JP3924628B2 - Method for manufacturing SiC Schottky diode - Google Patents

Method for manufacturing SiC Schottky diode Download PDF

Info

Publication number
JP3924628B2
JP3924628B2 JP3819899A JP3819899A JP3924628B2 JP 3924628 B2 JP3924628 B2 JP 3924628B2 JP 3819899 A JP3819899 A JP 3819899A JP 3819899 A JP3819899 A JP 3819899A JP 3924628 B2 JP3924628 B2 JP 3924628B2
Authority
JP
Japan
Prior art keywords
heat treatment
schottky
sic
schottky diode
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3819899A
Other languages
Japanese (ja)
Other versions
JP2000236099A (en
Inventor
隆一 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP3819899A priority Critical patent/JP3924628B2/en
Publication of JP2000236099A publication Critical patent/JP2000236099A/en
Application granted granted Critical
Publication of JP3924628B2 publication Critical patent/JP3924628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化けい素(以下SiCと記す)を用いたショットキーダイオードの製造方法に関する。
【0002】
【従来の技術】
高周波、大電力の制御を目的として、シリコン(以下Siと記す)を用いた電力用半導体素子(以下パワーデバイスと称する)では、各種の工夫により高性能化が進められている。しかし、パワーデバイスは高温や放射線等の存在下で使用されることもあり、そのような条件下ではSiデバイスは使用できないことがある。また、Siのパワーデバイスより更に高性能のパワーデバイスを求める要求に対して、新しい材料の適用が検討されている。本発明でとりあげるSiCは広い禁制帯幅(4H型で3.26eV、6H型で3.02eV)をもつため、高温での電気伝導度の制御性や耐放射線性に優れ、またSiより約1桁高い絶縁破壊電圧をもつため、高耐圧素子への適用が可能である。さらに、SiCはSiの約2倍の電子飽和ドリフト速度をもつので、高周波大電力制御にも適する。
【0003】
パワーデバイスの一つとしてショットキーダイオードがある。逆方向電圧印加時のもれ電流はショットキーダイオードを特徴づける重要な性能である。このもれ電流は印加電圧がダイオードの仕様耐圧に達するまで充分小さいことが望まれる。
【0004】
従来、もれ電流の低減方法としてはショットキー電極材料の選択、電極と半導体の界面の制御や、耐圧構造の採用などがなされている。例えば、電極材料の選択では障壁高さの制御が、界面の制御では不純物、反応生成物の制御が、構造による対策では電界集中の緩和が、それぞれもれ電流低減の鍵となる。このうち界面を制御する方法として電極形成後の熱処理がある。
【0005】
Si、砒化ガリウム(GaAs)とショットキー接合を形成する電極用金属は、比較的低温でこれら半導体と反応し、適当な条件によりもれ電流を低減できるとの報告がある[ E.H.Rhoderick, "Metal-Semiconductor Contacts 2nd edition", Oxford Science Publishing, pp.189-193,(1988) ] 。
【0006】
SiCは様々な金属とショットキー接合を作ることが知られている[例えばItoh,A. et al, Phys. Stat. Sol.(a), vol.162, no.1, pp.389-408 (1997) 参照]。また、SiCダイオードで逆方向特性を改善する方法として、エッジターミネーション構造やpnダイオードを組み合わせたデバイス構造の工夫がなされている[Itoh,A. et al, IEEE Electron Device Lett., vol.17, pp.139-141 (1996) 参照]。またTiをショットキー電極としたショットキーダイオードでは熱処理によるもれ電流の低減効果が報告されている[D.Alok et al., Materials Science Forum vol.264-268, pp.929-932,(1998)]。Ni−SiCショットキーダイオードについても、もれ電流対策としてはエッジターミネーションが用いられている[K.J.Schoen et al.,IEEE Trans. ED, vol.45, no.7,(1998) pp.1595-1603]。
【0007】
一方、Ni−SiC接合を加熱することでニッケルシリサイドが生成し、順方向の特性が変化することが知られている[J.R.Warldrop et al.,Appl. Phys. Lett., Vol.62, no.21, pp.2685-2687 (1993) ]。
【0008】
【発明が解決しようとする課題】
SiCショットキーダイオードにおいても、上記のように逆方向もれ電流を低減するための様々な試みがなされているが、逆方向もれ電流についてはなお一層の低減が望まれている。
本発明の目的は、Niをショットキー電極とするSiCショットキーダイオードにおいて、逆方向もれ電流の低減を図ることにある。
【0009】
【課題を解決するための手段】
上記の課題解決のため本発明のSiCショットキーダイオードの製造方法は、ショットキー電極とするNi膜を被着後、熱処理の雰囲気を水素と窒素との混合ガス、真空のいずれかとし、200±50℃または600±50℃で5〜30分間熱処理するものとする。
【0010】
後述する実験によれば、上記の熱処理により、逆方向もれ電流の低減が認められた。詳細な機構は不明であるが、熱処理によりNi2 Si、NiSi等のNiシリサイドが界面に生成して、ショットキー接合の密着性が向上し、欠陥が減少したためと考えられる。400℃の前後では、シリサイドがこの温度付近で転移するためか、特性の劣化が見られる。
特に、熱処理の雰囲気としては、水素と窒素との混合ガス、真空のいずれでも良いことが、やはり実験でわかった。
【0011】
【発明の実施の形態】
以下図面を参照しながら本発明の実施の形態を説明する。
[実験1]
図2は、本発明のための実験をおこなったSiCショットキーダイオードの断面図である。
【0012】
高不純物濃度のn+ サブストレート4上に低不純物濃度のnエピタキシャル層3を積層したSiCウェハのnエピタキシャル層3の表面にNiのショットキー電極1が、n+ サブストレート4の裏面にNiのオーミック電極5がそれぞれ設けられている。2は界面のシリサイド層である。
【0013】
以下に試料の作製方法と評価について述べる。
SiC基板として4H型SiC単結晶エピタキシャルウェハを用いた。そのn+ サブストレート4の厚さは300μm 、nエピタキシャル層3の厚さは10μm で、不純物濃度はそれぞれ8×1018cm-3、1×1016cm-3である。SiCウェハはダイサーにより5mm角のチップに切り分けた後、電極形成のための前処理として有機溶剤と酸による有機物除去および熱酸化とフッ酸浸漬による表面不完全層除去をおこなった。なお本実験に用いたエピタキシャルウェハでは、(0001)Si面から〈11、−2、0〉方向に8度傾けた面にnエピタキシャル層3が成長されている。
【0014】
まず、n+ サブストレート4裏面の炭素面(以下C面と記す)にオーミック電極5の形成をおこなう。オーミック電極5としては、Ni膜を200μm の厚さにスパッタ蒸着し、約1000℃で5分間の熱処理をおこなった。
【0015】
次にnエピタキシャル層3のSi面にNi膜をスパッタ蒸着した。厚さは200nmである。
Ni膜を形成後、フォトリソグラフィによりパターニングし、ショットキー電極1とした。その大きさは、直径0.5mmとした。
【0016】
続いて、真空アニール炉でショットキー電極1の熱処理をおこなった。処理条件は圧力を1×10-3Pa、温度を200〜650℃、時間を10分とした。
以上で作製したSiCショットキーダイオードを銅板上にはんだづけした。はんだ付け温度は約200℃であり、時間は約1分である。
【0017】
熱処理をしないものを試料A、熱処理温度を200、400、600℃とした試料をそれぞれB,C,Dとする。なおショットキー電極のエッジターミネーションはおこなっていない。
【0018】
ショットキーダイオードを評価するため電流−電圧測定をおこなった。図1は、試料A〜Dに逆方向に200V (以下−200V と表記する)の電圧を印加した際に流れた電流と、試料の特性指標であるn値の比較図である。縦軸は、200V に於ける逆もれ電流密度、およびn値であり、横軸は熱処理温度である。表1には、測定結果から得られたダイオード特性をまとめた。
【0019】
n値は、ダイオード特性の良否の程度を表す指標の一つで、順方向の電流−電圧特性から得られる。具体的には、印加電圧Vと順方向電流密度Jとの関係を表す次の式に含まれている。
【0020】
J= Js [exp(qV/nkT)-1] (1)
ここで、J は電流密度、J s は飽和電流密度、q は電子電荷、V は電圧、k はボルツマン定数、T は絶対温度である。ダイオード特性が、理想的な場合には、n=1となる。一般的にはn>1であり、1からのずれが大きくなる程、そのダイオードの特性は悪いと見なされる。
【0021】
【表1】

Figure 0003924628
この図1および表1から以下のことが分かる。
▲1▼熱処理をおこなわない試料Aと比較して、熱処理をした試料B、Dでは、障壁高さ、n値の順方向特性は余り変化していない。
一方で、逆方向特性が改善されており、200V 印加時のもれ電流は2〜3桁小さくなり、処理温度が低い程低減されている。
【0022】
▲2▼400℃で熱処理した試料Cは、もれ電流は2〜3桁小さいが、n値は、1.10と最も悪く、その障壁高さが最も小さい。
これらは熱処理によりNi2 Si、NiSi等のニッケルシリサイドが界面に生成して、ショットキー接合の密着性が向上し、欠陥が減少したためと考えられる。400℃の前後で特性が変化しているのは熱処理により生成するシリサイドがこの温度付近で転移するためと思われる。
【0023】
これらの点を総合すると、Ni電極をもつSiCショットキーダイオードの熱処理としては、200℃を中心とする温度か、600℃を中心とする温度がよく、400℃を中心とする温度は避けるべきと考えられる。
【0024】
なお、Niの膜厚は本実施例では200nmとしたが、別の実験において100〜1000nmの範囲で本実施例と同様の効果が得られることがわかっている。
【0025】
[実験2]
本実験では熱処理時の雰囲気を水素と窒素との混合ガスとし、熱処理温度を200〜550℃の範囲で変えた。
ショットキーダイオードの作製方法において電極をパターニングするまでの方法は実験1と同じである。
【0026】
本実験では、ショットキー電極形成後の熱処理を水素と窒素との混合ガスを流した石英管状炉でおこなった。窒素の流量を毎分2.5L とし、混合ガスの体積比は水素:窒素=1:10とした。熱処理時の圧力は大気圧、時間を30分とした。
【0027】
以上で作製した基板を銅板上にはんだづけした。処理温度を200、400、550℃とした試料をそれぞれE,F,Gとする。
ショットキーダイオードを評価するため電流−電圧測定をおこなった。図3は、それぞれ試料E〜Gの測定結果を図1と同様にまとめた温度依存性を示す比較図である。また表1に順方向特性から求めたn値および障壁高さを記入した。
図3、表1から、本実験の熱処理方法によっても実験1と同様の結果が得られることが分かる。
【0028】
▲3▼実験1の傾向とは異なるが、熱処理をおこなわない試料Aと比較して、熱処理をした試料E,Gでは逆方向特性が改善されており、200V 印加時のもれ電流は1桁小さくなっている。
【0029】
この場合も熱処理によりNi2 Si、NiSi等のニッケルシリサイドが界面に生成してショットキー接合の密着性が向上し、欠陥が減少したためと考えられる。
【0030】
▲4▼400℃で熱処理した試料Fは逆方向もれ電流が大きく、また、順方向特性のn値は、1.02と悪くないが、その障壁高さは最も小さい。
この原因は実験1と同様に400℃の前後でシリサイドが転移するためかも知れない。
【0031】
これらの点を総合すると、Ni電極をもつSiCショットキーダイオードの熱処理としては、200℃を中心とする温度か、600℃を中心とする温度がよく、水素と窒素との混合ガスの雰囲気でも400℃を中心とする温度は避けるべきと考えられる。
【0032】
以上2つの実施例では熱処理の時間をそれぞれ10、30分としたが追加の実験で共に5分以上の処理で効果が現れることが分かっている。
さらに本実施例では4H−SiCのSi面上にショットキー電極を形成する例を述べたが、本発明の方法は4H−SiCのC面や6H−SiCのSi面、C面にも適用できることを確認した。
【0033】
【発明の効果】
以上説明したように本発明によれば、Niショットキー電極のSiCショットキーダイオードの製造方法において、Ni膜を被着後、熱処理の雰囲気を水素と窒素との混合ガス、真空のいずれかとし、200℃または600℃近傍で熱処理することにより、順方向特性を損なうことなく逆方向もれ電流を低減することができる。
【0034】
従って本発明は、Siショットキーダイオードを超えたパワーデバイスとしてのSiCショットキーダイオードの発展、普及に貢献するものである。
【図面の簡単な説明】
【図1】実験1の試料A、B、C、Dにおける特性の温度依存性を示す比較図
【図2】本実施例のショットキーバリアダイオードの断面図
【図3】実験2の試料E、F、Gにおける特性の温度依存性を示す比較図
【符号の説明】
1 ショットキー電極
2 シリサイド層
3 nエピタキシャル層
4 n+ サブストレート
5 オーミック電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a Schottky diode using silicon carbide (hereinafter referred to as SiC).
[0002]
[Prior art]
For the purpose of controlling high frequency and high power, power semiconductor elements (hereinafter referred to as power devices) using silicon (hereinafter referred to as Si) have been improved in performance by various devices. However, the power device may be used in the presence of high temperature or radiation, and the Si device may not be used under such conditions. In addition, application of new materials is being studied in response to the demand for higher performance power devices than Si power devices. SiC of the present invention has a wide forbidden band width (3.26 eV for the 4H type and 3.02 eV for the 6H type), so that it has excellent controllability of electrical conductivity at high temperatures and radiation resistance, and is about 1 less than Si. Since it has a dielectric breakdown voltage that is an order of magnitude higher, it can be applied to high voltage devices. Furthermore, since SiC has an electron saturation drift velocity approximately twice that of Si, it is suitable for high-frequency and high-power control.
[0003]
There is a Schottky diode as one of power devices. Leakage current when reverse voltage is applied is an important performance that characterizes Schottky diodes. It is desirable that this leakage current be sufficiently small until the applied voltage reaches the specified breakdown voltage of the diode.
[0004]
Conventionally, as a method for reducing leakage current, selection of a Schottky electrode material, control of an interface between an electrode and a semiconductor, adoption of a withstand voltage structure, and the like have been performed. For example, the control of the barrier height is the key to the selection of the electrode material, the control of the impurities and reaction products is the control of the interface, and the relaxation of the electric field concentration is the key to reducing the leakage current in the countermeasures based on the structure. Among these methods, there is a heat treatment after electrode formation as a method for controlling the interface.
[0005]
It has been reported that the metal for electrodes forming a Schottky junction with Si and gallium arsenide (GaAs) reacts with these semiconductors at a relatively low temperature and can reduce the leakage current under appropriate conditions [EHRhoderick, "Metal- Semiconductor Contacts 2nd edition ", Oxford Science Publishing, pp.189-193, (1988)].
[0006]
SiC is known to form Schottky junctions with various metals [eg Itoh, A. et al, Phys. Stat. Sol. (A), vol. 162, no. 1, pp. 389-408 ( 1997)]. In addition, as a method of improving the reverse direction characteristics with the SiC diode, a device structure combining an edge termination structure and a pn diode has been devised [Itoh, A. et al, IEEE Electron Device Lett., Vol.17, pp. .139-141 (1996)]. In addition, a Schottky diode using Ti as a Schottky electrode has been reported to reduce leakage current by heat treatment [D. Alok et al., Materials Science Forum vol.264-268, pp.929-932, (1998). )]. Edge termination is also used for Ni-SiC Schottky diodes as a countermeasure against leakage current [KJSchoen et al., IEEE Trans. ED, vol. 45, no. 7, (1998) pp.1595-1603]. .
[0007]
On the other hand, it is known that nickel silicide is generated by heating the Ni-SiC junction and the forward characteristics change [JRWarldrop et al., Appl. Phys. Lett., Vol.62, no.21]. , pp.2685-2687 (1993)].
[0008]
[Problems to be solved by the invention]
In SiC Schottky diodes, various attempts have been made to reduce reverse leakage current as described above. However, further reduction of reverse leakage current is desired.
An object of the present invention is to reduce reverse leakage current in a SiC Schottky diode using Ni as a Schottky electrode.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the method of manufacturing a SiC Schottky diode according to the present invention includes a Ni film serving as a Schottky electrode, and the heat treatment atmosphere is either a mixed gas of hydrogen and nitrogen or a vacuum. Heat treatment shall be performed at 50 ° C. or 600 ± 50 ° C. for 5 to 30 minutes.
[0010]
According to the experiment described later, a reduction in reverse leakage current was recognized by the heat treatment. Although the detailed mechanism is unknown, it is considered that Ni silicide such as Ni 2 Si and NiSi is generated at the interface by heat treatment, the adhesion of the Schottky junction is improved, and defects are reduced. Before and after 400 ° C., the deterioration of characteristics is observed because the silicide is transferred near this temperature.
In particular, it has been experimentally found that the atmosphere for the heat treatment may be either a mixed gas of hydrogen and nitrogen or a vacuum .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[Experiment 1]
FIG. 2 is a cross-sectional view of a SiC Schottky diode for which an experiment for the present invention was conducted.
[0012]
A Schottky electrode 1 of Ni is formed on the surface of the n epitaxial layer 3 of the SiC wafer in which the n epitaxial layer 3 having a low impurity concentration is laminated on the n + substrate 4 having a high impurity concentration, and Ni is formed on the back surface of the n + substrate 4. Ohmic electrodes 5 are provided respectively. Reference numeral 2 denotes a silicide layer at the interface.
[0013]
The sample preparation method and evaluation are described below.
A 4H type SiC single crystal epitaxial wafer was used as the SiC substrate. The n + substrate 4 has a thickness of 300 μm, the n epitaxial layer 3 has a thickness of 10 μm, and the impurity concentrations are 8 × 10 18 cm −3 and 1 × 10 16 cm −3 , respectively. After the SiC wafer was cut into 5 mm square chips by a dicer, the organic substance was removed with an organic solvent and an acid and the surface incomplete layer was removed by thermal oxidation and hydrofluoric acid immersion as a pretreatment for electrode formation. In the epitaxial wafer used in this experiment, the n epitaxial layer 3 is grown on a plane inclined by 8 degrees in the <11, -2, 0> direction from the (0001) Si plane.
[0014]
First, the ohmic electrode 5 is formed on the carbon surface (hereinafter referred to as C surface) on the back surface of the n + substrate 4. As the ohmic electrode 5, a Ni film was sputter-deposited to a thickness of 200 μm, and heat treatment was performed at about 1000 ° C. for 5 minutes.
[0015]
Next, a Ni film was sputter deposited on the Si surface of the n epitaxial layer 3. The thickness is 200 nm.
After forming the Ni film, patterning was performed by photolithography to obtain a Schottky electrode 1. Its size was 0.5 mm in diameter.
[0016]
Subsequently, the heat treatment of the Schottky electrode 1 was performed in a vacuum annealing furnace. The treatment conditions were a pressure of 1 × 10 −3 Pa, a temperature of 200 to 650 ° C., and a time of 10 minutes.
The SiC Schottky diode produced as described above was soldered on a copper plate. The soldering temperature is about 200 ° C. and the time is about 1 minute.
[0017]
Samples without heat treatment are designated as Sample A, and samples with heat treatment temperatures of 200, 400 and 600 ° C. are designated as B, C and D, respectively. Note that edge termination of the Schottky electrode is not performed.
[0018]
Current-voltage measurements were made to evaluate the Schottky diode. FIG. 1 is a comparison diagram of a current that flows when a voltage of 200 V (hereinafter referred to as −200 V) is applied to samples A to D in the reverse direction and an n value that is a characteristic index of the sample. The vertical axis represents the reverse leakage current density and the n value at 200 V, and the horizontal axis represents the heat treatment temperature. Table 1 summarizes the diode characteristics obtained from the measurement results.
[0019]
The n value is one of indices indicating the degree of quality of the diode characteristics, and is obtained from the forward current-voltage characteristics. Specifically, it is included in the following equation representing the relationship between the applied voltage V and the forward current density J.
[0020]
J = J s [exp (qV / nkT) -1] (1)
Where J is the current density, J s is the saturation current density, q is the electronic charge, V is the voltage, k is the Boltzmann constant, and T is the absolute temperature. When the diode characteristics are ideal, n = 1. In general, n> 1, and as the deviation from 1 increases, the characteristics of the diode are considered to be worse.
[0021]
[Table 1]
Figure 0003924628
The following can be understood from FIG. 1 and Table 1.
(1) Compared with the sample A which is not subjected to heat treatment, the forward characteristics of the barrier height and the n value are not significantly changed in the heat treated samples B and D.
On the other hand, the reverse direction characteristics are improved, the leakage current when 200 V is applied is reduced by 2 to 3 orders of magnitude, and is reduced as the processing temperature is lowered.
[0022]
{Circle around (2)} Sample C heat-treated at 400 ° C. has a leakage current that is two to three orders of magnitude smaller, but its n value is the worst at 1.10 and its barrier height is the smallest.
This is probably because nickel silicide such as Ni 2 Si and NiSi is generated at the interface by heat treatment, the adhesion of the Schottky junction is improved, and defects are reduced. The reason why the characteristics change around 400 ° C. seems to be because the silicide formed by the heat treatment is transferred around this temperature.
[0023]
Taking these points together, the heat treatment for SiC Schottky diodes with Ni electrodes should be a temperature centered around 200 ° C or a temperature centered around 600 ° C, and a temperature centered around 400 ° C should be avoided. Conceivable.
[0024]
Although the thickness of Ni is set to 200 nm in this embodiment, it has been found that the same effect as this embodiment can be obtained in a range of 100 to 1000 nm in another experiment.
[0025]
[Experiment 2]
The Kiri囲air during the heat treatment in this experiment was a mixed gas of hydrogen and nitrogen was changed to a heat treatment temperature in the range of 200 to 550 ° C..
The method up to patterning the electrodes in the Schottky diode fabrication method is the same as in Experiment 1.
[0026]
In this experiment, the heat treatment after the formation of the Schottky electrode was performed in a quartz tube furnace in which a mixed gas of hydrogen and nitrogen was passed. The flow rate of nitrogen was 2.5 L / min, and the volume ratio of the mixed gas was hydrogen: nitrogen = 1: 10. The pressure during the heat treatment was atmospheric pressure and the time was 30 minutes.
[0027]
The board | substrate produced above was soldered on the copper plate. Samples with treatment temperatures of 200, 400, and 550 ° C. are designated as E, F, and G, respectively.
Current-voltage measurements were made to evaluate the Schottky diode. FIG. 3 is a comparative diagram showing temperature dependence in which the measurement results of the samples E to G are summarized in the same manner as FIG. In Table 1, the n value and the barrier height obtained from the forward characteristics were entered.
FIG. 3 and Table 1 show that the same results as in Experiment 1 can be obtained by the heat treatment method of this experiment.
[0028]
(3) Although the trend is different from that of Experiment 1, the reverse characteristics are improved in heat-treated samples E and G compared to sample A which is not heat-treated, and the leakage current when 200V is applied is one digit. It is getting smaller.
[0029]
Also in this case, it is considered that nickel silicide such as Ni 2 Si and NiSi is generated at the interface by heat treatment, the adhesion of the Schottky junction is improved, and defects are reduced.
[0030]
(4) Sample F heat-treated at 400 ° C. has a large reverse leakage current, and the n value of the forward characteristic is not bad at 1.02, but the barrier height is the smallest.
This may be due to the transition of the silicide around 400 ° C. as in Experiment 1.
[0031]
To sum up these points, the heat treatment of the SiC Schottky diode having the Ni electrode is preferably a temperature centered at 200 ° C. or a temperature centered at 600 ° C., and even in an atmosphere of a mixed gas of hydrogen and nitrogen. Temperatures around ℃ should be avoided.
[0032]
In the above two examples, the heat treatment time is 10 and 30 minutes, respectively. However, it has been found that the effect appears in the treatment for 5 minutes or more in the additional experiment.
Furthermore, in this embodiment, an example in which a Schottky electrode is formed on a Si surface of 4H—SiC has been described, but the method of the present invention can also be applied to a C surface of 4H—SiC, a Si surface of 6H—SiC, and a C surface. It was confirmed.
[0033]
【The invention's effect】
As described above, according to the present invention, in the manufacturing method of the SiC Schottky diode of the Ni Schottky electrode, after depositing the Ni film, the atmosphere of the heat treatment is either a mixed gas of hydrogen and nitrogen, or a vacuum, By performing heat treatment near 200 ° C. or 600 ° C., the reverse leakage current can be reduced without impairing the forward characteristics.
[0034]
Therefore, the present invention contributes to the development and popularization of SiC Schottky diodes as power devices beyond Si Schottky diodes.
[Brief description of the drawings]
FIG. 1 is a comparative diagram showing temperature dependence of characteristics of samples A, B, C, and D in Experiment 1. FIG. 2 is a cross-sectional view of a Schottky barrier diode in Example 2. FIG. Comparison diagram showing temperature dependence of characteristics in F and G
1 Schottky electrode 2 Silicide layer 3 n Epitaxial layer 4 n + substrate 5 Ohmic electrode

Claims (1)

半導体炭化けい素を用い、ニッケルをショットキー電極とする炭化けい素ショットキーダイオードの製造方法において、ショットキー電極とするニッケル膜を被着後、熱処理の雰囲気を水素と窒素との混合ガス、真空のいずれかとし、200±50℃または600±50℃で5〜30分間熱処理することを特徴とする炭化けい素ショットキーダイオードの製造方法。In a method of manufacturing a silicon carbide Schottky diode using semiconductor silicon carbide and using nickel as a Schottky electrode, after depositing a nickel film as a Schottky electrode, the atmosphere of the heat treatment is a mixed gas of hydrogen and nitrogen, vacuum And a heat treatment at 200 ± 50 ° C. or 600 ± 50 ° C. for 5 to 30 minutes, and a method for producing a silicon carbide Schottky diode.
JP3819899A 1999-02-17 1999-02-17 Method for manufacturing SiC Schottky diode Expired - Fee Related JP3924628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3819899A JP3924628B2 (en) 1999-02-17 1999-02-17 Method for manufacturing SiC Schottky diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3819899A JP3924628B2 (en) 1999-02-17 1999-02-17 Method for manufacturing SiC Schottky diode

Publications (2)

Publication Number Publication Date
JP2000236099A JP2000236099A (en) 2000-08-29
JP3924628B2 true JP3924628B2 (en) 2007-06-06

Family

ID=12518665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3819899A Expired - Fee Related JP3924628B2 (en) 1999-02-17 1999-02-17 Method for manufacturing SiC Schottky diode

Country Status (1)

Country Link
JP (1) JP3924628B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094392A (en) 2007-10-11 2009-04-30 Mitsubishi Electric Corp Method for manufacturing silicon carbide semiconductor device
JP2010068008A (en) * 2009-12-24 2010-03-25 Mitsubishi Electric Corp Method of manufacturing silicon carbide schottky barrier diode
JP2010283403A (en) * 2010-09-27 2010-12-16 Sumitomo Electric Ind Ltd Rectifying element, and method for manufacturing the same
WO2016002083A1 (en) * 2014-07-04 2016-01-07 株式会社日立製作所 Semiconductor device, power module and electric power converter

Also Published As

Publication number Publication date
JP2000236099A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP3559971B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
JP4100652B2 (en) SiC Schottky diode
US8466474B2 (en) Silicon carbide semiconductor device and method of producing silicon carbide semiconductor device
JP2509713B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP5531959B2 (en) Schottky barrier diode and method for manufacturing Schottky barrier diode
JP3930561B2 (en) Ohmic contact and method for manufacturing a semiconductor device comprising such an ohmic contact
JP2021057615A (en) Silicon carbide semiconductor element
JP3230650B2 (en) Silicon carbide semiconductor substrate, method of manufacturing the same, and silicon carbide semiconductor device using the substrate
JP3755904B2 (en) Diamond rectifier
JP2000133819A (en) Silicon carbide schottky barrier diode and manufacture thereof
JP3924628B2 (en) Method for manufacturing SiC Schottky diode
JP2000001398A (en) Production of silicon carbide semiconductor substrate
US9035323B2 (en) Silicon carbide barrier diode
CN114334651A (en) HEMT (high electron mobility transistor) preparation method based on ultrathin gallium nitride self-supporting substrate
JP4645641B2 (en) Method for manufacturing SiC Schottky diode
JP2000299479A (en) Schottky diode and manufacture thereof
CN111863938A (en) Gallium nitride-based Schottky diode and preparation method thereof
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3525150B2 (en) Method for manufacturing silicon carbide semiconductor substrate
US7564062B2 (en) Electrode for p-type SiC
WO2019154222A1 (en) Ohmic contact structure of nitride semiconductor device and manufacturing method therefor
JP4175157B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2000106350A (en) Manufacture of ohmic electrode and semiconductor element
JP2000150417A (en) Method for heat-treating silicon carbide semiconductor and manufacture thereof
JPH07321346A (en) Diamond semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees