JP3902925B2 - 走査型アトムプローブ - Google Patents

走査型アトムプローブ Download PDF

Info

Publication number
JP3902925B2
JP3902925B2 JP2001231304A JP2001231304A JP3902925B2 JP 3902925 B2 JP3902925 B2 JP 3902925B2 JP 2001231304 A JP2001231304 A JP 2001231304A JP 2001231304 A JP2001231304 A JP 2001231304A JP 3902925 B2 JP3902925 B2 JP 3902925B2
Authority
JP
Japan
Prior art keywords
tip
extraction electrode
ion beam
scanning
focused ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001231304A
Other languages
English (en)
Other versions
JP2003042929A (ja
Inventor
治 西川
貴也 柳生
孝 皆藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT), SII NanoTechnology Inc filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2001231304A priority Critical patent/JP3902925B2/ja
Priority to US10/205,919 priority patent/US6797952B2/en
Publication of JP2003042929A publication Critical patent/JP2003042929A/ja
Application granted granted Critical
Publication of JP3902925B2 publication Critical patent/JP3902925B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • G01Q60/14STP [Scanning Tunnelling Potentiometry]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/285Emission microscopes
    • H01J2237/2852Auto-emission (i.e. field-emission)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/875Scanning probe structure with tip detail
    • Y10S977/879Material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走査型アトムプローブの引出し電極の改良に関する。
【0002】
【従来の技術】
電子のトンネル現象を利用した最初の高分解能顕微鏡は、鋭い針先から電子を放射させ、拡大投映させた放射電子像を観察する電界放射顕微鏡FEM(Field Emission Microscope)である(図5参照)。この顕微鏡は真空状態の下で強電界をかけると、量子力学的トンネル効果により金属導体表面から表面ポテンシャルの障壁を越えて電子が放出される電界放射現象を利用したもので、針状に形成された金属の先端表面から強電界の作用で蛍光体が塗布されたスクリーンに向けて電子放射がなされように構成することで、蛍光スクリーン上に放出金属表面の拡大像を映し出させるというものである。
FEMの分解能は約1nmと低いので原子は見えないが、針に印加した負電圧と放射電流のI−V特性から針先の半球面上の微細な結晶面の仕事関数が求まる。針への印加電圧を負から正に切り替え、鏡体内に低圧の不活性ガスを導入すると、FEMは電界イオン顕微鏡FIM(Field Ion Microscope)として作動し、針先の原子配列を直接観察できるようになる。FIMには、電界蒸発現象により針先の表面原子を陽イオンとして順序正しく脱離させることができる特性がある。この現象は走査型トンネル顕微鏡STM(Scanning Tunneling Microscope)による原子操作にも利用されている。脱離イオンを逐一検出同定すると針先の組成を原子レベルで解析できる。この発想にもとづいて、単一イオンを検出できる質量分析器とFIMとの複合器アトムプローブAP(Atom Probe)が開発された。APは、針先の電子状態・原子配列・組成分布を解析できる唯一の装置である。電界蒸発は表面第1層から原子層ごと順序正しく進行するので、APによって層ごとの組成や界面の組成分布、さらには電子状態変化をしらべることができる。
しかし、曲率半径が100nm以下の鋭い針先端の半球面が観察・分析領域なので、試料は直径O.2μm以下の細線か、一辺が0.5μm以下の角柱の一端を、化学・電気化学的方法または電子・イオンビームを照射して研磨したものとなる。このような工程が可能なのは金属や半導体材料に限られ、電導性有機材料やセラミックス、またダイヤモンドなどに適用することは容易ではない。さらに、組成の異なる厚みが約1nmの多層膜からなる超格子構造では、一千層積み重ねても全体の厚みは約1μmにすぎない。この超格子構造を下地とともに細い角柱状に切り出し、超格子構造を針先に残しながら研磨することは不可能に近い。また、腐食や触媒反応が進行している表面をあるがままに分析するのも容易ではない。また、注目を集めている高さが数μmの微細な針がμmオーダーで密集配列した次世代の電子源の開発研究では、おのおのの針先の形状・放射特性・組成分布・動作寿命をしらべる必要がある。この研究にはAPが最適であるが、密集した針に電圧をかけると、針先の電界強度は同一電圧の平面電極上より高くはなるものの、長く鋭い単一の針先の電界よりは桁違いに低く、針先の原子を電界蒸発させるのは容易ではない。また、電界蒸発させたとしても隣接する針先から蒸発したイオンも検出器に入射するので、個々の針先の組成を分離分析できない。
【0003】
上記のように、APには試料の作製と形状に厳しい制約があり、その特性を生かせる分野は限られていた。この制約を打破するために考案されたのが走査型アトムプローブSAP(Scanning Atom Probe)である。
密集配列した針から特定の針を選びその先端をしらべるには、針先に電界を局在化させなければならない。そこで、接地された微細な漏斗型の引出電極をAPの鏡体内に取り付け、微細な針が密集配列している平面状試料に正電圧を印加する。すると、引出電極先端の直径が数μmから数十μmの孔の真下にある単一の針先に高電界が発生するとともに、電界は孔と針先との間のきわめて狭い空間に局在化する。コンピュータによる電界分布計算によると、針先の頂角で90°、先端曲率半径が50nmであっても、針先には電界放射や電界蒸発に求められる高電界が発生する。このことは、平らな試料面上に数μm程度の凹凸があれば、その突起の先端を分析できることを示している。平滑処理が施されていない表面や腐食した表面、高効率の触媒の表面等は、通常凹凸に富んでいるので、これらの表面があるがままにしらべられることになる。
図6にSAPの基本構造を示す。左端の試料は密集配列型電界放射電子源を模式的に示したものである。漏斗型の引出電極の先端の孔が試料面上の針先または突起の先端に近づくと、先端と電極間のきわめて狭い領域に高電界が発生し、針先から放射された電子がスクリーンにFEM像を映し出す。また、鏡体内にヘリウムのような不活性映像ガスを導入し、試料に正電圧を印加すると、スクリーンには高分解能のFIM像が映し出される。さらに定常電圧の上にパルス電圧を上乗せするかパルスレーザー光を試料面に照射して表面原子を電界蒸発させると、陽イオンとして蒸発した表面原子はスクリーン中央の探査孔を通り抜けて質量分析器であるリフレクトロンに入り、逐一検出される。分析される領域は探査孔に対応した突起先端の直径数ナノから数十ナノの領域である。分析を続けると、この領域の深さ方向の組成変化を1原子層の分解能でしらべることができる。
【0004】
ところで、現在使用されているSAPの引出電極は白金箔に微細な突起を絞り加工によって機械的につくり出したものである。このようにしてつくられた電極の先端形状は大きな球面状となり、十分な微細化ができないという問題がある。その結果、試料上の特定の突起のみを分析する対象とするための電界集中が出来ず、ASPの狙いである特定の突起のみを選択的に分析することが不可能となる。つまり、試料上に突起が密集している場合に、特定の突起を個別に分析出来ないという問題が起こる。
図1は機械加工されたSAPの引出電極を走査型イオン顕微鏡で見た画像であって、ドーム部分の高さ寸法は200μmに、先端部の球面半径が30μm程度に形成されている。この場合の分析位置限定能力は引出電極先端部の球面半径に対応して、数十μm程度となる。分析位置限定能力を上げるには、引出電極先端寸法を小さくすればよい。
また、走査型アトムプローブ(SAP)の分析領域を選定するのは容易ではないという問題もある。アトムプローブの場合、分析対象となるのは原理的に試料の凸状形状部分である。SAPが走査型であるといっても他の走査型顕微鏡のようにプローブの走査によって二次元画像を得るものではない。二次元的に引出電極を走査することが出来るが、それは凸状形状部分との適正位置関係を選択するためのもので、個々の分析は試料面の一つの微小突起部に対して行われる。その一つの微小突起部を特定し、引出電極の位置決めをすることが必要である。そのため、事前の準備として走査型トンネル顕微鏡を用いて事前に試料面の表面形状を把握し、分析領域の選定を行うことがなされているが、これはSAP装置の他にSTMを準備することを要し、更にSTMによって得た位置情報をSAPでの位置情報として伝達する必要があり、その実行は必ずしも容易ではない。
【0005】
【発明が解決しようとする課題】
本発明の課題は、上記の問題点を解決すること、すなわち、走査型アトムプローブ(SAP)による分析に先立ち、別個に走査型トンネル顕微鏡を準備することなしにそれと同様な試料面の形状が把握できる技術を提供することによって、分析領域の選定が容易に実行でき、更に、十分微細な漏斗型形状の形成が可能な引出し電極加工技術を提供することによって、試料と該引出し電極間に形成される電場を狭い範囲にし、試料上の特定の突起のみを分析することが出来る走査型アトムプローブ装置を提供することにある。
さらに、本発明の課題は、従来の機械加工では不可能であった走査型アトムプローブ装置の引出し電極に求められる超微細な構造物の加工ができ、理想に近い先端形状を提供し、これにより、近接する微細突起の分離分析を可能にしAPとしての精度を飛躍的に高めることにある。
【0006】
【課題を解決するための手段】
本発明の走査型アトムプローブの引出電極加工方法は、金属箔を機械的加工によって先端が球面状に形成された漏斗型部材とするステップと、該漏斗型部材の先端に集束イオンビームを用いた化学蒸着法によって導電性の円錐ドームを形成するステップと、該円錐ドームの先端部を集束イオンビームを用いたスパッタ加工法でサブミクロンオーダー以下の精度で理想形状に形成するステップとを含むものとした。
また、本発明の走査型アトムプローブの引出電極加工方法は、上記構成においてベースとなる金属箔には白金を用い、機械的加工された漏斗型部材は集束イオンビームでトリミング加工し、その上に集束イオンビームを用いた化学蒸着法によって中空ロート状微細電極を形成するものとした。
さらに、本発明の走査型アトムプローブの引出電極加工方法は、上記構成において集束イオンビームを用いた化学蒸着法では、最初は高速デポが可能なフェナントレンガス等を使用してカーボンで微細電極を形成し、次に表面の高導電性を付加させるためにヘキサカルボニルタングステンガスによるタングステン膜で導電被膜するものとした。
本発明の走査型アトムプローブの引出電極は、機械的加工された白金箔からなる漏斗型部材をベースとし、その漏斗型部材の先端部に集束イオンビームを用いた化学蒸着法によって形成されたカーボンの円錐ドーム形状部が形成され、該円錐ドーム形状部の表面はタングステン膜で導電被膜されたものとした。
また、本発明の走査型アトムプローブの引出電極は、上記構成において円錐ドーム形状部の円環状先端部には集束イオンビームを用いた化学蒸着法によってSTMの走査探針が形成されたものとした。
【0007】
【発明の実施の形態】
本発明に係る走査型アトムプローブは試料表面に存在するミクロン若しくはサブミクロンレベルの微小突起を対象にその分析を行う装置であって、その分析は真空状況で分析したい試料の微小突起部に微小引出電極を近接対向させ、試料に負の高電圧を印加すると両者間に局所的な強電界が発生し、該試料微小突起部の表面の原子がイオン化して引出される。そのイオンを1個づつ元素分析することで試料の三次元の原子構造が分析ができる究極の分析装置である。その走査型アトムプローブをめぐる今日的課題の一つに、その分析領域の選定法の確立と精度向上のための理想的形状の引出電極の製作がある。前者の解決策としては純金属とか特殊合金に限らず分析領域の選定と形状の把握を可能とするため、電子顕微鏡や走査型トンネル顕微鏡或いは原子間力顕微鏡といった他の顕微鏡手段によって分析に適した凸状形状部を検知することが考えられる。しかしそのためにはこれらの手段を別個に準備する必要があり、また、これらの手段によって得られた顕微鏡画像の位置情報を走査型アトムプローブで分析する際の位置情報として変換対応させなければならないといった問題を伴うことになる。そこで、本発明者は他の顕微鏡手段を走査型アトムプローブに組み込んだ複合システムとすることでその問題を解決することに想到した。また、後者への対策として引出電極を最新の微細加工技術を駆使して理想形状に近い加工を施すことに想到したものである。具体的には試料に近接した状態で平面走査させる引出電極を走査型トンネル顕微鏡の探針を兼ねるものとして用いることとした。即ち、本発明はこの二つの課題を引出電極の複合化と精密加工という技術で対応するものである。
【0008】
本発明者はSAPの引出電極にトンネル電流を検出する手段を設けてSTMとしての機能をもたせ、STM像を得てSAPの分析領域の表面構造を調べることにした。ところが、このSAPの引出電極は25μm程の厚さの白金薄膜にダイヤモンドの鋭い角を押し当て絞り加工して、基部径350μm、頂角85度、先端部半径30μm程度の円錐ドームを作り、その先端部分をスパッタエッチングによって平坦加工し中央に30μm程の孔を空けたものであった。このような機械的加工による引出電極では微細化が不十分あり、試料の微小突起同士が近接しているとその分離分析ができない。また、この引出電極の先端部は機械加工によるものであるため、この円環状部は完全な平坦面では無くミクロ的には凹凸形状となっている。これをSTMの探針として用い試料面との間に電界をかけた際のトンネル電流はこの円環状先端部の内で最も試料面に近い凸部と試料面との間で流れることになるが、完全な平坦面ではない試料面との間で最も最短距離にあるのは常に同じ凸部ということにはならない。試料面との相対位置関係により他の凸部と試料面との間が最短距離となりそこでトンネル電流が流れるということが生じる。このことはSTMの探針位置が引出電極の円環状先端部の直径5〜60μm分の不確定要素を持っているということになる。したがって、これによって得た画像は本来のSTMによって描いた像に比べ、不鮮明なものであった。
【0009】
その原因は前記のようにSTMとしての探針位置が定まっていないことにあることに鑑み、引出電極の円環状先端部の特定箇所に定まるように針状の探針部を該引出電極の円環状先端部に精密加工技術を用いて形成することに想到した。このような加工を実現出来る加工法としては半導体デバイスの分野で適用されているリソグラフィックな手法や集束イオンビーム(Focused Ion Beam: FIB)を用いた化学蒸着(Chemical Vapor Deposition: CVD)加工法が応用できると考えた。特にSTMの探針として針形状を形成させるにはFIB−CVD法が最適であるとして、その手法による加工を実施した。FIB−CVD法とは図7に基本構成が示されるような集束イオンビーム装置において、真空中の試料ステージに載置された試料に、原料ガスをガス銃を介して噴射させながらイオン光学系で集束されたイオンビームを照射すると、原料ガス中のある成分が試料面照射領域にデポジションされるという現象である。最新のFIB−CVD法では試料ステージの3次元駆動と回転・傾斜を加えた姿勢制御と形成した蒸着層の先に原料ガス噴射とイオンビーム照射を施すことで所望の超微細な3次元形状の造形加工を実現する技術(特願2000-363573号 「超微細立体構造体の作成方法とその装置」) が開発されており、この技術を適用することができる。この探針は導電性であることが必要であることから、原料ガスにフェナントレン[C1410]を用いたカーボン(人工ダイヤモンド)と、タングステンヘキサカルボニル[W(CO)] を用いたタングステンの探針を形成した。形成の容易性と機械的強度の点では前者が勝るが、導電性の点で後者が優れているため、STMの探針材料としてはタングステンが適していると判断し採用することにした。ビーム電流を 0.3〜1pA程度として加工を実行したところタングステンの場合突起の成長速度は10nm/秒程度であった。高さ1μm・直径80nmのタングステン探針であれば約100秒で形成できる。
【0010】
次にアトムプローブとして分析精度に重大な影響を与える引出電極の形状形成、すなわち理想的な漏斗形状特に試料面と対峙する引出電極の先端部形状を平坦な小径の円環形状に精度よく加工する手段として集束イオンビームを用いた精密加工法を採用することに想到した。引出電極を従来の機械加工で形成し、集束イオンビームを用いたスパッタエッチングで先端部分(約直径40μm)の平坦化加工と、中央孔部の内面をトリミング加工したものを図2の走査型イオン顕微鏡像に示す。この例は集束イオンビームを偏向制御により円形走査させながらスパッタエッチングすることで、このように綺麗に中央孔部の直径32μmの内壁面が加工がなされたものである。しかし、トリミング加工が施された電極であっても白金表面は顕微鏡像から判るように結晶面の凹凸が残っており、径の大きさも試料面の微小突起を選択特定するためには十分とは言えない。そこで、本発明では図4に模式的に示すようにこの機械加工によって作られた引き出し電極の先端部に更にFIB−CVDの技術で円錐ドームを形成してそれをFIBのエッチング加工によりトリミングし、理想的な引出電極の先端部形状を製造するようにしたのである。図4のAに示すように白金箔を従来技術で機械加工した円錐ドーム先端部に、フェナントレンを原料ガスとするFIB−CVD法によってカーボンを円錐ドーム状にデポジション形成する。ここでフェナントレンを用いるカーボンデポを選択したのは形成速度がタングステンの場合より遥かに速く作業に有利なためで、時間をかけることを厭わなければタングステンで形成することも可能である。カーボンドームの頂角をコントロールするには偏向走査するビーム径を小さくする速度を調整すればよい。一定レートで円形走査の径を小さくしてゆくと上方に成長するほど角度が小さくなるので上方への成長に合わせ径を小さくする速度を速めると理想的な円錐ドームが形成できる。
Aに示したような円錐カーボンドームが白金ドームの先端部に形成できたならば、図のBに示すようにカーボンドームの先端部のトリミングを施す。すなわち、引出電極の姿勢を横に倒し上方からのFIBを照射させ、スパッタエッチングでドーム先端部を平坦化する。先端部分からスパッタリングを施し図に実線矢印で示してある位置まで集束イオンビームを走査し、整形加工する。デポジションは等速度走査がなされれば均一な層形成がなされるのであるが土台となる白金ドームに凹凸があるとその影響が残ることになる。ドーム先端部を平坦化することで、中央孔部が綺麗に露出する。次に引出電極の姿勢を元に戻しカーボンドーム先端部の中央孔部の円形形状を所望の径に整形する。このときの先端部を上方から観察した状態を図のCに示す。グレー表示した部分が平坦化加工された円環状先端部で、その中がイオン化された原子が通過する中央孔部である。このカーボンドームを加工して形成した引出電極の先端中央孔部の直径は10ミクロン以下数ミクロン程度のものが製造可能であり、従来の機械加工のものより1桁小さいオーダーの微細加工が実現できる。
【0011】
続いてこのFIB−CVD技術を用いた微細加工をして製造した引出電極の先端部にSTMの走査探針を形成する技術を説明する。図4のCに示されたような引出電極の先端部に形成されたカーボンドームとその土台となっている白金ドームにかけての領域に、まず、タングステンの導電被膜を形成する。それはカーボンドームの先端に設置されるSTMの探針を介してトンネル電流を検出するため、高導電性を確保するためである。タングステンのFIB−CVDを実行することで、先端中央孔部にもタングステンが蒸着し孔径が小さくされることになるので再度孔空け加工を実行する。この状態で円環状先端部にヘキサカルボニルタングステンを原料ガスとするFIB−CVDをピンポイント照射で実行することにより、寸法としては長さ1ミクロン強、先端径100nm程度のタングステン針を形成する。このようにして形成されたSTMの探針を備えた引出電極を図4のDに模式図の形で示す。
【0012】
【実施例1】
従来の引出電極上により微細な円錐ドームを形成し、さらにSTM探針を立てて理想的な複合型引出電極を作成した本発明の1実施例を示す。
1.従来引出電極先端のトリミングを行う。
▲1▼ 図7に示すような集束イオンビーム装置において試料ステージの駆動によって従来の引出電極をイオンビームに対し垂直にしてFIBスパッタ加工で先端を削り穴周辺を平坦化する。平坦化する範囲は直径40ミクロン程度とする。このときの引出電極全体の様子は図1の走査イオン顕微鏡像に示されるもので、先端部の状態は図2に示されるものである。
▲2▼ 必要に応じて引出電極を水平に戻して、上方からのイオンビームにより30ミクロン径穴の仕上げ加工をする。最初に穴加工がされていない場合は、ここでFIBによる孔開け加工をすることになる。30keVのGaイオンで、厚さ25μmの白金箔に直径30μmの孔を開けるのに要する時間は0.5〜1時間程度である。
2.カーボンのFIB−CVDで先端孔開きの微細円錐ドームを形成する。
原料ガスとしてフェナントレンを用いたFIB−CVDによる三次元構造作成技術を応用して、上記でトリミングした従来の引出電極先端部に先端孔開きの微細円錐ドームを形成する。カーボンにした理由は、タングステン等の金属デボより約1桁作成時間を短く出来るからである。
▲1▼ 引出電極を水平にしてイオンビームを上方から照射するCVD加工で微細カーボン円錐ドームル形成する。この際、構造物の形成速度を速くするためイオンビームを軸として対称位置にもう1つのガス銃を配置した装置を用いた。イオンビーム電流は350pAとし、円形ビーム走査は毎秒1000回転以上とし、直径が36ミクロンからスタートして28分かけてゆっくりと4μmまで小さくした。出来あがつたカーボンドームの肉厚は約0.4μm程度であった。
▲2▼ 引出電極の姿勢をイオンビームに対して垂直にして、カーボンドーム先端をFIBによるスパッタ加工でトリミングする。これによりカーボンドーム先端の円環状部を平坦化・水平化する。
▲3▼ 引出電極の姿勢を水平に戻して、上方からのFIBによりカーボンドーム先端の穴の再加工を行い、希望の穴径に仕上げる。
3.カーボンドーム上への導電被膜を施しSTM探針の形成を行う。
▲1▼ 引出電極の姿勢をイオンビームに対し水平にして原料ガスとしてヘキサカルボニルタングステンを用いたFIB−CVD加工でカーボンドームとその周辺上にタングステンによる導電膜付けをする。具体的には、対称吹付けガス銃を用い、ビーム電流を1400pAとし、38μm×38μmの範囲にシート抵抗20Ω(膜厚0.1μm程度)のタングステンの膜付けを行う。この膜付け時間は15分程度である。
▲2▼ タングステンデポにより中央孔部の孔径が小さくなっているので、上方からのFIBを用いスパッタエッチングによるカーボンドーム先端穴の再加工を行い、孔径を設計値に整形する。
▲3▼ タングステンデポしたカーボンドーム先端の円環上の1箇所にSTM探針を形成する。具体的には、ビーム電流をO.4pAとして、2分間のスポットタングステンデポを行うと高さ1.2μm、先端径100nm弱のタングステン針が出来る。必要に応じて、針の機械強度を上げるためにビームをデフォーカスするなどしてもう少し大きな径のタングステン針を形成してもよい。しかしながら、先端径100nm弱のタングステン針でも、STM像を撮るに十分な強度があることが確認されている。
以上の工程により、従来の機械加工による引出電極の先端部により微細なFIB−CVD法による円錐ドームを形成し、さらにFIB−CVD法によるSTM探針を立てて理想的な複合型引出電極が製作される。図3の顕微鏡像に示されるものは、このようにして製作された引出電極先端部の拡大走査イオン顕微鏡像である。中央の黒く尖った形状のものがSTM探針であり、左側円弧状に見えるものが円環状先端部、該円環状先端部から右下に続く領域がFIB−CVD法によるカーボンドームである。
【0013】
【実施例2】
次に、本発明によって製作された理想的な複合型引出電極を用い、走査型トンネル顕微鏡の機能を備えた走査型アトムプローブのシステムの実施例を示す。
引出電極先端の円環部にSTM走査探針としての突起を形成した複合電極については先の実施例のものを採用する。この引出電極には試料面とSTM探針との間に流れるトンネル電流を検出する手段が接続される。この検出されたトンネル電流は前記探針の走査位置と関連づけてコンピュータ内の記憶部に記憶蓄積される。STM探針はSAPの引出電極の先端部に設置されているのでSTM探針の走査機構はSAPの引出電極の走査機構がそのまま兼用できる。STM機能によって得られた試料の表面画像情報はディスプレイに表示される。この画像は従来のSTMの顕微鏡像に匹敵する。オペレータはディスプレイ上で試料表面を観察することができ、APの分析領域に適した微小突起を選択できる。ディスプレイ上ではAPの分析領域に対応する円または矩形指標が表示され、マウス等の手段で選択領域を特定する機能が備えられている。分析領域がディスプレイ画面上で特定されると、その画像位置が探針位置情報と対応して割り出される。この位置情報は次にAPの位置情報として利用することになるのであるが、本発明においてSTMの探針位置はSAPの引出電極の先端円環部上に設置されているので、その位置関係は一義的に定まっている。すなわちこの実施例では引出電極先端の円環部の直径は4μmであるから、2μm分ある方向にずれていることになり、そのある方向とは引出電極の基準に対する探針の設置された位置のなす角ということになる。したがって、STMの位置情報とSAPの位置情報は、その(削除)分だけが常にずれるという関係にある。この関係は別個のSTMとSAP間で行う位置情報のやりとりに比べ格段に容易となる。このシステムではディスプレイ上のSTM画像で特定した分析領域情報が円環上のSTM探針と円環中心との距離分の補正だけでそのままSAPの引出電極走査信号として利用できるのである。本実施例では引出電極には附帯部材がある関係で引出電極を駆動しないで試料ステージの方を駆動走査するようにしているが、原理的には試料面と引出電極との相対位置を変えられればよいので該引出電極を駆動走査するようにしてもよい。
なお、APにおける分析領域となる微小突起部の位置はナノメータオーダーの調整を要するため、本実施例では更に電界放射顕微鏡(FEM)機能を備えるようにした。それはAPとして試料に印加する電圧は負の高電圧であるが、まず正の高電圧を印加してイオンではなく電子放射を行わせるのである。このようにして電界放射顕微鏡像をえて微小突起の位置調整を実行し、最終目的のAP分析を実行する。その際、引出電極の先端部分が集束イオンビームを用いた加工方法により、十分微細化されているので、分析範囲を試料上の特定突起のみに限定する能力が従来システムに比較して格段によいものとなっている。
【0014】
【発明の効果】
本発明の走査型アトムプローブの引出電極加工方法は、金属箔を機械的加工によって先端が球面状に形成された漏斗型部材とするステップと、該漏斗型部材の先端に集束イオンビームを用いた化学蒸着法によって導電性の円錐ドームを形成するステップと、該円錐ドームの先端部を集束イオンビームを用いたスパッタ加工法でサブミクロンオーダー以下の精度で理想形状に形成するステップとを含むものとしたので、従来の機械加工では不可能であった超微細な構造物の加工ができ、理想に近い引出電極の先端形状を提供できる。これにより、近接する微細突起の分離分析を可能にしAPとしての精度を飛躍的に高めることができた。
また、本発明の走査型アトムプローブの引出電極加工方法は、上記構成においてベースとなる金属箔には白金を用い、機械的加工された漏斗型部材は集束イオンビームでトリミング加工し、その上に集束イオンビームを用いた化学蒸着法によって円錐ドーム状微細電極を形成するものとしたので、一連の加工を集束イオンビーム装置内で効率的に進めることができる。
さらに、本発明の走査型アトムプローブの引出電極加工方法は、上記構成において集束イオンビームを用いた化学蒸着法では、最初は高速デポが可能なフェナントレンガス等を使用してカーボンで微細電極を形成したので、形状形成を短時間で実行することができ、次に表面の高導電性を付加させるためにヘキサカルボニルタングステンガスによるタングステン膜で導電被膜するものとしたので、電極としての高導電性を得ることができる。
【0015】
本発明の走査型アトムプローブの引出電極は、機械的加工された白金箔からなる漏斗型部材をベースとし、その漏斗型部材の先端部に集束イオンビームを用いた化学蒸着法によって形成されたカーボンの円錐ドーム形状部が形成され、該円錐ドーム形状部の表面はタングステン膜で導電被膜されたものとしたので、理想的な引出電極の先端部形状であり、かつ好ましい伝導率を備えたものである。
また、上記構成に加え円錐ドーム形状部の円環状先端部には集束イオンビームを用いた化学蒸着法によってSTMの走査探針が形成された本発明の走査型アトムプローブの引出電極は、走査型アトムプローブの引出電極の先端を走査型トンネル顕微鏡 ( STM ) の走査探針として用い、試料と該引出電極間に流れるトンネル電流を検出する手段とを備えることにより、試料のSTM画像から分析領域を選定できるようにしたものであるから、従来分析領域の特定が困難であった走査型アトムプローブの使い勝手が飛躍的によくなった。更に、引出電極の円環状先端部にSTM走査探針としての突起を形成した複合電極であることにより、STMの探針位置はSAPの引出電極の特定位置に当たるものとなるため、STMの位置情報がSAPの位置情報と一義的に対応する。したがって、別個のSTM装置により得た分析領域位置情報であった場合に必要となるSAPにおける位置情報との対応作業が不要となり、分析作業効率が向上した。
【図面の簡単な説明】
【図1】白金箔を絞り加工によって円錐ドーム状に形成した後、先端部をスパッタエッチングによってトリミングした引出電極の走査イオン顕微鏡像である。
【図2】図1の引出電極の円環状先端部を拡大表示した走査イオン顕微鏡像である。
【図3】FIB−CVD法によって形成したカーボンドームと、その円環状先端部にSTM探針を形成した本発明の引出電極先端部の走査イオン顕微鏡像である。
【図4】AからCは本発明による引出電極の製作過程を説明する図であり、DはSTM探針を備えた本発明の引出電極を模式的に示した図である。
【図5】電界放射顕微鏡を説明する基本構成図である。
【図6】走査型アトムプローブを説明する基本構成図である。
【図7】本発明の加工において使用する集束イオンビームの基本構成を示す図である。
【符号の説明】
1 白金ドーム 4 STM探針
2 カーボンドーム 5 導電性被膜
3 中央孔部

Claims (5)

  1. 金属箔を機械的加工によって先端が球面状に形成された漏斗型部材とするステップと、該漏斗型部材の先端に集束イオンビームを用いた化学蒸着法によって導電性の円錐ドームを形成するステップと、該円錐ドームの先端部を集束イオンビームを用いたスパッタ加工法でサブミクロンオーダー以下の精度で理想形状に形成するステップとを含む走査型アトムプローブの引出電極加工方法。
  2. ベースとなる金属箔には白金を用い、機械的加工された漏斗型部材は集束イオンビームでトリミング加工し、その上に集束イオンビームを用いた化学蒸着法によって円錐ドーム状微細電極を形成するものである請求項1に記載の走査型アトムプローブの引出電極加工方法。
  3. 集束イオンビームを用いた化学蒸着法では、高速デポが可能なフェナントレンガス等を使用してカーボンで円錐ドーム状微細電極を形成し、次に該微細電極表面の高導電性を付加させるためにヘキサカルボニルタングステンガスによるタングステン膜で導電被膜するものである請求項1または2に記載の走査型アトムプローブの引出電極加工方法
  4. 機械的加工された白金箔からなる漏斗型部材をベースとし、その漏斗型部材の先端部に集束イオンビームを用いた化学蒸着法によって形成されたカーボンの円錐ドーム形状部が形成され、該円錐ドーム形状部の表面はタングステン膜で導電被膜されたものである走査型アトムプローブの引出電極。
  5. 円錐ドーム形状部の円環状先端部には集束イオンビームを用いた化学蒸着法によってSTMの走査探針が形成されたものである請求項4に記載の走査型アトムプローブの引出電極。
JP2001231304A 2001-07-31 2001-07-31 走査型アトムプローブ Expired - Fee Related JP3902925B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001231304A JP3902925B2 (ja) 2001-07-31 2001-07-31 走査型アトムプローブ
US10/205,919 US6797952B2 (en) 2001-07-31 2002-07-26 Scanning atom probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231304A JP3902925B2 (ja) 2001-07-31 2001-07-31 走査型アトムプローブ

Publications (2)

Publication Number Publication Date
JP2003042929A JP2003042929A (ja) 2003-02-13
JP3902925B2 true JP3902925B2 (ja) 2007-04-11

Family

ID=19063378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231304A Expired - Fee Related JP3902925B2 (ja) 2001-07-31 2001-07-31 走査型アトムプローブ

Country Status (2)

Country Link
US (1) US6797952B2 (ja)
JP (1) JP3902925B2 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326445B2 (en) * 2000-11-29 2008-02-05 Sii Nanotechnology Inc. Method and apparatus for manufacturing ultra fine three-dimensional structure
EP1376650A4 (en) * 2001-03-26 2008-05-21 Kanazawa Inst Of Technology SCANNING ATOMIC PROBE AND ANALYSIS PROCEDURE WITH THE SCANNING ATOMIC PROBE
JP2005534041A (ja) * 2002-07-24 2005-11-10 ヨットペーカー、インストルメンツ、アクチエンゲゼルシャフト 走査プローブ技術を用いた局部的に高分解能な表層の質量分光学的特性調査のための方法
US6956210B2 (en) * 2003-10-15 2005-10-18 Micron Tchnology, Inc. Methods for preparing samples for atom probe analysis
JP4393899B2 (ja) * 2004-03-17 2010-01-06 エスアイアイ・ナノテクノロジー株式会社 アトムプローブ装置用試料及びその加工方法
JP5127445B2 (ja) * 2004-03-24 2013-01-23 カメカ インスツルメンツ インコーポレイテッド レーザ原子プローブ
WO2005122210A1 (en) * 2004-06-03 2005-12-22 Imago Scientific Instruments Corporation Laser atom probe methods
DE102004034985A1 (de) * 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Verfahren zur Erfassung von Bildern einer Probe mit einem Lichtrastermikroskop mit linienförmiger Abtastung
JP4762511B2 (ja) * 2004-08-10 2011-08-31 富士通株式会社 ナノレベル構造組成観察方法及び絶縁層が介在する多層膜構造体の製造方法
US20100294928A1 (en) * 2004-12-21 2010-11-25 Imago Ascientific Instruments Corporation Laser atom probes
KR20060081015A (ko) * 2005-01-06 2006-07-12 삼성에스디아이 주식회사 진공 증착기
JP2006260807A (ja) * 2005-03-15 2006-09-28 Fujitsu Ltd 元素測定装置及び方法
JP4628153B2 (ja) * 2005-03-18 2011-02-09 富士通株式会社 ナノレベル構造組成観察装置及びナノレベル構造組成観察方法
US9423693B1 (en) 2005-05-10 2016-08-23 Victor B. Kley In-plane scanning probe microscopy tips and tools for wafers and substrates with diverse designs on one wafer or substrate
US7571638B1 (en) * 2005-05-10 2009-08-11 Kley Victor B Tool tips with scanning probe microscopy and/or atomic force microscopy applications
EP1880406B1 (en) * 2005-05-11 2019-07-03 Imago Scientific Instruments Corporation Reflectron
US7960695B1 (en) * 2005-05-13 2011-06-14 Kley Victor B Micromachined electron or ion-beam source and secondary pickup for scanning probe microscopy or object modification
US7431856B2 (en) * 2005-05-18 2008-10-07 National Research Council Of Canada Nano-tip fabrication by spatially controlled etching
US20090138995A1 (en) * 2005-06-16 2009-05-28 Kelly Thomas F Atom probe component treatments
US20090114620A1 (en) * 2005-06-16 2009-05-07 Imago Scientific Instruments Corporation Atom probe electrode treatments
GB0512411D0 (en) * 2005-06-17 2005-07-27 Polaron Plc Atom probe
US20080296489A1 (en) * 2005-07-28 2008-12-04 Olson Jesse D Atom Probe Evaporation Processes
US20070036060A1 (en) * 2005-08-11 2007-02-15 Tdk Corporation Data recording method, data reproducing method, data recording apparatus, data reproducing apparatus, and information recording medium
JP4752548B2 (ja) * 2006-03-10 2011-08-17 富士通株式会社 元素検出方法及び元素検出装置
JP2007292712A (ja) * 2006-03-31 2007-11-08 Kanazawa Inst Of Technology 分析装置及び分析方法
WO2008048710A2 (en) * 2006-04-26 2008-04-24 The Board Of Trustees Of The University Of Illinois Nanometer-scale sharpening of conductor tips
WO2008066779A2 (en) * 2006-11-27 2008-06-05 Georgia Tech Research Corporation Near field scanning measurement-alternating current-scanning electrochemical microscopy devices and methods of use thereof
KR20080064517A (ko) * 2007-01-05 2008-07-09 제일모직주식회사 금속표면의 산화막을 검출할 수 있는 프로브 니들
US20100282964A1 (en) * 2007-09-04 2010-11-11 Joseph Hale Bunton Methods and apparatuses to align energy beam to atom probe specimen
GB0806673D0 (en) * 2008-04-11 2008-05-14 Finlan Martin F Imaging apparatus & method
DE102010016818A1 (de) * 2010-03-16 2011-09-22 Leica Microsystems Cms Gmbh Verfahren und Vorrichtung zur Durchführung von Multipoint-FCS
US9778572B1 (en) 2013-03-15 2017-10-03 Victor B. Kley In-plane scanning probe microscopy tips and tools for wafers and substrates with diverse designs on one wafer or substrate
CN205308709U (zh) * 2015-11-27 2016-06-15 富泰华工业(深圳)有限公司 点胶装置
US10060948B2 (en) * 2016-08-12 2018-08-28 Tiptek, LLC Scanning probe and electron microscope probes and their manufacture
KR102076956B1 (ko) * 2018-09-07 2020-02-13 한국표준과학연구원 표면산화막과 전계증발현상을 이용한 금속선 팁의 초미세 선단부 가공방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416331A (en) * 1991-01-11 1995-05-16 Hitachi, Ltd. Surface atom fabrication method and apparatus
JP2992141B2 (ja) * 1991-09-26 1999-12-20 松下電器産業株式会社 走査型トンネル電子顕微鏡用原子間力顕微鏡の探針及び3−チエニル基含有珪素化合物
JP3679519B2 (ja) * 1995-09-14 2005-08-03 キヤノン株式会社 トンネル電流または微小力または磁気力検出用の微小ティップの製造方法、並びにその微小ティップを有するプローブの製造方法とそのプローブ、該プローブを有するプローブユニットと走査型プローブ顕微鏡及び情報記録再生装置
JPH10293134A (ja) * 1997-02-19 1998-11-04 Canon Inc 光検出または照射用のプローブ、及び該プローブを備えた近視野光学顕微鏡・記録再生装置・露光装置、並びに該プローブの製造方法
US5965218A (en) * 1997-03-18 1999-10-12 Vlsi Technology, Inc. Process for manufacturing ultra-sharp atomic force microscope (AFM) and scanning tunneling microscope (STM) tips
GB9719697D0 (en) * 1997-09-16 1997-11-19 Isis Innovation Atom probe
US6457350B1 (en) * 2000-09-08 2002-10-01 Fei Company Carbon nanotube probe tip grown on a small probe

Also Published As

Publication number Publication date
JP2003042929A (ja) 2003-02-13
US20030066962A1 (en) 2003-04-10
US6797952B2 (en) 2004-09-28

Similar Documents

Publication Publication Date Title
JP3902925B2 (ja) 走査型アトムプローブ
US20100187433A1 (en) Improved particle beam generator
AU2003253085B2 (en) Charged particle beam generator
CN109256312B (zh) 用于原位制备显微镜样本的方法
US6771012B2 (en) Apparatus for producing a flux of charge carriers
EP1731894B1 (en) Method for a preliminary processing of a sample for an atom probe apparatus and sample and sample substrate prepared by said method
WO2009014406A2 (en) Electron emitter having nano-structure tip and electron column using the same
JP4784888B2 (ja) Fibによるアトムプローブ分析用試料の作製方法とそれを実施する装置
JP4902712B2 (ja) アトムプローブ分析方法
US20190198284A1 (en) Electron source and electron beam irradiation device
TWI609402B (zh) 一種透射型低能量電子顯微系統
JPH0743373A (ja) 導電性部材の観察・計測方法及びその装置
JP2009527916A (ja) ナノ製造設備及びナノ製造方法
JP5489295B2 (ja) 荷電粒子線装置及び荷電粒子線照射方法
TWI813760B (zh) 試料加工觀察方法
Kim et al. Creation and characterization of an atomically sharp single/trimer atom Ir/W (111) tip by thermal field-assisted faceting
Huang et al. Precisely Picking Nanoparticles by a “Nano-Scalpel” for 360 Electron Tomography
JP2718748B2 (ja) 走査型顕微鏡用探針の製造方法
US20240055220A1 (en) Charged Particle Beam Device
Paul et al. Field ion microscopy for the characterization of scanning probes
Milani et al. Focused ion beam: moving toward nanobiotechnology
JP3945775B2 (ja) 電界放出低速電子回折用引き込み電極及びそれを用いた電子回折装置
Alkemade et al. Nanometer-scale chemical surface analysis by scanning (tunnelling) atom probes
JPH10154481A (ja) 走査顕微応用装置
Beams Nanofabrication with Focused Ion Be

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060531

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3902925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees