JP3886609B2 - DC arc welding power supply - Google Patents

DC arc welding power supply Download PDF

Info

Publication number
JP3886609B2
JP3886609B2 JP21405597A JP21405597A JP3886609B2 JP 3886609 B2 JP3886609 B2 JP 3886609B2 JP 21405597 A JP21405597 A JP 21405597A JP 21405597 A JP21405597 A JP 21405597A JP 3886609 B2 JP3886609 B2 JP 3886609B2
Authority
JP
Japan
Prior art keywords
series
output
switching element
transformer
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21405597A
Other languages
Japanese (ja)
Other versions
JPH1133719A (en
Inventor
喜久夫 寺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP21405597A priority Critical patent/JP3886609B2/en
Publication of JPH1133719A publication Critical patent/JPH1133719A/en
Application granted granted Critical
Publication of JP3886609B2 publication Critical patent/JP3886609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、商用交流を整流して所望の出力電圧・電流の直流を得るようにした直流アーク溶接用電源装置の改良に関するものである。
【0002】
【従来の技術】
図9に単相の商用交流電源から電力を得る方式の従来の直流アーク溶接用電源装置の例を示す。同図において、1は単相の商用交流電源、2は電力加工部、4は電極4aおよび被溶接物4bからなるアーク溶接負荷である。電力加工部2は両波整流回路REC1、この両波整流回路REC1の出力を平滑するコンデンサC1、スイッチングトランジスタTR1ないしTR4およびダイオードD1ないしD4からなるインバータ回路、インバータ回路の出力電圧をアーク溶接に適した電圧に変換する変圧器T1、変圧器T1の出力電圧を再度整流する整流回路REC2、この整流回路REC2の出力と出力端子との間に設けられた直流リアクトルL1、出力電流を検出する電流検出器CT1、出力電流設定器21、出力電流設定器21の出力Irと電流検出器CT1の検出値Ifとを比較し差信号ΔI=Ir−Ifを出力する比較器22および比較器22の出力信号ΔIを入力として入力信号に応じた導通時間率のパルス信号を出力してインバータ回路を構成するスイッチングトランジスタTR1とTR4およびスイッチングトランジスタTR2とTR3とをそれぞれ1組として各組のトランジスタを同時にかつ各組毎に交互にON−OFFさせる信号を出力するパルス幅制御回路(以後PWM制御回路という)23からなる。
【0003】
図9の装置においては、商用交流電源1からの電力は両波整流回路REC1にて整流されて直流となり、コンデンサC1にて平滑された後にスイッチングトランジスタTR1ないしTR4にて高周波の交流に変換されて変圧器T1にて所望の電圧に変換された後に整流回路REC2にて再度整流されて直流となり、直流リアクトルL1を介してアーク溶接負荷4に供給される。この出力電流は電流検出器CT1にて検出されて出力電流設定器21の設定値Irと比較器22にて比較されて、差信号ΔI=Ir−Ifが得られる。この差信号ΔIはPWM制御回路23に供給されてこの差信号ΔIが減少する方向にスイッチングトランジスタTR1ないしTR4の導通時間率が調整されて、出力電流が設定値に保たれるように制御される。
【0004】
【発明が解決しようとする課題】
上記の方式の従来装置においては、商用交流電源1からの入力電流が大きく歪むために商用交流電源側に悪影響を及ぼす。その理由を図10の波形図にて説明する。図10(a)は図9の装置における商用交流電源1の電圧波形を示し、同図(b)はコンデンサC1の端子電圧、(c)は入力電流波形を示す。図10から容易にわかるように、正弦波の入力電圧に対して、入力電流は平滑用コンデンサC1の端子電圧が入力電圧の両波整流波形よりも低い期間においてのみ流れる。このために、入力電流は入力電圧位相のピーク点附近の限られた期間のみ流れるパルス状の波形となり、極端な歪波電流となる。このために商用交流電源1に対しては、この期間にのみ大きな負担がかかることになり、電圧降下もこの期間にのみ発生するので、同図(a)に破線にて示すように電圧波形を大きく歪ませることになって、商用交流電源側に過大な負担をかけ、電源の過負荷防止用遮断器をトリップさせたり同一電源に接続されている他の機器に悪影響を及ぼし、甚しい場合にはこれらを誤動作させることも発生する。また、入力電圧波形に対して、入力電流波形の位相が極端にずれることから、商用周波交流電源に対する装置の力率が極めて低いものとなる。
【0005】
【課題を解決するための手段】
本発明は、上記従来装置の課題を解決するために、単相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の正・負各ブランチを構成するダイオードにそれぞれ直列に接続された一次巻線を有する2個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる2組の直列回路と、前記2組の直列回路と並列に接続されたコンデンサと、前記コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置、を提案したものである。
【0006】
本発明の第2の発明は、単相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の正・負各ブランチを構成するダイオードにそれぞれ直列に接続された一次巻線を有する2個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる2組の直列回路と、前記2組の直列回路にそれぞれ並列に接続されかつ相互に直列に接続されたコンデンサと、前記直列コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記直列コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置、を提案したものである。
【0007】
また、第3の発明は、単相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の正・負各ブランチを構成するダイオードにそれぞれ直列に接続された複数の一次巻線を有する1個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる直列回路と、前記直列回路と並列に接続されたコンデンサと、前記コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置、を提案したものである。
【0008】
本発明の第4の発明は、3相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の各相のブランチを構成するダイオードにそれぞれ直列に接続された一次巻線を有する6個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる6組の直列回路と、前記6組の直列回路と並列に接続されたコンデンサと、前記コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置、を提案したものである。
【0009】
本発明の第5の発明は、3相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の各相のブランチを構成するダイオードにそれぞれ直列に接続された一次巻線を有する6個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる6組の直列回路と、前記6組の直列回路にそれぞれ並列に接続されかつ相互に直列に接続されたコンデンサと、前記直列コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記直列コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置、を提案したものである。
【0010】
本発明の第6の発明は、3相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の各相のブランチを構成するダイオードにそれぞれ直列に接続された2個の一次巻線を有する3個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる3組の直列回路と、前記3組の直列回路と並列に接続されたコンデンサと、前記コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置、を提案したものである。
【0011】
さらに、本発明の第7の発明は、3相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の各相のブランチを構成するダイオードにそれぞれ直列に接続された2個の一次巻線を有する3個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる3組の直列回路と、前記3組の直列回路にそれぞれ並列に接続されかつ相互に直列に接続されたコンデンサと、前記直列コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記直列コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置、を提案したものである。
【0012】
【発明の実施の形態】
図1に本発明の実施の形態の例を接続図にて示す。同図において、1は商用交流電源、11は電力加工部、4はアーク溶接負荷であり、電極4aおよび被溶接物4bからなる。電力加工部11は入力電流を平滑化する高周波フィルタLF11、ダイオードD10ないしD14およびダイオードD21、D22、変圧器T11およびT12の各一次巻線T11p、T12pおよび二次巻線T11s、T12s、コンデンサC11、直流リアクトルL11、抵抗器R11、電流検出器CT11、出力電流設定器21、比較器22およびパルス幅制御回路(以後PWM制御回路という)23からなる。
【0013】
変圧器T11、T12の各一次巻線T11p、T12pは商用交流電源1からの電力を両波整流するダイオードD11ないしD14からなるブリッジ回路の正・負各ブランチに直列に図示のように挿入されており、このブリッジ整流回路の直流出力を短絡するようにスイッチング素子TR10が設けられている。変圧器T11、T12の各二次巻線T11s、T12sはそれぞれダイオードD11、D12と直列にされてコンデンサC11に並列接続されている。また、直流リアクトルL11は、コンデンサC11の一方の端子と出力端子の一方との間に接続されてアーク溶接に適した出力電流変化の時定数を与える。この変圧器T11、T12の各巻線およびダイオードD21、D22の各極性は図示の・印の通りであり、スイッチング素子TR10の導通時に一次巻線T11p、T12pに流れる電流によって二次巻線T11s、T12sに誘起される電圧をそれぞれダイオードD21、D22が阻止する極性に定められている。なおダイオードD10はスイッチング素子に逆方向の電圧が印加されないようにするための保護用ダイオードである。
【0014】
図2は図1の装置の動作を説明するための各部の波形を示す線図であり、同図(a)は商用交流電源1の電圧波形、(b)はPWM制御回路23の出力波形、(c)はスイッチング素子TR10を流れる電流波形、(d)は変圧器T11の二次巻線T11sの誘起電圧波形、(e)は二次巻線T11sの電流波形、(f)は二次巻線T12sの誘起電圧波形、(g)は二次巻線T12sの電流波形、(h)はコンデンサC11の端子電圧、即ち出力電圧波形、(i)は商用交流電源1からの流入電流波形をそれぞれ時間の経過とともに示してある。
【0015】
図2の線図を参照して図1の装置の動作を説明する。いま、ダイオードD11が順方向となる交流電源1の半波T1 においてスイッチング素子TR10が導通すると変圧器T11の一次巻線T11pに図2(c)に示すように交流電源1の瞬時値に比例した電流が流れ、これによって二次巻線T11sに図示の極性の電圧が誘起される(Ton時)。しかし、この誘起電圧はダイオードD21に対しては逆極性であるので、これに阻止されて二次巻線T11sには図2(e)のTon時に示すように電流は流れない。このため、一次巻線T11pに流れた電流は変圧器T11に電磁エネルギーとして蓄えられる。次にTon期間の終りにスイッチング素子TR10が遮断するとそれまでに蓄えられた電磁エネルギーが二次巻線T11sを通じて放出され、図中に示した極性と逆の極性の電圧を誘起し、ダイオードD21を通してコンデンサC11に図2(e)に示すように蓄積エネルギーに比例した電流が流れてこれを充電する。このときの誘起電圧は蓄積エネルギーの大小にかかわらず図2(d)に示すようにコンデンサの端子電圧を超える値にまで達するので、交流電源電圧の瞬時値にかかわらずコンデンサの充電がすべての位相において行なわれる。変圧器T11に蓄積された電磁エネルギーの放出が終る頃に再びスイッチング素子TR10を導通させると、変圧器T11は再び磁気エネルギーの蓄積を開始する。上記をくりかえして期間T1 が終了し期間T2 に入ると、変圧器T11にかわって変圧器T12の一次巻線T12pにダイオードD13を通して電流が流れて同様の動作を継続することになる。
【0016】
コンデンサC11の端子電圧は直流リアクトルL11を介して出力端子に引き出されてアーク溶接負荷4に供給される。アーク溶接負荷4に流れる電流は電流検出器CT11によって検出信号Ifとなり、出力電流設定器21の設定値Irと比較器22にて比較されて差信号ΔI=Ir−Ifが演算されて、この差信号ΔIに応じた導通時間率となるようにPWM制御回路23がパルス幅を決定し、スイッチング素子TR10をON−OFF制御する。したがってPWM制御回路23の出力周波数を商用交流電源よりも十分に高く、例えば10KHzないし数10KHzの高周波としておけば、交流電源1からの入力電圧波形のすべての位相において電力が供給されることになる。このとき、入力電流はPWM制御回路の動作周波数の高周波成分を含むことになるが、入力側に小容量のコンデンサからなる高周波フィルタLF11を設けることにより入力電流を平坦化することができ、図2(i)に示すようにほぼ正弦波状で電圧位相に一致した電流波形とすることができる。
【0017】
図1の装置において、変圧器T11、T12としてはスイッチング素子TR10のON−OFF周波数に応じた高周波変圧器を用意すればよいのでその鉄心断面積は小さなものでよく、また、スイッチング素子TR10が導通している期間中に流れる電流によって電磁エネルギーを蓄えるためにその磁路の途中に適宜空隙を設けると都合がよい。
【0018】
さらに、本発明の装置においては、スイッチング素子TR10の導通期間中に変圧器T11、T12に電磁エネルギーを蓄え、スイッチング素子TR10の遮断期間中にこれをアーク溶接負荷4に放出するものである。それ故、変圧器の鉄心がスイッチング素子TR10のON−OFFの1周期で完全に磁束がリセットされるようにスイッチング素子の導通時間率(ON−OFFの1周期における導通時間の割合)が最大出力時にも50%以下になるようにPWM制御回路を設計しておくことが望ましい。
【0019】
なお、図1の装置において、抵抗器R11は動作停止時にコンデンサC11に充電されている電荷を放電するためのものであり、アーク溶接終了時には、動作停止と同時にアーク溶接負荷4が開放となるのが通常であるので、残留電荷を安全に放電して、感電の危険性を防止する。この抵抗器R11の抵抗値としてはコンデンサC11の充電電荷を数秒程度の間に放電する値に選定しておくと、先の溶接終了直後のアーク再起動時はいまだコンデンサC11には相当量の電荷が充電されているのでアークの再起動が容易となるので都合がよい。
【0020】
また、図1において、変圧器T11、T12の各一次巻線は、ダイオードD11ないしD14によって構成されるブリッジ形整流回路の各半波を負担する各ブランチの途中であればどこでもよく、ダイオードD12、D14に直列にしても、また一次巻線T11pをダイオードD11に一次巻線T12pをダイオードD12にそれぞれ直列に接続してもよい。さらにまた、一次巻線T11p、T12pをそれぞれ2個設けて、これらをそれぞれダイオードD11、D12またはダイオードD13、D14に分けて直列に接続してもよい。
【0021】
図3は本発明の別の実施の形態を示す接続図であり、図1の装置の二次巻線T11sとT12sとをそれぞれ直列ダイオードとともに直列に接続したものに相当し、これに従ってコンデンサもC21とC22の2個を設けてある。また、出力制御は、電流検出器にかえて電圧検出器VT11を、また出力電流設定器にかえて出力電圧設定器24を設けてある。これらによって出力電圧Vfを検出し、出力電圧設定器24の設定値Vrと比較器25にて比較し、差信号ΔV=Vr−Vfを得てこの差信号が減少する方向にPWM制御回路23からの出力パルス幅を変化させるようにして、出力電圧を設定値に保つようにしている。同図のその他の動作は図1に示した装置と同様であるので動作の詳細な説明は省略する。
なお、図3の装置においても変圧器T11、T12の各一次巻線をそれぞれ2個に分割してダイオードD11、D12、ダイオードD13、D14に分けて直列に接続してもよい。
【0022】
図3の装置においては図1の装置の2倍の電圧が得られるので比較的高い電圧を要求される用途に適する。
【0023】
図4は、2個の変圧器を用いるかわりに2個の一次巻線を有する変圧器T13を用いて本発明を実施するときの例を示した接続図であり、図1に示した変圧器T11およびT12の各一次巻線T11p、T12pにかえて1個の変圧器の一次巻線T13p1とT13p2とを両波整流回路の正・負各ブランチに挿入してある。また、これに伴って二次巻線は1個としダイオードD23と直列にしてコンデンサC11と並列に接続してある。同図の装置において、その他は図1と同機能のものに同符号を付してある。
【0024】
図4の装置においても、図1の装置と同様にダイオードD11が順方向となる半波の期間にスイッチング素子TR10が導通することにより変圧器T13p1を流れる電流によって電磁エネルギーが蓄積され、その後にスイッチング素子TR10が遮断されるとこの電磁エネルギーが二次巻線T13sを通して放出されてコンデンサC11を充電し、またダイオードD13が順方向となる半波においては一次巻線T13p2に電磁エネルギーが蓄積されて、これが二次巻線T13sを通して放出されてコンデンサC11を充電するように動作する。
【0025】
図5は、図4の装置を一部変形したものであり、変圧器T13の第2の一次巻線T13p2をダイオードD12と直列にしたものであり、その動作は図4の装置と全く同じである。
なお、図4および図5の装置において、一次巻線T13pを4つに分割してT13p1ないしT13p4とし、各一次巻線をそれぞれダイオードD11ないしD14に直列にしてもよいのはもちろんである。
【0026】
図6は、図1の装置と図5の装置とを合体させた例を示す接続図であり、変圧器はT14とT15の2個を使用し、かつ各変圧器にはそれぞれ2個の一次巻線T14p1、T14p2およびT15p1、T15p2を設けてある。また各一次巻線は交流電源1の各半波においてスイッチング素子TR10が導通したときにそれぞれ一方の一次巻線T14p1とT15p2またはT14p2とT15p1に電流が流れて各変圧器に電磁エネルギーを蓄え、これをスイッチング素子TR10の遮断時にそれぞれの二次巻線T14sまたはT15sを通して放出してコンデンサC11を充電するようになっている。これらの動作は図1、図3、図4の各装置と同様であるので詳細な説明は省略する。
なお、同図において変圧器の一次巻線T14p1とT15p1、またはT14p2とT15p2、またはT14p2とT15p1またはT14p1とT15p2とをそれぞれ入れかえても同様の機能を発揮する。
【0027】
図7は、本発明を3相交流電源に対して実施したときの形態の例を示す接続図である。同図において、3は3相商用交流電源、31は電力加工部であり、高周波フィルタLF31、一次巻線T31pと二次巻線T31sとを有する変圧器T31、同様に一次巻線T32pないしT36pと二次巻線T32sないしT36sをそれぞれ有する変圧器T32ないしT36、ダイオードD10、D31ないしD36、D41ないしD46、スイッチング素子TR10、コンデンサC11、直流リアクトルL11、抵抗器R11、電流検出器CT11、出力電流設定器21、比較器22およびPWM制御回路23からなる。
【0028】
図7の装置においてダイオードD31ないしD36は3相両波整流回路を構成している。図中イ、ロ、ハのうちイ点が最高電位にある期間は一周期2πのうちにπ/3あり、この期間にスイッチング素子TR10が導通すると変圧器T31p、ダイオードD31、スイッチング素子TR10、ダイオードD34と変圧器T34pの直列回路およびダイオードD36と変圧器TR36pの直列回路の経路を電流が流れて各変圧器の二次巻線T31s、T34s、T36sにそれぞれ図示の極性の電圧が誘起される。しかるにこれらの電圧はそれぞれ直列に接続されたダイオードD41、D44、D46に対して逆極性であるので各二次巻線には電流は流れず、このために各一次巻線に流れた電流はそれぞれの変圧器に電磁エネルギーとして蓄えられる。次にスイッチング素子TR10が遮断すると、この蓄積された電磁エネルギーによって各二次巻線T31s、T34s、T36sに図示と逆の極性の電圧が発生し、それぞれ順方向となる直列ダイオードD41、D44、D46を通してコンデンサC11を充電する。このときに各二次巻線に発生する電圧は蓄積された電磁エネルギーの大きさにはほとんど関係なく、この電磁エネルギーをコンデンサC11に対して放出するのに十分な電圧まで上昇することは図1の装置にて説明したのと同様である。
【0029】
つぎにスイッチング素子TR10が導通すると変圧器T31、T34、T36が再び電磁エネルギーの蓄積を開始し、スイッチング素子TR10の遮断によって再びこれを放出してコンデンサC11を充電する。この動作を図のイ点の電位がロおよびハの各点の電位よりも高い期間、商用交流電源3の電圧の位相角でπ/3の期間、くりかえされる。
【0030】
つぎに図のハ点が最低電位となるので変圧器T36と変圧器T31、T33が同様に動作し、つぎに図のロ点の電位が他の点よりも高くなって変圧器T33と変圧器T32、T36が同様の動作をする。さらに図のイ点が最も低い電圧になると変圧器T32と変圧器T33、T35が、ハ点が最高電位になる期間では、変圧器T35と変圧器T33、T34が、ロ点が最低電位となる期間では変圧器T34と変圧器T31、T35がそれぞれ上記と同様の動作をそれぞれ商用交流の電圧位相のπ/3の期間ずつくりかえして商用交流電源の1周期(2π)を終了する。
【0031】
図7の装置においても図3に示した例と同様に各変圧器の二次巻線T31sないしT36sを直列ダイオードD41ないしD46の各組毎に並列にコンデンサを接続したものを6組つくり、これらをすべて直列にして総合出力をアーク溶接負荷4に供給するようにしてもよく、またこれらの中間的な装置として二次巻線とダイオードとの直列回路の組を適宜直列または並列にして所望の出力電圧を得るようにしてもよい。
【0032】
図8は3相の商用交流電源に本発明を適用した別の実施の形態の例を示す接続図であり、ダイオードD51ないしD56によって構成されるブリッジ式3相両波整流回路の正・負各ブランチに変圧器T37ないしT39の各2個の一次巻線T37p1、T37p2、T38p1、T38p2、T39p1、T39p2が直列に接続されており、この両波整流回路の出力を短絡する位置にスイッチング素子TR10が接続されている。また各変圧器の二次巻線T37s、T38s、T39sはそれぞれダイオードD61ないしD63と直列に接続され、各変圧器の二次巻線とダイオードとの直列回路は並列に接続されてこれにコンデンサC11が並列接続されている。
また、変圧器T37ないしT39の各一次巻線T37p1、T37p2、T38p1、T38p2、T39p1、T39p2と二次巻線T37s、T38s、T39sはをれぞれ図中に・印で示すように極性が定められており、これに対して、ダイオードD61ないしD63の極性も図示の通りに定められている。
【0033】
変圧器およびダイオードの各極性を図示のように定めると、スイッチング素子TR10の導通時には変圧器T37ないしT39の各二次巻線T37sないしT39sに誘起される電圧はそれぞれ直列ダイオードD61ないしD63によって阻止される極性となる。同図のその他の部分は図7の装置と同機能のものに同符号を付してある。
【0034】
図8の装置においては、スイッチング素子TR10の導通によって変圧器の一次巻線T37p1とT38p2、T39p2の組合せ、一次巻線T39p2とT37p1、T38p1の組合せ、一次巻線T38p1とT37p2、T39p2の組合せ、一次巻線T37p2とT38p1、T39p1の組合せ、一次巻線T39p1とT37p2、T38p2の組合せ、一次巻線T38p2とT37p1、T39p1の組合せ、に順次電流が流れてそれぞれの変圧器に電磁エネルギーが蓄積され、スイッチング素子TR10の遮断によってこれらの蓄積エネルギーが各変圧器の二次巻線T37s、T38s、T39sからそれぞれ直列ダイオードD61、D62、D63を通して放出されてコンデンサC11を充電する。このときの動作は図7の装置と本質的に異なるところはない。
【0035】
図7および図8の装置においても商用交流電源3からの入力電流は高周波フィルタLF31にて平坦化されて電源電圧位相と同相の略正弦波電流となる。
【0036】
図1および図4ないし図8の各実施例においては、出力電流を電流検出器によって検出してこれを出力電流設定器の設定値と比較して、差信号が減少する方向にスイッチング素子TR10の導通時間率を変化させる方式のものを示したが本発明はこれに限らず図3の装置のように出力電圧を検出してこれを設定値と比較して、差が減少するようにスイッチング素子の導通時間率を制御するものでも本発明は適用できる。
【0037】
さらにまた、出力電流と出力電圧とを設定し、これらの設定値と検出値とを比較し、両方の差信号に夫々係数を乗じて加算し、このかさんちに応じてスイッチング素子の導通時間率を制御するようにして、所望の電圧・電流特性の装置を得るようにしてもよい。この場合、出力電圧設定値Vrと電圧検出器の検出値Vfとの差ΔVと、出力電流設定値Irと電流検出値Ifとの差ΔIと、これらに係数a及びbを乗じて合成信号Δs=a・ΔV+b・ΔI(ただし、0≦a≦1、0≦b≦1で、かつa+b=1)をPWM制御回路の入力信号とすればよい。ここでa=0なら出力電流だけが比較されて定電流特性となり、逆にb=0とすれば出力電圧だけが比較されて定電圧特性となる。係数aおよびbが0と1との間にあるときは出力電流の変化に対して出力電圧が傾きV/I=b/aの傾斜特性の電源装置となる。
【0038】
また、上記各実施例においては、スイッチング素子の制御方法としてはその動作周波数を一定にしてその1周期内における導通時間の割合を変化させるPWM制御方式のものについて説明したが、本発明はこれに限らず、スイッチング素子の1回の導通時間の長さは一定とし、くりかえし周波数を誤差信号に応じて変化させるPFM制御(パルス周波数制御)方式のものにも本発明は適用できる。
【0039】
【発明の効果】
本発明は、上記の通り商用交流電源からの入力電流が入力電圧波形と同相でかつ略同波形となるので、過大な入力電圧降下を発生させることがなく、商用交流電源回路の過負荷防止用の遮断器を誤動作させたり、波形歪のために同一電源に接続されている他の機器を誤動作させることもない。また装置自体の力率も1に近くなるので無効電力の発生がなく、高力率の装置が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す接続図。
【図2】図1の装置の動作を説明するための線図。
【図3】本発明の別の実施の形態を示す接続図。
【図4】本発明の別の実施の形態を示す接続図。
【図5】本発明の別の実施の形態を示す接続図。
【図6】本発明の別の実施の形態を示す接続図。
【図7】本発明を3相交流電源に適用したときの実施の形態を示す接続図。
【図8】本発明を3相交流電源に適用したときの別の実施の形態を示す接続図。
【図9】従来の装置の例を示す接続図。
【図10】図9の従来装置の動作を説明するための各部の波形を示す線図。
【符号の説明】
1、3 商用交流電源
4 アーク溶接負荷
11〜15、31、32 電力加工部
21 出力電流設定器
22、25 比較器
23 PWM制御回路
24 出力電圧設定器
D10〜D14 ダイオード
D21、D22 ダイオード
D31〜D36 ダイオード
D41〜D46 ダイオード
D51〜D56 ダイオード
D61〜D63 ダイオード
TR10 スイッチング素子
T11p 変圧器一次巻線
T12p 変圧器一次巻線
T13p1、T13p2 変圧器一次巻線
T31p〜T36p 変圧器一次巻線
T37p1、T37p2 変圧器一次巻線
T38p1、T38p2 変圧器一次巻線
T39p1、T39p2 変圧器一次巻線
T11s〜T13s 変圧器二次巻線
T31s〜T39s 変圧器二次巻線
C11、C21、C22 コンデンサ
L11 直流リアクトル
R11 抵抗器
LF11、LF31 高周波フィルタ
VT11 電圧検出器
CT11 電流検出器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a DC arc welding power supply apparatus that rectifies commercial AC to obtain DC of desired output voltage and current.
[0002]
[Prior art]
FIG. 9 shows an example of a conventional DC arc welding power supply apparatus that obtains electric power from a single-phase commercial AC power supply. In the figure, 1 is a single-phase commercial AC power source, 2 is a power processing unit, and 4 is an arc welding load composed of an electrode 4a and a workpiece 4b. The power processing unit 2 is suitable for arc welding of the double-wave rectifier circuit REC1, a capacitor C1 for smoothing the output of the double-wave rectifier circuit REC1, switching circuits TR1 to TR4 and diodes D1 to D4, and the output voltage of the inverter circuit. A transformer T1 for converting the output voltage into a voltage, a rectifier circuit REC2 for rectifying the output voltage of the transformer T1, a DC reactor L1 provided between the output of the rectifier circuit REC2 and an output terminal, and a current detection for detecting an output current Comparator CT1, output current setter 21, comparator 22 which compares output Ir of output current setter 21 and detection value If of current detector CT1 and outputs difference signal ΔI = Ir−If and output signal of comparator 22 Using ΔI as an input, a pulse signal having a conduction time ratio corresponding to the input signal is output, and the inverter circuit is configured. A pulse width control circuit (hereinafter referred to as a PWM control circuit) that outputs a signal that turns on and off each pair of transistors simultaneously and alternately for each pair, with the pair of the switching transistors TR1 and TR4 and the switching transistors TR2 and TR3. 23.
[0003]
In the apparatus of FIG. 9, the electric power from the commercial AC power source 1 is rectified by the double-wave rectifier circuit REC1 to become DC, smoothed by the capacitor C1, and then converted into high-frequency AC by the switching transistors TR1 to TR4. After being converted into a desired voltage by the transformer T1, it is rectified again by the rectifier circuit REC2 to become direct current, and is supplied to the arc welding load 4 through the direct current reactor L1. This output current is detected by the current detector CT1 and compared with the set value Ir of the output current setter 21 by the comparator 22 to obtain a difference signal ΔI = Ir−If. This difference signal ΔI is supplied to the PWM control circuit 23, and the conduction time rate of the switching transistors TR1 to TR4 is adjusted in the direction in which the difference signal ΔI decreases, and the output current is controlled to be maintained at the set value. .
[0004]
[Problems to be solved by the invention]
In the conventional apparatus of the above system, since the input current from the commercial AC power supply 1 is greatly distorted, the commercial AC power supply side is adversely affected. The reason will be described with reference to the waveform diagram of FIG. 10A shows a voltage waveform of the commercial AC power supply 1 in the apparatus of FIG. 9, FIG. 10B shows a terminal voltage of the capacitor C1, and FIG. 10C shows an input current waveform. As can be easily seen from FIG. 10, with respect to a sine wave input voltage, the input current flows only in a period in which the terminal voltage of the smoothing capacitor C1 is lower than the both-wave rectified waveform of the input voltage. For this reason, the input current becomes a pulse-like waveform that flows only for a limited period near the peak point of the input voltage phase, resulting in an extreme distortion wave current. For this reason, a heavy burden is imposed on the commercial AC power source 1 only during this period, and a voltage drop also occurs only during this period. Therefore, as shown by the broken line in FIG. If it is seriously distorted, it places an excessive burden on the commercial AC power supply side, trips the circuit breaker for overload protection of the power supply, adversely affects other equipment connected to the same power supply, and May cause them to malfunction. Further, since the phase of the input current waveform is extremely shifted with respect to the input voltage waveform, the power factor of the apparatus with respect to the commercial frequency AC power supply becomes extremely low.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems of the conventional apparatus, the present invention provides a bridge-type double-wave rectifier circuit that receives a single-phase commercial AC power source and a diode that constitutes the positive and negative branches of the bridge-type double-wave rectifier circuit. Two transformers each having a primary winding connected in series to each other, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, a secondary winding of each transformer, and the transformer Two series circuits composed of diodes with polarities that prevent output when excited by conduction of the switching elements, a capacitor connected in parallel with the two sets of series circuits, and one of the capacitors A DC reactor connected in series with the terminal, and a switching element control circuit that performs ON-OFF control of the switching element at a high frequency corresponding to an output set value. DC arc welding power supply and the other terminal of the vector drawn out outputted from the other terminal of the capacitor, in which proposed.
[0006]
A second invention of the present invention is connected in series to a bridge type dual-wave rectifier circuit that receives a single-phase commercial AC power source and a diode that constitutes the positive and negative branches of the bridge type dual-wave rectifier circuit. Two transformers having primary windings, a switching element for short-circuiting the output of the bridge-type double-wave rectifier circuit, and the secondary windings of the transformers and the transformer are excited by conduction of the switching elements. Two sets of series circuits comprising diodes with polarities that prevent output when they are performed, capacitors connected in parallel to the two sets of series circuits and connected in series with each other, and the series capacitors A DC reactor connected in series to one of the terminals, and a switching element control circuit that performs ON / OFF control of the switching element at a high frequency corresponding to an output set value. In which it proposed a DC arc welding power supply device, which pull the output from the other terminal of the series capacitor and the other terminal of the DC reactor.
[0007]
The third aspect of the invention is connected in series to a bridge-type double-wave rectifier circuit that receives a single-phase commercial AC power source and a diode that constitutes each of the positive and negative branches of the bridge-type double-wave rectifier circuit. One transformer having a plurality of primary windings, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, and the secondary winding of the transformer and the transformer are excited by conduction of the switching element A series circuit composed of a diode with a polarity that prevents output when being performed, a capacitor connected in parallel with the series circuit, a DC reactor connected in series with one terminal of the capacitor, and A switching element control circuit for performing ON / OFF control of the switching element at a high frequency corresponding to the output set value, and the other terminal of the DC reactor and the condenser DC arc welding power supply device from the other terminal pulled out output is obtained by proposed.
[0008]
The fourth aspect of the present invention is connected in series to a bridge-type double-wave rectifier circuit that receives a three-phase commercial AC power source and a diode that constitutes a branch of each phase of the bridge-type double-wave rectifier circuit. Six transformers having primary windings, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, and secondary windings of the transformers and the transformer are excited by conduction of the switching elements. 6 sets of series circuits composed of diodes with polarities that prevent output when connected, capacitors connected in parallel with the 6 sets of series circuits, and connected in series to one terminal of the capacitors A DC reactor, and a switching element control circuit that performs ON-OFF control of the switching element at a high frequency corresponding to an output set value, and the other terminal of the DC reactor and the DC arc welding power supply device from the other terminal of the capacitor is pulled out output is obtained by proposed.
[0009]
The fifth aspect of the present invention is connected in series to a bridge-type double-wave rectifier circuit that inputs a three-phase commercial AC power supply and a diode that constitutes a branch of each phase of the bridge-type double-wave rectifier circuit. Six transformers having primary windings, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, and secondary windings of the transformers and the transformer are excited by conduction of the switching elements. A series of six series circuits each comprising a diode having a polarity that prevents output when connected, a capacitor connected in parallel to each of the six sets of series circuits and connected in series to each other, and A DC reactor connected in series to one terminal, and a switching element control circuit that performs ON-OFF control of the switching element at a high frequency corresponding to an output set value; Serial DC reactor of the other DC arc welding power supply terminal and pulling out the output from the other terminal of the series capacitor, in which proposed.
[0010]
The sixth aspect of the present invention is connected in series to a bridge type double-wave rectifier circuit that receives a three-phase commercial AC power source and a diode that constitutes a branch of each phase of the bridge type double-wave rectifier circuit. Three transformers having two primary windings, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, and the secondary winding and transformer of each transformer are connected to the switching element. In series with three sets of series circuits comprising diodes with polarities that block output when excited by, a capacitor connected in parallel with the three sets of series circuits, and one terminal of the capacitor in series A connected DC reactor; and a switching element control circuit that performs ON-OFF control of the switching element at a high frequency corresponding to an output set value, and the other terminal of the DC reactor In which proposed, DC arc welding power supply pulled out outputted from the other terminal of the capacitor.
[0011]
Further, the seventh invention of the present invention is connected in series to a bridge type double-wave rectifier circuit that receives a three-phase commercial AC power source and a diode that constitutes a branch of each phase of the bridge type double-wave rectifier circuit. Three transformers having two primary windings, a switching element for short-circuiting the output of the bridge-type double-wave rectifier circuit, a secondary winding of each transformer and the transformer being the switching element Three series circuits composed of diodes with polarities that block the output when excited by conduction, and capacitors connected in parallel to the three series circuits and connected in series to each other, A DC reactor connected in series to one terminal of the series capacitor, and a switching element control for ON / OFF control of the switching element at a high frequency corresponding to an output set value And a road, in which proposed, DC arc welding power supply pulled out outputted from the other terminal of the series capacitor and the other terminal of the DC reactor.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a connection diagram showing an example of an embodiment of the present invention. In the figure, 1 is a commercial AC power source, 11 is an electric power processing unit, 4 is an arc welding load, and consists of an electrode 4a and an object to be welded 4b. The power processing unit 11 includes a high frequency filter LF11 for smoothing an input current, diodes D10 to D14 and diodes D21 and D22, primary windings T11p and T12p of the transformers T11 and T12, secondary windings T11s and T12s, a capacitor C11, It comprises a DC reactor L11, a resistor R11, a current detector CT11, an output current setting device 21, a comparator 22, and a pulse width control circuit (hereinafter referred to as a PWM control circuit) 23.
[0013]
The primary windings T11p and T12p of the transformers T11 and T12 are inserted in series in the positive and negative branches of the bridge circuit composed of diodes D11 to D14 that rectify the power from the commercial AC power supply 1 as shown in the figure. The switching element TR10 is provided so as to short-circuit the DC output of the bridge rectifier circuit. The secondary windings T11s and T12s of the transformers T11 and T12 are respectively connected in series with the diodes D11 and D12 and connected in parallel to the capacitor C11. The DC reactor L11 is connected between one terminal of the capacitor C11 and one of the output terminals, and provides a time constant of change in output current suitable for arc welding. The polarities of the windings of the transformers T11 and T12 and the diodes D21 and D22 are as shown in the figure, and the secondary windings T11s and T12s are caused by the current flowing through the primary windings T11p and T12p when the switching element TR10 is turned on. Are set to polarities at which the diodes D21 and D22 block the voltage induced by The diode D10 is a protective diode for preventing a reverse voltage from being applied to the switching element.
[0014]
2 is a diagram showing waveforms of respective parts for explaining the operation of the apparatus of FIG. 1, wherein FIG. 2A is a voltage waveform of the commercial AC power supply 1, FIG. 2B is an output waveform of the PWM control circuit 23, (C) is a current waveform flowing through the switching element TR10, (d) is an induced voltage waveform of the secondary winding T11s of the transformer T11, (e) is a current waveform of the secondary winding T11s, and (f) is a secondary winding. The induced voltage waveform of the line T12s, (g) the current waveform of the secondary winding T12s, (h) the terminal voltage of the capacitor C11, that is, the output voltage waveform, and (i) the inflow current waveform from the commercial AC power source 1. It is shown over time.
[0015]
The operation of the apparatus of FIG. 1 will be described with reference to the diagram of FIG. Now, when the switching element TR10 becomes conductive in the half wave T1 of the AC power supply 1 in which the diode D11 is in the forward direction, the primary winding T11p of the transformer T11 is proportional to the instantaneous value of the AC power supply 1 as shown in FIG. A current flows, and thereby a voltage having the polarity shown in the figure is induced in the secondary winding T11s (during Ton). However, since this induced voltage has a reverse polarity with respect to the diode D21, it is blocked by this and no current flows through the secondary winding T11s as shown at Ton in FIG. For this reason, the current flowing through the primary winding T11p is stored as electromagnetic energy in the transformer T11. Next, when the switching element TR10 is cut off at the end of the Ton period, the electromagnetic energy stored so far is released through the secondary winding T11s, inducing a voltage having a polarity opposite to that shown in the figure, and passing through the diode D21. As shown in FIG. 2E, a current proportional to the stored energy flows through the capacitor C11 to charge it. The induced voltage at this time reaches a value exceeding the terminal voltage of the capacitor as shown in FIG. 2D regardless of the magnitude of the stored energy, so that the charging of the capacitor is performed in all phases regardless of the instantaneous value of the AC power supply voltage. Performed in When the switching element TR10 is turned on again when the electromagnetic energy stored in the transformer T11 is released, the transformer T11 starts storing magnetic energy again. When the period T1 ends and the period T2 starts after repeating the above, a current flows through the diode D13 in the primary winding T12p of the transformer T12 in place of the transformer T11, and the same operation is continued.
[0016]
The terminal voltage of the capacitor C11 is drawn to the output terminal via the DC reactor L11 and supplied to the arc welding load 4. The current flowing through the arc welding load 4 becomes a detection signal If by the current detector CT11 and is compared with the set value Ir of the output current setting device 21 by the comparator 22 to calculate a difference signal ΔI = Ir−If. The PWM control circuit 23 determines the pulse width so as to achieve a conduction time rate corresponding to the signal ΔI, and performs ON / OFF control of the switching element TR10. Therefore, if the output frequency of the PWM control circuit 23 is sufficiently higher than that of the commercial AC power supply, for example, a high frequency of 10 KHz to several tens KHz, power is supplied in all phases of the input voltage waveform from the AC power supply 1. . At this time, the input current includes a high-frequency component of the operating frequency of the PWM control circuit, but the input current can be flattened by providing a high-frequency filter LF11 composed of a small-capacitance capacitor on the input side. As shown in (i), the current waveform can be a substantially sinusoidal waveform that matches the voltage phase.
[0017]
In the apparatus of FIG. 1, as the transformers T11 and T12, a high-frequency transformer corresponding to the ON-OFF frequency of the switching element TR10 may be prepared, so that the iron core cross-sectional area may be small, and the switching element TR10 is conductive. In order to store electromagnetic energy by the current flowing during the period, it is convenient to appropriately provide a gap in the middle of the magnetic path.
[0018]
Furthermore, in the apparatus of the present invention, electromagnetic energy is stored in the transformers T11 and T12 during the conduction period of the switching element TR10, and is released to the arc welding load 4 during the interruption period of the switching element TR10. Therefore, the switching element conduction time ratio (ratio of conduction time in one ON-OFF cycle) is the maximum output so that the magnetic flux is completely reset in one cycle of ON-OFF switching element TR10 in the transformer core. It is desirable to design the PWM control circuit so that it sometimes becomes 50% or less.
[0019]
In the apparatus of FIG. 1, the resistor R11 is for discharging the electric charge charged in the capacitor C11 when the operation is stopped. When the arc welding is finished, the arc welding load 4 is released simultaneously with the operation stop. Since it is normal, the residual charge is discharged safely to prevent the risk of electric shock. As the resistance value of the resistor R11, if the charge of the capacitor C11 is selected to discharge within a few seconds, the capacitor C11 still has a considerable amount of charge when the arc is restarted immediately after the end of the previous welding. Is convenient because the arc can be easily restarted.
[0020]
In FIG. 1, the primary windings of the transformers T11 and T12 may be anywhere in the middle of each branch that bears each half-wave of the bridge-type rectifier circuit constituted by the diodes D11 to D14. The primary winding T11p may be connected in series with D14, and the primary winding T12p may be connected in series with the diode D12. Furthermore, two primary windings T11p and T12p may be provided, and these may be divided into diodes D11 and D12 or diodes D13 and D14 and connected in series.
[0021]
FIG. 3 is a connection diagram showing another embodiment of the present invention, which corresponds to a case where the secondary windings T11s and T12s of the apparatus of FIG. And C22 are provided. For output control, a voltage detector VT11 is provided instead of the current detector, and an output voltage setting device 24 is provided instead of the output current setting device. Thus, the output voltage Vf is detected and compared with the set value Vr of the output voltage setter 24 by the comparator 25, and a difference signal ΔV = Vr−Vf is obtained, and the PWM control circuit 23 decreases the difference signal. The output voltage is kept at the set value by changing the output pulse width. Since the other operations in the figure are the same as those of the apparatus shown in FIG. 1, detailed description of the operations will be omitted.
3, the primary windings of the transformers T11 and T12 may be divided into two parts and divided into diodes D11 and D12 and diodes D13 and D14 and connected in series.
[0022]
The device shown in FIG. 3 can obtain twice the voltage of the device shown in FIG.
[0023]
FIG. 4 is a connection diagram illustrating an example when the present invention is implemented using a transformer T13 having two primary windings instead of using two transformers. The transformer shown in FIG. Instead of the primary windings T11p and T12p of T11 and T12, primary windings T13p1 and T13p2 of one transformer are inserted in the positive and negative branches of the both-wave rectifier circuit. Accordingly, one secondary winding is provided and connected in parallel with the capacitor C11 in series with the diode D23. In the apparatus shown in the figure, the other components having the same functions as those in FIG.
[0024]
In the device of FIG. 4, similarly to the device of FIG. 1, electromagnetic energy is accumulated by the current flowing through the transformer T13p1 when the switching element TR10 is turned on during the half-wave period in which the diode D11 is in the forward direction. When the element TR10 is cut off, this electromagnetic energy is released through the secondary winding T13s to charge the capacitor C11. In the half wave in which the diode D13 is in the forward direction, the electromagnetic energy is accumulated in the primary winding T13p2. This is discharged through the secondary winding T13s and operates to charge the capacitor C11.
[0025]
FIG. 5 is a partial modification of the apparatus of FIG. 4, in which the second primary winding T13p2 of the transformer T13 is connected in series with the diode D12, and its operation is exactly the same as that of the apparatus of FIG. is there.
4 and 5, the primary winding T13p may be divided into four parts T13p1 to T13p4, and each primary winding may be connected in series with the diodes D11 to D14, respectively.
[0026]
FIG. 6 is a connection diagram showing an example in which the apparatus of FIG. 1 and the apparatus of FIG. 5 are combined. Two transformers T14 and T15 are used, and each transformer has two primary elements. Windings T14p1, T14p2 and T15p1, T15p2 are provided. Each primary winding has a current flowing through one of the primary windings T14p1 and T15p2 or T14p2 and T15p1 when the switching element TR10 is turned on in each half wave of the AC power source 1, and stores electromagnetic energy in each transformer. Are discharged through the respective secondary windings T14s or T15s when the switching element TR10 is cut off to charge the capacitor C11. Since these operations are the same as those of the devices shown in FIGS. 1, 3, and 4, detailed descriptions thereof will be omitted.
In the figure, the same function is exhibited even if the primary windings T14p1 and T15p1, or T14p2 and T15p2, or T14p2 and T15p1 or T14p1 and T15p2 of the transformer are replaced.
[0027]
FIG. 7 is a connection diagram showing an example of a form when the present invention is implemented for a three-phase AC power source. In the figure, 3 is a three-phase commercial AC power source, 31 is a power processing section, and includes a high frequency filter LF31, a transformer T31 having a primary winding T31p and a secondary winding T31s, and similarly primary windings T32p to T36p. Transformers T32 to T36 having secondary windings T32s to T36s, diodes D10, D31 to D36, D41 to D46, switching element TR10, capacitor C11, DC reactor L11, resistor R11, current detector CT11, output current setting And a PWM control circuit 23.
[0028]
In the device of FIG. 7, the diodes D31 to D36 constitute a three-phase both-wave rectifier circuit. In the figure, the period during which the point a is at the highest potential is π / 3 in one cycle 2π. When the switching element TR10 is turned on during this period, the transformer T31p, the diode D31, the switching element TR10, the diode A current flows through the path of the series circuit of D34 and the transformer T34p and the series circuit of the diode D36 and the transformer TR36p, and voltages of the polarities shown in the figure are induced in the secondary windings T31s, T34s, and T36s of each transformer. However, since these voltages are opposite in polarity to the diodes D41, D44, and D46 connected in series, no current flows in each secondary winding, so that the current flowing in each primary winding is Stored as electromagnetic energy in the transformer. Next, when the switching element TR10 is cut off, a voltage having a polarity opposite to that illustrated in the secondary windings T31s, T34s, and T36s is generated by the accumulated electromagnetic energy, and series diodes D41, D44, and D46 that are in the forward direction, respectively. Through the capacitor C11. The voltage generated at each secondary winding at this time has almost no relation to the magnitude of the accumulated electromagnetic energy, and the voltage rises to a voltage sufficient to release the electromagnetic energy to the capacitor C11. This is the same as described in the apparatus.
[0029]
Next, when the switching element TR10 is turned on, the transformers T31, T34, and T36 start accumulating electromagnetic energy again, and again release it by cutting off the switching element TR10 to charge the capacitor C11. This operation is repeated for a period of π / 3 in terms of the phase angle of the voltage of the commercial AC power supply 3 while the potential at point A in the figure is higher than the potential at points B and C.
[0030]
Next, since the point C in the figure becomes the lowest potential, the transformer T36 and the transformers T31 and T33 operate in the same manner. Next, the potential at the point B in the figure becomes higher than the other points, and the transformer T33 and the transformer T32 and T36 perform the same operation. Further, when the point A in the figure becomes the lowest voltage, the transformer T32 and the transformers T33 and T35 have the lowest potential, while the transformer T35 and the transformers T33 and T34 have the lowest potential during the period in which the point C becomes the highest potential. In the period, the transformer T34 and the transformers T31 and T35 repeat the same operation as described above for each period of π / 3 of the voltage phase of the commercial AC, thereby completing one cycle (2π) of the commercial AC power supply.
[0031]
In the apparatus of FIG. 7 as well, as in the example shown in FIG. 3, six sets of secondary windings T31s to T36s of each transformer, in which capacitors are connected in parallel for each set of series diodes D41 to D46, are prepared. May be arranged in series so that the total output is supplied to the arc welding load 4, and as an intermediate device between them, a series circuit set of a secondary winding and a diode is appropriately connected in series or in parallel as desired. An output voltage may be obtained.
[0032]
FIG. 8 is a connection diagram showing an example of another embodiment in which the present invention is applied to a three-phase commercial AC power supply, and each of positive and negative of a bridge type three-phase both-wave rectifier circuit constituted by diodes D51 to D56. Two primary windings T37p1, T37p2, T38p1, T38p2, T39p1, and T39p2 of each of transformers T37 to T39 are connected in series to the branch, and the switching element TR10 is located at a position where the outputs of both wave rectifier circuits are short-circuited. It is connected. The secondary windings T37s, T38s, and T39s of each transformer are connected in series with the diodes D61 to D63, respectively, and the series circuit of the secondary winding and the diode of each transformer is connected in parallel to the capacitor C11. Are connected in parallel.
The primary windings T37p1, T37p2, T38p1, T38p2, T39p1, and T39p2 of the transformers T37 to T39 and the secondary windings T37s, T38s, and T39s have polarities as indicated by the marks in the figure. On the other hand, the polarities of the diodes D61 to D63 are also determined as shown in the figure.
[0033]
When the polarities of the transformer and the diode are determined as shown in the figure, the voltages induced in the secondary windings T37s to T39s of the transformers T37 to T39 when the switching element TR10 is turned on are blocked by the series diodes D61 to D63, respectively. Polarity. In other parts of the figure, components having the same functions as those in the apparatus of FIG.
[0034]
In the apparatus of FIG. 8, the combination of the primary windings T37p1 and T38p2 and T39p2 of the transformer, the combination of the primary windings T39p2 and T37p1 and T38p1, the combination of the primary windings T38p1 and T37p2, and T39p2 by the conduction of the switching element TR10, Current flows sequentially through the combination of windings T37p2, T38p1, T39p1, the combination of primary windings T39p1, T37p2, and T38p2, and the combination of primary windings T38p2, T37p1, and T39p1, and electromagnetic energy is stored in each transformer, and switching is performed. The stored energy is released from the secondary windings T37s, T38s, T39s of the respective transformers through the series diodes D61, D62, D63 by charging the element TR10 to charge the capacitor C11. The operation at this time is not essentially different from the apparatus of FIG.
[0035]
7 and 8, the input current from the commercial AC power supply 3 is flattened by the high frequency filter LF31 to become a substantially sine wave current in phase with the power supply voltage phase.
[0036]
1 and 4 to 8, the output current is detected by the current detector and compared with the set value of the output current setter, and the switching element TR10 is reduced in the direction in which the difference signal decreases. Although the method of changing the conduction time ratio is shown, the present invention is not limited to this, and the output voltage is detected as in the apparatus of FIG. 3 and compared with a set value so that the difference is reduced. The present invention can be applied to a device that controls the conduction time ratio.
[0037]
Furthermore, the output current and the output voltage are set, the set value and the detected value are compared, the difference signals of both are multiplied by the respective coefficients, and the conduction time of the switching element is determined accordingly. The rate may be controlled to obtain a device having desired voltage / current characteristics. In this case, the difference ΔV between the output voltage setting value Vr and the detection value Vf of the voltage detector, the difference ΔI between the output current setting value Ir and the current detection value If, and the coefficients a and b are multiplied by the combined signal Δs. = A · ΔV + b · ΔI (where 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, and a + b = 1) may be used as the input signal of the PWM control circuit. Here, if a = 0, only the output current is compared and constant current characteristics are obtained. Conversely, if b = 0, only the output voltage is compared and constant voltage characteristics are obtained. When the coefficients a and b are between 0 and 1, the power supply device has a slope characteristic in which the output voltage has a slope V / I = b / a with respect to a change in the output current.
[0038]
In each of the above-described embodiments, the switching element control method has been described with respect to the PWM control method in which the operating frequency is constant and the ratio of the conduction time within one cycle is changed. The present invention can be applied not only to a PFM control (pulse frequency control) system in which the length of one conduction time of a switching element is constant and the repetition frequency is changed according to an error signal.
[0039]
【The invention's effect】
In the present invention, the input current from the commercial AC power supply has the same phase and substantially the same waveform as the input voltage waveform as described above, so that an excessive input voltage drop does not occur and the commercial AC power supply circuit is prevented from being overloaded. This will not cause the circuit breaker to malfunction or cause other devices connected to the same power source to malfunction due to waveform distortion. Further, since the power factor of the device itself is close to 1, no reactive power is generated, and a device with a high power factor can be obtained.
[Brief description of the drawings]
FIG. 1 is a connection diagram illustrating an embodiment of the present invention.
FIG. 2 is a diagram for explaining the operation of the apparatus of FIG.
FIG. 3 is a connection diagram showing another embodiment of the present invention.
FIG. 4 is a connection diagram showing another embodiment of the present invention.
FIG. 5 is a connection diagram showing another embodiment of the present invention.
FIG. 6 is a connection diagram showing another embodiment of the present invention.
FIG. 7 is a connection diagram showing an embodiment when the present invention is applied to a three-phase AC power source.
FIG. 8 is a connection diagram showing another embodiment when the present invention is applied to a three-phase AC power source.
FIG. 9 is a connection diagram showing an example of a conventional apparatus.
10 is a diagram showing waveforms of respective parts for explaining the operation of the conventional apparatus of FIG. 9;
[Explanation of symbols]
1, 3 Commercial AC power supply
4 Arc welding load
11-15, 31, 32 Electric power processing section
21 Output current setting device
22, 25 comparator
23 PWM control circuit
24 Output voltage setting device
D10 to D14 diode
D21, D22 Diode
D31-D36 Diode
D41 to D46 Diode
D51-D56 Diode
D61-D63 Diode
TR10 switching element
T11p transformer primary winding
T12p transformer primary winding
T13p1, T13p2 Transformer primary winding
T31p ~ T36p Transformer primary winding
T37p1, T37p2 Transformer primary winding
T38p1, T38p2 Transformer primary winding
T39p1, T39p2 Transformer primary winding
T11s ~ T13s Transformer secondary winding
T31s ~ T39s Transformer secondary winding
C11, C21, C22 capacitors
L11 DC reactor
R11 resistor
LF11, LF31 high frequency filter
VT11 voltage detector
CT11 current detector

Claims (9)

単相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の正・負各ブランチを構成するダイオードにそれぞれ直列に接続された一次巻線を有する2個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる2組の直列回路と、前記2組の直列回路と並列に接続されたコンデンサと、前記コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置。A bridge-type double-wave rectifier circuit having a single-phase commercial AC power supply as an input, and two primary windings connected in series to the diodes constituting the positive and negative branches of the bridge-type double-wave rectifier circuit, respectively. A transformer, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, and a polarity that blocks the output when the secondary winding of each transformer and the transformer are excited by conduction of the switching element. Two series circuits composed of diodes defined in the above, a capacitor connected in parallel with the two series circuits, a DC reactor connected in series to one terminal of the capacitor, and the switching element. A switching element control circuit that performs ON / OFF control at a high frequency corresponding to the output set value, and the other terminal of the DC reactor and the other terminal of the capacitor DC arc welding power supply pulled out output from the. 単相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の正・負各ブランチを構成するダイオードにそれぞれ直列に接続された一次巻線を有する2個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる2組の直列回路と、前記2組の直列回路にそれぞれ並列に接続されかつ相互に直列に接続されたコンデンサと、前記直列コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記直列コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置。A bridge-type double-wave rectifier circuit having a single-phase commercial AC power supply as an input, and two primary windings connected in series to the diodes constituting the positive and negative branches of the bridge-type double-wave rectifier circuit, respectively. A transformer, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, and a polarity that blocks the output when the secondary winding of each transformer and the transformer are excited by conduction of the switching element. Two series circuits composed of diodes defined in the above, a capacitor connected in parallel to each of the two sets of series circuits and connected in series to each other, and connected in series to one terminal of the series capacitor. A DC reactor, and a switching element control circuit that performs ON-OFF control of the switching element at a high frequency corresponding to an output set value, Square DC arc welding power supply terminal and pulling out the output from the other terminals of the series capacitor. 単相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の正・負各ブランチを構成するダイオードにそれぞれ直列に接続された複数の一次巻線を有する1個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる直列回路と、前記直列回路と並列に接続されたコンデンサと、前記コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置。1 having a bridge-type double-wave rectifier circuit that receives a single-phase commercial AC power supply and a plurality of primary windings connected in series to diodes constituting the positive and negative branches of the bridge-type double-wave rectifier circuit. A transformer, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, a secondary winding of the transformer and an output when the transformer is excited by conduction of the switching element Corresponding to the output set value, a series circuit composed of diodes defined in polarity, a capacitor connected in parallel to the series circuit, a DC reactor connected in series to one terminal of the capacitor, and the switching element And a switching element control circuit that performs on-off control at a high frequency, from the other terminal of the DC reactor and the other terminal of the capacitor DC elicited a force arc welding power supply. 3相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の各相のブランチを構成するダイオードにそれぞれ直列に接続された一次巻線を有する6個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる6組の直列回路と、前記6組の直列回路と並列に接続されたコンデンサと、前記コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置。Six transformers having a bridge-type double-wave rectifier circuit using a three-phase commercial AC power supply as input and primary windings connected in series to diodes constituting the respective-phase branches of the bridge-type double-wave rectifier circuit A switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, and a polarity that blocks the output when the secondary winding of each transformer and the transformer are excited by conduction of the switching element. 6 sets of series circuits composed of defined diodes, capacitors connected in parallel with the 6 sets of series circuits, DC reactors connected in series to one terminal of the capacitors, and the switching elements output A switching element control circuit that performs ON-OFF control at a high frequency corresponding to a set value, and the other terminal of the DC reactor and the other terminal of the capacitor DC drew output from the arc welding power supply. 3相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の各相のブランチを構成するダイオードにそれぞれ直列に接続された一次巻線を有する6個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる6組の直列回路と、前記6組の直列回路にそれぞれ並列に接続されかつ相互に直列に接続されたコンデンサと、前記直列コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記直列コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置。Six transformers having a bridge-type double-wave rectifier circuit that receives a three-phase commercial AC power source and primary windings connected in series to diodes that form branches of each phase of the bridge-type double-wave rectifier A switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, and a polarity that blocks the output when the secondary winding of each transformer and the transformer are excited by conduction of the switching element. 6 sets of series circuits composed of defined diodes, capacitors connected in parallel to the 6 sets of series circuits and connected in series to each other, and connected in series to one terminal of the series capacitor A DC reactor; and a switching element control circuit that performs ON-OFF control of the switching element at a high frequency corresponding to an output set value. DC arc welding power supply and a terminal drawn out output from the other terminal of the series capacitor. 3相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の各相のブランチを構成するダイオードにそれぞれ直列に接続された2個の一次巻線を有する3個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる3組の直列回路と、前記3組の直列回路と並列に接続されたコンデンサと、前記コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置。A bridge-type double-wave rectifier circuit that receives a three-phase commercial AC power source, and two primary windings connected in series to diodes that form branches of each phase of the bridge-type double-wave rectifier circuit 3 A transformer, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, a secondary winding of each transformer, and an output when the transformer is excited by conduction of the switching element Three series circuits composed of diodes defined in polarity, a capacitor connected in parallel to the three series circuits, a DC reactor connected in series to one terminal of the capacitor, and the switching A switching element control circuit that performs ON-OFF control of the element at a high frequency corresponding to the output set value, and the other terminal of the DC reactor and the other of the capacitor DC drew output from the terminal arc welding power supply. 3相の商用交流電源を入力とするブリッジ式両波整流回路と、前記ブリッジ式両波整流回路の各相のブランチを構成するダイオードにそれぞれ直列に接続された2個の一次巻線を有する3個の変圧器と、前記ブリッジ式両波整流回路の出力を短絡するスイッチング素子と、前記各変圧器の二次巻線と前記変圧器が前記スイッチング素子の導通によって励磁されるときの出力を阻止する極性に定められたダイオードとからなる3組の直列回路と、前記3組の直列回路にそれぞれ並列に接続されかつ相互に直列に接続されたコンデンサと、前記直列コンデンサの一方の端子に直列に接続された直流リアクトルと、前記スイッチング素子を出力設定値に対応して高周波でON−OFF制御するスイッチング素子制御回路とを備え、前記直流リアクトルの他方の端子と前記直列コンデンサの他方の端子とから出力を引き出した直流アーク溶接用電源装置。A bridge-type double-wave rectifier circuit that receives a three-phase commercial AC power source, and two primary windings connected in series to diodes that form branches of each phase of the bridge-type double-wave rectifier circuit 3 A transformer, a switching element that short-circuits the output of the bridge-type double-wave rectifier circuit, a secondary winding of each transformer, and an output when the transformer is excited by conduction of the switching element A series of three series circuits, each of which has a diode defined in polarity, a capacitor connected in parallel to each of the three sets of series circuits and connected in series to each other, and in series with one terminal of the series capacitor A DC reactor connected to the DC reactor, and a switching element control circuit for ON / OFF control of the switching element at a high frequency corresponding to an output set value. The other terminal the DC arc welding power supply device from the other terminal pulled out output of the series capacitor. 前記変圧器は鉄心には磁気エネルギー蓄積のための空隙を設けてある請求項1ないし7のいずれかに記載の直流アーク溶接用電源装置。The power source device for DC arc welding according to any one of claims 1 to 7, wherein the transformer is provided with a gap for storing magnetic energy in an iron core. 前記コンデンサの端子間または出力端子間には前記コンデンサの蓄積電荷を放電するための抵抗器を並列に接続してある請求項1ないし8のいずれかに記載の直流アーク溶接用電源装置。9. The DC arc welding power source device according to claim 1, wherein a resistor for discharging the accumulated charge of the capacitor is connected in parallel between terminals of the capacitor or between output terminals. 10.
JP21405597A 1997-07-23 1997-07-23 DC arc welding power supply Expired - Fee Related JP3886609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21405597A JP3886609B2 (en) 1997-07-23 1997-07-23 DC arc welding power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21405597A JP3886609B2 (en) 1997-07-23 1997-07-23 DC arc welding power supply

Publications (2)

Publication Number Publication Date
JPH1133719A JPH1133719A (en) 1999-02-09
JP3886609B2 true JP3886609B2 (en) 2007-02-28

Family

ID=16649525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21405597A Expired - Fee Related JP3886609B2 (en) 1997-07-23 1997-07-23 DC arc welding power supply

Country Status (1)

Country Link
JP (1) JP3886609B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1103330B1 (en) * 1999-09-03 2004-01-02 EWM Hightec Welding GmbH Welding or plasma cutting device and method for operation a welding or plasma cutting device

Also Published As

Publication number Publication date
JPH1133719A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP5394213B2 (en) Series resonant converter circuit
CN100456613C (en) Switching power supply device
JP5065188B2 (en) Series resonant converter
JP5316976B2 (en) Current estimation circuit
KR0133163B1 (en) Arc welder
JP3416948B2 (en) Sine wave input converter circuit
JP3416950B2 (en) Single-phase rectifier
JP3886609B2 (en) DC arc welding power supply
JPH1141938A (en) Dc power supply equipment
JP4080574B2 (en) DC arc welding power supply
JPH08228486A (en) Control method of dc-ac inverter
JP2001016798A (en) Charging/discharging device for battery or electric double-layered capacitor
JP4275223B2 (en) Power supply
JP3143848B2 (en) DC-DC converter
JP3522405B2 (en) Flyback type and forward type switching power supply
JPH1141939A (en) Dc power supply equipment
JP3981208B2 (en) Arc machining power supply
JP3405878B2 (en) X-ray power supply
JP4463096B2 (en) Discharge load power supply
JP3372868B2 (en) Current control type inverter circuit, control method therefor, capacitor charger and laser device provided with the same
CN113890198B (en) Inductance coil charging and discharging source based on direct current voltage reduction and output current control
JP2001211650A (en) Power supply unit
JPH1141937A (en) Dc power supply equipment
JPH09312973A (en) Dc-dc converter
US11949341B2 (en) Power converter and electric motor braking method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees