JP2000133819A - Silicon carbide schottky barrier diode and manufacture thereof - Google Patents

Silicon carbide schottky barrier diode and manufacture thereof

Info

Publication number
JP2000133819A
JP2000133819A JP30494598A JP30494598A JP2000133819A JP 2000133819 A JP2000133819 A JP 2000133819A JP 30494598 A JP30494598 A JP 30494598A JP 30494598 A JP30494598 A JP 30494598A JP 2000133819 A JP2000133819 A JP 2000133819A
Authority
JP
Japan
Prior art keywords
silicon carbide
intermediate layer
carrier concentration
barrier diode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30494598A
Other languages
Japanese (ja)
Inventor
Ryuichi Asai
隆一 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP30494598A priority Critical patent/JP2000133819A/en
Publication of JP2000133819A publication Critical patent/JP2000133819A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a silicon carbide Schottky barrier diode in which a reverse leakage current can be lessened by a method, wherein an ohmic electrode is provided to a silicon carbide substrate which is high in carrier concentration and equipped with a silicon carbide high-resistance layer of low carrier concentration and a thin intermediate layer which is low in carrier concentration, located on the silicon carbide high-resistance layer, and is of the same conductivity-type as that of the silicon carbide high-resistance layer, and a Schottky electrode is provided to the surface of the intermediate layer. SOLUTION: A silicon carbide high-resistance layer 3 of low carrier concentration and a thin intermediate layer 2 which is low in carrier concentration and of the same conductivity- type as that of the silicon carbide high-resistance layer 3 are successively formed on a silicon carbide substrate 4 of high carrier concentration by an epitaxial growth method. An ohmic electrode 5 is provided to the silicon carbide substrate 4, and a Schottky electrode 1 is formed on the surface of the intermediate layer 2. With this setup, while increase in an on-state resistance is kept small, the leakage current of a Schottky barrier diode can be markedly lessened, when the barrier diode is reverse biased. Moreover, an intermediate layer is set as thick as 10 nm to 1 μm. Furthermore, the intermediate layer 2 is set at a carrier concentration range of 1×1015 to 1×1016.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化けい素(以下
SiCと記す)を用いたショットキーバリアダイオード
に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a Schottky barrier diode using silicon carbide (hereinafter referred to as SiC).

【0002】[0002]

【従来技術】高周波、大電力の制御を目的として、けい
素(以下Siと記す)を用いた電力用半導体素子(以下
パワーデバイスと称する)では、各種の工夫により高性
能化が進められている。しかし、パワーデバイスは高温
や放射線等の存在下で使用されることもあり、そのよう
な条件下ではSiデバイスは使用できないことがある。
また、Siのパワーデバイスより更に高性能のパワーデ
バイスを求める声に対して、新しい材料の適用が検討さ
れている。
2. Description of the Related Art For the purpose of controlling high frequency and high power, a power semiconductor device (hereinafter, referred to as a power device) using silicon (hereinafter, referred to as Si) has been improved in performance by various means. . However, the power device may be used in the presence of high temperature or radiation, and the Si device may not be used under such conditions.
Further, in response to a demand for a power device having higher performance than a Si power device, application of a new material is being studied.

【0003】SiCは広い禁制帯幅(4H型で3.26
eV、6H型で3.02eV)をもつため、高温での電
気伝導度の制御性や耐放射線性に優れ、またSiより約
1桁高い絶縁破壊電圧をもつため、高耐圧素子への適用
が可能である。さらに、SiCはSiの約2倍の電子飽
和ドリフト速度をもつので、高周波大電力制御にも適す
る。このようなSiCの物性を活かしたデバイスのひと
つにショットキーバリアダイオードがある。
[0003] SiC has a wide bandgap (3.26 for 4H type).
(eV, 3.02 eV for 6H type), it is excellent in controllability of electric conductivity at high temperature and radiation resistance, and it has dielectric breakdown voltage about one digit higher than that of Si, so it can be applied to high breakdown voltage elements. It is possible. Further, since SiC has an electron saturation drift speed about twice as high as that of Si, it is also suitable for high-frequency high-power control. One of the devices utilizing such physical properties of SiC is a Schottky barrier diode.

【0004】[0004]

【発明が解決しようとする課題】逆方向もれ電流は、シ
ョットキーバリアダイオードの重要な特性であり、その
低減は、高電圧への適用や、損失低減のための重大な課
題であった。従来もれ電流を低減するためには、ショッ
トキー電極周辺に酸化膜や、イオン注入によるガードリ
ングを形成する方法が提案されている[例えば、A.Ito
h, IEEE, ElectronDevice Lett., 17(3) p.139 (1996)
参照]。この方法は電極周辺からのもれ電流低減を意図
したものである。本発明の目的は、逆方向もれ電流を低
減したSiCショットキーダイオードを提供することに
ある。
The reverse leakage current is an important characteristic of the Schottky barrier diode, and its reduction has been a serious problem for application to a high voltage and reduction of loss. In order to reduce the leakage current, a method of forming an oxide film around the Schottky electrode or a guard ring by ion implantation has been proposed [for example, A. Ito
h, IEEE, ElectronDevice Lett., 17 (3) p.139 (1996)
reference]. This method is intended to reduce leakage current from the periphery of the electrode. An object of the present invention is to provide a SiC Schottky diode in which the reverse leakage current is reduced.

【0005】[0005]

【課題を解決するための手段】上記の課題解決のため本
発明は、炭化けい素ショットキーバリアダイオードにお
いて、高キャリア濃度の炭化けい素基板上に、炭化けい
素からなる低キャリア濃度の高抵抗層と、その高抵抗層
上に同じ導電型で更に低キャリア濃度の薄い中間層とを
有し、炭化けい素基板にオーミック電極を、中間層表面
にショットキー電極をそれぞれ設けるもとのする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a silicon carbide Schottky barrier diode, in which a silicon carbide substrate having a high carrier concentration is provided on a silicon carbide substrate having a high resistance having a low carrier concentration. A layer and an intermediate layer having the same conductivity type and a lower carrier concentration are further provided on the high resistance layer. An ohmic electrode is provided on the silicon carbide substrate, and a Schottky electrode is provided on the surface of the intermediate layer.

【0006】そのようにすれば、後記実施例のようにオ
ン抵抗の増分を小さく抑えたまま、逆方向バイアス時の
漏れ電流を大幅に低減できる。特に、中間層の厚さが1
0nm〜1μmの範囲にあるものとする。
In this case, the leakage current at the time of reverse bias can be greatly reduced while the increment of the on-resistance is kept small as in the embodiment described later. In particular, when the thickness of the intermediate layer is 1
It is assumed to be in the range of 0 nm to 1 μm.

【0007】中間層の厚さが1μmより厚くなると、特
にキャリア濃度が低い場合にオン抵抗の増分が大きくな
る。逆に中間層の厚さが10nmより薄くなると、高抵
抗層の影響が現れて漏れ電流低減作用が十分に得られな
い。
When the thickness of the intermediate layer is larger than 1 μm, the increase of the on-resistance becomes large especially when the carrier concentration is low. Conversely, if the thickness of the intermediate layer is less than 10 nm, the effect of the high-resistance layer appears, and the effect of reducing the leakage current cannot be sufficiently obtained.

【0008】更に、中間層のキャリア濃度が1×1015
〜1×1016cm-3の範囲にあるものとする。キャリア
濃度が1×1015cm-3より低いと、オン抵抗の増分が
大きくなり、1×1016cm-3より高いと、漏れ電流の
低減効果が小さい。
Further, the carrier concentration of the intermediate layer is 1 × 10 15
11 × 10 16 cm −3 . When the carrier concentration is lower than 1 × 10 15 cm −3 , the increase of the on-resistance is increased. When the carrier concentration is higher than 1 × 10 16 cm −3 , the effect of reducing the leakage current is small.

【0009】製造方法としては、高キャリア濃度の炭化
けい素基板上に、炭化けい素からなる低キャリア濃度の
高抵抗層と、その高抵抗層上に同じ導電型で更に低キャ
リア濃度の薄い中間層とをエピタキシャル成長により形
成し、炭化けい素基板にオーミック電極を、中間層表面
にショットキー電極をそれぞれ設けても、高キャリア濃
度の炭化けい素基板上に、炭化けい素からなる低キャリ
ア濃度の高抵抗層をエピタキシャル成長により形成し、
その高抵抗層の表面層に逆導電型の不純物をイオン注入
して同じ導電型で更に低キャリア濃度の薄い中間層を形
成し、炭化けい素基板にオーミック電極を、中間層表面
にショットキー電極をそれぞれ設けても上記のような炭
化けい素ショットキーバリアダイオードを製造できる。
As a manufacturing method, a high-resistance layer made of silicon carbide having a low carrier concentration is formed on a silicon carbide substrate having a high carrier concentration, and an intermediate layer having the same conductivity type and a further lower carrier concentration is formed on the high-resistance layer. Even if an ohmic electrode is formed on the silicon carbide substrate and a Schottky electrode is provided on the surface of the intermediate layer, a low carrier concentration of silicon carbide is formed on the silicon carbide substrate having a high carrier concentration. Forming a high resistance layer by epitaxial growth,
An impurity of the opposite conductivity type is ion-implanted into the surface layer of the high resistance layer to form a thinner intermediate layer of the same conductivity type and a lower carrier concentration, and an ohmic electrode is formed on the silicon carbide substrate, and a Schottky electrode is formed on the surface of the intermediate layer. Are provided, the silicon carbide Schottky barrier diode as described above can be manufactured.

【0010】[0010]

【発明の実施の形態】以下図面を参照しながら本発明の
実施例を説明する。なお以下において、nを冠記した層
は、電子を多数キャリアとする層を意味し、- は比較的
低濃度を、- - は一層不純物濃度が低いことを意味して
いる。 [実施例1]図1は、本発明にかかるSiCショットキ
ーダイオードの断面図である。図において、4は高不純
物濃度のSiC基板、3は低不純物濃度のn- 高抵抗
層、2は更に低不純物濃度のn- - 中間層、5はニッケ
ルのオーミック電極、1は金のショットキー電極であ
る。各層のディメンションは例えば、SiC基板4の不
純物濃度は5×1018cm-3、厚さ300μm、n-
抵抗層3の不純物濃度は4×1016cm-3、厚さ5μ
m、n- - 中間層2の不純物濃度は5×1015cm-3
厚さ100nmである。オーミック電極5の厚さは20
0nm、ショットキー電極1の厚さは200nmとし
た。
Embodiments of the present invention will be described below with reference to the drawings. In the following, the layer prefixed to n, means the layer in which electrons are majority carriers, - the relatively low concentrations, - - the means that even low impurity concentration. Embodiment 1 FIG. 1 is a sectional view of a SiC Schottky diode according to the present invention. In the figure, 4 is a SiC substrate having a high impurity concentration, 3 is an n - high resistance layer having a low impurity concentration, 2 is an n -- intermediate layer having a further low impurity concentration, 5 is an ohmic electrode of nickel, and 1 is a Schottky of gold. Electrodes. The dimensions of each layer are, for example, the impurity concentration of the SiC substrate 4 is 5 × 10 18 cm −3 , the thickness is 300 μm, the impurity concentration of the n high resistance layer 3 is 4 × 10 16 cm −3 , and the thickness is 5 μm.
The impurity concentration of the m, n -intermediate layer 2 is 5 × 10 15 cm −3 ,
The thickness is 100 nm. The thickness of the ohmic electrode 5 is 20
0 nm, and the thickness of the Schottky electrode 1 was 200 nm.

【0011】以下このダイオードの作製方法を述べる。
SiC基板4には鏡面研磨された4H型SiC単結晶を
用いた。SiCウェハからダイサーにより5mm□のチ
ップに切り分け、SiC基板4とした。本実施例では、
(0001)Si面から〈11、−2、0〉方向に8度
傾けて研磨した面を使用した。
Hereinafter, a method for manufacturing this diode will be described.
For the SiC substrate 4, a mirror-polished 4H-type SiC single crystal was used. The SiC wafer was cut into 5 mm square chips by a dicer to obtain a SiC substrate 4. In this embodiment,
A surface polished at an angle of 8 degrees from the (0001) Si surface in the <11, -2, 0> direction was used.

【0012】低抵抗のSiC基板4を有機溶剤と酸によ
る洗浄で清浄にする。次にエッチングするSi面を上に
して、SiC基板4をSiCで被覆した黒鉛のサセプタ
にのせ、そのサセプタを石英反応管内に挿入し、1Pa
より低圧の真空にひく。
The low-resistance SiC substrate 4 is cleaned by washing with an organic solvent and an acid. Next, the SiC substrate 4 is placed on a graphite susceptor coated with SiC with the Si surface to be etched facing up, and the susceptor is inserted into a quartz reaction tube, and 1 Pa
Apply to a lower pressure vacuum.

【0013】次に水素(以下H2 と記す)と塩酸ガス
(以下HClと記す)とをそれぞれ毎分1L、10mL
の流量で混ぜた混合ガスを流しながら1350℃で5分
間加熱して、気相エッチングをおこなう。サセプタの加
熱法は高周波誘導加熱である。
Next, hydrogen (hereinafter, referred to as H 2 ) and hydrochloric acid gas (hereinafter, referred to as HCl) are added at 1 L / min and 10 mL / min, respectively.
The mixture is heated at 1350 ° C. for 5 minutes while flowing a mixed gas mixed at a flow rate of 1 to perform gas phase etching. The method of heating the susceptor is high-frequency induction heating.

【0014】続いて化学気相成長(CVD)法でn-
抵抗層3をエピタキシャル成長する。H2 、モノシラン
ガス(以下SiH4 と記す)、プロパンガス(以下C3
8と記す)をそれぞれ毎分3L、0.3mL、0.2
5mLの流量比率で混合し、微量のN2 を添加したガス
を反応管内に流しながら、1500℃で2時間加熱する
と、基板4上に厚さ約5μmの4H型のn- 高抵抗層3
が成長する。n- 高抵抗層3のキャリア密度は4×10
16cm-3であった。
Subsequently, an n - high resistance layer 3 is epitaxially grown by a chemical vapor deposition (CVD) method. H 2 , monosilane gas (hereinafter referred to as SiH 4 ), propane gas (hereinafter referred to as C 3
Each H 8 and denoted), respectively partial 3L, 0.3 mL, 0.2
When mixed at a flow rate of 5 mL and heated at 1500 ° C. for 2 hours while flowing a gas containing a small amount of N 2 into the reaction tube, a 4H-type n high resistance layer 3 having a thickness of about 5 μm is formed on the substrate 4.
Grows. The carrier density of n high resistance layer 3 is 4 × 10
It was 16 cm -3 .

【0015】次にn- - 中間層2を形成する。形成方法
は上記CVD法による。H2 、SiH4 、C3 8 の混
合流量比率を毎分3L、0.15mL、0.12mLの
ガスを反応管内に流しながら、成長時間を5分とする。
このとき成長した薄膜の厚さは約100nm、キャリア
密度は1×1015cm-3であった。
Next, an n -- intermediate layer 2 is formed. The formation method is based on the above CVD method. The mixing time of H 2 , SiH 4 , and C 3 H 8 is 3 L, 0.15 mL, and 0.12 mL of gas per minute, and the growth time is set to 5 minutes while flowing into the reaction tube.
At this time, the thickness of the grown thin film was about 100 nm, and the carrier density was 1 × 10 15 cm −3 .

【0016】n- 高抵抗層3、n- - 中間層2を成長し
た後、SiC基板4の裏面すなわち炭素(C)面にニッ
ケルを200nmの厚さに真空蒸着し、アルゴン雰囲気
中において1050℃、10分加熱しオーミック電極5
とする。
After the n high resistance layer 3 and the n − − intermediate layer 2 are grown, nickel is vacuum-deposited to a thickness of 200 nm on the back surface of the SiC substrate 4, that is, the carbon (C) surface, and 1050 ° C. in an argon atmosphere. Heat for 10 minutes, ohmic electrode 5
And

【0017】それからn- - 中間層2の表面に厚さが2
00nm、直径が200μmとなるように金(Au)を
蒸着してショットキー電極1とし、ショットキーダイオ
ードを作製する。
[0017] Then n - - thickness on the surface of the intermediate layer 2 is 2
Gold (Au) is vapor-deposited so as to have a thickness of 00 nm and a diameter of 200 μm to form a Schottky electrode 1 to produce a Schottky diode.

【0018】同様にして、n- - 中間層2の成長時間を
3〜60分間として厚さを変え、また、その際に微量の
2 を添加して、n- - 中間層2のキャリア密度を2〜
5×1015cm-3と変えたショットキーダイオードを作
製した。
Similarly, the growth time of the n -intermediate layer 2 is changed from 3 to 60 minutes to change the thickness. At that time, a small amount of N 2 is added, and the carrier density of the n -intermediate layer 2 is changed. To 2
A Schottky diode having a size of 5 × 10 15 cm −3 was manufactured.

【0019】図2は、n- - 中間層2の厚さとn- -
間層2によるオン抵抗の増分との関係を示す特性図であ
る。横軸はn- - 中間層2の厚さ、縦軸はオン抵抗の増
分であり、n- - 中間層2のキャリア濃度をパラメータ
とした。オン抵抗は順方向の電流−電圧特性から求め
た。
FIG. 2, n - - the intermediate layer 2 thickness and n - - is a characteristic diagram showing the relationship between the on-resistance with the intermediate layer 2 increments. The horizontal axis represents the thickness of the n − − intermediate layer 2, the vertical axis represents the increase of the on-resistance, and the carrier concentration of the n − − intermediate layer 2 was used as a parameter. The on-resistance was determined from the forward current-voltage characteristics.

【0020】n- - 中間層2の厚さを厚くするほど、ま
た、n- - 中間層2のキャリア濃度が低い程オン抵抗の
増分が大きくなっている。例えば、n- - 中間層2のキ
ャリア濃度が1×1015cm-3で、厚さが1μmである
と、オン抵抗の増分は7.5×10-3Ω・cm2 であ
る。すなわち100A・cm-2の電流密度では、オン電
圧の増分が0.75V、キャリア濃度が低いとそれ以上
となり、実用が困難になると思われる。従ってn- -
間層2の厚さは、1μm以下とするのが良い。
[0020] n - - it becomes thicker the intermediate layer 2 thickness, also, n - - as the carrier concentration of the intermediate layer 2 is low on-resistance increment is increased. For example, if the carrier concentration of the n -intermediate layer 2 is 1 × 10 15 cm −3 and the thickness is 1 μm, the increase in on-resistance is 7.5 × 10 −3 Ω · cm 2 . That is, at a current density of 100 A · cm −2 , the increase of the on-state voltage is 0.75 V, and the increase is low when the carrier concentration is low. Therefore, the thickness of the n − − intermediate layer 2 is preferably set to 1 μm or less.

【0021】図3は、逆方向に500V印加したときの
もれ電流のキャリア濃度依存性を示す特性図である。横
軸はn- - 中間層2の不純物濃度、縦軸はn- - 中間層
2を形成しないもののもれ電流値で規格化した漏れ電流
である。n- - 中間層2の厚さは100nmとした。
FIG. 3 is a characteristic diagram showing the carrier concentration dependence of the leakage current when 500 V is applied in the reverse direction. The horizontal axis n - - the impurity concentration of the intermediate layer 2, the ordinate n - - is a leakage current standardized on the leakage current of which do not form an intermediate layer 2. The thickness of the n -intermediate layer 2 was 100 nm.

【0022】図から、n- - 中間層2のキャリア濃度が
低いほど漏れ電流は低減され、8×1015cm-3以下で
あれば1/10以下に、1×1016cm-3以下でも1/
8以下に低減されることがわかる。図2の結果と合わせ
てn- - 中間層2のキャリア濃度としては、1×1015
〜1×1016cm-3とすると良いことになる。
[0022] From Figure, n - - higher carrier concentration in the intermediate layer 2 is low leakage current is reduced, 1/10 or less as long as 8 × 10 15 cm -3 or less, even more than 1 × 10 16 cm -3 1 /
It can be seen that it is reduced to 8 or less. In combination with the result of FIG. 2, the carrier concentration of the n -intermediate layer 2 is 1 × 10 15
It is good to set it to 11 × 10 16 cm −3 .

【0023】n- - 中間層2の厚さを10nmとしたシ
ョットキーダイオードも試作したが、キャリア濃度にか
かわらず、いずれも漏れ電流の低減作用は僅かであっ
た。これは、n- - 中間層2の厚さが薄くて、下層の高
抵抗層の影響が現れるためと考えられる。従って、図
2、3の結果からn- - 中間層2の厚さは10nm〜1
μmとすることが重要であると結論される。
A Schottky diode in which the thickness of the n − − intermediate layer 2 was set to 10 nm was also experimentally manufactured, but the effect of reducing the leakage current was small in any case regardless of the carrier concentration. This is presumably because the thickness of the n − − intermediate layer 2 is small, and the influence of the underlying high resistance layer appears. Therefore, from the results of FIGS. 2 and 3, the thickness of the n -intermediate layer 2 is 10 nm to 1 nm.
It is concluded that μm is important.

【0024】[実施例2]n- - 中間層2は、イオン注
入によって形成することもできる。その方法によるショ
ットキーバリアダイオードの製造方法を以下に述べる。
- 高抵抗層3の成長までは、実施例1の方法と同じと
する。
[Embodiment 2] The n -- intermediate layer 2 can also be formed by ion implantation. A method for manufacturing a Schottky barrier diode by this method will be described below.
Up to the growth of the n - high resistance layer 3, the same method as in the first embodiment is used.

【0025】n- 高抵抗層3の表面層にアルミニウムイ
オンを注入する。注入条件はドーズ量を2×1011cm
-2、加速電圧を50keVとした。注入後Ar雰囲気中
で1600℃、30分間加熱し、注入したイオンを活性
化した。これにより、n- 高抵抗層層3の表面層の電子
が補償され、n- - 中間層2が生じる。この後のオーミ
ック電極5、ショットキー電極1の形成は実施例1と同
様とする。
Aluminum ions are implanted into the surface layer of the n - high resistance layer 3. The implantation condition is a dose amount of 2 × 10 11 cm.
-2 , and the accelerating voltage was 50 keV. After the implantation, the substrate was heated in an Ar atmosphere at 1600 ° C. for 30 minutes to activate the implanted ions. Thereby, electrons in the surface layer of the n high resistance layer 3 are compensated, and the n − − intermediate layer 2 is generated. The subsequent formation of the ohmic electrode 5 and the Schottky electrode 1 is the same as in the first embodiment.

【0026】同様にして、イオン注入時の加速電圧を変
えてn- - 中間層2の厚さを変え、また、その際のドー
ズ量を変えて、キャリア密度を変えたショットキーバリ
アダイオードを作製した。それらのショットキーバリア
ダイオードの順方向電流−電圧特性、および逆電圧印加
時のもれ電流を測定したところ、図2、3とほぼ同様の
結果が得られた。
Similarly, a Schottky barrier diode is manufactured in which the acceleration voltage at the time of ion implantation is changed to change the thickness of the n -intermediate layer 2 and the dose is changed to change the carrier density. did. When the forward current-voltage characteristics of these Schottky barrier diodes and the leakage current when a reverse voltage was applied were measured, results substantially similar to those in FIGS.

【0027】以上の実施例では4H−SiCのSi面上
に中間層を形成する例を述べたが、本発明の方法は4H
−SiCのC面や6H−SiCのSi、C面にも適用で
きると考えられる。またイオン注入法で中間層を形成す
るためのアルミニウムの代わりに、B(ほう素)、V
(バナジウム)を用いてもよい。
In the above embodiment, an example in which an intermediate layer is formed on the Si surface of 4H-SiC has been described.
It is considered that the present invention can be applied to the C-plane of -SiC and the Si and C-planes of 6H-SiC. Also, instead of aluminum for forming the intermediate layer by ion implantation, B (boron), V
(Vanadium) may be used.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば炭化
けい素ショットキーバリアダイオードにおいて、高キャ
リア濃度の炭化けい素基板上に、低キャリア濃度の高抵
抗層と、更に低キャリア濃度の薄い中間層とを有し、そ
の中間層表面にショットキー電極を設けたSiCショッ
トキーダイオードとすることにより、逆方向もれ電流を
低減することができる。
As described above, according to the present invention, in a silicon carbide Schottky barrier diode, a high resistance layer having a low carrier concentration and a thin layer having a low carrier concentration are formed on a silicon carbide substrate having a high carrier concentration. By using an SiC Schottky diode having an intermediate layer and a Schottky electrode provided on the surface of the intermediate layer, the leakage current in the reverse direction can be reduced.

【0029】特に、中間層の厚さが10nm〜1μmの
範囲、キャリア濃度が1×1015〜1×1016cm-3
範囲とすることにより、オン抵抗の増分は僅かに抑えな
がら、もれ電流を約1/10に低減できることを示し
た。本発明は、Siショットキーダイオードを超えた電
力用半導体素子としてのSiCショットキーダイオード
の発展、普及に極めて重要な貢献をなすものである。
In particular, when the thickness of the intermediate layer is in the range of 10 nm to 1 μm and the carrier concentration is in the range of 1 × 10 15 to 1 × 10 16 cm −3 , the increase of the on-resistance is slightly suppressed. This indicates that the current can be reduced to about 1/10. The present invention makes a very important contribution to the development and spread of SiC Schottky diodes as power semiconductor elements beyond Si Schottky diodes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のSiCショットキーダイオードの断面
FIG. 1 is a cross-sectional view of a SiC Schottky diode of the present invention.

【図2】オン抵抗のn- - 中間層厚さ依存性を示す特性
FIG. 2 is a characteristic diagram showing the dependence of on-resistance on the thickness of an n -intermediate layer.

【図3】もれ電流のキャリア濃度依存性を示す特性図FIG. 3 is a characteristic diagram showing carrier concentration dependence of leakage current.

【符号の説明】[Explanation of symbols]

1 ショットキー電極 2 n- - 中間層 3 n- 高抵抗層 4 SiC基板 5 オーミック電極DESCRIPTION OF SYMBOLS 1 Schottky electrode 2 n -- Intermediate layer 3 n - High resistance layer 4 SiC substrate 5 Ohmic electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炭化けい素結晶を用いた炭化けい素ショッ
トキーバリアダイオードにおいて、高キャリア濃度の炭
化けい素基板上に、炭化けい素からなる低キャリア濃度
の高抵抗層と、その高抵抗層上に同じ導電型で更に低キ
ャリア濃度の薄い中間層とを有し、炭化けい素基板にオ
ーミック電極を、中間層表面にショットキー電極をそれ
ぞれ設けたことを特徴とする炭化けい素ショットキーバ
リアダイオード。
1. A silicon carbide Schottky barrier diode using a silicon carbide crystal, wherein a low carrier concentration high resistance layer made of silicon carbide and a high resistance layer thereof are formed on a silicon carbide substrate having a high carrier concentration. A silicon carbide substrate having an ohmic electrode on the silicon carbide substrate and a schottky electrode on the surface of the intermediate layer. diode.
【請求項2】中間層の厚さが10nm〜1μmの範囲に
あることを特徴とする請求項1記載の炭化けい素ショッ
トキーバリアダイオード。
2. The silicon carbide Schottky barrier diode according to claim 1, wherein the thickness of the intermediate layer is in the range of 10 nm to 1 μm.
【請求項3】中間層のキャリア濃度が1×1015〜1×
1016cm-3の範囲にあることを特徴とする請求項1ま
たは2に記載の炭化けい素ショットキーバリアダイオー
ド。
3. The method according to claim 1, wherein the carrier concentration of the intermediate layer is 1 × 10 15 to 1 ×.
3. The silicon carbide Schottky barrier diode according to claim 1, wherein the silicon carbide Schottky barrier diode is in a range of 10 16 cm −3 .
【請求項4】炭化けい半導体結晶を用いた炭化けい素シ
ョットキーバリアダイオードの製造方法において、高キ
ャリア濃度の炭化けい素基板上に、炭化けい素からなる
低キャリア濃度の高抵抗層と、その高抵抗層上に同じ導
電型で更に低キャリア濃度の薄い中間層とをエピタキシ
ャル成長により形成し、炭化けい素基板にオーミック電
極を、中間層表面にショットキー電極をそれぞれ設ける
ことを特徴とする炭化けい素ショットキーバリアダイオ
ードの製造方法。
4. A method of manufacturing a silicon carbide Schottky barrier diode using a silicon carbide semiconductor crystal, comprising: a low-carrier-concentration high-resistance layer made of silicon carbide on a high-carrier-concentration silicon carbide substrate; A thin intermediate layer of the same conductivity type and a lower carrier concentration is formed on the high resistance layer by epitaxial growth, and an ohmic electrode is provided on the silicon carbide substrate, and a Schottky electrode is provided on the surface of the intermediate layer. A method for manufacturing an elementary Schottky barrier diode.
【請求項5】炭化けい半導体結晶を用いた炭化けい素シ
ョットキーバリアダイオードの製造方法において、高キ
ャリア濃度の炭化けい素基板上に、炭化けい素からなる
低キャリア濃度の高抵抗層をエピタキシャル成長により
形成し、その高抵抗層の表面層に逆導電型の不純物をイ
オン注入して更に低キャリア濃度の薄い中間層を形成
し、炭化けい素基板にオーミック電極を、中間層表面に
ショットキー電極をそれぞれ設けることを特徴とする炭
化けい素ショットキーバリアダイオードの製造方法。
5. A method for manufacturing a silicon carbide Schottky barrier diode using a silicon carbide semiconductor crystal, wherein a high resistance layer having a low carrier concentration made of silicon carbide is epitaxially grown on a silicon carbide substrate having a high carrier concentration. Then, an impurity of the opposite conductivity type is ion-implanted into the surface layer of the high-resistance layer to form a thin intermediate layer having a lower carrier concentration, and an ohmic electrode is formed on the silicon carbide substrate, and a Schottky electrode is formed on the intermediate layer surface. A method for manufacturing a silicon carbide Schottky barrier diode, comprising:
JP30494598A 1998-10-27 1998-10-27 Silicon carbide schottky barrier diode and manufacture thereof Withdrawn JP2000133819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30494598A JP2000133819A (en) 1998-10-27 1998-10-27 Silicon carbide schottky barrier diode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30494598A JP2000133819A (en) 1998-10-27 1998-10-27 Silicon carbide schottky barrier diode and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000133819A true JP2000133819A (en) 2000-05-12

Family

ID=17939216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30494598A Withdrawn JP2000133819A (en) 1998-10-27 1998-10-27 Silicon carbide schottky barrier diode and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000133819A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049449A1 (en) * 2002-11-25 2004-06-10 National Institute Of Advanced Industrial Science And Technology Semiconductor device and power converter, driving inverter, general-purpose inverter and high-power high-frequency communication device using same
JP2006313850A (en) * 2005-05-09 2006-11-16 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and its fabrication process
EP1779430A2 (en) * 2004-07-15 2007-05-02 Fairchild Semiconductor Corporation Schottky diode structure to reduce capacitance and switching losses and method of making same
WO2009090974A1 (en) * 2008-01-16 2009-07-23 Nec Corporation Semiconductor device and method for manufacturing the same
WO2010073455A1 (en) 2008-12-26 2010-07-01 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor element
KR20120028272A (en) 2010-09-13 2012-03-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, power diode, and rectifier
US8390044B2 (en) 2009-11-27 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
US8492806B2 (en) 2009-10-30 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
US8598635B2 (en) 2009-10-30 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Transistor
US8643004B2 (en) 2009-10-30 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Power diode including oxide semiconductor
US8704218B2 (en) 2009-10-30 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor film
US8748880B2 (en) 2009-11-20 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor
US8916866B2 (en) 2010-11-03 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9105609B2 (en) 2009-10-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Oxide-based semiconductor non-linear element having gate electrode electrically connected to source or drain electrode
US20160372609A1 (en) * 2015-06-19 2016-12-22 Sumitomo Electric Industries, Ltd. Schottky barrier diode

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538352B2 (en) 2002-11-25 2009-05-26 National Institute Of Advanced Industrial Science And Technology Semiconductor device and power converter, driving inverter, general-purpose inverter and high-power high-frequency communication device using same
WO2004049449A1 (en) * 2002-11-25 2004-06-10 National Institute Of Advanced Industrial Science And Technology Semiconductor device and power converter, driving inverter, general-purpose inverter and high-power high-frequency communication device using same
EP1779430A2 (en) * 2004-07-15 2007-05-02 Fairchild Semiconductor Corporation Schottky diode structure to reduce capacitance and switching losses and method of making same
JP2008507139A (en) * 2004-07-15 2008-03-06 フェアチャイルド・セミコンダクター・コーポレーション Schottky diode structure with reduced capacitance and switching loss and manufacturing method thereof
KR101234980B1 (en) 2004-07-15 2013-02-20 페어차일드 세미컨덕터 코포레이션 Schottky diode structure to reduce capacitance and switching losses and method of making same
EP1779430A4 (en) * 2004-07-15 2013-05-01 Fairchild Semiconductor Schottky diode structure to reduce capacitance and switching losses and method of making same
JP2006313850A (en) * 2005-05-09 2006-11-16 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and its fabrication process
JP4613682B2 (en) * 2005-05-09 2011-01-19 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
WO2009090974A1 (en) * 2008-01-16 2009-07-23 Nec Corporation Semiconductor device and method for manufacturing the same
US8404574B2 (en) 2008-12-26 2013-03-26 Showa Denko K.K. Method for manufacturing silicon carbide semiconductor device
WO2010073455A1 (en) 2008-12-26 2010-07-01 昭和電工株式会社 Method for manufacturing silicon carbide semiconductor element
US8791456B2 (en) 2009-10-30 2014-07-29 Semiconductor Energy Laboratory Co. Ltd. Non-linear element, display device including non- linear element, and electronic device including display device
US9105609B2 (en) 2009-10-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Oxide-based semiconductor non-linear element having gate electrode electrically connected to source or drain electrode
US8492806B2 (en) 2009-10-30 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
US8598635B2 (en) 2009-10-30 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Transistor
US8643004B2 (en) 2009-10-30 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Power diode including oxide semiconductor
US8704218B2 (en) 2009-10-30 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor film
US9385114B2 (en) 2009-10-30 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
US9112041B2 (en) 2009-10-30 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Transistor having an oxide semiconductor film
US8941107B2 (en) 2009-10-30 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Power diode, rectifier, and semiconductor device including the same
US8748880B2 (en) 2009-11-20 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor
US8390044B2 (en) 2009-11-27 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
US9324877B2 (en) 2010-09-13 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US10910499B2 (en) 2010-09-13 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8835917B2 (en) 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
KR20120028272A (en) 2010-09-13 2012-03-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, power diode, and rectifier
KR20240042395A (en) 2010-09-13 2024-04-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, power diode, and rectifier
US11715800B2 (en) 2010-09-13 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US9685562B2 (en) 2010-09-13 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
KR20190019108A (en) 2010-09-13 2019-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, power diode, and rectifier
US10615283B2 (en) 2010-09-13 2020-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
KR20200040724A (en) 2010-09-13 2020-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, power diode, and rectifier
KR20220110719A (en) 2010-09-13 2022-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, power diode, and rectifier
KR20210095830A (en) 2010-09-13 2021-08-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, power diode, and rectifier
US8916866B2 (en) 2010-11-03 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2017011060A (en) * 2015-06-19 2017-01-12 住友電気工業株式会社 Schottky barrier diode
US20160372609A1 (en) * 2015-06-19 2016-12-22 Sumitomo Electric Industries, Ltd. Schottky barrier diode

Similar Documents

Publication Publication Date Title
JP2542448B2 (en) Field effect transistor and method of manufacturing the same
CN109920857B (en) Schottky diode and preparation method thereof
WO2005093840A1 (en) Process for producing schottky junction type semiconductor device
JP4224253B2 (en) Semiconductor device and manufacturing method thereof
JP5011493B2 (en) Method for manufacturing silicon carbide semiconductor element
JP2000133819A (en) Silicon carbide schottky barrier diode and manufacture thereof
JPH03278474A (en) Semiconductor device
KR20060123409A (en) Silicon carbide semiconductor device and its manufacturing method
JP4879507B2 (en) Bipolar semiconductor device forward voltage recovery method, stacking fault reduction method, and bipolar semiconductor device
JP2005311347A (en) Process for producing schottky junction semiconductor device
JP4071833B2 (en) Diamond semiconductor device
WO2020186699A1 (en) Field-effect transistor and manufacturing method therefor
CN109904239A (en) A kind of PIN diode and preparation method thereof
JP3230650B2 (en) Silicon carbide semiconductor substrate, method of manufacturing the same, and silicon carbide semiconductor device using the substrate
JP3915252B2 (en) Method for manufacturing silicon carbide semiconductor substrate
CN108831920A (en) A kind of junction termination structures production method of SiC device
US8728877B2 (en) Method for manufacturing silicon carbide semiconductor device with a single crystal substrate
JP3635956B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
CN210723043U (en) Floating junction type Schottky barrier diode
JP4042336B2 (en) Silicon carbide semiconductor element
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH08107223A (en) Manufacture of silicon carbide semiconductor element
JP3525150B2 (en) Method for manufacturing silicon carbide semiconductor substrate
JP2000106350A (en) Manufacture of ohmic electrode and semiconductor element
JP2007027630A (en) Bipolar semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050610

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20070709

Free format text: JAPANESE INTERMEDIATE CODE: A761