WO2003068674A1 - Noble-metal nanowire structure and process for producing the same - Google Patents

Noble-metal nanowire structure and process for producing the same Download PDF

Info

Publication number
WO2003068674A1
WO2003068674A1 PCT/JP2002/008826 JP0208826W WO03068674A1 WO 2003068674 A1 WO2003068674 A1 WO 2003068674A1 JP 0208826 W JP0208826 W JP 0208826W WO 03068674 A1 WO03068674 A1 WO 03068674A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
producing
nanowire structure
metal nanowire
wire
Prior art date
Application number
PCT/JP2002/008826
Other languages
French (fr)
Japanese (ja)
Inventor
Motonari Adachi
Susumu Yoshikawa
Yasuo Sato
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2003567818A priority Critical patent/JPWO2003068674A1/en
Publication of WO2003068674A1 publication Critical patent/WO2003068674A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the invention of this application relates to a noble metal nanowire structure and a method for producing the same. More specifically, the invention of this application is based on a new noble metal nano-scale structure with a single wire or its network structure, which is useful as fine wiring, conductive material, various electronic components, etc., which is important for the development of nanotechnology. It relates to the manufacturing method. Background art
  • a method for producing gold nanoparticles there are known a method of physically evaporating and condensing an atom, a method of pulverization, and a method of reducing gold ions.
  • the room-temperature reduction method liquid-phase method
  • the produced gold colloid is used as a catalyst material, a coloring material, a material in the medical field, and the like.
  • This method is applied not only to gold but also to various precious metals and metals.
  • gold nanoparticles are obtained by adding a reducing agent of sodium citrate / sodium chloroaurate to an aqueous solution of chloroauric acid or sodium chloroaurate.
  • the invention of this application was made based on the above background, and created a completely new nanostructure beyond the situation where the generation and use of ultrafine particles of precious metals such as gold were limited. And to provide this. Disclosure of the invention
  • the invention of this application solves the above-mentioned problems.
  • a noble metal nanowire single structure characterized by having a thickness of 0 nm or less.
  • the present invention provides a noble metal nanowire structure, wherein the wire structure forms a mesh or a network.
  • the noble metal nanowire of the first or second invention is described.
  • the present invention provides a fine wiring or a conductive material, wherein the layer structure is fired.
  • the method for producing a noble metal nanowire structure according to the first or second invention wherein a reducing agent is added to a solution of an inorganic salt or an organometallic complex of the noble metal to reduce noble metal ions
  • the present invention provides a method for producing a noble metal nanowire structure, characterized in that the concentration of the reducing agent with respect to the noble metal ion is twice or less in molar ratio.
  • a method for producing a noble metal nanowire structure is provided. And a method for producing a noble metal nanowire structure characterized by adding at least one of thiols and thioamides to a dispersion of ultrafine particles of a noble metal.
  • the method for producing a fine wiring or conductive material according to the third aspect of the present invention wherein the method for producing a fine wiring or conductive material characterized by firing at 500
  • the present invention provides the method for producing a fine wiring or a film of a conductive material according to the third invention, wherein the noble metal nanowire structure is dispersed in a gelling agent solution, applied onto a substrate, and then fired to form a conductive film.
  • the present invention provides a method for producing a conductive film, comprising: BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a photographic diagram illustrating a TEM image 30 minutes after addition of trisodium citrate in Example 1.
  • FIG. 2 is a photographic diagram illustrating a TEM image after 40 minutes following FIG.
  • FIG. 3 is a photographic view illustrating a TEM image for comparison.
  • FIG. 4 shows the absorption associated with the addition of thionicotinamide in Example 2. It is the figure which illustrated change of luminous intensity.
  • FIG. 5 is a photographic diagram illustrating a TEM image 50 minutes after the addition of thionicotinamide.
  • FIG. 6 is a photographic view illustrating a TEM image of ultrafine silver particles shown in Example 4 for comparison.
  • FIG. 7 is a diagram showing an example of an absorbance distribution in the case of a molar ratio of 1.5 in Example 4.
  • FIG. 8 is a photograph showing a TEM image in the case of the same molar ratio of 1.5 as in FIG.
  • FIG. 9 is a diagram exemplifying the absorbance distribution before and after the addition of thionicotinamide in Example 5.
  • FIG. 10 is a diagram illustrating the absorbance distribution of the gold nanowire coating film in Example 5.
  • the noble metal nanowire one structure provided by the invention of this application is:
  • the first structural feature means that a plurality of fine particles, including gold, are connected and connected in at least one-to-one relationship to form a wire, that is, a wire.
  • the shape of the wire in this case is not limited to a straight shape. It may be curved, wavy, bent, branched, or in various forms.
  • the thickness, that is, the length and external dimensions of the wire body may not be constant. No. The outer dimensions do not have to be constant even in one wire. This is because they may differ depending on the state of mutual contact of the noble metal fine particles. However, in any case, it is a requirement that the particles are not single particles or clumps such as agglomerates, and have at least a part of a linear shape. In this linear form, the aspect ratio of the length to the thickness is not limited, but is, for example, actually 4 or more, or even 10 or more.
  • the maximum outer diameter of a cross section in the minor axis direction, that is, orthogonal to the length direction is 100 nm or less.
  • the wire body may be in a branched form to form a mesh or a network.
  • the invention of this application also provides a precious metal nanowire-like structure heated and fired as a new nanostructure as described above.
  • noble metal that composes the nanowire-single structure.
  • gold, Silver, platinum, palladium, rhodium and the like are exemplified as typical ones.
  • the method for producing such a noble metal nanowire-one structure may be of various types, but in the invention of this application, the method described above is provided as a novel production method.
  • a solution of an inorganic salt or an organometallic complex of a noble metal for example, a solution of chloroauric acid (III), sodium gold (III) chloride, chloroplatinic acid, potassium chloroplatinate, silver nitrate, silver acetate, or the like;
  • this method involves adding a reducing agent to an aqueous solution such as an aqueous solution at a molar ratio of no more than twice the noble metal ion to reduce the noble metal ion.
  • a reducing agent in this case, an organic compound or an inorganic compound capable of reducing a noble metal ion can be suitably used. Examples thereof include salts, succinic acid or salts thereof, sodium borohydride and alcohols.
  • citric acid, trisodium citrate, acetodicarboxylic acid, isopropyl alcohol and the like are considered as specific examples.
  • the molar ratio of these reducing agents to the noble metal ions in the solution is not more than twice.
  • the molar ratio exceeds twice, it is generally difficult to form a nanowire structure even though fine particles of a noble metal are generated.
  • a method in which at least one of thiols and thioamides is added to a dispersion of ultrafine particles of a noble metal, for example, colloid.
  • the dispersion of the precious metal fine particles in a colloid or the like is preferably an aqueous liquid, and the dispersion is prepared by adding a reducing agent to a solution of an inorganic salt or an organic metal complex of the noble metal to reduce the noble metal ion. It may be generated by the above. Of course, it is not limited to this.
  • thiols and thioamides examples include alkylthiols having 9 or more carbon atoms, mercaptoalkylamines, thionicotinamides, and thioacetamides. Among them, thionicotinamide (TNA) or an organic substituted compound thereof is one of the preferable ones.
  • TFA thionicotinamide
  • the formation of the nanowire structure by the addition of thionicotinamides is performed at room temperature, for example, at 5 to 30 ° C. It can be performed at about the same temperature.
  • the noble metal nanowire structure of the invention of the present application produced by the method described above can be recovered as a precipitate after the treatment of the reducing agent ⁇ niconicotinamides.
  • the precious metal nanowire-single structure as the recovered precipitate is 500 ⁇ It may be baked at the following temperature to be used as fine wiring and conductive material, or it may be redispersed in a gelling agent solution such as gelatin and applied on a substrate, and then the following temperature of 500 The gelling agent can be removed by baking to form a film-shaped conductive material having a network structure, that is, a conductive film.
  • the fine wiring, the conductive material, and the conductive film may be a transparent conductive electrode or a transparent conductive film as having transparency. According to this, it can be used for a display device and a photoelectric conversion device.
  • the concentrations at this time are as follows.
  • FIG. 2 shows a TEM image after 40 minutes.
  • Example 1 The concentration shown in Example 1 as a comparison is
  • aqueous dispersion of fine gold particles was cooled to room temperature, and 6 cc of a 0.01 M aqueous solution of thionicotinamide (TNA) was added with stirring.
  • the concentration at this time in Chio nicotinamidine de (TNA) was 1 XI 0- 3 M.
  • Nanowires one embodiment 2 was recovered as a precipitate, in addition to the 1 X 1 0- 3 g Z m 1 gelatin solution 0. 5 cc, it was dispersed in ultrasonic irradiation.
  • This dispersion was spin coated on a glass plate and baked at a temperature of 350 for 30 minutes. A transparent conductive film having a maximum resistance of 2 ⁇ cm was obtained.
  • the molar ratio [N a BH 4] / A g C 1 0 4] 0. 8 ⁇ :. I 5 the result, the absorbance distribution indicates 8 0 0 nm Niwata connexion nearly constant value from 4 0 0 nm
  • FIG. 7 shows the absorbance distribution when the molar ratio is 1.5
  • FIG. 8 shows a TEM image in that case. It turned out that fine particles with a particle size of about 30 to 40 nm were connected to form a wire, and that they were networked.
  • FIG. 9 illustrates the results of UV measurement before the addition of trisodium citrate (S—Cit), immediately after the addition of thionicotinamide (TNA), and 20 minutes and 25 minutes after the addition.
  • FIG. 10 illustrates the results of UV measurement of the gold nanowire film obtained as described above.
  • the invention of the present application provides a nanowire structure using noble metal fine particles and a method for producing the same, which have not been known so far.

Abstract

A novel nanowire structure made of fine noble-metal particles which is a nanowire or nanowire network structure formed by either adding a reducing agent to a solution of an inorganic salt or organometallic complex of a noble metal to reduce it or adding a thiol or thioamide compound to a dispersion of ultrafine noble-metal particles.

Description

明 細 書 貴金属ナノワイヤー構造物とその製造方法 技術分野  Description Noble metal nanowire structure and its manufacturing method
この出願の発明は、 貴金属ナノワイヤー構造物とその製造方法に 関するものである。 さらに詳しくは、 この出願の発明は、 ナノ技術の 展開にとって重要な、 微細配線や導電材、 各種の電子部品等として 有用な、ワイヤ一やそのネットワーク構造をもつ新しい貴金属のナノ スケールの構造物とその製造方法に関るものである。 背景技術  The invention of this application relates to a noble metal nanowire structure and a method for producing the same. More specifically, the invention of this application is based on a new noble metal nano-scale structure with a single wire or its network structure, which is useful as fine wiring, conductive material, various electronic components, etc., which is important for the development of nanotechnology. It relates to the manufacturing method. Background art
従来より、 金の超微粒子をはじめとする貴金属のナノスケールで の粒子の製造法が各種提案されている。  Various methods for producing nanoscale particles of precious metals, including ultrafine gold particles, have been proposed.
たとえば、 金ナノ粒子の製造方法としては、 物理的に蒸発させ原 子を凝結させる方法や粉碎法をはじめ、 金 イオンを還元する方法 が知られている。 特に、 常温還元法 (液相法) は設備的に負荷が軽 く容易に生成できるため多用されている。 この方法は古くから知ら れており、 生成された金コロイドは、 触媒材料、 着色材料や医療分 野での材料等として利用されている。 また、 この方法は金のみならず 各種の貴金属、 金属に適用されている。 金イオンを溶液中で還元す る方法の一つとして例示すると、 塩化金酸た塩化金酸ナトリウムの 水溶液にクェン酸ゃクェン酸ナトリゥムの還元剤を加えると金ナノ 粒子が得られる。  For example, as a method for producing gold nanoparticles, there are known a method of physically evaporating and condensing an atom, a method of pulverization, and a method of reducing gold ions. In particular, the room-temperature reduction method (liquid-phase method) is widely used because of its light equipment load and easy production. This method has been known for a long time, and the produced gold colloid is used as a catalyst material, a coloring material, a material in the medical field, and the like. This method is applied not only to gold but also to various precious metals and metals. As an example of a method for reducing gold ions in a solution, gold nanoparticles are obtained by adding a reducing agent of sodium citrate / sodium chloroaurate to an aqueous solution of chloroauric acid or sodium chloroaurate.
そして、 G. Frens, Nature (Physical Science) , Vol.241. pp20-22 (1973)では、 還元剤濃度による粒径制御、 粒子径によりゾルの色が 変化することが、  In G. Frens, Nature (Physical Science), Vol. 241. pp20-22 (1973), control of particle size by reducing agent concentration, and change of sol color by particle size,
Chang, Langmuir Vol.15, No.3. pp70卜 709 (1999)では、 ロッド状 の微粒子が大きさにより吸光スペクトルを変化させることが開示さ れており、 Chang, Langmuir Vol.15, No.3.pp70 709 (1999) It is disclosed that the fine particles change the absorption spectrum depending on the size,
鳥越他、 触媒 Vol.41, No.7 pp521-525 (1999)や、  Torigoe et al., Catalyst Vol.41, No.7 pp521-525 (1999),
森、 ケミカルエンジニアリング Vol.44, No.5 pp386-390 (1999), 特開平 1 1 一 6 1 2 0 9  Mori, Chemical Engineering Vol.44, No.5 pp386-390 (1999), Japanese Patent Application Laid-Open No. H11-61209
特開平 1 1 — 3 1 9 5 3 8  Japanese Patent Laid-Open No. 1 1 — 3 1 9 5 3 8
等によって、 金ナノ粒子の製造が報告されている。 For example, production of gold nanoparticles has been reported.
ただ、 これらの提案や報告は、 いずれも金の粒子径を制御するこ とや、 大量に合成することを目的としている。 また、 金コロイドより 薄膜を形成することや、 導電性を実現することも検討されているが、 いずれの場合も金ナノ粒子を対象としたものに限られている。  However, these proposals and reports all aim to control the particle size of gold and to synthesize large quantities. The formation of a thin film from gold colloid and the realization of electrical conductivity are also being studied, but in each case, the method is limited to gold nanoparticles.
このような状況において、 この出願の発明者らは、 ナノスケールで の貴金属超微粒子の生成とその挙動と作用について詳細に検討を 行い、超微粒子の技術展開について新材料創製上の自由度をより高 めることを意図してきた。  Under these circumstances, the inventors of the present application conducted detailed studies on the generation of nano-scale noble metal ultrafine particles, their behavior and action, and increased the degree of freedom in creating new materials for technological development of ultrafine particles. It has been intended to increase.
この出願の発明は、以上のとおりの背景よりなされたものであって、 金をはじめとする貴金属の超微粒子の生成やその利用に限られてい た状況を超えて、 全く新しいナノ構造物を創製し、 これを提供する ことを課題としている。 発明の開示  The invention of this application was made based on the above background, and created a completely new nanostructure beyond the situation where the generation and use of ultrafine particles of precious metals such as gold were limited. And to provide this. Disclosure of the invention
この出願の発明は、上記の課題を解決するものとして、第 1には、 貴金属微粒子が連なっているワイヤ一状の構造物であって、 微粒子 もしくはワイヤー状短軸方向の最大外径が 1 0 0 n m以下である ことを特徴とする貴金属ナノワイヤ一構造物を提供する。  The invention of this application solves the above-mentioned problems. First, it is a wire-like structure in which noble metal fine particles are connected, and the maximum outer diameter of the fine particles or the wire-like short axis direction is 10%. Provided is a noble metal nanowire single structure characterized by having a thickness of 0 nm or less.
また、 第 2には、 ワイヤー構造物が網目もしくはネットワークを形 成していることを特徴とする貴金属ナノワイヤー構造物を提供する。 そして、 第 3には、 上記第 1または第 2の発明の貴金属ナノワイ ヤー構造物が焼成されたものであることを特徴とする微細配線また は導電材を提供する。 Second, the present invention provides a noble metal nanowire structure, wherein the wire structure forms a mesh or a network. Third, the noble metal nanowire of the first or second invention is described. The present invention provides a fine wiring or a conductive material, wherein the layer structure is fired.
さらに、 第 4には、 第 1 または第 2の発明の貴金属ナノワイヤ一 構造物の製造方法であって、貴金属の無機塩または有機金属錯体の 溶液に還元剤を加えて貴金属イオンを還元するに際し、 還元剤の貴 金属イオンに対する濃度をモル比で 2倍以下とすることを特徴とす る貴金属ナノワイヤー構造物の製造方法を提供し、 第 5には、 貴金 属ナノワイヤー構造物の製造方法であって、 貴金属の超微粒子分散 液にチオール類およびチォアミ ド類のうち少なくとも 1種を加える ことを特徴とする貴金属ナノワイヤー構造物の製造方法を、 第 6に は、 この場合の貴金属の超微粒子分散液は、 貴金属の無機塩または 有機金属錯体の溶液に還元剤を加えて貴金属イオンを還元するこ とにより生成させたものであることを特徴とする請求項, 5の貴金属 ナノワイヤー構造物の製造方法を提供する。  Further, fourthly, the method for producing a noble metal nanowire structure according to the first or second invention, wherein a reducing agent is added to a solution of an inorganic salt or an organometallic complex of the noble metal to reduce noble metal ions, The present invention provides a method for producing a noble metal nanowire structure, characterized in that the concentration of the reducing agent with respect to the noble metal ion is twice or less in molar ratio. Fifth, a method for producing a noble metal nanowire structure is provided. And a method for producing a noble metal nanowire structure characterized by adding at least one of thiols and thioamides to a dispersion of ultrafine particles of a noble metal. The noble metal dispersion according to claim 5, wherein the fine particle dispersion is formed by reducing a noble metal ion by adding a reducing agent to a solution of an inorganic salt or an organometallic complex of the noble metal. Roh to provide a method of manufacturing a wire structure.
第 7には、上記第 3の発明の微細配線または導電材の製造方法で あって、 5 0 0で以下の温度で焼成することを特徴とする微細配線 または導電材の製造方法を、 第 8には、 上記第 3の発明の微細配線 または導電材の膜状体製造方法であって、 貴金属ナノワイヤ一構造 物をゲル化剤溶液に分散させ、 基板上に塗布した後に焼成して導電 膜を得ることを特徴とする導電膜の製造方法を提供する。 図面の簡単な説明  Seventh, the method for producing a fine wiring or conductive material according to the third aspect of the present invention, wherein the method for producing a fine wiring or conductive material characterized by firing at 500 The present invention provides the method for producing a fine wiring or a film of a conductive material according to the third invention, wherein the noble metal nanowire structure is dispersed in a gelling agent solution, applied onto a substrate, and then fired to form a conductive film. The present invention provides a method for producing a conductive film, comprising: BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1におけるクェン酸三ナトリゥム添加 3 0分後の T E M像を例示した写真図である。  FIG. 1 is a photographic diagram illustrating a TEM image 30 minutes after addition of trisodium citrate in Example 1.
図 2は、 図 1に続いて、 4 0分後の T E M像を例示した写真図で ある。  FIG. 2 is a photographic diagram illustrating a TEM image after 40 minutes following FIG.
図 3は、 比較のための T E M像を例示した写真図である。 図 4は、実施例 2におけるチォニコチンアミドの添加にともなう吸 光度の変化を例示した図である。 FIG. 3 is a photographic view illustrating a TEM image for comparison. FIG. 4 shows the absorption associated with the addition of thionicotinamide in Example 2. It is the figure which illustrated change of luminous intensity.
図 5は、 チォニコチンアミ ド添加 5 0分後の T E M像を例示した 写真図である。  FIG. 5 is a photographic diagram illustrating a TEM image 50 minutes after the addition of thionicotinamide.
図 6は、 実施例 4において比較のために示した銀の超微粒子の T E M像を例示した写真図である。  FIG. 6 is a photographic view illustrating a TEM image of ultrafine silver particles shown in Example 4 for comparison.
図 7は、 実施例 4におけるモル比 1 . 5の場合の吸光度分布を例 示した図である。  FIG. 7 is a diagram showing an example of an absorbance distribution in the case of a molar ratio of 1.5 in Example 4.
図 8は、 図 7と同様のモル比 1 . 5の場合の T E M像を例示した 写真図である。  FIG. 8 is a photograph showing a TEM image in the case of the same molar ratio of 1.5 as in FIG.
図 9は、 実施例 5におけるチォニコチンアミ ドの添加前後の吸光 度分布を例示した図である。  FIG. 9 is a diagram exemplifying the absorbance distribution before and after the addition of thionicotinamide in Example 5.
図 1 0は、 実施例 5における金ナノワイヤー塗布膜の吸光度分布 を例示した図である。  FIG. 10 is a diagram illustrating the absorbance distribution of the gold nanowire coating film in Example 5.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明は、 上記のとおりの特徴をもつものであるが、 以下 にその実施の形態について説明する。  The invention of this application has the features as described above, and embodiments thereof will be described below.
この出願の発明が提供する貴金属ナノワイヤ一構造物は、 The noble metal nanowire one structure provided by the invention of this application is:
< 1 >貴金属微粒子が連なっているワイヤー状の構造物であるこ と <1> A wire-like structure with precious metal fine particles connected
< 2 >貴金属の微粒子またはワイヤー状短軸方向の最大外径が  <2> Noble metal fine particles or wire-shaped
1 0 0 n m以下である  Less than 100 nm
ことを基本的な特徴としている。 まず第 1の構造上の特徴点につい ては、 金をはじめとする微粒子の複数が少くとも 1対 1以上で接し て連なってワイヤー状、 つまり線材状になっていることを意味してい る。 この場合のワイヤー状の形態については、 直線状に限られてはい ない。 曲線状や波状であったり、 折れ曲がり状であったり、 さらには 分枝状であったり、 各種の形態であってよい。 また、 その太さ、 つま りワイヤ一状体の長さや外形寸法は一定していないものであってよ い。 一本のワイヤ一状体においても外形寸法は一定していなくとも よい。 貴金属微粒子の相互接触の状態によって異つていてもよいか らである。 ただ、 いずれの場合であっても、 単一の粒子ではなく、 ま た凝集塊のような塊でもなく、 少くとも線状の形態を一部でも有し ていることが要件である。 この線状の形態においては、 長さと太さの アスペクト比は、 限定的ではないが、 たとえば実際的には 4以上、 さらには 1 0以上である。 That is the basic feature. First, the first structural feature means that a plurality of fine particles, including gold, are connected and connected in at least one-to-one relationship to form a wire, that is, a wire. The shape of the wire in this case is not limited to a straight shape. It may be curved, wavy, bent, branched, or in various forms. In addition, the thickness, that is, the length and external dimensions of the wire body may not be constant. No. The outer dimensions do not have to be constant even in one wire. This is because they may differ depending on the state of mutual contact of the noble metal fine particles. However, in any case, it is a requirement that the particles are not single particles or clumps such as agglomerates, and have at least a part of a linear shape. In this linear form, the aspect ratio of the length to the thickness is not limited, but is, for example, actually 4 or more, or even 10 or more.
このような貴金属粒子のワイヤー状体については、 この出願の発 明では、 短軸方向の、 つまり長さ方向に直交する断面の最大外径が 1 0 0 n m以下である。 また、 このワイヤ一状体は、 分枝状形態と して網目もしくはネッ トワークを形成していてもよい。  With respect to such a wire-shaped precious metal particle, in the invention of the present application, the maximum outer diameter of a cross section in the minor axis direction, that is, orthogonal to the length direction is 100 nm or less. Further, the wire body may be in a branched form to form a mesh or a network.
そして、 この出願の発明は、 以上のような貴金属ナノワイヤー状 構造物が加熱されて焼成されたものも新しいナノ構造物として提供 する。  And the invention of this application also provides a precious metal nanowire-like structure heated and fired as a new nanostructure as described above.
ナノワイヤ一構造物を構成する貴金属については、 その種類が特 に限定されることはないが、 微細配線、 導電材等の電子材料への応 用や触媒としての利用等を考慮する場合、 金、 銀、 白金、 パラジゥ ム、 ロジウム等が代表的なものとして例示される。  There is no particular limitation on the type of noble metal that composes the nanowire-single structure.However, when considering application to electronic materials such as fine wiring and conductive materials and utilization as a catalyst, gold, Silver, platinum, palladium, rhodium and the like are exemplified as typical ones.
このような貴金属のナノワイヤ一構造物の製造方法は、 各種のも のであってよいが、 この出願の発明においては、 新規な製造方法と して、 前記のとおりの方法が提供される。  The method for producing such a noble metal nanowire-one structure may be of various types, but in the invention of this application, the method described above is provided as a novel production method.
すなわち、 まず第 1には、 貴金属の無機塩または有機金属錯体、 たとえば、塩化金(I I I )酸、 塩化金(I I I)ナトリウム、 塩化白金酸、 塩化白金酸カリウム、 硝酸銀、 酢酸銀等の溶液、 特に水溶液等の 水性溶液に還元剤を、 貴金属イオンに対しての濃度がモル比で 2倍 以下の割合で加えて貴金属イオンを還元する方法である。 この場合 の還元剤については、 貴金属イオンを還元する作用のある有機化合 物や無機化合物が好適に使用でき、 たとえば、 クェン酸またはその 塩、 コハク酸またはその塩、 あるいは水素化硼素ナトリウムやアルコ ール類等が例示される。なかでも、クェン酸、クェン酸三ナトリウム、 ァセトジカルボン酸、 イソプロピルアルコール等が具体的なものとし て考慮される。 That is, first, a solution of an inorganic salt or an organometallic complex of a noble metal, for example, a solution of chloroauric acid (III), sodium gold (III) chloride, chloroplatinic acid, potassium chloroplatinate, silver nitrate, silver acetate, or the like; In particular, this method involves adding a reducing agent to an aqueous solution such as an aqueous solution at a molar ratio of no more than twice the noble metal ion to reduce the noble metal ion. As the reducing agent in this case, an organic compound or an inorganic compound capable of reducing a noble metal ion can be suitably used. Examples thereof include salts, succinic acid or salts thereof, sodium borohydride and alcohols. Above all, citric acid, trisodium citrate, acetodicarboxylic acid, isopropyl alcohol and the like are considered as specific examples.
これらの還元剤は、 溶液中の貴金属イオンに対し、 通常は、 モル 比で 2倍以下とすることが好ましい。 モル比が 2倍を超える場合に は、 一般的 は貴金属の微粒子は生成されても、 ナノワイヤー構造 を形成することが難しくなる。  Usually, it is preferable that the molar ratio of these reducing agents to the noble metal ions in the solution is not more than twice. When the molar ratio exceeds twice, it is generally difficult to form a nanowire structure even though fine particles of a noble metal are generated.
還元反応における条件としては、 温度は、 4 0〜 9 0で程度に加 温、 加熱することが好ましい。  As the conditions for the reduction reaction, it is preferable to heat and heat to a temperature of about 40 to 90.
そして、 第 2の方法としては、 貴金属の超微粒子の分散液、 たと えばコロイ ドにチオール類およびチォアミ ド類のうちの少くとも 1 種を加える方法が提供される。 この場合の貴金属微粒子のコロイド 等の分散液は、 水性液であることが好ましく、 また、 この分散液は、 貴金属の無機塩や有機金属錯体の溶液に還元剤を加えて貴金属ィ オンを還元することにより生成させたものであってもよい。 もちろん、 これに限定されることはない。  As a second method, a method is provided in which at least one of thiols and thioamides is added to a dispersion of ultrafine particles of a noble metal, for example, colloid. In this case, the dispersion of the precious metal fine particles in a colloid or the like is preferably an aqueous liquid, and the dispersion is prepared by adding a reducing agent to a solution of an inorganic salt or an organic metal complex of the noble metal to reduce the noble metal ion. It may be generated by the above. Of course, it is not limited to this.
チオール類、 チォアミド類としては、 たとえば炭素類 9以上のアル キルチオールやメルカプトアルキルァミン、 チォニコチンアミド、 チ オアセ卜アミ ド等が例示される。 なかでも、 チォニコチンアミド (T N A )もしくはその有機置換体化合物は好適なものの一つであって、 このチォニコチンアミ ド類の添加によるナノワイヤー構造物の生成 は常温、 たとえば 5で〜 3 0で程度の温度において行うことができ る。  Examples of thiols and thioamides include alkylthiols having 9 or more carbon atoms, mercaptoalkylamines, thionicotinamides, and thioacetamides. Among them, thionicotinamide (TNA) or an organic substituted compound thereof is one of the preferable ones. The formation of the nanowire structure by the addition of thionicotinamides is performed at room temperature, for example, at 5 to 30 ° C. It can be performed at about the same temperature.
たとえば以上のような方法により生成させたこの出願の発明の貴 金属ナノワイヤー構造物は、 還元剤ゃチォニコチンアミ ド類の処理 後に沈殿として回収することができる。  For example, the noble metal nanowire structure of the invention of the present application produced by the method described above can be recovered as a precipitate after the treatment of the reducing agent ゃ niconicotinamides.
回収された沈殿としての貴金属ナノワイヤ一構造物は、 5 0 0 ^ 以下の温度で焼成して、 微細な配線、 導電材として利用してもよい し、 あるいはゼラチン等のゲル化剤溶液に再分散させ、 これを基板 上に塗布した後に 5 0 0で以下の温度で焼成することでゲル化剤 を除去してネットワーク構造の膜状の導電材、 つまり導電膜とする こともできる。 The precious metal nanowire-single structure as the recovered precipitate is 500 ^ It may be baked at the following temperature to be used as fine wiring and conductive material, or it may be redispersed in a gelling agent solution such as gelatin and applied on a substrate, and then the following temperature of 500 The gelling agent can be removed by baking to form a film-shaped conductive material having a network structure, that is, a conductive film.
上記の微細配線、 導電材、 そして導電膜は、 透明性を有するもの として、 透明導電極や透明導電膜とすることもできる。 これによれ ば、 表示装置や光電変換装置への利用も可能となる。  The fine wiring, the conductive material, and the conductive film may be a transparent conductive electrode or a transparent conductive film as having transparency. According to this, it can be used for a display device and a photoelectric conversion device.
そこで以下に実施例を示し、 さらに詳しく発明の実施の形態につ いて説明する。 もちろん、 以下の例によって発明が限定されることは ない。 実 施 例  Therefore, examples will be shown below, and embodiments of the present invention will be described in more detail. Of course, the invention is not limited by the following examples. Example
ぐ実施例 1 > Example 1>
蒸留水 5 0 c cに 0. 0 6 3 5 M塩化金(III)ナトリウム水溶液 3 c cを加え、 マグネテックステーラ一で攪拌しながら 8 0 に加 熱した。 攪拌しながら 0. 0 3 4 Mクェン酸三ナトリウム水溶液を O . l c c力 Πえて還元した。  To 65 cc of distilled water, 3 cc of 0.035 M sodium gold (III) chloride aqueous solution was added, and the mixture was heated to 80 while stirring with a magnetic stirrer. With stirring, a 0.034 M aqueous solution of trisodium citrate was reduced with O.Icc force.
この際の濃度は次のとおりである。  The concentrations at this time are as follows.
A u = 2. 5 X 1 0 "4M A u = 2.5 X 10 " 4 M
クェン酸三ナトリウム = 6. 8 X 1 0— 5M Kuen trisodium = 6. 8 X 1 0- 5 M
クェン酸三ナトリウム添加 3 0分後の沈殿として、 図 1の T E M 像に示した金微粒子によるナノワイヤー構造物が生成されているこ とが確認された。  As a precipitate 30 minutes after the addition of trisodium citrate, it was confirmed that a nanowire structure was formed by the fine gold particles shown in the TEM image of FIG.
また、 4 0分後の T EM像を示したものが図 2である。  FIG. 2 shows a TEM image after 40 minutes.
一方、 比較のために、 濃度を、  On the other hand, for comparison,
A u = 2. 5 X 1 0— 4M A u = 2. 5 X 1 0- 4 M
クェン酸ナトリウム = 6. 8 X 1 0 - M に変更して還元処理したところ、 6 0分後においてもナノワイ一構 造物の生成は全く確認されず、 図 3に示したように、 粒径 6〜 1 0 nmの安定した金の微粒子の生成のみが確認された。 Sodium citrate = 6.8 X 10-M After the reduction treatment, the formation of a nano-Y structure was not confirmed at all even after 60 minutes, and as shown in Fig. 3, stable gold fine particles with a particle size of 6 to 10 nm were generated. Only confirmed.
<実施例 2 > <Example 2>
実施例 1 において比較として示した、 濃度が  The concentration shown in Example 1 as a comparison is
A u = 2. 5 X 1 0 -4 M A u = 2. 5 X 1 0 - 4 M
クェン酸三ナトリウム = 6. 8 X 1 0— 4M Kuen trisodium = 6. 8 X 1 0- 4 M
の場合として生成した金の微粒子の分散水溶液を室温まで冷却し、 攪拌しながら 0. 0 1 Mのチォニコチンアミド (TNA) 水溶液 6 c cを加えた。 この時のチォニコチンアミ ド (TNA) の濃度は、 1 X I 0— 3Mであった。 In the case of the above, the resulting aqueous dispersion of fine gold particles was cooled to room temperature, and 6 cc of a 0.01 M aqueous solution of thionicotinamide (TNA) was added with stirring. The concentration at this time in Chio nicotinamidine de (TNA) was 1 XI 0- 3 M.
チォニコチンアミドの添加 5分後から、 図 4に示したように吸光 度の変化が観察され、 金微粒子が融合してナノワイヤー構造物が生 成されはじめることが確認された。  Five minutes after the addition of thionicotinamide, a change in absorbance was observed as shown in Fig. 4, confirming that the gold microparticles were fused and a nanowire structure began to be generated.
吸光度の変化をともなって、 5 0分後には、 図 5の T EM像のよ うに、 金微粒子によるナノワイヤーの生成が明確になった。  After 50 minutes, with the change in absorbance, the formation of nanowires by the fine gold particles became clear, as shown in the TEM image in FIG.
<実施例 3 > <Example 3>
沈殿として回収した実施例 2のナノワイヤ一を、 1 X 1 0— 3g Z m 1ゼラチン水溶液 0. 5 c cに加え、 超音波照射で分散させた。 Nanowires one embodiment 2 was recovered as a precipitate, in addition to the 1 X 1 0- 3 g Z m 1 gelatin solution 0. 5 cc, it was dispersed in ultrasonic irradiation.
この分散液を、 ガラス板上にスピンコートし、 3 5 0での温度で 3 0分間焼成した。 抵抗値が最高で 2 ΩΖ c mの透明導電膜が得 られた。  This dispersion was spin coated on a glass plate and baked at a temperature of 350 for 30 minutes. A transparent conductive film having a maximum resistance of 2 ΩΖcm was obtained.
<実施例 4 > <Example 4>
0. 0 0 0 2 5 Mの過塩素酸銀水溶液にモル比 〔N a B H4〕 /A g C 1 04〕 で 4以上の水素化硼素ナトリウムを加えることにより、 直径約 1 3. 5 n mの銀の超微粒子が生成することが確認された。 なお、 反応温度は 5でとした。 吸光度分布を測定したところ、 約 3 8 5 nmにピークを持つ銀の 超微粒子の形成を示す吸光度分布が得られた。 図 6は、 この、 銀の 超微粒子の TEM像を示したものである。 0.0 0 0 by adding 4 or more sodium borohydride in a molar ratio to the silver perchlorate solution of 2 5 M [N a BH 4] / A g C 1 0 4], a diameter of about 1 3.5 It was confirmed that ultrafine silver particles of nm were generated. The reaction temperature was set at 5. When the absorbance distribution was measured, an absorbance distribution indicating the formation of ultrafine silver particles having a peak at about 38.5 nm was obtained. Figure 6 shows a TEM image of the ultrafine silver particles.
一方、 モル比 〔N a B H4〕 /A g C 1 04〕 = 0. 8〜: I . 5に すると、 吸光度分布は 4 0 0 n mから 8 0 0 n mにわたつてほぼ一 定値を示し、 ナノワイヤーの形成を示唆した。 図 7は、 上記モル比 が 1. 5の時の吸光度分布を示したものであり、 図 8は、 その場合 の TEM像を示したものである。粒径約 3 0〜4 0 n mの微粒子が 連なってワイヤーを形成し、 それらがネットワーク状になっているこ とが判明した。 On the other hand, the molar ratio [N a BH 4] / A g C 1 0 4] = 0. 8~:. I 5 the result, the absorbance distribution indicates 8 0 0 nm Niwata connexion nearly constant value from 4 0 0 nm The formation of nanowires was suggested. FIG. 7 shows the absorbance distribution when the molar ratio is 1.5, and FIG. 8 shows a TEM image in that case. It turned out that fine particles with a particle size of about 30 to 40 nm were connected to form a wire, and that they were networked.
<実施例 5 > <Example 5>
2. 2 5 X 1 0 _4Mの塩化金 (ΠΙ) 水溶液に、 クェン酸三ナト リウムを 7. 7 7 X 1 0— 5Mになるように加え、 8 0でで 2 5分間 反応させ、 金ナノワイヤーを合成した。 その液に、 ワイヤーの凝集を 防止する目的でチォニコチンアミドを 1 X 1 0— 3Mになるように加 えた。 チォニコチンアミ ドを加えるとワイヤーの一部は沈殿した。 図 9は、 クェン酸三ナトリウム (S— C i t ) 添加前とチォニコ チンアミド (TNA). の添加直後、 その 2 0分後および 2 5分後の U V測定の結果を例示したものである。 2. 2 5 X 1 0 _ 4 M of gold chloride (ΠΙ) aqueous solution was added so that the Kuen tribasic sodium to 7. 7 7 X 1 0- 5 M , and reacted for 2 5 minutes at 8 0 A gold nanowire was synthesized. In the liquid it was so pressurized example becomes the Chio nicotinamide 1 X 1 0- 3 M for the purpose of preventing agglomeration of the wire. A portion of the wire settled upon addition of chonicotinamide. FIG. 9 illustrates the results of UV measurement before the addition of trisodium citrate (S—Cit), immediately after the addition of thionicotinamide (TNA), and 20 minutes and 25 minutes after the addition.
次いで、 遠心分離により金ナノワイヤ一を分離し、 2 X 1 0 _ 3 g/ml のゼラチン水溶液中に分散させた。 このゼラチン液を、 ステア リン酸鉄で表面を疎水化した硝子上に塗布して膜を作製した。 塗布 後の膜の面密度は 0. 1 mg/cm2以下であった。 その後、 ゼラチンを 焼いて除去するために、 3 5 0でで 3 0分焼成した。 この方法によ り、 金濃度 0. 0 5 Mにおいて電気抵抗は、 1 Ω /cmが得られた。 図 1 0は、 以上により得られた金ナノワイヤー膜の UV測定の結果 を例示したものである。 産業上の利用可能性 Next, the gold nanowires were separated by centrifugation and dispersed in a 2 × 10 3 g / ml aqueous gelatin solution. This gelatin solution was applied onto glass whose surface was hydrophobized with iron stearate to form a film. The areal density of the film after application was 0.1 mg / cm 2 or less. Then, it was baked at 350 for 30 minutes to burn off the gelatin. With this method, an electrical resistance of 1 Ω / cm was obtained at a gold concentration of 0.05 M. FIG. 10 illustrates the results of UV measurement of the gold nanowire film obtained as described above. Industrial applicability
以上詳しく説明したとおり、 この出願の発明によって、 これまでに 知られていない、 貴金属微粒子によるナノワイヤー構造物とその製 造方法が提供される。  As described in detail above, the invention of the present application provides a nanowire structure using noble metal fine particles and a method for producing the same, which have not been known so far.

Claims

請求の範囲 The scope of the claims
1 . 貴金属微粒子が連なっているワイヤー状の構造物であって、 微粒子もしくはワイヤー状短軸方向の最大外径が 1 0 O n m以下 であることを特徴とする貴金属ナノワイヤ一構造物。 1. A noble metal nanowire structure, which is a wire-shaped structure in which noble metal fine particles are connected, wherein the maximum outer diameter of the fine particles or the wire-shaped short axis direction is 10 Onm or less.
2 . ワイヤー構造物が網目もしくはネットワークを形成しているこ とを特徴とする貴金属ナノワイヤ一構造物。  2. A noble metal nanowire structure, wherein the wire structure forms a mesh or network.
3 - 請求項 1または 2の貴金属ナノワイヤー構造物が焼成された ものであることを特徴とする微細配線または導電材。  3-A fine wiring or conductive material, wherein the noble metal nanowire structure according to claim 1 or 2 is fired.
4 . 請求項 1または 2の貴金属ナノワイヤー構造物の製造方法で あって、貴金属の無機塩または有機金属錯体の溶液に還元剤を加え て貴金属イオンを還元するに際し、 還元剤の貴金属イオンに対する 濃度をモル比で 2倍以下とすることを特徴とする貴金属ナノワイヤ 一構造物の製造方法。 4. The method for producing a noble metal nanowire structure according to claim 1 or 2, wherein the reducing agent is added to a solution of an inorganic salt or an organometallic complex of the noble metal to reduce the noble metal ion, and the concentration of the reducing agent with respect to the noble metal ion. The method for producing a precious metal nanowire single structure, wherein the molar ratio is not more than twice.
5 . 請求項 1または 2の貴金属ナノワイヤー構造物の製造方法で あって、 貴金属の超微粒子分散液にチオール類およびチォアミド類 のうちの少なくとも 1種を加えることを特徴とする貴金属ナノワイ ヤー構造物の製造方法。  5. The method for producing a noble metal nanowire structure according to claim 1 or 2, wherein at least one of a thiol and a thioamide is added to a dispersion of the ultrafine particles of the noble metal. Manufacturing method.
6 . 貴金属の超微粒子分散液は、 貴金属の無機塩または有機金 属錯体の溶液に還元剤を加えて貴金属イオンを還元することにより 生成させたものであることを特徴とする請求項 5の貴金属ナノワイ ヤー構造物の製造方法。  6. The noble metal dispersion according to claim 5, wherein the noble metal ultrafine particle dispersion is formed by adding a reducing agent to a solution of an inorganic salt or an organic metal complex of the noble metal to reduce noble metal ions. A method for manufacturing a nanowire structure.
7 . 請求項 3の微細配線または導電材の製造方法であって、 5 0 0で以下の温度で焼成することを特徴とする微細配線または導電 材の製造方法。  7. The method for producing a fine wiring or a conductive material according to claim 3, wherein the firing is performed at 500 at the following temperature.
8 . 請求項 3の微細配線または導電材の膜状体製造方法であつ て、 貴金属ナノワイヤ一構造物をゲル化剤溶液に分散させ、 基板上 に塗布した後に焼成して導電膜を得ることを特徴とする導電膜の 製造方法。 8. The method according to claim 3, wherein the noble metal nanowire structure is dispersed in a gelling agent solution, applied to a substrate, and then fired to obtain a conductive film. Characteristic of conductive film Production method.
PCT/JP2002/008826 2002-02-15 2002-08-30 Noble-metal nanowire structure and process for producing the same WO2003068674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003567818A JPWO2003068674A1 (en) 2002-02-15 2002-08-30 Noble metal nanowire structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002039262 2002-02-15
JP2002-39262 2002-02-15

Publications (1)

Publication Number Publication Date
WO2003068674A1 true WO2003068674A1 (en) 2003-08-21

Family

ID=27678238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008826 WO2003068674A1 (en) 2002-02-15 2002-08-30 Noble-metal nanowire structure and process for producing the same

Country Status (2)

Country Link
JP (1) JPWO2003068674A1 (en)
WO (1) WO2003068674A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040989A1 (en) * 2004-10-08 2006-04-20 Toray Industries, Inc. Conductive film
WO2007043569A1 (en) * 2005-10-14 2007-04-19 Kyoto University Transparent conductive film and method for producing same
CN100393456C (en) * 2006-06-24 2008-06-11 中国科学技术大学 Hollow ball granular chain of nano-polycrystalline noble-metal and its production
WO2009005261A2 (en) * 2007-06-29 2009-01-08 Korea Advanced Institute Of Science And Technology Noble metal single crystalline nanowire and the fabrication method thereof
WO2009035059A1 (en) * 2007-09-12 2009-03-19 Kuraray Co., Ltd. Electroconductive film, electroconductive member, and process for producing electroconductive film
JP2009070660A (en) * 2007-09-12 2009-04-02 Kuraray Co Ltd Transparent conductive film and its manufacturing method
JP2009129607A (en) * 2007-11-21 2009-06-11 Konica Minolta Holdings Inc Electrode, transparent conductive film, and method of manufacturing them
JP2009146576A (en) * 2007-12-11 2009-07-02 Konica Minolta Holdings Inc Transparent conductive coating, transparent conductive film, and flexible transparent plane electrode
WO2009107694A1 (en) * 2008-02-27 2009-09-03 株式会社クラレ Process for producing metal nanowire, and dispersion and transparent electroconductive film comprising the produced metal nanowire
WO2009113342A1 (en) * 2008-03-14 2009-09-17 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
KR100952615B1 (en) 2007-06-29 2010-04-15 한국과학기술원 Oriented Noble Metal Single Crystalline Nano-Wire and the Fabrication Method Thereof
JP2010084173A (en) * 2008-09-30 2010-04-15 Fujifilm Corp Metal nanowire, method for producing the same, and aqueous dispersion and transparent conductor
JP2010525527A (en) * 2007-04-20 2010-07-22 カンブリオス テクノロジーズ コーポレイション High contrast transparent conductor and method of forming the same
JP2010261090A (en) * 2009-05-11 2010-11-18 Shinshu Univ Method for producing silver nanowire and silver nanowire
JP2010267395A (en) * 2009-05-12 2010-11-25 Konica Minolta Holdings Inc Transparent conductive film and method for manufacturing transparent conductive film and transparent electrode for electronic device
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
CN102216203A (en) * 2008-09-22 2011-10-12 韩国科学技术院 Single-crystalline metal nano-plate and method for fabricating same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
EP1947702B1 (en) * 2005-08-12 2011-11-02 Cambrios Technologies Corporation Method of fabricating nanowire based transparent conductors
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP4919309B2 (en) * 2009-11-18 2012-04-18 国立大学法人信州大学 Metal oxide platinum composite catalyst for oxygen reduction and production method thereof
WO2013043133A1 (en) * 2011-09-23 2013-03-28 Nanyang Technological University Methods for forming gold nanowires on a substrate and gold nanowires formed thereof
JP2013167021A (en) * 2013-03-27 2013-08-29 Fujifilm Corp Dispersion for forming conductive layer, and transparent conductor
CN106001606A (en) * 2016-06-30 2016-10-12 天津大学 Preparing method capable of adjusting particle size of gold nanoparticles based on sodium citrate reduction method
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253506A (en) * 1990-03-01 1991-11-12 Titan Kogyo Kk Production of noble metal fine particles using emulsion type liquid film method
JPH0610015A (en) * 1992-06-26 1994-01-18 Titan Kogyo Kk Production of superfine particles of gold
JPH06310058A (en) * 1993-04-26 1994-11-04 Sumitomo Cement Co Ltd Cathode-ray tube
JP2001093414A (en) * 1999-09-20 2001-04-06 Asahi Glass Co Ltd Liquid applied to form conductive film and usage of the same
JP2001335804A (en) * 2000-05-25 2001-12-04 Nobuo Kimizuka Silver colloid substance and silver colloid associated body substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253506A (en) * 1990-03-01 1991-11-12 Titan Kogyo Kk Production of noble metal fine particles using emulsion type liquid film method
JPH0610015A (en) * 1992-06-26 1994-01-18 Titan Kogyo Kk Production of superfine particles of gold
JPH06310058A (en) * 1993-04-26 1994-11-04 Sumitomo Cement Co Ltd Cathode-ray tube
JP2001093414A (en) * 1999-09-20 2001-04-06 Asahi Glass Co Ltd Liquid applied to form conductive film and usage of the same
JP2001335804A (en) * 2000-05-25 2001-12-04 Nobuo Kimizuka Silver colloid substance and silver colloid associated body substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NANO LETTERS, Vol. 2, No. 2, pages 165 to 168, Y. Sun et al., "Crystalline Silver Nanowires by Soft Solution Processing", 13 February 2002. *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040989A1 (en) * 2004-10-08 2006-04-20 Toray Industries, Inc. Conductive film
US7626128B2 (en) 2004-10-08 2009-12-01 Toray Industries, Inc. Conductive film
EP1947702B1 (en) * 2005-08-12 2011-11-02 Cambrios Technologies Corporation Method of fabricating nanowire based transparent conductors
EP2922099A1 (en) * 2005-08-12 2015-09-23 Cambrios Technologies Corporation Nanowires-based transparent conductors
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
JPWO2007043569A1 (en) * 2005-10-14 2009-04-16 国立大学法人京都大学 Transparent conductive film and method for producing the same
WO2007043569A1 (en) * 2005-10-14 2007-04-19 Kyoto University Transparent conductive film and method for producing same
CN100393456C (en) * 2006-06-24 2008-06-11 中国科学技术大学 Hollow ball granular chain of nano-polycrystalline noble-metal and its production
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8760606B2 (en) 2006-10-12 2014-06-24 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
JP2010525527A (en) * 2007-04-20 2010-07-22 カンブリオス テクノロジーズ コーポレイション High contrast transparent conductor and method of forming the same
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
KR100952615B1 (en) 2007-06-29 2010-04-15 한국과학기술원 Oriented Noble Metal Single Crystalline Nano-Wire and the Fabrication Method Thereof
WO2009005261A3 (en) * 2007-06-29 2009-03-12 Korea Advanced Inst Sci & Tech Noble metal single crystalline nanowire and the fabrication method thereof
WO2009005261A2 (en) * 2007-06-29 2009-01-08 Korea Advanced Institute Of Science And Technology Noble metal single crystalline nanowire and the fabrication method thereof
JP2009070660A (en) * 2007-09-12 2009-04-02 Kuraray Co Ltd Transparent conductive film and its manufacturing method
JPWO2009035059A1 (en) * 2007-09-12 2010-12-24 株式会社クラレ Conductive film, conductive member, and method of manufacturing conductive film
WO2009035059A1 (en) * 2007-09-12 2009-03-19 Kuraray Co., Ltd. Electroconductive film, electroconductive member, and process for producing electroconductive film
JP2009129607A (en) * 2007-11-21 2009-06-11 Konica Minolta Holdings Inc Electrode, transparent conductive film, and method of manufacturing them
JP2009146576A (en) * 2007-12-11 2009-07-02 Konica Minolta Holdings Inc Transparent conductive coating, transparent conductive film, and flexible transparent plane electrode
WO2009107694A1 (en) * 2008-02-27 2009-09-03 株式会社クラレ Process for producing metal nanowire, and dispersion and transparent electroconductive film comprising the produced metal nanowire
JP5507440B2 (en) * 2008-02-27 2014-05-28 株式会社クラレ Method for producing metal nanowire, and dispersion and transparent conductive film obtained from metal nanowire
JPWO2009113342A1 (en) * 2008-03-14 2011-07-21 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
WO2009113342A1 (en) * 2008-03-14 2009-09-17 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
CN102216203A (en) * 2008-09-22 2011-10-12 韩国科学技术院 Single-crystalline metal nano-plate and method for fabricating same
JP2010084173A (en) * 2008-09-30 2010-04-15 Fujifilm Corp Metal nanowire, method for producing the same, and aqueous dispersion and transparent conductor
JP2010261090A (en) * 2009-05-11 2010-11-18 Shinshu Univ Method for producing silver nanowire and silver nanowire
JP2010267395A (en) * 2009-05-12 2010-11-25 Konica Minolta Holdings Inc Transparent conductive film and method for manufacturing transparent conductive film and transparent electrode for electronic device
JP4919309B2 (en) * 2009-11-18 2012-04-18 国立大学法人信州大学 Metal oxide platinum composite catalyst for oxygen reduction and production method thereof
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
CN103945966A (en) * 2011-09-23 2014-07-23 南洋理工大学 Methods for forming gold nanowires on a substrate and gold nanowires formed thereof
WO2013043133A1 (en) * 2011-09-23 2013-03-28 Nanyang Technological University Methods for forming gold nanowires on a substrate and gold nanowires formed thereof
US10332657B2 (en) 2011-09-23 2019-06-25 Nanyang Technological University Methods for forming gold nanowires on a substrate and gold nanowires formed thereof
JP2013167021A (en) * 2013-03-27 2013-08-29 Fujifilm Corp Dispersion for forming conductive layer, and transparent conductor
CN106001606A (en) * 2016-06-30 2016-10-12 天津大学 Preparing method capable of adjusting particle size of gold nanoparticles based on sodium citrate reduction method

Also Published As

Publication number Publication date
JPWO2003068674A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
WO2003068674A1 (en) Noble-metal nanowire structure and process for producing the same
US20210339316A1 (en) Methods for production of silver nanostructures
EP2632850B1 (en) Nano wire and method for manufacturing the same
US6103868A (en) Organically-functionalized monodisperse nanocrystals of metals
Sergeev Nanochemistry of metals
Han et al. Photochemical synthesis in formamide and room-temperature coulomb staircase behavior of size-controlled gold nanoparticles
US9221044B2 (en) Flow system method for preparing substantially pure nanoparticles, nanoparticles obtained by this method and use thereof
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
JP4821014B2 (en) Copper powder manufacturing method
AU1743397A (en) Organically-functionalized monodisperse nanocrystals of metals
JP2011511885A (en) Method for producing noble metal nanoparticle dispersion and method for isolating such nanoparticles from said dispersion
EA010338B1 (en) Stabilizing solutions for submicronic particles, methods for making the same and methods of stabilizing submicronic particles
JP2010534932A (en) Method for forming electrically conductive copper pattern layer by laser irradiation
JP2006089786A (en) Method for producing metallic nano-particle dispersed in polar solvent
Sadeghi et al. Synthesis of silver/poly (diallyldimethylammonium chloride) hybride nanocomposite
KR20180104404A (en) Methods of preparing metal nanoplates and metal nanoplates prepared by using the same
JP3607656B2 (en) Method for producing noble metal nanoparticles
Karthikeyan et al. Chemical methods for synthesis of hybrid nanoparticles
JP2006299391A (en) Nano-wire-like structure consisting of metallic spherical nano-particles
Yao et al. Facile synthesis of ultra-large, single-crystal Ag nanosheet-assembled films at chloroform-water interface
Hu et al. Rapid synthesis of cubic Pt nanoparticles and their use for the preparation of Pt nanoagglomerates
Zhuo et al. Surfactant-assisted synthesis of Ag nanostructures and their self-assembled films on copper and aluminum substrate
CN113579245A (en) Method for regulating and controlling morphology of nanogold assembly by one-step method
JP2006161102A (en) Method for producing metal nanostructure
Ma et al. Evolution from small sized Au nanoparticles to hollow Pt/Au nanostructures with Pt nanorods and a mechanistic study

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003567818

Country of ref document: JP