JP2000001398A - Production of silicon carbide semiconductor substrate - Google Patents

Production of silicon carbide semiconductor substrate

Info

Publication number
JP2000001398A
JP2000001398A JP16033898A JP16033898A JP2000001398A JP 2000001398 A JP2000001398 A JP 2000001398A JP 16033898 A JP16033898 A JP 16033898A JP 16033898 A JP16033898 A JP 16033898A JP 2000001398 A JP2000001398 A JP 2000001398A
Authority
JP
Japan
Prior art keywords
silicon carbide
hydrogen chloride
sic
face
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16033898A
Other languages
Japanese (ja)
Other versions
JP3915252B2 (en
Inventor
Ryuichi Asai
隆一 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16033898A priority Critical patent/JP3915252B2/en
Publication of JP2000001398A publication Critical patent/JP2000001398A/en
Application granted granted Critical
Publication of JP3915252B2 publication Critical patent/JP3915252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the crystallinity of an epitaxial layer and to enhance the characteristics of a silicon carbide semiconductor device by growing the epitaxial layer on a silicon carbide substrate in an atmosphere contg. added gaseous hydrogen chloride. SOLUTION: The amt. of hydrogen chloride added is preferably 0.1-1.0% by volume. The substrate comprises 4H-SiC or 6H-SiC. The growth surface is a (001) Si face, a (000-1) carbon face or a face having an offset angle of several degrees from the Si or carbon face. When a mirror-polished 4H-SiC single crystal is used as a substrate and growth is carried out using a face polished at 8 deg. tilt angle from a (0001) Si face toward <1, 1, -2, 0> direction at 1,500 deg.C, etch pit density decreases in the case of 0.1-0.8% concn. of hydrogen chloride and decreases remarkably in the case of 0.2-0.6%. The concn. of hydrogen chloride is preferably 0.5-1% at 1,450 deg.C and 0.1-0.3% at 1,550 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子を形成
する炭化けい素基板の製造方法に関する。
The present invention relates to a method for manufacturing a silicon carbide substrate for forming a semiconductor device.

【0002】[0002]

【従来技術】高周波、大電力の制御を目的として、シリ
コン(以下Siと記す)を用いた電力用半導体素子(以
下パワーデバイスと称する)では、各種の工夫により高
性能化が進められている。しかし、パワーデバイスは高
温や放射線等の存在下で使用されることもあり、そのよ
うな条件下ではSiのパワーデバイスは使用できないこ
とがある。
2. Description of the Related Art For the purpose of controlling high frequency and large power, a power semiconductor device (hereinafter, referred to as a power device) using silicon (hereinafter, referred to as Si) has been improved in performance by various means. However, the power device may be used in the presence of high temperature or radiation, and under such conditions, the Si power device may not be used.

【0003】また、Siのパワーデバイスより更に高性
能のものを求める声に対して、新しい材料の適用が検討
されている。本発明でとりあげる炭化けい素(以下Si
Cと記す)は広い禁制帯幅(4H−SiCで3.26e
V、6H−SiCで3.02eV)をもつため、高温で
の電気伝導度の制御性や耐放射線性に優れ、またSiよ
り約1桁高い絶縁破壊電圧をもつため、高耐圧素子への
適用が可能である。さらに、SiCはSiの約2倍の電
子飽和ドリフト速度をもつので、高周波大電力制御にも
適する。
Further, in response to a demand for a device having a higher performance than a Si power device, application of a new material is being studied. Silicon carbide (hereinafter referred to as Si)
C has a wide band gap (3.26e for 4H-SiC)
V, 3.02 eV in 6H-SiC), so it is excellent in controllability of electric conductivity at high temperature and radiation resistance, and it has a breakdown voltage about one digit higher than that of Si, so it can be applied to high breakdown voltage devices. Is possible. Further, since SiC has an electron saturation drift speed about twice as high as that of Si, it is also suitable for high frequency high power control.

【0004】しかし、SiCの優れた物性をパワーデバ
イスに応用するためには、Siのプロセス技術並みに洗
練された要素技術が必要となる。すなわち、SiC基板
の表面を鏡面に仕上げた後、SiC薄膜をエピタキシャ
ル成長させ、或いはドナーやアクセプターをドーピング
したり、金属膜や酸化膜を形成する等の工程条件の最適
化が必要である。
[0004] However, in order to apply the excellent physical properties of SiC to a power device, element technology as sophisticated as Si process technology is required. That is, after the surface of the SiC substrate is mirror-finished, it is necessary to optimize process conditions such as epitaxially growing a SiC thin film, doping a donor or an acceptor, or forming a metal film or an oxide film.

【0005】エピタキシャル成長においては、意図した
キャリア密度をもち、かつ結晶性のよい薄膜を得ること
が重要である。従来、SiCのエピタキシャル成長は、
モノシラン、プロパンを反応ガスとして、約1500℃
でおこなわれていた。従来、Siのエピタキシャル成長
においては、原料ガスに塩素を含むシランガス(例えば
SiCl4 )を用いることは知られていた。これに対
し、SiC上のエピタキシャル成長においては、立方晶
の3C−SiCを成膜する原料ガスとしてSiCl2
2 等を用いた報告[例えば、E.niemann et al. Inst. P
hys. Conf. Ser. No.142, pp.165-168 参照]や、シリ
コンサブストレート上への3C−SiCのヘテロエピタ
キシャル成長のために塩素を含む炭化水素(例えばCH
3Cl)を用いる出願[特開平4−124815号]が
あるだけで、六方晶の4Hまたは6H−SiCの薄膜成
長についてはそのような例もなく、塩化水素を添加する
ことは知られていなかった。
[0005] In epitaxial growth, it is important to obtain a thin film having an intended carrier density and good crystallinity. Conventionally, epitaxial growth of SiC has
About 1500 ° C using monosilane and propane as reaction gases
It was done in. Conventionally, it has been known to use a silane gas containing chlorine (eg, SiCl 4 ) as a source gas in epitaxial growth of Si. On the other hand, in epitaxial growth on SiC, SiCl 2 H is used as a source gas for forming a cubic 3C—SiC film.
Report using 2 etc. [For example, E.niemann et al. Inst.
hys. Conf. Ser. No. 142, pp. 165-168], and hydrocarbons containing chlorine (for example, CH 3 for heteroepitaxial growth of 3C—SiC on a silicon substrate).
There is only an application using [ 3 Cl) [Japanese Patent Application Laid-Open No. 4-124815], and there is no such example of the growth of a hexagonal 4H or 6H-SiC thin film, and it is not known to add hydrogen chloride. Was.

【0006】また、六方晶の4Hまたは6H−SiCの
薄膜成長に関して、薄膜成長前の基板の表面処理に塩化
水素を用いた例がある[例えば、A.A.Burk,Jr., L.B.Ro
wland, J. Crystal Growth, vol.167, pp.586-595,(199
6)参照]。この処理により成長層表面のモホロジーが制
御できるとされている。また同様の基板処理により基板
/成長層界面のアルミの意図しないドーピングを抑制で
きることが報告されている[A.A.Burk,Jr., L.B.Rowlan
d, Appl.Phys.Lett, vol.68, pp.382-384 1996. ]。
As for the growth of hexagonal 4H or 6H-SiC thin films, there is an example in which hydrogen chloride is used for the surface treatment of a substrate before the growth of the thin film [for example, AA Burk, Jr., LBRo.
wland, J. Crystal Growth, vol.167, pp.586-595, (199
6)]. It is said that the morphology of the growth layer surface can be controlled by this treatment. It has also been reported that similar substrate treatment can suppress unintended doping of aluminum at the substrate / growth layer interface [AABurk, Jr., LB Rowlan
d, Appl. Phys. Lett, vol. 68, pp. 382-384 1996.].

【0007】[0007]

【発明が解決しようとする課題】優れた特性のSiC半
導体素子とするためには、SiC薄膜のエピタキシャル
成長においても、一層良質のエピタキシャル層すなわ
ち、意図したキャリア密度をもち、かつ結晶欠陥密度が
低く結晶性のよい薄膜を得ることが課題である。
In order to obtain a SiC semiconductor device having excellent characteristics, even in the epitaxial growth of a SiC thin film, an epitaxial layer of higher quality, that is, a crystal having an intended carrier density and a low crystal defect density, is required. The challenge is to obtain a good thin film.

【0008】[0008]

【課題を解決するための手段】発明者はエピタキシャル
成長時に塩化水素を添加する実験をおこなった結果、塩
化水素添加が有効であることを見いだした。上記課題解
決のため本発明は、炭化けい素基板上に炭化けい素エピ
タキシャル層を成長させる炭化けい素半導体基板の製造
方法において、塩化水素を添加した雰囲気中でエピタキ
シャル層を成長するものとする。
The inventor conducted an experiment in which hydrogen chloride was added during epitaxial growth, and found that hydrogen chloride addition was effective. To solve the above problems, the present invention provides a method for manufacturing a silicon carbide semiconductor substrate in which a silicon carbide epitaxial layer is grown on a silicon carbide substrate, wherein the epitaxial layer is grown in an atmosphere containing hydrogen chloride.

【0009】そのようにすれば、基板表面の清浄化がお
こなわれ、結晶欠陥であるエッチピット密度が減少し、
例えば、キャリア移動度などエピタキシャル層の膜質が
向上する。特に、塩化水素の添加量を体積比で0.1〜
0.8%、更に望ましくは0.2〜0.6%とするのが
よい。
By doing so, the surface of the substrate is cleaned, the density of etch pits as crystal defects is reduced,
For example, the film quality of the epitaxial layer such as carrier mobility is improved. In particular, the addition amount of hydrogen chloride is 0.1 to
0.8%, more preferably 0.2 to 0.6%.

【0010】0.2〜0.6%の濃度範囲においては、
一層効果が顕著になる。炭化けい素サブストレートが、
4H−SiCまたは6H−SiCであるものとする。4
H−SiCまたは6H−SiCは、広い禁制帯幅を有す
る高温用半導体素子等に適する結晶であり、実施例に示
したように塩化水素ガスの添加により、結晶性の改善が
見られた。
In the concentration range of 0.2 to 0.6%,
The effect becomes more remarkable. Silicon carbide substrate
It is assumed to be 4H-SiC or 6H-SiC. 4
H-SiC or 6H-SiC is a crystal suitable for a high-temperature semiconductor device or the like having a wide forbidden band width. As shown in Examples, the addition of hydrogen chloride gas has improved the crystallinity.

【0011】炭化けい素サブストレートの表面は(00
01)Si面、(000−1)炭素面またはそれらの面
から数度のオフセット角を持つ面であるものとする。そ
のような結晶面は、平滑な面が得られ、エピタキシャル
成長に適する面である。
The surface of the silicon carbide substrate is (00
01) Si plane, (000-1) carbon plane, or a plane having an offset angle of several degrees from those planes. Such a crystal plane has a smooth surface and is suitable for epitaxial growth.

【0012】[0012]

【発明の実施の形態】以下本発明のためにおこなった実
験および実施例について説明する。 [実験1]エピタキシャル成長前のサブストレート(以
下基板と呼ぶ)としては鏡面研磨された4H−SiC単
結晶を用い、(0001)Si面から〈1、1、−2、
0〉方向に8度傾けて研磨した面を使用した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experiments and examples performed for the present invention will be described. [Experiment 1] A mirror-polished 4H—SiC single crystal was used as a substrate (hereinafter referred to as a substrate) before epitaxial growth, and a <1,1, −2,
A surface polished at an angle of 8 degrees in the 0> direction was used.

【0013】先ず、基板をダイサーにより5mm角のチ
ップに切り分け、有機溶剤と酸による洗浄をした後、エ
ッチングするSi面を上にして、基板をSiCで被覆し
た黒鉛のサセプタに載せる。基板を載せたサセプタを石
英反応管内に挿入し、1Pa以下の真空にひく。次に気
相エッチングをおこなう。気相エッチングは、水素と塩
化水素をそれぞれ毎分1L、10mLの流量で混ぜた混
合ガスを流しながら1350℃で5分間加熱した。サセ
プタの加熱法は高周波誘導加熱である。
First, the substrate is cut into 5 mm square chips by a dicer, washed with an organic solvent and an acid, and placed on a graphite susceptor coated with SiC with the Si surface to be etched facing up. The susceptor on which the substrate is placed is inserted into a quartz reaction tube, and a vacuum of 1 Pa or less is applied. Next, vapor phase etching is performed. In the gas phase etching, heating was performed at 1350 ° C. for 5 minutes while flowing a mixed gas obtained by mixing hydrogen and hydrogen chloride at a flow rate of 1 L / min and 10 mL / min. The method of heating the susceptor is high-frequency induction heating.

【0014】続いてSiC薄膜をエピタキシャル成長す
る。水素(H2 )、モノシラン(SiH4 )、プロパン
(C3 8 )、塩化水素(HCl)をそれぞれ毎分3
L、0.3mL、0.25mL、3〜30mLの流量比
率で混合したものを反応管内に導入した。この状態で1
500℃で2時間加熱した。すると基板上に4H型のS
iC薄膜がエピタキシャル成長する。薄膜のキャリア密
度は5×1015cm-3であった。
Subsequently, a SiC thin film is epitaxially grown. Hydrogen (H 2 ), monosilane (SiH 4 ), propane (C 3 H 8 ), and hydrogen chloride (HCl) were added at a rate of 3 minutes per minute.
A mixture of L, 0.3 mL, 0.25 mL, and a flow rate of 3 to 30 mL was introduced into the reaction tube. In this state, 1
Heated at 500 ° C. for 2 hours. Then, 4H-type S on the substrate
An iC thin film grows epitaxially. The carrier density of the thin film was 5 × 10 15 cm −3 .

【0015】成長した膜の転位密度を評価するために、
水酸化カリウム(KOH)によるエッチングをおこなっ
た。このエッチングは、ニッケル(Ni)坩堝内で40
0℃に加熱した水酸化カリウムに試料を30秒間浸漬す
る方法を用いた。欠陥密度の計数はSEM観察によっ
た。図1は、エピタキシャル成長時の塩化水素濃度[H
Cl/(H2 +SiH4 +C3 8 +HCl)]とSi
C薄膜中のエッチピット密度との関係を示す特性図であ
る。この図から塩化水素濃度が0.1から0.8%でエ
ッチピット密度が減少し、特に0.2から0.6%のと
き、顕著に減少し塩化水素を添加しない場合より約一桁
低減できることがわかる。
In order to evaluate the dislocation density of the grown film,
Etching with potassium hydroxide (KOH) was performed. This etching is performed in a nickel (Ni) crucible at 40
A method of immersing the sample in potassium hydroxide heated to 0 ° C. for 30 seconds was used. Defect density was counted by SEM observation. FIG. 1 shows the concentration of hydrogen chloride [H
Cl / (H 2 + SiH 4 + C 3 H 8 + HCl)] and Si
FIG. 4 is a characteristic diagram showing a relationship with an etch pit density in a C thin film. From this figure, it can be seen that the etch pit density decreases when the hydrogen chloride concentration is 0.1 to 0.8%, especially when the hydrogen chloride concentration is 0.2 to 0.6%, and is reduced by about one digit compared to the case where no hydrogen chloride is added. We can see that we can do it.

【0016】エッチピットは、エピタキシャル層中の線
状欠陥である転位の位置にできるのであり、結晶性の良
否を反映するともに、電気的にはキャリアのトラップに
なるとされている。図2は、発明者らが実験したエッチ
ピット密度とキャリアの移動度との関係を示す特性図で
ある。エッチピット密度が多いほど、移動度が急速に低
下している。これから、エッチピット密度を一桁減らせ
ば、移動度をほぼ2倍にできることがわかる。なお、移
動度の評価法としては、van der Pauw 法を用いた。す
なわち、試料のエピタキシャル層上の四隅に、金属マス
クを使ったスパッタ法によりニッケル(Ni)電極を形
成する。電極の直径は200μm、厚さは400nmで
ある。この後、整流性を除きオーミックな接触とするた
めアルゴン(Ar)雰囲気中で1050℃、5分間のア
ニールをおこなった。
The etch pits can be formed at the positions of dislocations, which are linear defects in the epitaxial layer. The etch pits reflect the quality of crystallinity and are considered to electrically trap carriers. FIG. 2 is a characteristic diagram showing the relationship between the etch pit density and the mobility of carriers, which were experimented by the inventors. As the etch pit density increases, the mobility decreases rapidly. This shows that the mobility can be almost doubled by reducing the etch pit density by one digit. The mobility was evaluated by the van der Pauw method. That is, nickel (Ni) electrodes are formed at four corners on the epitaxial layer of the sample by a sputtering method using a metal mask. The diameter of the electrode is 200 μm and the thickness is 400 nm. Thereafter, annealing was performed at 1050 ° C. for 5 minutes in an argon (Ar) atmosphere to obtain ohmic contact without rectification.

【0017】従って、図1、2から、成長するエピタキ
シャル層の結晶性は、塩化水素濃度が0.1〜0.8
%、更に望ましくは0.2〜0.6%含まれるとき改善
されるので、そのような条件でエピタキシャル成長をお
こなうのが良いと結論づけられる。これは、エピタキシ
ャル成長時に、表面の清浄化およびエッチングが十分に
行われるためと考えられる。また、シリコン半導体にお
いて見られる金属不純物のゲッタリング作用もあるかも
しれない。
Therefore, from FIGS. 1 and 2, the crystallinity of the epitaxial layer to be grown is determined when the hydrogen chloride concentration is 0.1 to 0.8.
%, More preferably 0.2-0.6%, it is concluded that it is better to perform epitaxial growth under such conditions. This is presumably because the surface is sufficiently cleaned and etched during the epitaxial growth. There may also be a gettering effect of metal impurities found in silicon semiconductors.

【0018】上記実施例では1500℃のエッチング条
件における結果のみを記したが、1450から1550
℃の範囲において同様の実験をおこない、1450℃で
は塩化水素濃度を0.5〜1%、1550℃では濃度を
0.1〜0.3%とするとよいことがわかった。また成
長面についても4H−SiCの(0001)Si面だけ
でなく、4H−SiCの(000−1)C面や6H−S
iCのSi、C面、またはそれらの面から微小角度で傾
斜した面にも適用できる。
In the above embodiment, only the result under the etching condition of 1500 ° C. is described.
A similar experiment was conducted in the range of ° C, and it was found that the hydrogen chloride concentration at 1450 ° C should be 0.5 to 1%, and the concentration at 1550 ° C should be 0.1 to 0.3%. The growth surface is not only the (0001) Si plane of 4H-SiC, but also the (000-1) C plane of 4H-SiC or 6H-S
The present invention can also be applied to a Si or C plane of iC or a plane inclined at a small angle from those planes.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、S
iC半導体基板のエピタキシャル成長時に、体積比で
0.1〜1.0%の塩化水素を添加し、1450〜15
50℃で成長することによって、成長するエピタキシャ
ル層の結晶性を改善し、SiC半導体素子の特性を向上
させることができる。
As described above, according to the present invention, S
During epitaxial growth of the iC semiconductor substrate, hydrogen chloride of 0.1 to 1.0% by volume is added, and 1450 to 15% is added.
By growing at 50 ° C., the crystallinity of the grown epitaxial layer can be improved, and the characteristics of the SiC semiconductor device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】エピタキシャル成長時HCl濃度とエッチピッ
ト密度の関係を示す特性図
FIG. 1 is a characteristic diagram showing a relationship between HCl concentration and etch pit density during epitaxial growth.

【図2】エッチピット密度と移動度との関係を示す特性
FIG. 2 is a characteristic diagram showing a relationship between etch pit density and mobility.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炭化けい素基板上に炭化けい素エピタキシ
ャル層を成長させる炭化けい素半導体基板の製造方法に
おいて、塩化水素ガスを添加した雰囲気中でエピタキシ
ャル層を成長することを特徴とする炭化けい素半導体基
板の製造方法。
1. A method for manufacturing a silicon carbide semiconductor substrate, comprising the steps of: growing a silicon carbide epitaxial layer on a silicon carbide substrate, wherein the epitaxial layer is grown in an atmosphere to which hydrogen chloride gas is added. Manufacturing method of elementary semiconductor substrate.
【請求項2】塩化水素の添加量を体積比で0.1〜1%
とすることを特徴とする請求項1記載の炭化けい素半導
体基板の製造方法。
2. The addition amount of hydrogen chloride is 0.1 to 1% by volume.
2. The method for manufacturing a silicon carbide semiconductor substrate according to claim 1, wherein:
【請求項3】塩化水素の添加量を体積比で0.2〜0.
6%とすることを特徴とする請求項1記載の炭化けい素
半導体基板の製造方法。
3. The amount of hydrogen chloride to be added is 0.2 to 0.1 in volume ratio.
2. The method for producing a silicon carbide semiconductor substrate according to claim 1, wherein the content is 6%.
【請求項4】炭化けい素サブストレートが、4H−Si
Cまたは6H−SiCであることを特徴とする請求項1
ないし3のいずれかに記載の炭化けい素半導体基板の製
造方法。
4. The method according to claim 1, wherein the silicon carbide substrate is 4H-Si.
C or 6H-SiC.
4. The method for manufacturing a silicon carbide semiconductor substrate according to any one of items 1 to 3.
【請求項5】炭化けい素サブストレートの表面が(00
01)Si面、(000−1)炭素面またはそれらの面
から数度のオフセット角を持つ面であることを特徴とす
る請求項4記載の炭化けい素半導体基板の製造方法。
5. The method of claim 1, wherein the surface of the silicon carbide substrate is (00).
5. The method for manufacturing a silicon carbide semiconductor substrate according to claim 3, wherein the surface is a (01) Si surface, a (000-1) carbon surface, or a surface having an offset angle of several degrees from those surfaces.
JP16033898A 1998-06-09 1998-06-09 Method for manufacturing silicon carbide semiconductor substrate Expired - Lifetime JP3915252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16033898A JP3915252B2 (en) 1998-06-09 1998-06-09 Method for manufacturing silicon carbide semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16033898A JP3915252B2 (en) 1998-06-09 1998-06-09 Method for manufacturing silicon carbide semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2000001398A true JP2000001398A (en) 2000-01-07
JP3915252B2 JP3915252B2 (en) 2007-05-16

Family

ID=15712829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16033898A Expired - Lifetime JP3915252B2 (en) 1998-06-09 1998-06-09 Method for manufacturing silicon carbide semiconductor substrate

Country Status (1)

Country Link
JP (1) JP3915252B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329088B1 (en) * 1999-06-24 2001-12-11 Advanced Technology Materials, Inc. Silicon carbide epitaxial layers grown on substrates offcut towards <1{overscore (1)}00>
WO2004100221A2 (en) 2003-04-30 2004-11-18 Caracal, Inc. Phase controlled sublimation
WO2005055323A1 (en) * 2003-12-03 2005-06-16 The Kansai Electric Power Co., Inc. Silicon carbide semiconductor device and its manufacturing method
JP2005286038A (en) * 2004-03-29 2005-10-13 Shikusuon:Kk Silicon carbide substrate and its manufacturing method
JP2006328455A (en) * 2005-05-24 2006-12-07 Nippon Steel Corp Epitaxial silicon carbide single crystal substrate, and its manufacturing method
JP2007500950A (en) * 2003-05-08 2007-01-18 カラカル,インコーポレイティド Chemical vapor deposition epitaxial growth
JP2008239371A (en) * 2007-03-26 2008-10-09 Hitachi Metals Ltd Silicon carbide single crystal substrate and method for manufacturing the same
WO2010087518A1 (en) 2009-01-30 2010-08-05 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate and mehtod for producing same
WO2014027472A1 (en) * 2012-08-17 2014-02-20 株式会社Ihi Method for manufacturing heat resistant composite material and manufacturing device
WO2017110550A1 (en) * 2015-12-24 2017-06-29 昭和電工株式会社 METHOD FOR PRODUCING SiC EPITAXIAL WAFER
JP6164672B1 (en) * 2016-07-19 2017-07-19 国立研究開発法人産業技術総合研究所 Semiconductor device and manufacturing method thereof

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329088B1 (en) * 1999-06-24 2001-12-11 Advanced Technology Materials, Inc. Silicon carbide epitaxial layers grown on substrates offcut towards <1{overscore (1)}00>
WO2004100221A2 (en) 2003-04-30 2004-11-18 Caracal, Inc. Phase controlled sublimation
EP1634321A4 (en) * 2003-04-30 2011-09-21 Cree Inc Phase controlled sublimation
EP1634321A2 (en) * 2003-04-30 2006-03-15 Caracal, Inc. Phase controlled sublimation
JP2007500950A (en) * 2003-05-08 2007-01-18 カラカル,インコーポレイティド Chemical vapor deposition epitaxial growth
JP4943850B2 (en) * 2003-05-08 2012-05-30 カラカル,インコーポレイティド Homoepitaxial growth method for forming a silicon carbide layer
US7768017B2 (en) 2003-12-03 2010-08-03 The Kansai Electric Co., Inc. Silicon carbide semiconductor device and manufacturing method therefor
US7960737B2 (en) 2003-12-03 2011-06-14 The Kansai Electric Power Co., Inc. Silicon carbide semiconductor device and manufacturing method therefor
US7960257B2 (en) 2003-12-03 2011-06-14 The Kansai Electric Power Co., Inc. Silicon carbide semiconductor device and manufacturing method therefor
US7960738B2 (en) 2003-12-03 2011-06-14 The Kansai Electric Power Co., Inc. Silicon carbide semiconductor device and manufacturing method therefor
WO2005055323A1 (en) * 2003-12-03 2005-06-16 The Kansai Electric Power Co., Inc. Silicon carbide semiconductor device and its manufacturing method
JP2005286038A (en) * 2004-03-29 2005-10-13 Shikusuon:Kk Silicon carbide substrate and its manufacturing method
JP4539140B2 (en) * 2004-03-29 2010-09-08 住友電気工業株式会社 Silicon carbide substrate and method for manufacturing the same
JP2006328455A (en) * 2005-05-24 2006-12-07 Nippon Steel Corp Epitaxial silicon carbide single crystal substrate, and its manufacturing method
JP2008239371A (en) * 2007-03-26 2008-10-09 Hitachi Metals Ltd Silicon carbide single crystal substrate and method for manufacturing the same
JP4707148B2 (en) * 2007-03-26 2011-06-22 日立金属株式会社 Silicon carbide single crystal substrate and method for manufacturing the same
JPWO2010087518A1 (en) * 2009-01-30 2012-08-02 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
CN102301043A (en) * 2009-01-30 2011-12-28 新日本制铁株式会社 Epitaxial silicon carbide single crystal substrate and mehtod for producing same
JP4719314B2 (en) * 2009-01-30 2011-07-06 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
WO2010087518A1 (en) 2009-01-30 2010-08-05 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate and mehtod for producing same
WO2014027472A1 (en) * 2012-08-17 2014-02-20 株式会社Ihi Method for manufacturing heat resistant composite material and manufacturing device
JP5906318B2 (en) * 2012-08-17 2016-04-20 株式会社Ihi Manufacturing method and manufacturing apparatus for heat-resistant composite material
US9822445B2 (en) 2012-08-17 2017-11-21 Ihi Corporation Method for manufacturing heat-resistant composite material
JP2017117907A (en) * 2015-12-24 2017-06-29 昭和電工株式会社 Method for manufacturing silicon carbide epitaxial wafer
WO2017110550A1 (en) * 2015-12-24 2017-06-29 昭和電工株式会社 METHOD FOR PRODUCING SiC EPITAXIAL WAFER
US10774444B2 (en) 2015-12-24 2020-09-15 Showa Denko K.K. Method for producing SiC epitaxial wafer including forming epitaxial layer under different conditions
JP6164672B1 (en) * 2016-07-19 2017-07-19 国立研究開発法人産業技術総合研究所 Semiconductor device and manufacturing method thereof
WO2018016201A1 (en) * 2016-07-19 2018-01-25 国立研究開発法人産業技術総合研究所 Semiconductor device and method for manufacturing same
JP2018019053A (en) * 2016-07-19 2018-02-01 国立研究開発法人産業技術総合研究所 Semiconductor device and manufacturing method for the same
CN109417096A (en) * 2016-07-19 2019-03-01 国立研究开发法人产业技术综合研究所 Semiconductor device and its manufacturing method
US10741648B2 (en) 2016-07-19 2020-08-11 National Institute Of Advanced Industrial Science And Technology Semiconductor device and manufacturing method thereof
CN109417096B (en) * 2016-07-19 2022-02-18 国立研究开发法人产业技术综合研究所 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP3915252B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
US4912063A (en) Growth of beta-sic thin films and semiconductor devices fabricated thereon
US5248385A (en) Process for the homoepitaxial growth of single-crystal silicon carbide films on silicon carbide wafers
JP3854508B2 (en) SiC wafer, SiC semiconductor device, and method of manufacturing SiC wafer
US5011549A (en) Homoepitaxial growth of Alpha-SiC thin films and semiconductor devices fabricated thereon
KR101302845B1 (en) Method of surface reconstruction for silicon carbide substrate
JP4844330B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
WO2005093796A1 (en) Bipolar semiconductor device and process for producing the same
WO2000068474A1 (en) SiC WAFER, SiC SEMICONDUCTOR DEVICE AND SiC WAFER PRODUCTION METHOD
JP2007131504A (en) SiC EPITAXIAL WAFER AND SEMICONDUCTOR DEVICE USING THE SAME
JP2006321696A (en) Method for manufacturing silicon carbide single crystal
JPH0952796A (en) Method for growing silicon carbide crystal and silicon carbide semiconductor device
WO2007032214A1 (en) Process for producing silicon carbide semiconductor device
JP4442366B2 (en) Epitaxial SiC film, manufacturing method thereof, and SiC semiconductor device
JP3915252B2 (en) Method for manufacturing silicon carbide semiconductor substrate
JP3742877B2 (en) Method for producing SiC single crystal thin film
JP2000133819A (en) Silicon carbide schottky barrier diode and manufacture thereof
JPH09321323A (en) Silicon carbide substrate, manufacture thereof and silicon carbide semiconductor device using the same substrate
WO2008015766A1 (en) Method for recovering forward voltage of bipolar semiconductor device, method for reducing lamination defect and bipolar semiconductor device
JP3508519B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP2001181095A (en) Silicon carbide single crystal and its growing method
JPH10261615A (en) Surface morphology control method of sic semiconductor and growing method of sic semiconductor thin film
JP3508356B2 (en) Semiconductor crystal growth method and semiconductor thin film
CN116613056A (en) Method for reducing surface defects of silicon carbide epitaxial film
JPH0952798A (en) Production of silicon carbide thin film as well as silicon carbide thin film and laminated substrate
JP3525150B2 (en) Method for manufacturing silicon carbide semiconductor substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term