して成形加
工を行う。なお、ここでいう再絞り加工で得たカップの
温度とは、カップの表面温度を指し、加工金型の温度と
は、金型の表面温度を指す。
As described above, the defect of the resin film is as follows.
Ironing is most likely to occur on the inside and outside surfaces. The ironing process is a process in which only the can wall is punched and the clearance between the ironing dies is instantaneously reduced to reduce the wall thickness. Let it. Changes in the properties of the resin film due to heat include (1) softening of the resin film and (2) crystallization of the resin film. As described above, any change in the properties causes film defects due to molding. It is.
Therefore, the temperature control of the ironing process is important from the viewpoint of preventing the occurrence of defects in the resin film. Therefore, in the method of the present invention, the temperature of the cup obtained in the re-drawing process in the second step is reduced to the melting point of the lubricating oil (B) or lower, and the ironing process is performed.
At the same time, molding is performed while the temperature of the processing die is kept at 120 ° C. or lower. Here, the temperature of the cup obtained by the redrawing processing refers to the surface temperature of the cup, and the temperature of the processing die refers to the surface temperature of the die.

【0050】カップの温度が潤滑油(B)の融点温度を
超えると、付着している潤滑油は液体となっており、そ
の結果、樹脂フィルムと成形加工金型との離型性が悪く
なり、樹脂フィルムが傷つき易く、また、缶外面側は
「かじり」が入り易くなるので好ましくない。
When the temperature of the cup exceeds the melting point of the lubricating oil (B), the adhering lubricating oil is liquid, and as a result, the releasability between the resin film and the molding die becomes poor. In addition, the resin film is easily damaged and the outer surface of the can is apt to bite, which is not preferable.

【0051】また、加工金型の温度は、120℃以下で
しごき加工を行うが、120℃を超える温度では、缶内
面側では樹脂フィルムと成形加工金型との離型性が悪
く、樹脂フィルムの傷つきが激しくなって、缶内面側は
耐食性確保が難しいと共に、場合によっては樹脂フィル
ムと成形加工金型との離型の際に缶胴部が座屈し、正常
な缶体が得られないと言った事態が発生することがあ
る。更に、しごき加工における加工金型が120℃を超
える温度では、ポリエステル樹脂フィルムの、配向結晶
化が急激に進み、その結果、樹脂フィルムの亀裂欠陥が
発生し易くなる危険性が高くなる。また、外面側の樹脂
フィルムは、前述した「かじり」が激しく入り、その後
行われる印刷での外観性が劣るだけでなく、場合によっ
ては「かじり」部を起点とする缶胴の破断が起こる。
The ironing process is performed at a temperature of the working mold of 120 ° C. or less. However, at a temperature exceeding 120 ° C., the releasability between the resin film and the forming mold is poor on the inner surface of the can, and the resin film is hardened. The inside of the can is difficult to secure corrosion resistance, and in some cases, the can body buckles during release from the resin film and the molding die, and a normal can body cannot be obtained. The situation described may occur. Further, when the temperature of the working mold in ironing exceeds 120 ° C., the orientation crystallization of the polyester resin film rapidly proceeds, and as a result, there is a high risk that crack defects are likely to occur in the resin film. Further, the resin film on the outer surface side is severely subjected to the above-mentioned "galling", and not only deteriorates the appearance in the subsequent printing, but also occasionally causes breakage of the can body starting from the "galling" portion.

【0052】従って、しごき加工における加工温度は、
缶体の内外面の品質確保の点から極めて重要で、本発明
のようにポリエステル樹脂フィルムを被覆したラミネー
トアルミニウム板から、絞りしごき加工によって良好な
品質を有する缶体を得るには、加工金型の温度を120
℃以下に保持することが重要である。本発明の方法にお
いて、しごき加工の際の加工金型の温度を120℃以下
に保持して行うと、限定した理由は上記の理由からであ
る。
Therefore, the working temperature in the ironing work is
It is extremely important from the viewpoint of ensuring the quality of the inner and outer surfaces of the can body. From a laminated aluminum plate coated with a polyester resin film as in the present invention, in order to obtain a can body having good quality by drawing and ironing, a processing die The temperature of 120
It is important to keep it below ° C. In the method of the present invention, when the temperature of the working mold at the time of ironing is kept at 120 ° C. or lower, the reason for the limitation is the above reason.

【0053】しごき加工は、加工金型全体の温度を12
0℃以下に保持して行うのが好ましいが、特に加工度が
低い場合は加工パンチの温度を120℃以下に保持する
だけでも樹脂フィルムの欠陥防止効果は得られる。しご
き加工の際の加工金型または加工パンチの温度は、基本
的には低い方が良く、好適な温度としては100℃以下
にするのが好ましい。なお、しごき加工は、しごきダイ
スを一枚で行う1段しごき加工法や、二枚乃至は三枚で
行う多段しごき加工法などが適用出来る。
In the ironing process, the temperature of the entire processing die is set to 12
It is preferable to perform the process while maintaining the temperature at 0 ° C. or lower. However, particularly when the degree of processing is low, the effect of preventing the resin film from being defective can be obtained simply by maintaining the temperature of the processing punch at 120 ° C. or lower. The temperature of the working mold or working punch during ironing is basically preferably lower, and the preferred temperature is preferably 100 ° C. or lower. The ironing can be performed by a one-step ironing method using one ironing die, a multi-step ironing method using two or three ironing dies, or the like.

【0054】再絞り加工で得たカップの温度を潤滑油
(B)の融点以下にする手段としては、絞り加工で得た
カップの温度が潤滑油(B)の融点を超えている場合は
冷風を当てる等の手法が採用でき、また、加工金型の温
度を120℃以下にする手段としては、金型に冷却水を
通す方法、水、又は潤滑成分を水に溶解または分散させ
たものを吹きかけて冷却する方法、更にはこれらの併用
と言った方法が採用できる。どの手法を採用するかは、
設備との関係で適宜選択することが好ましい。
As a means for lowering the temperature of the cup obtained by the redrawing process to the melting point of the lubricating oil (B) or less, if the temperature of the cup obtained by the drawing process exceeds the melting point of the lubricating oil (B), Can be adopted, and as a means for lowering the temperature of the working mold to 120 ° C. or less, a method of passing cooling water through the mold, water, or a solution in which a lubricating component is dissolved or dispersed in water. A method of cooling by spraying, and a method of using these in combination can be adopted. Which method to use depends on
It is preferable to select appropriately in relation to the equipment.

【0055】次に、本発明の缶体成形方法における加工
度の限定について述べる。第1工程の絞り加工の加工度
は、下記の式(1)から求められる値として10%以内
になるように行い、第2工程の再絞り加工の加工度は、
式(1)から求められる値として第1工程での加工度と
合わせて25%以内になるように成形加工を行い、第3
工程のしごき加工の加工度は、式(1)から求められる
加工度として第1工程および第2工程での加工度と合わ
せて50〜70%の範囲で成形加工を行うものである。
Next, the limitation of the degree of processing in the can body forming method of the present invention will be described. The degree of work of the drawing in the first step is performed so as to be within 10% as a value obtained from the following equation (1).
Forming is performed so that the value obtained from the equation (1) is within 25% together with the degree of processing in the first step.
The working degree of the ironing process in the process is to perform the forming process in a range of 50 to 70% in combination with the working degree in the first step and the second step as the working degree obtained from the equation (1).

【数2】 加工度(%)=〔(Bt−Wt)/Bt〕×100 ……(1) Bt:缶底部のアルミニウム板の板厚 Wt:缶胴側壁部のアルミニウム板の最も薄い部位の板
## EQU2 ## Degree of work (%) = [(Bt−Wt) / Bt] × 100 (1) Bt: thickness of aluminum plate at bottom of can Wt: thickness of thinnest aluminum plate at side wall of can body Board thickness

【0056】式(1)から求められる値として、第1工
程の絞り加工の加工度が10%以内になるように、第2
工程の再絞り加工後の加工度が第1工程での加工度と合
わせて25%以内になるように行う理由は、前述したよ
うに、通常の絞り加工ではカップの側壁部は元板厚(本
発明では、缶底部の板厚を指す)より厚くなるため、こ
の状態からしごき加工、特に高加工度のしごき加工を行
うと、加工時の熱と伸ばし加工により、樹脂フィルムが
配向結晶化し、成形に耐えられずフィルムに亀裂が発生
する場合があるからである。従って、それを避けるため
には、上記のように順次加工度を上げた加工を行い、最
終のしごき加工の加工度はなるべく低く抑える方が良
い。
As a value obtained from the equation (1), the second step is performed so that the degree of drawing in the first step is within 10%.
The reason why the working ratio after the re-drawing process in the process is set to be within 25% together with the working ratio in the first process is that, as described above, the side wall portion of the cup in the normal drawing process has the original plate thickness ( In the present invention, since the thickness of the bottom of the can is indicated), when ironing is performed from this state, particularly when ironing is performed with a high degree of processing, the resin film is oriented and crystallized by heat and stretching during processing, This is because the film may not withstand molding and cracks may occur in the film. Therefore, in order to avoid this, it is better to carry out the processing in which the degree of processing is sequentially increased as described above, and to suppress the degree of processing of the final ironing as low as possible.

【0057】かかる意味から本発明の方法であれば、缶
内外面の樹脂フィルムの健全性が確保される成形加工が
可能となる。特に、第2工程終了時の再絞りカップの段
階で、側壁部の樹脂フィルムが完全に結晶化していない
状態にしておくことが、第3工程のしごき加工後の缶体
内面の樹脂フィルムの健全性確保には重要であり、再絞
り加工後の加工度として25%以内であれば、しごき加
工後の内外面の樹脂フィルムの健全性は確保される。
In this sense, according to the method of the present invention, it is possible to perform a molding process for ensuring the soundness of the resin film on the inner and outer surfaces of the can. In particular, at the stage of the re-drawing cup at the end of the second step, it is necessary to keep the resin film on the side wall portion not completely crystallized, because the soundness of the resin film on the inner surface of the can after the ironing in the third step is improved. It is important for ensuring the resilience, and if the working degree after redrawing is within 25%, the soundness of the resin film on the inner and outer surfaces after ironing is ensured.

【0058】なお本発明の方法では、上記の第1工程お
よび第2工程で行う、ストレッチ加工および/またはし
ごき加工を付加した絞り加工および再絞り加工は、スト
レッチ加工のみを付加した方法、しごき加工を付加した
方法、ストレッチ加工としごき加工の両者を付加した方
法、のいずれの方法でも良く、適宜適用される。
In the method of the present invention, the drawing and redrawing with the stretching and / or ironing performed in the first and second steps described above include a method to which only stretching is added, and a ironing. , Or a method to which both the stretching and the ironing are added, and the method is appropriately applied.

【0059】[0059]

【実施例】以下、実施例にて、本発明の方法の効果を具
体的に説明するが、その前に本発明の方法で行った評価
方法について述べる。 (1)潤滑油の流動点の測定は、JIS−K2269の
試験法に準じて測定を行った。 (2)潤滑油の融点の測定は、JIS−K2235の試
験法に準じて測定を行った。 (3)樹脂フィルムの密度は、密度勾配管法にて測定し
た。 (4)樹脂フィルムのガラス転移温度(Tg)、冷結晶
化温度(Tc)、融点(Tm)は示差走査熱量計(DS
C)で、10℃/分の昇温速度で測定し、ガラス転移温
度は転移の始まる点をその温度とし、冷結晶化温度(T
c)、融点(Tm)は、それぞれのピーク温度を冷結晶
化温度および融点とした。 (5)カップの絞り加工後の缶底部コーナーのマイクロ
クラックについては、光学顕微鏡で観察しその程度を評
価した。評価は次のように評価基準を設定し行った。 ○:クラックなく良好 □:軽微なクラック発生 △:明確なクラック発生 ×:激しいクラック発生 (6)フィルムと加工パンチの離型性は、成形缶上部に
起こる缶体の座屈程度を観察し評価した。離型性の評価
は、次のように評価基準を設定し行った。 ○:缶開口部の座屈なく良好 □:缶開口部に軽微な座屈あり △:開口部円周の1/3未満の座屈 ×:開口部円周の1/3以上の座屈 (7)缶外面の耐かじり性は、成形した缶体胴壁部外面
のかじり発生程度を観察して評価した。 ○:かじりなく良好 □:軽微なかじり発生 △:外面の1/3未満にかじり発生 ×:外面の1/3以上に激しいかじり発生 (8)缶内面の樹脂フィルムの傷付き程度については、
1.0重量%食塩水に界面活性剤を、0.1重量%添加
した電解液で、缶体を陽極、陰極を銅線とし印加電圧6
Vで3秒後の電流値を測定し、樹脂フィルムの皮膜の健
全性を評価した(以降、この評価法をQTV試験と称す
る)。
EXAMPLES The effects of the method of the present invention will be specifically described below with reference to examples, but before that, the evaluation method performed by the method of the present invention will be described. (1) The pour point of the lubricating oil was measured according to the test method of JIS-K2269. (2) The melting point of the lubricating oil was measured according to the test method of JIS-K2235. (3) The density of the resin film was measured by a density gradient tube method. (4) The glass transition temperature (Tg), the cold crystallization temperature (Tc), and the melting point (Tm) of the resin film were measured using a differential scanning calorimeter (DS).
C), the glass transition temperature was measured at a heating rate of 10 ° C./min. The glass transition temperature was defined as the temperature at which the transition started, and the cold crystallization temperature (T
c) For the melting point (Tm), the respective peak temperatures were defined as the cold crystallization temperature and the melting point. (5) Microcracks at the bottom corners of the can after drawing of the cup were observed with an optical microscope to evaluate the degree. The evaluation was performed by setting evaluation criteria as follows. :: good without cracks □: slight cracks generated △: clear cracks generated ×: severe cracks generated (6) The releasability of the film and the processing punch was evaluated by observing the degree of buckling of the can body occurring at the top of the molded can. did. The releasability was evaluated by setting evaluation criteria as follows. :: good without buckling of can opening □: slight buckling at can opening △: buckling less than 1/3 of opening circumference ×: buckling of 1/3 or more of opening circumference ( 7) The galling resistance of the outer surface of the can was evaluated by observing the degree of galling on the outer surface of the molded body wall. :: Good without galling □: Slight galling occurred △: Galling occurred on less than 1/3 of the outer surface ×: Violent galling occurred on 1/3 or more of the outer surface (8) Regarding the degree of damage to the resin film on the inner surface of the can,
An electrolytic solution prepared by adding 0.1% by weight of a surfactant to 1.0% by weight of a saline solution was used.
The current value after 3 seconds was measured at V, and the soundness of the film of the resin film was evaluated (hereinafter, this evaluation method is referred to as a QTV test).

【0060】実験例1 表面に皮膜C量として16mg/m2のリン酸−フェノ
ール樹脂の有機無機複合型化成処理皮膜を有する、板厚
0.26mmのアルミニウム板(3004系合金)の両
面に、ガラス転移温度(Tg)が67℃、冷結晶化温度
(Tc)が123℃、融点が238℃、厚み20μmの
二軸延伸ポリエステル樹脂フィルムを熱圧着法で接着し
た後、加熱・冷却し、非晶質化ポリエステル樹脂フィル
ム被覆ラミネート板を作成した。得られたラミネート板
のポリエステル樹脂フィルムの密度は、表1〜2に示し
た。
EXPERIMENTAL EXAMPLE 1 An aluminum plate (3004 series alloy) having a thickness of 0.26 mm having an organic-inorganic composite chemical conversion coating film of phosphoric acid-phenol resin having a coating film C content of 16 mg / m 2 on both surfaces, A biaxially stretched polyester resin film having a glass transition temperature (Tg) of 67 ° C., a cold crystallization temperature (Tc) of 123 ° C., a melting point of 238 ° C., and a thickness of 20 μm is adhered by a thermocompression bonding method, and then heated and cooled. A crystallized polyester resin film-coated laminate was prepared. The densities of the polyester resin films of the obtained laminates are shown in Tables 1 and 2.

【0061】こうして得られたラミネート板の両面に成
形用潤滑剤として流動点が−12.5℃の潤滑油(A)
と融点が57℃の潤滑油(B)を加熱混合して、潤滑油
(A)と潤滑油(B)の混合比が重量部比で0:100
(テスト1)、10:90(テスト2)、20:80
(テスト3)、40:60(テスト4)、60:40
(テスト5)、80:20(テスト6)、100:0
(テスト7)に混合し、加温して液状にしグラビアロー
ルで塗油した。塗油量は、表1〜2に示した。
A lubricating oil (A) having a pour point of -12.5 ° C. as a forming lubricant on both sides of the thus obtained laminate plate
And a lubricating oil (B) having a melting point of 57 ° C. are heated and mixed, and the mixing ratio of the lubricating oil (A) and the lubricating oil (B) is 0: 100 in parts by weight.
(Test 1), 10:90 (Test 2), 20:80
(Test 3), 40:60 (Test 4), 60:40
(Test 5), 80:20 (Test 6), 100: 0
(Test 7), and the mixture was heated to a liquid state and oiled with a gravure roll. The amount of oil applied is shown in Tables 1-2.

【0062】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が7%のしごき加工を付加した絞り
加工を行った。この時得られたカップの、底部コーナー
の樹脂フィルムのマイクロクラック発生状況について調
べ、その結果を表3〜4に示した。次いで、得られたカ
ップの温度を70℃にして、加工度が22%のストレッ
チ加工およびしごき加工を付加した再絞り加工を行った
後、再絞り加工で得られたカップの温度を50℃にし
て、金型温度を100℃に保持して最終加工度が60%
のしごき加工を行い、350mlビール缶サイズのシー
ムレス缶を作成した。こうして得た缶体について、金型
離型性、耐かじり性および缶内面の品質をQTV試験で
調べ、その評価結果を表3〜4に示した。
The temperature of the oil-laminated plate thus obtained was 7
At 0 ° C., drawing was performed by adding ironing with a working ratio of 7%. The cup obtained at this time was examined for the occurrence of microcracks in the resin film at the bottom corner, and the results are shown in Tables 3 and 4. Next, the temperature of the obtained cup was set to 70 ° C., and after performing redrawing with stretching and ironing at a working ratio of 22%, the temperature of the cup obtained by redrawing was set to 50 ° C. The mold temperature is kept at 100 ° C and the final degree of processing is 60%
Ironing was performed to produce a 350 ml beer-size seamless can. With respect to the can thus obtained, mold release properties, galling resistance and quality of the inner surface of the can were examined by a QTV test, and the evaluation results are shown in Tables 3 and 4.

【0063】表1〜4から、本発明の実施例1〜3に相
当するテスト2〜4は、絞り加工で得られるカップの底
部コーナー部の樹脂フィルムのクラック発生もなく、ま
たしごき加工時の金型離型性、缶外面のかじり性共に良
好で、低いQTV値を示しており、良好な缶体が得られ
ていることが分かる。一方、潤滑油(B)のみをラミネ
ート板に塗油して成形した比較例1であるテスト1は、
絞り加工で缶底抜けが散発し、絞り成形性が本発明の実
施例1から3に比べ劣ることが分かる。また、混合潤滑
油中の潤滑油(A)の混合重量部比が50を超える比較
例2、3であるテスト5、6では、しごき加工時の金型
離型性、缶外面の耐かじり性が共に本発明の実施例に比
べ劣り、QTV値も高い。特に、潤滑油(A)のみを塗
油して成形した比較例4のテスト7の場合は、しごき加
工で缶胴の切断が多発した。
From Tables 1 to 4, Tests 2 to 4 corresponding to Examples 1 to 3 of the present invention showed that no cracks occurred in the resin film at the bottom corners of the cup obtained by drawing, and that ironing was not performed during ironing. Both the mold releasability and the galling property of the outer surface of the can were good, showing a low QTV value, and it can be seen that a good can body was obtained. On the other hand, Test 1, which is Comparative Example 1 in which only the lubricating oil (B) was applied to the laminated plate and molded,
It can be seen that the bottom of the can is spattered by the drawing process, and the draw formability is inferior to Examples 1 to 3 of the present invention. In Tests 5 and 6, which are Comparative Examples 2 and 3 in which the mixing ratio by weight of the lubricating oil (A) in the mixed lubricating oil exceeds 50, the mold release properties during ironing and the galling resistance of the outer surface of the can Are inferior to the examples of the present invention, and the QTV values are high. In particular, in the case of Test 7 of Comparative Example 4 in which only the lubricating oil (A) was applied, the can body was frequently cut by ironing.

【0064】下記表中、*1〜*8は下記の説明のとお
りである。 *1 潤Aは潤滑油Aを示す。 *2 混合割合の項は潤滑油Aと潤滑油Bの重量比での
混合割合を示す。 *3 潤Bは潤滑油Bを示す。 *4 塗布量は、片面に塗布された潤滑油の量を示し、
単位はmg/m2である。 *5 第1工程のストレッチ加工および/またはしごき
加工を付加した絞り加工工程を示す。 *6 第2工程のストレッチ加工および/またはしごき
加工を付加した再絞り加工工程を示す。 *7 第3工程のしごき加工工程を示す。 *8 実施例および比較例の表示の項については、実施
例1、2、…を実1、実2、…と、比較例1、2、…を
比1、比2…と表示した。
In the following table, * 1 to * 8 are as described below. * 1 Moisture A indicates lubricating oil A. * 2 The term “mixing ratio” indicates the mixing ratio of lubricating oil A and lubricating oil B in weight ratio. * 3 Moisture B indicates lubricating oil B. * 4 Application amount indicates the amount of lubricating oil applied to one side.
The unit is mg / m 2 . * 5 Indicates a drawing process to which stretching and / or ironing of the first process is added. * 6 Indicates the re-drawing process to which the stretching process and / or ironing process of the second process is added. * 7 Indicates the third ironing process. * 8 In Examples and Comparative Examples, Examples 1 and 2,..., Are shown as Real 1, Real 2,..., And Comparative Examples 1, 2,.

【0065】[0065]

【表1】 [Table 1]

【0066】[0066]

【表2】 [Table 2]

【0067】[0067]

【表3】 * カップ絞り加工で缶底抜けが散発[Table 3] * Can spills may occur during cup drawing.

【0068】[0068]

【表4】 ** しごき加工で缶胴切断が多発[Table 4] ** Can body cutting frequently occurs by ironing

【0069】実験例2 実験例1で作成した非晶質化ポリエステル樹脂フィルム
ラミネート板を用いて、両面に成形用潤滑剤として、流
動点が2.5℃の潤滑油(A)と融点が57℃の潤滑油
(B)を混合比が重量部比で30:70の潤滑油(テス
ト8)、流動点が−7.5℃の潤滑油(A)と融点が5
7℃の潤滑油(B)を混合比が重量部比で30:70の
潤滑油(テスト9)、流動点が−12.5℃の潤滑油
(A)と融点が57℃の潤滑油(B)を混合比が重量部
比で30:70の潤滑油(テスト10)、流動点が−1
7.5℃の潤滑油(A)と融点が57℃の潤滑油(B)
を混合比が重量部比で30:70の潤滑油(テスト1
1)、流動点が−20.0℃の潤滑油(A)と融点が5
7℃の潤滑油(B)を混合比が重量部比で30:70の
潤滑油(テスト12)、を加温して液状にしグラビアロ
ールで塗油した。塗油量は表5〜6に示した。
Experimental Example 2 Using the amorphized polyester resin film laminate prepared in Experimental Example 1, a lubricant (A) having a pour point of 2.5.degree. C. and a melting point of 57.degree. Lubricating oil (B) having a mixing ratio of 30:70 in terms of parts by weight (test 8), lubricating oil (A) having a pour point of -7.5 ° C. and melting point of 5
A lubricating oil (B) having a mixing ratio of 30 ° C. by weight of 7 ° C. (test 9), a lubricating oil (A) having a pour point of −12.5 ° C., and a lubricating oil having a melting point of 57 ° C. ( B) Lubricating oil having a mixing ratio of 30:70 by weight (test 10), pour point of -1
7.5 ° C lubricating oil (A) and melting point 57 ° C lubricating oil (B)
Was mixed with a lubricating oil having a mixing ratio of 30:70 by weight (test 1
1) A lubricating oil (A) having a pour point of -20.0 ° C and a melting point of 5
A lubricating oil (B) at 7 ° C. was mixed with a gravure roll by lubricating a lubricating oil (test 12) having a mixing ratio of 30:70 by weight (test 12). The amount of oil applied is shown in Tables 5-6.

【0070】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が5%のしごき加工を付加した絞り
加工を行った。この時得られたカップの、底部コーナー
の樹脂フィルムのマイクロクラツク発生状況について調
べ、その結果を表7〜8に示した。次いで、得られたカ
ップの温度を70℃にして、加工度が15%のストレッ
チ加工およびしごき加工を付加した再絞り加工を行った
後、再絞り加工で得たカップの温度を50℃にして、金
型温度を80℃に保持し最終加工度が60%のしごき加
工を行い、350mlビール缶サイズのシームレス缶を
作成した。こうして得た缶体について、金型離型性、耐
かじり性および缶内面の品質をQTV試験で調べた。そ
の評価結果を表7〜8に示した。
The temperature of the oil-laminated plate thus obtained was 7
At 0 ° C., drawing was performed by adding ironing with a working ratio of 5%. At this time, the state of occurrence of microcracks in the resin film at the bottom corner of the cup obtained at this time was examined, and the results are shown in Tables 7 and 8. Next, the temperature of the obtained cup was set to 70 ° C., and a redrawing process with a stretch rate of 15% and ironing was performed. Then, the temperature of the cup obtained by the redrawing process was set to 50 ° C. The die temperature was maintained at 80 ° C., and ironing was performed at a final working degree of 60%, to produce a 350 ml beer-size seamless can. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 7 and 8.

【0071】表5〜8から、本発明の実施例4〜8に相
当するテスト8〜12は、絞り加工で得られるカップの
底部コーナー部の樹脂フィルムのクラック発生もなく、
またしごき加工時の金型離型性、缶外面のかじり性共に
良好で、低いQTV値を示しており、良好な缶体が得ら
れていることが分かる。
As shown in Tables 5 to 8, Tests 8 to 12 corresponding to Examples 4 to 8 of the present invention showed that the resin film at the bottom corner of the cup obtained by drawing did not crack,
In addition, the mold releasing property during ironing and the galling property of the outer surface of the can were both good, showing a low QTV value, indicating that a good can body was obtained.

【0072】[0072]

【表5】 [Table 5]

【0073】[0073]

【表6】 [Table 6]

【0074】[0074]

【表7】 [Table 7]

【0075】[0075]

【表8】 [Table 8]

【0076】実験例3 実験例1で作成した非晶質化ポリエステル樹脂フィルム
ラミネート板を用いて、両面に成形用潤滑剤として、流
動点が−12.5℃の潤滑油(A)と融点が50℃の潤
滑油(B)を混合比が重量部比で30:70の潤滑油
(テスト13)、流動点が−12.5℃の潤滑油(A)
と融点が54℃の潤滑油(B)を混合比が重量部比で3
0:70の潤滑油(テスト14)、流動点が−12.5
℃の潤滑油(A)と融点が63℃の潤滑油(B)を混合
比が重量部比で30:70の潤滑油(テスト15)、流
動点が−12.5℃の潤滑油(A)と融点が75℃の潤
滑油(B)を混合比が重量部比で30:70の潤滑油
(テスト16)、流動点が−12.5℃の潤滑油(A)
と融点が84℃の潤滑油(B)を混合比が重量部比で3
0:70の潤滑油(テスト17)、を液状に加温しグラ
ビアロールで塗油した。塗油量は表9〜10に示した。
EXPERIMENTAL EXAMPLE 3 Using the amorphized polyester resin film laminate prepared in Experimental Example 1, a lubricant (A) having a pour point of -12.5 ° C. and a melting point were used as molding lubricants on both sides. Lubricating oil (B) having a mixing ratio of 30:70 in terms of parts by weight with lubricating oil (B) at 50 ° C (Test 13), lubricating oil (A) having a pour point of -12.5 ° C
And a lubricating oil (B) having a melting point of 54 ° C. in a mixing ratio of 3 parts by weight.
0:70 lubricating oil (test 14), pour point -12.5
Lubricating oil (A) having a melting point of 63 ° C. and lubricating oil (B) having a mixing ratio of 30:70 by weight (test 15), lubricating oil (A) having a pour point of -12.5 ° C. ) And a lubricating oil having a melting point of 75 ° C. (B) in a mixing ratio of 30:70 by weight (test 16), and a lubricating oil having a pour point of −12.5 ° C. (A)
And a lubricating oil (B) having a melting point of 84 ° C. in a mixing ratio of 3 parts by weight.
A lubricating oil of 0:70 (Test 17) was heated to a liquid state and coated with a gravure roll. The amount of oil applied is shown in Tables 9 to 10.

【0077】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が7%のストレッチ加工およびしご
き加工を付加した絞り加工を行った。この時得られたカ
ップの底部コーナーの樹脂フィルムのマイクロクラック
発生状況について調べ、その結果を表11〜12に示し
た。次いで、得られたカップの温度を70℃にして、加
工度が15%のストレッチ加工およびしごき加工を付加
した再絞り加工を行った後、再絞り加工で得たカップの
温度を40℃にし、金型温度を100℃に保持し最終加
工度が60%のしごき加工を行い、350mlビール缶
サイズのシームレス缶を作成した。こうして得た缶体に
ついて、金型離型性、耐かじり性および缶内面の品質を
QTV試験で調べた。その評価結果を表11〜12に示
した。
The temperature of the oil-laminated plate thus obtained was 7
The temperature was set to 0 ° C., and the drawing was performed by adding stretch processing and ironing processing at a processing degree of 7%. At this time, the state of occurrence of microcracks in the resin film at the bottom corner of the cup obtained was examined, and the results are shown in Tables 11 to 12. Next, the temperature of the obtained cup was set to 70 ° C., and after performing re-drawing with a stretch rate of 15% and ironing, the temperature of the cup obtained by re-drawing was set to 40 ° C. Ironing was performed with the mold temperature kept at 100 ° C. and the final working degree was 60%, to produce a 350 ml beer can-sized seamless can. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 11 to 12.

【0078】表9〜12から、本発明の実施例9〜13
に相当するテスト13〜17は、絞り加工で得られるカ
ップの底部コーナー部の樹脂フィルムのクラック発生も
なく、またしごき加工時の金型離型性、缶外面の耐かじ
り性共に良好で、低いQTV値を示しており、良好な缶
体が得られていることが分かる。
From Tables 9 to 12, Examples 9 to 13 of the present invention are shown.
In Tests 13 to 17, which corresponded to, no cracking of the resin film at the bottom corner of the cup obtained by drawing was performed, and the mold release property during ironing and the galling resistance of the outer surface of the can were both good and low. It shows a QTV value, and it can be seen that a good can was obtained.

【0079】[0079]

【表9】 [Table 9]

【0080】[0080]

【表10】 [Table 10]

【0081】[0081]

【表11】 [Table 11]

【0082】[0082]

【表12】 [Table 12]

【0083】実験例4 実験例1で作成した非晶質化ポリエステル樹脂フィルム
ラミネート板を用いて、両面に成形用潤滑剤として、流
動点が−7.5℃の潤滑油(A)と融点が57℃の潤滑
油(B)を混合比が重量部比で30:70の潤滑油を加
温して液状にしスプレーで、それぞれ片面の塗油量が2
3mg/m2(テスト18)、44mg/m2(テスト1
9)、67mg/m2(テスト20)、93mg/m
2(テスト21)、122mg/m2(テスト22)、1
58mg/m2(テスト23)、187mg/m2(テス
ト24)の塗油をした。塗油量は表13〜14に示し
た。
EXPERIMENTAL EXAMPLE 4 Using the amorphized polyester resin film laminate prepared in Experimental Example 1, a lubricating oil (A) having a pour point of -7.5.degree. The lubricating oil (B) at 57 ° C. is heated to a lubricating oil having a mixing ratio of 30:70 by weight to make it liquid and sprayed.
3 mg / m 2 (Test 18), 44 mg / m 2 (Test 1
9), 67 mg / m 2 (test 20), 93 mg / m
2 (Test 21), 122 mg / m 2 (Test 22), 1
Oiling was performed at 58 mg / m 2 (Test 23) and 187 mg / m 2 (Test 24). The amount of oil applied is shown in Tables 13 and 14.

【0084】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が7%のストレッチ加工およびしご
き加工を付加した絞り加工を行った。この時得られたカ
ップの、底部コーナーの樹脂フィルムのマイクロクラッ
ク発生状況について調べ、その結果を表15〜16に示
した。次いで、得られたカップの温度を70℃にして、
加工度が22%のストレッチ加工およびしごき加工を付
加した再絞り加工を行った後、再絞り加工で得られたカ
ップの温度を50℃にし、金型温度を80℃に保持し最
終加工度が60%のしごき加工を行い、350mlビー
ル缶サイズのシームレス缶を作成した。こうして得た缶
体について、金型離型性、かじり性および缶内面の品質
をQTV試験で調べた。その評価結果を表15〜16に
示した。
The temperature of the oil-laminated plate thus obtained was 7
The temperature was set to 0 ° C., and the drawing was performed by adding stretch processing and ironing processing at a processing degree of 7%. The cup obtained at this time was examined for the occurrence of microcracks in the resin film at the bottom corner, and the results are shown in Tables 15 and 16. Then, the temperature of the obtained cup was set to 70 ° C.,
After performing redrawing with stretch processing and ironing with a working ratio of 22%, the temperature of the cup obtained by the redrawing process is set to 50 ° C., and the mold temperature is maintained at 80 ° C. A 60% ironing process was performed to produce a 350 ml beer-sized seamless can. With respect to the can thus obtained, the mold release property, the galling property and the quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 15 and 16.

【0085】表13〜16から、本発明の実施例14〜
19であるテスト19〜24は、絞り加工で得られるカ
ップの底部コーナー部の樹脂フィルムのクラック発生も
なく、また耐しごき加工時の金型離型性、缶外面の耐か
じり性共に良好で、低いQTV値を示しており、良好な
缶体が得られていることが分かる。一方、比較例5のテ
スト18は、絞り加工で得られるカップの底部コーナー
部の樹脂フィルムに僅かにクラックが発生した。またし
ごき加工時の金型離型性、缶外面の耐かじり性共に本発
明の実施例14から19に比べ劣り、QTV値も高い値
を示した。
From Tables 13 to 16, it can be seen from Examples 14 to 14 of the present invention.
Tests 19 to 24, which are No. 19, showed that the resin film at the bottom corner of the cup obtained by drawing did not crack, and that the mold releasing property during ironing and the galling resistance of the outer surface of the can were both good. It shows a low QTV value, indicating that a good can was obtained. On the other hand, in Test 18 of Comparative Example 5, a slight crack occurred in the resin film at the bottom corner of the cup obtained by drawing. In addition, the mold releasability during ironing and the galling resistance of the outer surface of the can were inferior to those of Examples 14 to 19 of the present invention, and the QTV value was high.

【0086】[0086]

【表13】 [Table 13]

【0087】[0087]

【表14】 [Table 14]

【0088】[0088]

【表15】 [Table 15]

【0089】[0089]

【表16】 [Table 16]

【0090】実験例5 表面に皮膜C量として26mg/m2のリン酸−フェノ
ール樹脂の有機無機複合型化成処理皮膜を有する、板厚
0.28mmのアルミニウム板(3004系合金)の両
面に、ガラス転移温度(Tg)が67℃、冷結晶化温度
(Tc)が123℃、融点が238℃のポリエステル樹
脂フィルムの厚みが8μm(テスト25)、15μm
(テスト26)、20μm(テスト27)、30μm
(テスト28)、40μm(テスト29)、50μm
(テスト30)の二軸延伸フィルムを熱圧着法で接着し
た後、加熱・冷却し、6種類の非晶質化ポリエステル樹
脂フィルム被覆ラミネート板を作成した。次いで、ラミ
ネート板の両面に、流動点が−12.5℃の潤滑油
(A)と融点が57℃の潤滑油(B)を混合比が重量部
比で30:70に加温混合して、グラビアロールで塗油
をした。得られたラミネート板のポリエステル樹脂フィ
ルムの密度および塗油量は表17〜18に示した。
EXPERIMENTAL EXAMPLE 5 A 0.28 mm thick aluminum plate (3004 series alloy) having a phosphoric acid-phenol resin organic-inorganic composite chemical conversion coating film having a coating C amount of 26 mg / m 2 on both surfaces, Polyester resin film having a glass transition temperature (Tg) of 67 ° C., a cold crystallization temperature (Tc) of 123 ° C. and a melting point of 238 ° C. has a thickness of 8 μm (test 25) and 15 μm.
(Test 26), 20 μm (Test 27), 30 μm
(Test 28), 40 μm (Test 29), 50 μm
After bonding the biaxially stretched film of (Test 30) by a thermocompression bonding method, it was heated and cooled to prepare six types of amorphized polyester resin film-coated laminates. Next, a lubricating oil (A) having a pour point of -12.5 ° C. and a lubricating oil (B) having a melting point of 57 ° C. are heated and mixed on both surfaces of the laminated plate at a mixing ratio of 30:70 by weight. Oil was applied with a gravure roll. Tables 17 and 18 show the density and the amount of oil applied to the polyester resin film of the obtained laminate plate.

【0091】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が7%のストレッチ加工およびしご
き加工を付加した絞り加工を行った。この時得られたカ
ップの、底部コーナーの樹脂フィルムのマイクロクラッ
ク発生状況について調べ、その結果を表19〜20に示
した。次いで、得られたカップの温度を70℃にして、
加工度が15%のストレッチ加工およびしごき加工を付
加した再絞り加工を行った後、再絞り加工で得られたカ
ップの温度を50℃にし、金型温度を80℃に保持し最
終加工度が63%のしごき加工を行い、350mlビー
ル缶サイズのシームレス缶を作成した。こうして得た缶
体について、金型離型性、耐かじり性および缶内面の品
質をQTV試験で調べた。その評価結果を表19〜20
に示した。
The temperature of the oil-laminated plate thus obtained was 7
The temperature was set to 0 ° C., and the drawing was performed by adding stretch processing and ironing processing at a processing degree of 7%. The cup obtained at this time was examined for the occurrence of microcracks in the resin film at the bottom corner, and the results are shown in Tables 19 to 20. Then, the temperature of the obtained cup was set to 70 ° C.,
After performing re-drawing with stretch processing and ironing with a working ratio of 15%, the temperature of the cup obtained by the re-drawing is set to 50 ° C., and the mold temperature is maintained at 80 ° C. Ironing of 63% was performed to produce a seamless can of 350 ml beer can size. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. Tables 19 to 20 show the evaluation results.
It was shown to.

【0092】表17〜20から、本発明の実施例20〜
24であるテスト26〜30は、絞り加工で得られるカ
ップの底部コーナー部の樹脂フィルムのクラック発生も
なく、またしごき加工時の金型離型性、缶外面の耐かじ
り性共に良好で、低いQTV値を示しており、良好な缶
体が得られていることが分かる。一方、比較例6のテス
ト25は、絞り加工で得られるカップの底部コーナー部
の樹脂フィルムにはクラックの発生もなく、またしごき
加工時の金型離型性、缶外面の耐かじり性共に良好であ
ったが、高いQTV値を示し、本発明の樹脂フィルム厚
みの限定値の下限未満では内面品質は確保できないこと
が分かる。
From Tables 17 to 20, it can be seen from Examples 20 to 20 of the present invention.
In Tests 26 to 30, which are 24, no cracking of the resin film at the bottom corner of the cup obtained by drawing was performed, and the mold releasing property during ironing and the galling resistance of the outer surface of the can were both good and low. It shows a QTV value, and it can be seen that a good can was obtained. On the other hand, in Test 25 of Comparative Example 6, the resin film at the bottom corner of the cup obtained by drawing had no cracks, and had good mold release properties during ironing and good galling resistance on the outer surface of the can. However, it shows that the QTV value is high, and the inner surface quality cannot be secured if the value is less than the lower limit of the limited value of the resin film thickness of the present invention.

【0093】[0093]

【表17】 [Table 17]

【0094】[0094]

【表18】 [Table 18]

【0095】[0095]

【表19】 [Table 19]

【0096】[0096]

【表20】 [Table 20]

【0097】実験例6 実験例5で用いた有機無機複合型化成処理皮膜を有する
アルミニウム板の両面に、樹脂フィルムの融点が193
℃のフィルム(テスト31)、融点が205℃のフィル
ム(テスト32)、融点が218℃のフィルム(テスト
33)、融点が230℃のフィルム(テスト34)、融
点が242℃のフィルム(テスト35)、融点が252
℃のフィルム(テスト36)、融点が261℃のフィル
ム(テスト37)の、それぞれ厚みが20μmの二軸延
伸ポリエステル樹脂フィルムを熱圧着で接着した後、加
熱・冷却し、7種類の非晶質化ポリエステル樹脂フィル
ム被覆ラミネート板を作成した。
Experimental Example 6 The melting point of the resin film was 193 on both sides of the aluminum plate having the organic-inorganic composite chemical conversion coating film used in Experimental Example 5.
C. (Test 31), 205 ° C. (Test 32), 218 ° C. (Test 33), 230 ° C. (Test 34), 242 ° C. (Test 35) ), Melting point 252
A 20 μm-thick biaxially stretched polyester resin film of a film having a melting point of 261 ° C. (test 36) and a film having a melting point of 261 ° C. (test 37) was bonded by thermocompression bonding, and then heated and cooled to obtain seven types of amorphous materials. A laminated sheet coated with a polyester resin film was prepared.

【0098】次いで、ラミネート板の両面に、流動点が
−12.5℃の潤滑油(A)と融点が57℃の潤滑油
(B)を加温混合して、潤滑油(A)と潤滑油(B)の
混合比が重量部比で30:70の成形用潤滑剤を、加温
し液状にしてグラビアロールで塗油した。各テスト板の
樹脂フィルムの密度および塗油量は表21〜22に示し
た。
Next, a lubricating oil (A) having a pour point of -12.5 ° C. and a lubricating oil (B) having a melting point of 57 ° C. were heated and mixed on both sides of the laminated plate, and the lubricating oil (A) was lubricated. A molding lubricant having a mixing ratio of the oil (B) of 30:70 by weight was heated to be in a liquid state, and the oil was applied with a gravure roll. Tables 21 to 22 show the densities of the resin films and the amount of oil applied to each test plate.

【0099】こうして得た塗油ラミネート板の温度を7
5℃にして、加工度が5%のストレッチ加工を付加した
絞り加工を行った。この時得られたカップの、底部コー
ナー部の樹脂フィルムのマイクロクラック発生状況につ
いて調べた。次いで、得られたカップの温度を75℃に
して、加工度が22%のストレッチ加工およびしごき加
工を付加した再絞り加工を行った後、再絞り加工で得ら
れたカップの温度を40℃にし、金型温度を80℃に保
持し最終加工度が63%のしごき加工を行い、350m
lビール缶サイズのシームレス缶を作成した。こうして
得た缶体について、金型離型性、耐かじり性および缶内
面の品質をQTV試験で調べた。その評価結果を表23
〜24に示した。
The temperature of the oil-laminated plate thus obtained was 7
At 5 ° C., drawing was performed with a stretch of 5%. The cup obtained at this time was examined for the occurrence of microcracks in the resin film at the bottom corner. Next, the temperature of the obtained cup was set to 75 ° C., and redrawing was performed with a stretch rate of 22% and ironing, followed by raising the temperature of the cup obtained by redrawing to 40 ° C. The iron temperature was kept at 80 ° C. and the ironing process was performed with a final working degree of 63%.
A seamless can of 1 beer can size was made. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. Table 23 shows the evaluation results.
To 24.

【0100】表21〜24から、本発明の実施例25〜
29に相当するテスト32〜36は、絞り加工で得られ
るカップの底部コーナー部の樹脂フィルムのクラック発
生もなく、またしごき加工時の金型離型性、缶外面の耐
かじり性共に良好で、低いQTV値を示しており、良好
な缶体が得られていることが分かる。一方、比較例7の
テスト31は、絞り加工で得られるカップの底部コーナ
ー部の樹脂フィルムのクラックは発生もなく良好だが、
しごき加工時の金型離型性、缶外面の耐かじり性は共に
本発明の実施例25から29に比べ劣り、QTV値も高
い値を示した。また比較例8のテスト37の場合は、絞
り加工で得られるカップの底部コーナー部の樹脂フィル
ムのクラック発生は、本発明の実施例25から29に比
べ若干劣る程度であり、一方、しごき加工時の金型離型
性、缶外面の耐かじり性共に良好にもかかわらず、高い
QTV値を示した。
From Tables 21 to 24, it can be seen from Examples 25 to 25 of the present invention.
Tests 32 to 36 corresponding to No. 29 showed that there was no cracking of the resin film at the bottom corner of the cup obtained by drawing, and that the mold releasing property during ironing and the galling resistance of the outer surface of the can were both good. It shows a low QTV value, indicating that a good can was obtained. On the other hand, in Test 31 of Comparative Example 7, cracks in the resin film at the bottom corners of the cup obtained by drawing were good without any cracks.
Both the mold releasability during ironing and the galling resistance of the outer surface of the can were inferior to those of Examples 25 to 29 of the present invention, and the QTV value was also high. In the case of Test 37 of Comparative Example 8, cracking of the resin film at the bottom corner of the cup obtained by drawing was slightly inferior to Examples 25 to 29 of the present invention. Although the mold release property and the galling resistance of the outer surface of the can were both good, a high QTV value was exhibited.

【0101】[0101]

【表21】 [Table 21]

【0102】[0102]

【表22】 [Table 22]

【0103】[0103]

【表23】 [Table 23]

【0104】[0104]

【表24】 [Table 24]

【0105】実験施例7 表面に皮膜C量として23mg/m2のリン酸−フェノ
ール樹脂の複合化成処理皮膜を有する、板厚0.28m
mのアルミニウム板(3004系合金)の両面に、実験
例6のテスト35で用いたフィルムを熱圧着条件を変え
て接着した後、必要に応じ加熱冷却し、密度の異なるポ
リエステル樹脂フィルム被覆ラミネート板を作成した。
得られたラミネート板の樹脂フィルムの密度は、1.3
42(テスト38)、1.357(テスト39)、1.
365(テスト40)、1.381(テスト41)であ
った。次いで、これらのラミネート板の両面に、流動点
が−12.5℃の潤滑油(A)と融点が57℃の潤滑油
(B)を混合比が重量部比で30:70に加温混合して
液状にし、スプレーで塗油した。各テストに用いたラミ
ネート板の塗油量は表25に示した。
Experimental Example 7 A 0.28 m-thick plate having a phosphoric acid-phenol resin composite chemical conversion coating having a coating C amount of 23 mg / m 2 on the surface.
The film used in Test 35 of Experimental Example 6 was adhered to both sides of an aluminum plate (3004 series alloy) with different thermocompression bonding conditions, and then heated and cooled as necessary, and a polyester resin film-coated laminate having a different density was used. It was created.
The density of the resin film of the obtained laminate plate was 1.3.
42 (test 38), 1.357 (test 39), 1.
365 (test 40) and 1.381 (test 41). Then, a lubricating oil (A) having a pour point of -12.5 ° C. and a lubricating oil (B) having a melting point of 57 ° C. were heated and mixed on both surfaces of these laminated plates at a mixing ratio of 30:70 by weight. It was liquefied and oiled with a spray. Table 25 shows the amount of oil applied to the laminate used in each test.

【0106】こうして得た塗油ラミネート板の温度を7
0℃にして、加工度が5%のストレッチ加工を付加した
再絞り加工を行った。この時得られたカップの、底部コ
ーナー部の樹脂フィルムのマイクロクラック発生状況に
ついて調べ、その結果を表26に示した。次いで、得ら
れたカップの温度を70℃にして、加工度が22%のス
トレッチ加工およびしごき加工を付加した再絞り加工を
行った後、再絞り加工で得られたカップの温度を40℃
にし、金型温度を80℃に保持し最終加工度が63%の
しごき加工を行い、350mlビール缶サイズのシーム
レス缶を作成した。こうして得た缶体について、金型離
型性、かじり性および缶内面の品質をQTV試験で調べ
た。その評価結果を表26に示した。
The temperature of the oil-laminated plate thus obtained was 7
At 0 ° C., redrawing was performed with a stretch of 5%. The state of occurrence of microcracks in the resin film at the bottom corner of the cup obtained at this time was examined. The results are shown in Table 26. Next, the temperature of the obtained cup was set to 70 ° C., and a redrawing process with a stretch ratio of 22% and ironing was performed, and then the temperature of the cup obtained by the redrawing process was set to 40 ° C.
Then, the die temperature was maintained at 80 ° C., and ironing was performed at a final processing degree of 63%, thereby producing a 350 ml beer can seamless can. With respect to the can thus obtained, the mold release property, the galling property and the quality of the inner surface of the can were examined by a QTV test. Table 26 shows the evaluation results.

【0107】表25〜26から、本発明の実施例30〜
31であるテスト38、39は、絞り加工で得られるカ
ップの底部コーナー部の樹脂フィルムのクラック発生も
なく、またしごき加工時の金型離型性、缶外面の耐かじ
り性共に良好で、低いQTV値を示しており、良好な缶
体が得られていることが分かる。一方、比較例9から1
0のテスト40、41は、絞り加工で得られるカップの
底部コーナー部の樹脂フィルムのクラックは発生もなく
良好であり、またしごき加工時の金型離型性、缶外面の
耐かじり性は共にしごき加工時の金型離型性、缶外面の
かじり性共に良好にもかかわらず、高いQTV値を示し
内面品質は本発明の実施例30、31に比べ劣る。
From Tables 25 to 26, it can be seen from Examples 30 to 30 of the present invention.
Tests 38 and 39, which were 31, showed that the resin film at the bottom corner of the cup obtained by drawing did not crack, and the mold releasing property during ironing and the galling resistance of the outer surface of the can were both good and low. It shows a QTV value, and it can be seen that a good can was obtained. On the other hand, Comparative Examples 9 to 1
The tests 40 and 41 of 0 show that the resin film at the bottom corner of the cup obtained by drawing was good without cracking, and that the mold release property during ironing and the galling resistance of the outer surface of the can were both good. Despite good mold release during ironing and good galling of the outer surface of the can, a high QTV value is exhibited and the inner surface quality is inferior to Examples 30 and 31 of the present invention.

【0108】[0108]

【表25】 [Table 25]

【0109】[0109]

【表26】 [Table 26]

【0110】実験例8 実験例1で作成した非晶質化ポリエステル樹脂フィルム
被覆ラミネート板を用いて、両面に成形用潤滑剤とし
て、流動点が−12.5℃の潤滑油(A)と融点が57
℃の潤滑油(B)を混合比が重量部比で30:70の潤
滑油を加温して液状にし、スプレーで塗油した。塗油量
は表27〜31に示した。
Experimental Example 8 Using the amorphized polyester resin film-coated laminate prepared in Experimental Example 1, lubricating oil (A) having a pour point of -12.5 ° C. and a melting point was used as a molding lubricant on both sides. Is 57
The lubricating oil (B) at a mixing ratio of 30:70 by weight was heated to a lubricating oil (B) at a temperature of .degree. The amount of oil applied is shown in Tables 27 to 31.

【0111】こうして得た塗油ラミネート板の温度を5
0℃(テスト42)、70℃(テスト43)、90℃
(テスト44)、110℃(テスト45)、120℃
(テスト46)、130℃(テスト47)の条件にし
て、それぞれしごき加工を付加した加工度が5%の絞り
加工を行った。この時得られたカップの、底部コーナー
部の樹脂フィルムのマイクロクラック発生状況について
観察し、その結果を表32〜36に示した。次いで、得
られたカップの温度を70℃にして、ストレッチ加工お
よびしごき加工を付加した加工度が15%の再絞り加工
を行った後、再絞り加工で得られたカップの温度を40
℃にして、金型温度を80℃で最終加工度が60%のし
ごき加工を行い、350mlビール缶サイズのシームレ
ス缶を作成した。更に、上記のテスト43で得られた再
絞り加工のカップの温度を、それぞれ30℃(テスト4
8)、40℃(テスト49)、50℃(テスト50)、
60℃(テスト51)、70℃(テスト52)にしてか
ら、金型温度を100℃に保持し最終加工度が60%の
しごき加工を行い、350mlビール缶サイズのシーム
レス缶を作成した。
The temperature of the oil-laminated plate thus obtained was 5
0 ° C (Test 42), 70 ° C (Test 43), 90 ° C
(Test 44), 110 ° C (Test 45), 120 ° C
Under the conditions of (Test 46) and 130 ° C. (Test 47), drawing was performed at a workability of 5% with ironing, respectively. Observations were made on the occurrence of microcracks in the resin film at the bottom corners of the cup obtained at this time, and the results are shown in Tables 32-36. Next, the temperature of the obtained cup was set to 70 ° C., and redrawing was performed at a working ratio of 15% with the addition of stretching and ironing, and the temperature of the cup obtained by redrawing was set at 40 ° C.
℃, the die temperature was 80 ℃, the final processing degree was ironing processing of 60%, to produce a 350ml beer can size seamless can. Further, the temperature of the cup for redrawing obtained in the above Test 43 was set to 30 ° C. (Test 4).
8), 40 ° C (Test 49), 50 ° C (Test 50),
After the temperature was raised to 60 ° C. (test 51) and 70 ° C. (test 52), the die temperature was maintained at 100 ° C., and ironing was performed with a final working degree of 60%, thereby producing a 350 ml beer can seamless can.

【0112】なお、比較のため上記テスト47で得た絞
りカップの温度を70℃にし、ストレッチ加工およびし
ごき加工を付加した加工度が15%の再絞り加工を行っ
た後、それぞれカップの温度を40℃(テスト53)、
60℃(テスト54)にしてから、金型温度を100℃
に保持したものを使用して最終加工度が60%のしごき
加工を行い、350mlビール缶サイズのシームレス缶
を作成した。さらに、比較のため上記テスト43で得た
絞りカップの温度を70℃にし、ストレッチ加工および
しごき加工を付加した加工度が15%の再絞り加工を行
った後、カップの温度を40℃にし、それぞれ金型温度
を70℃(テスト55)、100℃(テスト56)、1
20℃(テスト57)、140℃(テスト58)にした
条件下で最終加工度が60%のしごき加工を行い、35
0mlビール缶サイズのシームレス缶を作成した。
For comparison, the temperature of the drawing cup obtained in the above test 47 was set to 70 ° C., and after performing re-drawing at a working ratio of 15% with stretching and ironing, the temperature of each of the cups was lowered. 40 ° C (test 53),
60 ° C (test 54), then mold temperature 100 ° C
Using the material held in the above, ironing was performed at a final processing degree of 60%, thereby producing a 350 ml beer-sized seamless can. Further, for comparison, the temperature of the drawing cup obtained in the above Test 43 was set to 70 ° C., and after performing re-drawing at a working ratio of 15% with the addition of stretching and ironing, the temperature of the cup was set to 40 ° C. The mold temperature was set to 70 ° C (test 55), 100 ° C (test 56), 1
Ironing was performed at a final working degree of 60% under the conditions of 20 ° C. (test 57) and 140 ° C. (test 58), and 35
A 0 ml beer can-sized seamless can was made.

【0113】こうして得た缶体について、金型離型性、
耐かじり性および缶内面の品質をQTV試験で調べた。
その評価結果を表32〜36に示した。
[0113] The can thus obtained was subjected to mold release,
The galling resistance and the quality of the inner surface of the can were examined by a QTV test.
The evaluation results are shown in Tables 32 to 36.

【0114】表27〜36から、本発明の実施例32〜
35であるテスト43〜46は、絞り加工で得られるカ
ップの底部コーナー部の樹脂フィルムのクラック発生も
なく、またしごき加工時の金型離型性、缶外面の耐かじ
り性共に良好で、低いQTV値を示しており、良好な缶
体が得られていることが分かる。一方、比較例11、1
2であるテスト42、47は、しごき加工時の金型離型
性、缶外面の耐かじり性は共に良好であるが、絞り加工
で得られるカップの底部コーナー部の樹脂フィルムのク
ラック発生は実施例32から35に比べ劣り、その結果
高いQTV値を示し内面品質も実施例32から35に比
べ劣る。また、本発明の実施例36から38であるテス
ト48〜50は、絞り加工で得られるカップの底部コー
ナー部の樹脂フィルムのクラック発生もなく、またしご
き加工時の金型離型性、缶外面の耐かじり性共に良好
で、低いQTV値を示しており、良好な缶体が得られて
いることが分かる。一方、比較例13、14であるテス
ト51、52は、絞り加工で得られるカップの底部コー
ナー部の樹脂フィルムのクラック発生は見られないが、
しごき加工時の金型離型性、缶外面の耐かじり性は共に
劣り、しかも高いQTV値を示しており、缶内面品質が
実施例36から38に比べ劣ることが分かる。比較例1
6のテスト54の場合は、絞り加工で得られるカップの
底部コーナー部の樹脂フィルムにクラックが発生し、ま
た、しごき加工時の金型離型性、缶外面の耐かじり性は
共に劣り、高いQTV値を示しており、缶内面品質が実
施例36から37に比べ劣ることが分かる。なお、比較
例15のテスト53は、前述した比較例12のテスト4
7の再現評価である。更に、本発明の実施例39から4
1のテスト55〜57は、絞り加工で得られるカップの
底部コーナー部の樹脂フィルムのクラック発生もなく、
またしごき加工時の金型離型性、缶外面の耐かじり性共
に良好で、低いQTV値を示しており、良好な缶体が得
られていることが分かる。一方、比較例17のテスト5
8は、絞り加工で得られるカップの底部コーナー部の樹
脂フィルムのクラック発生は見られないが、しごき加工
時の金型離型性、缶外面の耐かじり性は共に劣り高いQ
TV値を示しており、缶内面品質が本発明の実施例39
から41に比べ劣ることが分かる。
From Tables 27 to 36, it can be seen from Examples 32 to 32 of the present invention.
Tests 43 to 46, which are 35, show that the resin film at the bottom corner of the cup obtained by drawing does not crack, and that the mold releasing property during ironing and the galling resistance of the outer surface of the can are both good and low. It shows a QTV value, and it can be seen that a good can was obtained. On the other hand, Comparative Examples 11 and 1
In Tests 42 and 47, which are 2, the mold release property during ironing and the galling resistance of the outer surface of the can are both good, but cracking of the resin film at the bottom corner of the cup obtained by drawing was performed. Inferior to Examples 32 to 35, resulting in higher QTV value and inner surface quality inferior to Examples 32 to 35. Tests 48 to 50, which are Examples 36 to 38 of the present invention, show that the resin film at the bottom corner of the cup obtained by drawing does not have cracks, the mold releasability at the time of ironing, and the outer surface of the can. Has a good galling resistance and a low QTV value, indicating that a good can was obtained. On the other hand, in Tests 51 and 52, which are Comparative Examples 13 and 14, cracking of the resin film at the bottom corner of the cup obtained by drawing was not observed,
The mold releasability at the time of ironing and the galling resistance of the outer surface of the can are both inferior, and a high QTV value is shown. It can be seen that the inner surface quality of the can is inferior to Examples 36 to 38. Comparative Example 1
In the case of Test 54 of No. 6, cracks occurred in the resin film at the bottom corner of the cup obtained by drawing, and the mold release property during ironing and the galling resistance of the outer surface of the can were both poor and high. It shows the QTV value, which indicates that the inner surface quality of the can is inferior to those of Examples 36 to 37. Note that the test 53 of the comparative example 15 is the test 4 of the comparative example 12 described above.
7 is a reproduction evaluation. Further, Examples 39 to 4 of the present invention
Tests 55 to 57 of No. 1 showed no cracking of the resin film at the bottom corner of the cup obtained by drawing,
In addition, the mold releasing property during ironing and the galling resistance of the outer surface of the can are both good, exhibiting a low QTV value, indicating that a good can body has been obtained. On the other hand, Test 5 of Comparative Example 17
No. 8 shows no cracking of the resin film at the bottom corner of the cup obtained by drawing, but the mold releasability during ironing and the galling resistance of the outer surface of the can are both inferior and high.
9 shows the TV value, and the inner surface quality of the can was determined according to Example 39 of the present invention.
It can be seen from FIG.

【0115】[0115]

【表27】 [Table 27]

【0116】[0116]

【表28】 [Table 28]

【0117】[0117]

【表29】 [Table 29]

【0118】[0118]

【表30】 [Table 30]

【0119】[0119]

【表31】 [Table 31]

【0120】[0120]

【表32】 [Table 32]

【0121】[0121]

【表33】 [Table 33]

【0122】[0122]

【表34】 [Table 34]

【0123】[0123]

【表35】 [Table 35]

【0124】[0124]

【表36】 [Table 36]

【0125】実験例9 実験例1で作成した非晶質化ポリエステル樹脂フィルム
被覆ラミネート板を用いて、両面に成形用潤滑剤とし
て、流動点が−12.5℃の潤滑油(A)と融点が57
℃の潤滑油(B)を混合比が重量部比で30:70の潤
滑油を加温して液状にし、スプレーで塗油した。塗油量
は表37〜38に示した。
Experimental Example 9 Using the amorphized polyester resin film-coated laminate prepared in Experimental Example 1, lubricating oil (A) having a pour point of -12.5 ° C. and a melting point was used as a molding lubricant on both sides. Is 57
The lubricating oil (B) at a mixing ratio of 30:70 by weight was heated to a lubricating oil (B) at a temperature of .degree. The amount of oil applied is shown in Tables 37-38.

【0126】こうして得た塗油ラミネート板を金型温度
を50℃(テスト59)、70℃(テスト60)、90
℃(テスト61)、110℃(テスト62)、120℃
(テスト63)、130℃(テスト64)の条件にし
て、それぞれしごき加工を付加した加工度が5%の絞り
加工を行った。この時得られたカップの、底部コーナー
部の樹脂フィルムのマイクロクラック発生状況について
観察した。次いで、得られたカップを、金型温度の温度
を80℃にして、ストレッチ加工およびしごき加工を付
加した加工度が15%の再絞り加工を行った後、再絞り
加工で得られたカップの温度を40℃にして、金型温度
を80℃で最終加工度が60%のしごき加工を行い、3
50mlビール缶サイズのシームレス缶を作成した。こ
うして得られた缶体について、金型離型性、耐かじり性
および缶内面の品質をQTV試験で調べた。その評価結
果を表39〜40に示した。
The thus-obtained oil-laminated plate was heated at a mold temperature of 50 ° C. (test 59), 70 ° C. (test 60), 90 ° C.
° C (Test 61), 110 ° C (Test 62), 120 ° C
Under the conditions of (Test 63) and 130 ° C. (Test 64), drawing was performed with a working ratio of 5% with ironing, respectively. The cup obtained at this time was observed for the occurrence of microcracks in the resin film at the bottom corner. Next, the obtained cup is subjected to a redrawing process at a mold temperature of 80 ° C., a stretch ratio of 15% with the addition of a stretching process and an ironing process, and then the cup obtained by the redrawing process. The temperature was set to 40 ° C., the ironing was performed at a mold temperature of 80 ° C., and the final workability was 60%.
A seamless can of 50 ml beer can size was prepared. With respect to the can thus obtained, the mold release properties, galling resistance and the quality of the inner surface of the can were examined by a QTV test. The evaluation results are shown in Tables 39 to 40.

【0127】表37〜40から、本発明の実施例42〜
45であるテスト60〜63は、絞り加工で得られるカ
ップの底部コーナー部の樹脂フィルムのクラック発生も
なく、またしごき加工時の金型離型性、缶外面の耐かじ
り性共に良好で、低いQTV値を示しており、良好な缶
体が得られていることが分かる。しかし、実験例8に示
した通りのラミネート板およびカップの温度をガラス転
移温度(Tg)から冷結晶化温度(Tc)にして成形加
工を行った、実施例32〜35であるテスト43〜46
に比べると、内面品質の点で若干劣るが、十分実用性を
有しているレベルである。一方、比較例18、19であ
るテスト59、64は、しごき加工時の金型離型性、缶
外面の耐かじり性は共に良好であるが、絞り加工で得ら
れるカップの底部コーナー部の樹脂フィルムのクラック
発生は実施例42〜45に比べ劣り、その結果高いQT
V値を示し内面品質も実施例42〜45に比べ劣る。
From Tables 37 to 40, it can be seen from Examples 42 to 42 of the present invention.
Tests 60 to 63, which are 45, show that the resin film at the bottom corner of the cup obtained by drawing does not crack, and that the mold releasing property during ironing and the galling resistance of the outer surface of the can are both good and low. It shows a QTV value, and it can be seen that a good can was obtained. However, tests 43 to 46 of Examples 32 to 35 in which the temperature of the laminate plate and the cup as shown in Experimental Example 8 was changed from the glass transition temperature (Tg) to the cold crystallization temperature (Tc) to carry out molding were performed.
Although it is slightly inferior in inner surface quality as compared with, it is a level having sufficient practicality. On the other hand, Tests 59 and 64, which are Comparative Examples 18 and 19, show that although the mold releasing property during ironing and the galling resistance of the outer surface of the can are both good, the resin at the bottom corner of the cup obtained by drawing is good. Cracking of the film was inferior to those of Examples 42 to 45, and as a result, high QT
It shows a V value and the inner surface quality is inferior to those of Examples 42 to 45.

【0128】[0128]

【表37】 [Table 37]

【0129】[0129]

【表38】 [Table 38]

【0130】[0130]

【表39】 [Table 39]

【0131】[0131]

【表40】 [Table 40]

【0132】[0132]

【発明の効果】以上、説明したように、本発明を実施す
ることで、得られる缶体内面のポリエステル樹脂フィル
ムは優れた皮膜健全性を有していることから、高耐食性
のアルミニウムシームレス缶が得られる。従って、種々
の内容物を充填することが可能であることから、品種の
統一化が安心して対応出来ることから、経済的に有利と
なり、その社会的意義は大きいものがある。
As described above, since the polyester resin film on the inner surface of the can obtained by carrying out the present invention has excellent film soundness, a highly corrosion-resistant aluminum seamless can is obtained. can get. Therefore, various contents can be filled, and since the unification of varieties can be dealt with with ease, it is economically advantageous and has great social significance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B32B 15/08 104 B32B 15/08 104A (72)発明者 山本 正俊 神奈川県相模原市西橋本5丁目5番1号 大和製罐株式会社内 (72)発明者 笠戸 英一郎 神奈川県相模原市西橋本5丁目5番1号 大和製罐株式会社内 (72)発明者 林 知彦 神奈川県相模原市西橋本5丁目5番1号 大和製罐株式会社内 Fターム(参考) 4F100 AB10A AH01D AH01E AK41B AK41C BA05 BA06 BA13 DA01 EH012 EH462 EJ162 EJ38 EJ422 GB16 JA04B JA04C JA04D JA04E JA13B JA13C JA20D JA20E JB02 JB16B JB16C YY00A YY00B YY00C YY00D YY00E ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B32B 15/08 104 B32B 15/08 104A (72) Inventor Masatoshi Yamamoto 5-5-Nishihashimoto, Sagamihara City, Kanagawa Prefecture No. 1 Inside Daiwa Seikan Co., Ltd. (72) Eiichiro Kasado 5-5-1 Nishihashimoto, Sagamihara City, Kanagawa Prefecture Inside (72) Tomohiko Hayashi 5-chome Nishihashimoto, Sagamihara City, Kanagawa Prefecture No. 1 F-term in Daiwa Seikan Co., Ltd. (Reference) 4F100 AB10A AH01D AH01E AK41B AK41C BA05 BA06 BA13 DA01 EH012 EH462 EJ162 EJ38 EJ422 GB16 JA04B JA04C JA04D JA04E JA13B JA13C JA20D JA20E JB02Y00Y00B00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 板厚が0.20mm〜0.32mmのア
ルミニウム板の両面に、厚み10〜50μm、融点(T
m)200℃〜260℃、密度1.36未満である熱可
塑性ポリエステル樹脂フィルムで被覆されたラミネート
板の樹脂フィルム被覆面に、流動点が5℃以下である潤
滑油(A)を重量部で5〜50部と、融点が40℃以上
である潤滑油(B)を重量部で95〜50部の混合比で
混合されている混合潤滑油を、片面の付着量として30
〜200mg/m2塗油したことを特徴とするシームレ
ス缶用ポリエステル樹脂被覆アルミニウム板。
1. An aluminum plate having a thickness of 0.20 mm to 0.32 mm, a thickness of 10 to 50 μm and a melting point (T
m) A lubricating oil (A) having a pour point of 5 ° C. or less is applied on a resin film-coated surface of a laminate coated with a thermoplastic polyester resin film having a density of 200 ° C. to 260 ° C. and a density of less than 1.36 by weight. A mixed lubricating oil in which 5 to 50 parts and a lubricating oil (B) having a melting point of 40 ° C. or more are mixed at a mixing ratio of 95 to 50 parts by weight is defined as 30
An aluminum plate coated with a polyester resin for a seamless can, wherein the aluminum plate is coated with 200 to 200 mg / m 2 of oil.
【請求項2】 板厚が0.20mm〜0.32mmのア
ルミニウム板の両面に、厚み10〜50μm、融点(T
m)200℃〜260℃、密度1.36未満であるポリ
エステル樹脂で被覆されたラミネート板を用いてシーム
レス缶を製造するに際し、該ラミネート板の樹脂フィル
ム被覆面に、流動点が5℃以下である潤滑油(A)を重
量部で5〜50部と、融点が40℃以上である潤滑油
(B)を重量部で95〜50部の混合比で混合されてい
る混合潤滑油を、片面の付着量として30〜200mg
/m2塗油した後、該ポリエステル樹脂フィルムのガラ
ス転移温度(Tg)から冷結晶化温度(Tc)の範囲で
ストレッチ加工および/またはしごき加工を付加した絞
り加工(第1工程)を行い、次いで、第1工程の絞り加
工で得たカップを該ポリエステル樹脂フィルムのガラス
転移温度(Tg)から冷結晶化温度(Tc)の範囲でス
トレッチ加工および/またはしごき加工を付加した再絞
り加工(第2工程)を行い、次いで、第2工程で得た再
絞りカップの温度を潤滑油(B)の融点以下にし、加工
金型の温度を120℃以下に保持してしごき加工(第3
工程)を行うことを特徴とするポリエステル樹脂被覆ア
ルミニウムシームレス缶の製造方法。
2. An aluminum plate having a thickness of 0.20 mm to 0.32 mm, a thickness of 10 to 50 μm and a melting point (T
m) When manufacturing a seamless can using a laminated plate coated with a polyester resin having a density of less than 1.36 from 200 ° C. to 260 ° C., the pour point on the resin film-coated surface of the laminated plate is 5 ° C. or less. A mixed lubricating oil in which a certain lubricating oil (A) is mixed at a mixing ratio of 5 to 50 parts by weight and a lubricating oil (B) having a melting point of 40 ° C. or more at a mixing ratio of 95 to 50 parts by weight, 30-200mg
/ M 2 , and then drawing (1st step) of stretching and / or ironing is performed within the range from the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the polyester resin film. Next, the cup obtained by the drawing process in the first step is subjected to a redrawing process (stretching and / or ironing process) in the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tc) of the polyester resin film. 2), then the temperature of the redraw cup obtained in the second step is set to the melting point of the lubricating oil (B) or lower, and the temperature of the working mold is kept at 120 ° C. or lower, and ironing is performed (third step).
A method for producing a polyester resin-coated aluminum seamless can, which comprises the step of:
【請求項3】 第1工程のストレッチ加工および/また
はしごき加工を付加した絞り加工を、胴壁部の最も薄い
部位のアルミニウム板の厚み(Wt)と缶底部のアルミ
ニウム板の厚み(Bt)との関係において、下記式
(1) 【数1】 加工度(%)=〔(Bt−Wt)/Bt〕×100 ……(1) から求められる加工度の値が10%以内になるように行
い、次いでストレッチ加工および/またはしごき加工を
付加した第2工程の再絞り加工を、第1工程の絞り加工
の加工度と合わせて、式(1)から求められる全体の加
工度の値が25%以内になるように行い、次いで第3工
程のしごき加工を、第1工程の絞り加工の加工度および
第2工程の再絞り加工の加工度と合わせて、式(1)か
ら求められる全体の加工度が50〜70%になるように
成形加工を行う請求項2記載のポリエステル樹脂被覆ア
ルミニウムシームレス缶の製造方法。
3. The drawing process in which the stretching process and / or the ironing process in the first step are added is performed by using the thickness (Wt) of the aluminum plate at the thinnest portion of the body wall and the thickness (Bt) of the aluminum plate at the bottom of the can. In the relationship, the degree of processing (%) = [(Bt−Wt) / Bt] × 100 (1) is set so that the value of the degree of processing obtained from the following equation is within 10%. Then, re-drawing in the second step to which stretching and / or ironing is added is combined with the degree of drawing in the first step, and the value of the total degree of processing obtained from equation (1) is 25. %, And then the ironing in the third step is performed together with the degree of drawing in the first step and the degree of redrawing in the second step to obtain the total So that the degree of processing is 50-70% The method for producing a polyester resin-coated aluminum seamless can according to claim 2, wherein the aluminum can is molded.
JP20871998A 1998-07-08 1998-07-08 Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans Expired - Fee Related JP3949283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20871998A JP3949283B2 (en) 1998-07-08 1998-07-08 Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20871998A JP3949283B2 (en) 1998-07-08 1998-07-08 Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans

Publications (2)

Publication Number Publication Date
JP2000024722A true JP2000024722A (en) 2000-01-25
JP3949283B2 JP3949283B2 (en) 2007-07-25

Family

ID=16560959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20871998A Expired - Fee Related JP3949283B2 (en) 1998-07-08 1998-07-08 Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans

Country Status (1)

Country Link
JP (1) JP3949283B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030004047A (en) * 2001-06-25 2003-01-14 토요세이깐 가부시키가이샤 Resin coated seamless can
CN102347117A (en) * 2010-08-04 2012-02-08 无锡市科麦特光电材料有限公司 Aluminium foil polyester composite belt lubrication processing method
CN107957129A (en) * 2017-11-29 2018-04-24 海信(山东)空调有限公司 A kind of air-cooled ducted air conditioner drip tray limit card board and air-cooled ducted air conditioner
CN112041235A (en) * 2018-04-27 2020-12-04 大和制罐株式会社 Tab, can lid, and method for producing can lid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030004047A (en) * 2001-06-25 2003-01-14 토요세이깐 가부시키가이샤 Resin coated seamless can
CN102347117A (en) * 2010-08-04 2012-02-08 无锡市科麦特光电材料有限公司 Aluminium foil polyester composite belt lubrication processing method
CN107957129A (en) * 2017-11-29 2018-04-24 海信(山东)空调有限公司 A kind of air-cooled ducted air conditioner drip tray limit card board and air-cooled ducted air conditioner
CN112041235A (en) * 2018-04-27 2020-12-04 大和制罐株式会社 Tab, can lid, and method for producing can lid

Also Published As

Publication number Publication date
JP3949283B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
US5950468A (en) Resin film laminated steel sheet for can by dry forming
WO1990014179A1 (en) Manufacture of drawn/ironed can
JP4278271B2 (en) Laminated seamless can
JPH07266496A (en) Resin-clad aluminum plate for can to be drawn by dry ironing
JP2000024722A (en) Polyester resin coated aluminum plate for seamless can, and manufacture of seamless can
JP2803854B2 (en) Composite steel sheet excellent in formability of drawn and ironed cans
JP2000006967A (en) Polyester resin-coated aluminum seamless can and manufacture thereof
JP2711947B2 (en) Method for producing resin-coated tin-plated steel sheet for thinned deep drawn cans with excellent processing corrosion resistance
JP3887009B2 (en) Steel plate for thinned deep-drawn ironing can and manufacturing method thereof
JP3986170B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP2937788B2 (en) Manufacturing method of resin-coated steel sheet for dry drawing and ironing can
JP2000033430A (en) Polyester resin-coated aluminum sheet for seamless can and production of seamless can using the sheet
JP4226103B2 (en) Manufacturing method of resin-coated aluminum seamless cans
JP4278272B2 (en) Film-coated two-piece can
JP3140929B2 (en) Resin-coated steel sheet for dry drawing and ironing can
JP3270709B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP3287764B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
JPH09285827A (en) Manufacture of drawing and ironing can
JP2003277886A (en) Resin-coated steel sheet for shear spun can, method of producing resin-coated steel sheet for shear spun can and shear spun can produced by using the same
JP4226104B2 (en) Manufacturing method of resin-coated aluminum seamless cans
JP3270684B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
JP4102145B2 (en) Resin-coated steel sheet and seamless can body for dry-drawing and ironing cans
JP4278270B2 (en) Film laminated two-piece can
KR20000005343A (en) Manufacturing method for resin-coated aluminum alloy plate for drawing and ironing can
JP4278273B2 (en) Film-coated seamless can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees