JP3855057B2 - Surface-modified gold nanoparticles and method for producing the same - Google Patents

Surface-modified gold nanoparticles and method for producing the same Download PDF

Info

Publication number
JP3855057B2
JP3855057B2 JP2003181957A JP2003181957A JP3855057B2 JP 3855057 B2 JP3855057 B2 JP 3855057B2 JP 2003181957 A JP2003181957 A JP 2003181957A JP 2003181957 A JP2003181957 A JP 2003181957A JP 3855057 B2 JP3855057 B2 JP 3855057B2
Authority
JP
Japan
Prior art keywords
gold
long
chain aliphatic
general formula
reactive group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003181957A
Other languages
Japanese (ja)
Other versions
JP2005015846A (en
Inventor
基成 芝上
実 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003181957A priority Critical patent/JP3855057B2/en
Publication of JP2005015846A publication Critical patent/JP2005015846A/en
Application granted granted Critical
Publication of JP3855057B2 publication Critical patent/JP3855057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、表面修飾された金ナノ粒子及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、表面修飾された金ナノ粒子を得るために、金−チオール結合を介して金表面に反応性基を有する第1有機化合物を結合させた後、該第1有機化合物に含まれる反応性基を介して第2有機化合物を結合させることは知られている(非特許文献1)。
しかし、このような方法においては、第1有機化合物と第2有機化合物との間の反応の種類が限られているため、それら2種の有機化合物の種類も限られたものであった。また、この場合には、第1有機化合物と第2有機化合物を化学反応させることから、その表面修飾された金ナノ粒子を製造するのには、大きな困難を伴った。
【0003】
【非特許文献1】
J.Am.Chem.Soc.,2001,P8226
【0004】
【発明が解決しようとする課題】
本発明は、多種多様の機能分子によって表面修飾された金ナノ粒子及びその製造方法を提供することをその課題とする。
【0005】
【課題を解決するための手段】
本発明によれば、(i)金粒子、(ii)金を含む合金粒子又は(iii)金化合物粒子の中から選ばれる金ナノ粒子に、下記一般式(1)
【化10】
−S−R (1)
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示す)
で表されるイオウ化合物残基を結合させた金ナノ粒子の表面に、下記一般式(2)又は下記一般式(3)で表される長鎖脂肪族化合物を吸着させた構造を有することを特徴とする表面修飾された金ナノ粒子が提供される。
【化11】
−Y (2)
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
【化12】
−Y−R (3)
(式中、R、Rは同一又は異なっていてもよく、炭素数8以上の長鎖脂肪炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
また、本発明によれば、(i)金粒子、(ii)金を含む含金粒子又は(iii)金化合物粒子の中から選ばれる金ナノ粒子に、下記一般式(4)
【化13】
HS−R (4)
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示す)
で表されるイオウ化合物を反応させて得られた金ナノ粒子の表面に、下記一般式(2)又は下記一般式(3)で表される長鎖脂肪族化合物を吸着させることを特徴とする表面修飾された金ナノ粒子の製造方法が提供される。
【化14】
−Y (2)
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
【化15】
−Y−R (3)
(式中、R、Rは同一又は異なっていてもよく、炭素数8以上の長鎖脂肪炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
さらに、本発明によれば、(i)金粒子、(ii)金を含む含金粒子又は(iii)金化合物粒子の中から選ばれるナノ金粒子に、下記一般式(5)
【化16】
−S−S−R (5)
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示す)
で表されるイオウ化合物を反応させて得られた金ナノ粒子の表面に、下記一般式(2)又は下記一般式(3)で表される長鎖脂肪族化合物を吸着させることを特徴とする表面修飾された金ナノ粒子の製造方法が提供される。
【化17】
−Y (2)
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
【化18】
−Y−R (3)
(式中、R、Rは炭素数8以上の長鎖脂肪炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
【0006】
【発明の実施の形態】
本発明において用いる金ナノ粒子は、イオウ原子と結合し得る(i)金、(ii)金を含む合金又は(iii)金化合物と定義される。この場合、金を含む合金には、金合金を形成し得る金属(例えば、Pt、Cu、Ag、Pdなどの遷移金属等)を含む合金であって、その金含有量が90重量%以上、好ましくは95重量%以上のものが包含される。金化合物には、イオウ原子と結合し得る各種の金化合物が包含される。このようなものには、例えば、臭化金、塩化金、シアン化金、水酸化金、酸化金、シアン化金カリウム、塩化金ナトリウム、テトラクロロ金酸などが挙げられる。
前記金ナノ粒子において、その平均粒径は、1〜1000nm、好ましくは10〜100nmである。
【0007】
本発明の表面修飾された金ナノ粒子は、その表面に下記一般式(1)で表される長鎖脂肪族炭化水素基を有するチオール由来の残基(チオール残基)が結合し、そのチオール残基の結合した金ナノ粒子(チオール残基で被覆された金ナノ粒子)表面に、下記一般式(2)又は(3)で表される長鎖脂肪族化合物が吸着した構造を有する。
【0008】
一般式(1)
【化19】
−S−R (1)
【化20】
−Y (2)
【化21】
−Y−R (3)
【0009】
前記一般式(1)において、Rは炭素数8以上、好ましくは12以上の長鎖脂肪族炭化水素基を示す。その炭素数の上限値は特に制約されないが、通常、22程度である。
該長鎖脂肪族炭化水素基には、アルキル基、アルケニル基及びアルキニル基が包含される。この場合、該炭化水素基には非反応性の置換基(アルコキシ基等)が結合していてもよい。
【0010】
前記一般式(2)及び(3)において、R、R、Rは炭素数8以上、好ましくは12以上の長鎖脂肪族炭化水素基を示す。その炭素数の上限値は特に制約されないが、通常、22程度である。該長鎖脂肪族炭化水素基には、アルキル基、アルケニル基及びアルキニル基が包含される。
【0011】
前記一般式(2)及び(3)において、Yは反応性基又は反応性基を含有する有機化合物残基を示す。この場合、反応性基には、従来公知の各種のもの、例えば、水酸基、チオール基、カルボキシル基、スルホン酸基、リン酸基、アシル基、アミノ基、アミド基、アルデヒド基、ハロゲン原子、エステル基、ケト基、エポキシ基、シアノ基、シアネート基、イソシアネート基、複素環基、芳香族基等が包含される。また、該反応性基を含有する有機化合物残基には、従来公知の各種のもの、例えば、ハロゲン化合物、アルコール化合物、チオール化合物、フェノール化合物、カルボン酸化合物、スルホン酸化合物、リン酸化合物、チオシアン酸化合物、イソチオシアン酸化合物、アミン化合物、シアノ化合物、アルデヒド化合物、エポキシ化合物、酸ハロゲン化合物、酸アミド化合物、アゾ化合物、複素環化合物、芳香族化合物、糖脂質、リン脂質、ペプチド、蛋白質等が包含される。
【0012】
本発明の表面修飾された金ナノ粒子において、該一般式(1)のイオウ化合物残基の割合は、金の重量に対して、1〜80重量%、好ましくは1〜30重量%である。また、該一般式(2)又は(3)の化合物の割合は、金の重量に対して、1〜80重量%、好ましくは1〜30重量%である。該一般式(1)のチオール残基の重量Aと該一般式(2)又は(3)の化合物の重量Bとの比A/Bは0.1〜10、好ましくは1〜2である。
【0013】
前記表面修飾された金ナノ粒子を製造するための1つの方法においては、(i)金粒子、(ii)金を含む含金粒子又は(iii)金化合物粒子の中から選ばれる金ナノ金粒子に、下記一般式(4)
【化22】
HS−R (4)
(式中、Rは前記と同じ意味を有する)
で表されるイオウ化合物(チオール)を反応させて得られた金ナノ粒子の表面に、下記一般式(2)又は(3)で表される長鎖脂肪族化合物を吸着させる。
【化23】
−Y (2)
【化24】
−Y−R (3)
前記式中、R、R、R及びYは前記と同じ意味を有する。
【0014】
前記表面修飾された金ナノ粒子を製造するための他の方法においては、金ナノ粒子に、下記一般式(5)
【化25】
−S−S−R (5)
(式中、Rは前記と同じ意味を有する)
で表されるイオウ化合物(ジスルフィド)を反応させて得られた金ナノ粒子の表面に、下記一般式(2)又は下記一般式(3)で表される長鎖脂肪族化合物を吸着させる。
【化26】
−Y (2)
【化27】
−Y−R (3)
前記式中、R、R、R及びYは前記と同じ意味を有する。
【0015】
前記金ナノ粒子とイオウ化合物との反応は、よく知られた反応で、イオウ化合物に対して溶解性を有する有機溶媒中で、10〜120℃、好ましくは20〜40℃で攪拌することにより実施することができる。
また、前記イオウ化合物と反応した金ナノ粒子に対する長鎖脂肪族化合物の吸着は、該金粒子を、該長鎖脂肪族化合物に対して溶解性を示す有機溶媒中において混合し、該混合物から有機溶媒を除去した後、得られた残渣に水を加え、攪拌することにより、実施することができる。
【0016】
本発明の表面修飾された金ナノ粒子において、前記一般式(2)又は(3)で表される長鎖脂肪族化合物成分は、前記一般式(1)のイオウ化合物残基が結合した金ナノ粒子表面に強く吸着固定化される。これは、金ナノ粒子表面に結合したイオウ化合物残基の長鎖脂肪族炭化水素基と、その表面に吸着した長鎖脂肪族化合物の長鎖脂肪族炭化水素基との間に強いファンデルワールス力が働くからである。
このファンデルワールス力は長鎖炭化水素基間に普遍的に働くため、固定化したい分子は特に制約されない。つまり、一定長さの長鎖炭化水素基を持つ分子であれば、ほとんどすべて金ナノ粒子上に固定化されうるという利点を持つ。
【0017】
図1に、表面に前記一般式(1)のチオール残基が結合した金ナノ粒子表面に、前記一般式(2)の化合物が吸着固定化される説明図を示す。
図1において、Gは金ナノ粒子を示し、1及び2は長鎖脂肪族炭化水素基を示し、3は反応性基又はこれを含む有機化合物残基を示す。
【0018】
【発明の効果】
本発明によれば、前記イオウ化合物残基を有する金ナノ粒子をあらかじめ作っておき、これに所望の長鎖脂肪族化合物を吸着させることにより、該長鎖脂肪族化合物で表面修飾された金ナノ粒子を得ることができる。本発明では、その表面修飾用の長鎖脂肪族化合物は、金ナノ粒子と反応させる必要がないことから、所望する各種の表面修飾金ナノ粒子を、簡便かつ効率よく製造することができる。
【0019】
本発明による表面修飾された金ナノ粒子は、その長鎖脂肪族化合物中に含まれている反応性基Yを介して、各種の反応を行なわせることができる。
【0020】
【実施例】
次に本発明を実施例によりさらに詳述する。
【0021】
実施例1
(1)金コロイドの調製
本手法は既報に従った(Anal.Chem.1995,67,735−743)。コンデンサーを取り付けた100mlの丸底フラスコにHAuC1水溶液(1mM,50ml)を加え沸騰させた。続いてクエン酸ナトリウム水溶液(38.8mM,5.0ml)を加えて撹拌すると溶液の色が薄黄色がらワインレッドヘと変化した。沸騰をさらに10分間続けたのちに加熱を止め、攪拌のみを行った状態で溶液を室温まで放冷した。0.8μmの膜フィルターで濾過し、金コロイド粒子を含んだ溶液を得た。この溶液は520nmに紫外可視吸収の最大吸収波長を示すことから、明らかに金コロイド粒子であることが確認された。また、透過型電子顕微鏡からその粒子直径は約13nmであることを確認した。
【0022】
(2)デカンチオールで被覆した金ナノ粒子の調製
本手法は既報の手法(Langmuir,2003,19,l168−l172)を参考とした。上記で作成した金コロイド溶液10mlにデカンチオールを溶解したクロロホルム溶液(5.0mmol,10ml)を加えた。続いてこの混合溶液をはげしく振ることにより30秒以内で金コロイドが有機層に移動することが確認された。この有機層を分離し、有機溶媒を減圧下で除くことによりデカンチオールで被覆した金ナノ粒子を黒色固体として得た。金ナノ粒子はメタノールによる洗浄およびクロロホルムヘの再分散により純化した。
【0023】
(3)オクチルグルコシドの被覆
前記(2)で調製したデカンチオールで被覆した金ナノ粒子を含むクロロホルム溶液(1ml)に、オクチルグルコシド(OG)を溶解したクロロホルム溶液(1mM,1ml)を加えた。この混合溶液から有機溶媒を除き、得られた残渣に蒸留水(2ml)を加えた。
この溶液を激しく振り混ぜることにより青色の金ナノ粒子分散溶液が得られた。この青色発色は金ナノ粒子の存在を示すものである。また、この場合のOGの固定化は、赤外分光法により確認した。
【図面の簡単な説明】
【図1】表面にイオウ化合物残渣が結合した金ナノ粒子表面に、長鎖脂肪族化合物が吸着固定化される説明図を示す。
【符号の説明】
1、2 長鎖脂肪族炭化水素基
3 反応性基又はこれを含む有機化合物残基
G 金ナノ粒子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface-modified gold nanoparticle and a method for producing the same.
[0002]
[Prior art]
Conventionally, in order to obtain surface-modified gold nanoparticles, after a first organic compound having a reactive group is bonded to the gold surface via a gold-thiol bond, the reactive group contained in the first organic compound It is known that a second organic compound is bonded via a non-patent document (Non-Patent Document 1).
However, in such a method, since the types of reaction between the first organic compound and the second organic compound are limited, the types of these two types of organic compounds are also limited. Moreover, in this case, since the first organic compound and the second organic compound are chemically reacted, it was very difficult to produce the surface-modified gold nanoparticles.
[0003]
[Non-Patent Document 1]
J. et al. Am. Chem. Soc. , 2001, P8226
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide gold nanoparticles surface-modified with a wide variety of functional molecules and a method for producing the same.
[0005]
[Means for Solving the Problems]
According to the present invention, a gold nanoparticle selected from (i) gold particles, (ii) gold-containing alloy particles, or (iii) gold compound particles has the following general formula (1):
[Chemical Formula 10]
-S-R 1 (1)
(Wherein R 1 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms)
Having a structure in which a long-chain aliphatic compound represented by the following general formula (2) or the following general formula (3) is adsorbed on the surface of the gold nanoparticle to which the sulfur compound residue represented by The surface modified gold nanoparticles are provided.
Embedded image
R 2 -Y (2)
(Wherein R 2 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group)
Embedded image
R 3 -YR 4 (3)
(In the formula, R 3 and R 4 may be the same or different and each represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group. )
According to the present invention, the gold nanoparticle selected from (i) gold particles, (ii) gold-containing particles containing gold, or (iii) gold compound particles includes the following general formula (4):
Embedded image
HS-R 1 (4)
(Wherein R 1 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms)
A long-chain aliphatic compound represented by the following general formula (2) or the following general formula (3) is adsorbed on the surface of a gold nanoparticle obtained by reacting the sulfur compound represented by A method for producing surface-modified gold nanoparticles is provided.
Embedded image
R 2 -Y (2)
(Wherein R 2 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group)
Embedded image
R 3 -YR 4 (3)
(In the formula, R 3 and R 4 may be the same or different and each represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group. )
Furthermore, according to the present invention, nanogold particles selected from (i) gold particles, (ii) gold-containing particles containing gold, or (iii) gold compound particles are represented by the following general formula (5).
Embedded image
R 1 —S—S—R 1 (5)
(Wherein R 1 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms)
A long-chain aliphatic compound represented by the following general formula (2) or the following general formula (3) is adsorbed on the surface of a gold nanoparticle obtained by reacting the sulfur compound represented by A method for producing surface-modified gold nanoparticles is provided.
Embedded image
R 2 -Y (2)
(Wherein R 2 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group)
Embedded image
R 3 -YR 4 (3)
(Wherein R 3 and R 4 represent a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group)
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The gold nanoparticles used in the present invention are defined as (i) gold, (ii) an alloy containing gold, or (iii) a gold compound capable of binding to a sulfur atom. In this case, the alloy containing gold is an alloy containing a metal that can form a gold alloy (for example, a transition metal such as Pt, Cu, Ag, Pd, etc.), and the gold content is 90% by weight or more, Preferably 95% by weight or more is included. The gold compound includes various gold compounds that can be bonded to a sulfur atom. Examples of such include gold bromide, gold chloride, gold cyanide, gold hydroxide, gold oxide, potassium gold cyanide, sodium gold chloride, tetrachloroauric acid and the like.
The gold nanoparticles have an average particle size of 1 to 1000 nm, preferably 10 to 100 nm.
[0007]
In the surface-modified gold nanoparticles of the present invention, a thiol-derived residue (thiol residue) having a long-chain aliphatic hydrocarbon group represented by the following general formula (1) is bonded to the surface, and the thiol It has a structure in which a long-chain aliphatic compound represented by the following general formula (2) or (3) is adsorbed on the surface of gold nanoparticles to which residues are bonded (gold nanoparticles coated with thiol residues).
[0008]
General formula (1)
Embedded image
-S-R 1 (1)
Embedded image
R 2 -Y (2)
Embedded image
R 3 -YR 4 (3)
[0009]
In the general formula (1), R 1 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, preferably 12 or more carbon atoms. The upper limit of the carbon number is not particularly limited, but is usually about 22.
The long chain aliphatic hydrocarbon group includes an alkyl group, an alkenyl group, and an alkynyl group. In this case, a non-reactive substituent (such as an alkoxy group) may be bonded to the hydrocarbon group.
[0010]
In the general formulas (2) and (3), R 2 , R 3 , and R 4 represent a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, preferably 12 or more. The upper limit of the carbon number is not particularly limited, but is usually about 22. The long chain aliphatic hydrocarbon group includes an alkyl group, an alkenyl group, and an alkynyl group.
[0011]
In the general formulas (2) and (3), Y represents a reactive group or an organic compound residue containing a reactive group. In this case, the reactive groups include various conventionally known groups such as hydroxyl groups, thiol groups, carboxyl groups, sulfonic acid groups, phosphoric acid groups, acyl groups, amino groups, amide groups, aldehyde groups, halogen atoms, esters. Groups, keto groups, epoxy groups, cyano groups, cyanate groups, isocyanate groups, heterocyclic groups, aromatic groups and the like are included. In addition, the organic compound residue containing the reactive group includes various conventionally known compounds such as halogen compounds, alcohol compounds, thiol compounds, phenol compounds, carboxylic acid compounds, sulfonic acid compounds, phosphoric acid compounds, thiocyanates. Includes acid compounds, isothiocyanate compounds, amine compounds, cyano compounds, aldehyde compounds, epoxy compounds, acid halogen compounds, acid amide compounds, azo compounds, heterocyclic compounds, aromatic compounds, glycolipids, phospholipids, peptides, proteins, etc. Is done.
[0012]
In the surface-modified gold nanoparticles of the present invention, the ratio of the sulfur compound residue of the general formula (1) is 1 to 80% by weight, preferably 1 to 30% by weight, based on the weight of gold. The proportion of the compound of the general formula (2) or (3) is 1 to 80% by weight, preferably 1 to 30% by weight, based on the weight of gold. The ratio A / B between the weight A of the thiol residue of the general formula (1) and the weight B of the compound of the general formula (2) or (3) is 0.1 to 10, preferably 1 to 2.
[0013]
In one method for producing the surface-modified gold nanoparticles, the gold nanogold particles selected from (i) gold particles, (ii) gold-containing particles containing gold, or (iii) gold compound particles And the following general formula (4)
Embedded image
HS-R 1 (4)
(Wherein R 1 has the same meaning as described above)
The long-chain aliphatic compound represented by the following general formula (2) or (3) is adsorbed on the surface of the gold nanoparticle obtained by reacting the sulfur compound (thiol) represented by
Embedded image
R 2 -Y (2)
Embedded image
R 3 -YR 4 (3)
In the formula, R 2 , R 3 , R 4 and Y have the same meaning as described above.
[0014]
In another method for producing the surface-modified gold nanoparticles, the gold nanoparticles are represented by the following general formula (5):
Embedded image
R 1 —S—S—R 1 (5)
(Wherein R 1 has the same meaning as described above)
The long-chain aliphatic compound represented by the following general formula (2) or the following general formula (3) is adsorbed on the surface of the gold nanoparticles obtained by reacting the sulfur compound (disulfide) represented by:
Embedded image
R 2 -Y (2)
Embedded image
R 3 -YR 4 (3)
In the formula, R 2 , R 3 , R 4 and Y have the same meaning as described above.
[0015]
The reaction between the gold nanoparticles and the sulfur compound is a well-known reaction and is carried out by stirring at 10 to 120 ° C., preferably 20 to 40 ° C., in an organic solvent having solubility for the sulfur compound. can do.
Further, the adsorption of the long-chain aliphatic compound to the gold nanoparticles reacted with the sulfur compound is performed by mixing the gold particles in an organic solvent that is soluble in the long-chain aliphatic compound, After removing the solvent, it can be carried out by adding water to the resulting residue and stirring.
[0016]
In the surface-modified gold nanoparticles of the present invention, the long-chain aliphatic compound component represented by the general formula (2) or (3) is a gold nanoparticle having a sulfur compound residue of the general formula (1) bonded thereto. It is strongly adsorbed and immobilized on the particle surface. This is because van der Waals is strong between the long-chain aliphatic hydrocarbon group of the sulfur compound residue bonded to the gold nanoparticle surface and the long-chain aliphatic hydrocarbon group of the long-chain aliphatic compound adsorbed on the surface. Because power works.
Since this van der Waals force acts universally between long-chain hydrocarbon groups, the molecule to be immobilized is not particularly limited. That is, there is an advantage that almost all molecules having a long-chain hydrocarbon group of a certain length can be immobilized on gold nanoparticles.
[0017]
FIG. 1 shows an explanatory diagram in which the compound of the general formula (2) is adsorbed and immobilized on the gold nanoparticle surface having the thiol residue of the general formula (1) bonded to the surface.
In FIG. 1, G represents gold nanoparticles, 1 and 2 represent long-chain aliphatic hydrocarbon groups, and 3 represents a reactive group or an organic compound residue containing the same.
[0018]
【The invention's effect】
According to the present invention, gold nanoparticles having the sulfur compound residue are prepared in advance, and a desired long-chain aliphatic compound is adsorbed to the gold nano-particle, whereby the surface-modified gold nanoparticle is coated with the long-chain aliphatic compound. Particles can be obtained. In the present invention, since the long-chain aliphatic compound for surface modification does not need to be reacted with gold nanoparticles, various desired surface-modified gold nanoparticles can be easily and efficiently produced.
[0019]
The surface-modified gold nanoparticles according to the present invention can be subjected to various reactions via the reactive group Y contained in the long-chain aliphatic compound.
[0020]
【Example】
Next, the present invention will be described in more detail by examples.
[0021]
Example 1
(1) Preparation of gold colloid This method followed a previous report (Anal. Chem. 1995, 67, 735-743). To a 100 ml round bottom flask equipped with a condenser was added HAuCl 4 aqueous solution (1 mM, 50 ml) and boiled. Subsequently, when a sodium citrate aqueous solution (38.8 mM, 5.0 ml) was added and stirred, the color of the solution changed from light yellow to wine red. After boiling continued for another 10 minutes, heating was stopped and the solution was allowed to cool to room temperature with only stirring. The solution was filtered through a 0.8 μm membrane filter to obtain a solution containing gold colloid particles. Since this solution showed the maximum absorption wavelength of UV-visible absorption at 520 nm, it was clearly confirmed to be gold colloid particles. Moreover, it confirmed that the particle diameter was about 13 nm from the transmission electron microscope.
[0022]
(2) Preparation of decanethiol-coated gold nanoparticles This method was based on a previously reported method (Langmuir, 2003, 19, l168-l172). A chloroform solution (5.0 mmol, 10 ml) in which decanethiol was dissolved was added to 10 ml of the colloidal gold solution prepared above. Subsequently, it was confirmed that the colloidal gold moved to the organic layer within 30 seconds by shaking this mixed solution vigorously. The organic layer was separated, and the organic solvent was removed under reduced pressure to obtain gold nanoparticles coated with decanethiol as a black solid. Gold nanoparticles were purified by washing with methanol and redispersion in chloroform.
[0023]
(3) Coating of Octylglucoside A chloroform solution (1 mM, 1 ml) in which octylglucoside (OG) was dissolved was added to a chloroform solution (1 ml) containing gold nanoparticles coated with decanethiol prepared in (2) above. The organic solvent was removed from this mixed solution, and distilled water (2 ml) was added to the resulting residue.
By shaking this solution vigorously, a blue gold nanoparticle dispersion solution was obtained. This blue color development indicates the presence of gold nanoparticles. In this case, the immobilization of OG was confirmed by infrared spectroscopy.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram in which a long-chain aliphatic compound is adsorbed and immobilized on the surface of a gold nanoparticle having a sulfur compound residue bonded to the surface.
[Explanation of symbols]
1, 2 Long-chain aliphatic hydrocarbon group 3 Reactive group or organic compound residue G containing gold

Claims (3)

(i)金粒子、(ii)金を含む合金粒子又は(iii)金化合物粒子の中から選ばれる金ナノ粒子に、下記一般式(1)
Figure 0003855057
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示す)
で表されるイオウ化合物残基を結合させた金ナノ粒子の表面に、下記一般式(2)又は下記一般式(3)で表される長鎖脂肪族化合物を吸着させた構造を有することを特徴とする表面修飾された金ナノ粒子。
Figure 0003855057
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
Figure 0003855057
(式中、R、Rは同一又は異なっていてもよく、炭素数8以上の長鎖脂肪炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
Gold nanoparticles selected from (i) gold particles, (ii) alloy particles containing gold, or (iii) gold compound particles are represented by the following general formula (1):
Figure 0003855057
(Wherein R 1 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms)
Having a structure in which a long-chain aliphatic compound represented by the following general formula (2) or the following general formula (3) is adsorbed on the surface of the gold nanoparticle to which the sulfur compound residue represented by Features surface-modified gold nanoparticles.
Figure 0003855057
(Wherein R 2 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group)
Figure 0003855057
(In the formula, R 3 and R 4 may be the same or different and each represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group. )
(i)金粒子、(ii)金を含む含金粒子又は(iii)金化合物粒子の中から選ばれるナノ金粒子に、下記一般式(4)
Figure 0003855057
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示す)
で表されるイオウ化合物を反応させて得られた金ナノ粒子の表面に、下記一般式(2)又は下記一般式(3)で表される長鎖脂肪族化合物を吸着させることを特徴とする表面修飾された金ナノ粒子の製造方法。
Figure 0003855057
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
Figure 0003855057
(式中、R、Rは同一又は異なっていてもよく、炭素数8以上の長鎖脂肪炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
Nanogold particles selected from (i) gold particles, (ii) gold-containing particles containing gold, or (iii) gold compound particles are represented by the following general formula (4).
Figure 0003855057
(Wherein R 1 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms)
A long-chain aliphatic compound represented by the following general formula (2) or the following general formula (3) is adsorbed on the surface of a gold nanoparticle obtained by reacting the sulfur compound represented by A method for producing surface-modified gold nanoparticles.
Figure 0003855057
(Wherein R 2 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group)
Figure 0003855057
(In the formula, R 3 and R 4 may be the same or different and each represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group. )
(i)金粒子、(ii)金を含む含金粒子又は(iii)金化合物粒子の中から選ばれるナノ金粒子に、下記一般式(5)
Figure 0003855057
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示す)
で表されるイオウ化合物を反応させて得られた金ナノ粒子の表面に、下記一般式(2)又は下記一般式(3)で表される長鎖脂肪族化合物を吸着させることを特徴とする表面修飾された金ナノ粒子の製造方法。
Figure 0003855057
(式中、Rは炭素数8以上の長鎖脂肪族炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
Figure 0003855057
(式中、R、Rは同一又は異なっていてもよく、炭素数8以上の長鎖脂肪炭化水素基を示し、Yは反応性基又は反応性基を含有する有機化合物残基を示す)
Nanogold particles selected from (i) gold particles, (ii) gold-containing particles containing gold, or (iii) gold compound particles are represented by the following general formula (5).
Figure 0003855057
(Wherein R 1 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms)
A long-chain aliphatic compound represented by the following general formula (2) or the following general formula (3) is adsorbed on the surface of a gold nanoparticle obtained by reacting the sulfur compound represented by A method for producing surface-modified gold nanoparticles.
Figure 0003855057
(Wherein R 2 represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group)
Figure 0003855057
(In the formula, R 3 and R 4 may be the same or different and each represents a long-chain aliphatic hydrocarbon group having 8 or more carbon atoms, and Y represents a reactive group or an organic compound residue containing a reactive group. )
JP2003181957A 2003-06-26 2003-06-26 Surface-modified gold nanoparticles and method for producing the same Expired - Lifetime JP3855057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181957A JP3855057B2 (en) 2003-06-26 2003-06-26 Surface-modified gold nanoparticles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181957A JP3855057B2 (en) 2003-06-26 2003-06-26 Surface-modified gold nanoparticles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005015846A JP2005015846A (en) 2005-01-20
JP3855057B2 true JP3855057B2 (en) 2006-12-06

Family

ID=34182471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181957A Expired - Lifetime JP3855057B2 (en) 2003-06-26 2003-06-26 Surface-modified gold nanoparticles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3855057B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830871B1 (en) * 2006-10-11 2008-05-21 삼성전기주식회사 Method for surface modification of nondispersible metal nanoparticles and modified metal nanoparticles for inkjet by the same method
TWI406842B (en) * 2010-05-28 2013-09-01 Nat Univ Tsing Hua Surface modified nanoparticle and prepartion method thereof
FR2978066B1 (en) * 2011-07-22 2016-01-15 Commissariat Energie Atomique PROCESS FOR FUNCTIONALIZATION OF METAL NANOWIRES AND PRODUCTION OF ELECTRODES
CN102310201B (en) * 2011-10-11 2013-01-02 南京师范大学 Surface phosphonic acid functionalized Au nano particle preparing method

Also Published As

Publication number Publication date
JP2005015846A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
KR100790457B1 (en) Method for producing metal nanoparticles
KR101235873B1 (en) A process for the preparation of silver nano particles
Li et al. Synthesis of CdTe quantum dots in sol− gel-derived composite silica spheres coated with calix [4] arene as luminescent probes for pesticides
Yamamoto et al. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine
JP4520969B2 (en) Metal nanoparticles and method for producing the same
JP5833447B2 (en) Method for producing metal nanoparticles
KR100754326B1 (en) Manufacturing Method of Metal Nanoparticle
US10226822B2 (en) Method for preparing metal nanoparticles using a multi-functional polymer and a reducing agent
US7867316B2 (en) Method of manufacturing metal nanoparticles
US20120267573A1 (en) Method for making fluorescent gold nano-material
KR20090012605A (en) Method for manufacturing metal nanoparticles
JP3855057B2 (en) Surface-modified gold nanoparticles and method for producing the same
CN104437658B (en) Porous silicon oxide nano material as well as preparation method and application thereof
JP3790149B2 (en) Metal nano-sized particles and manufacturing method thereof
Gharib et al. Mechanistic insights and selected synthetic routes of atomically precise metal nanoclusters
JP5062506B2 (en) Extraction method of metal fine particles
JP5540307B2 (en) Method for producing organic molecular film-coated nanoparticles
JP7212409B2 (en) Carbene compound, carbene-metal nanoparticle composite and method for producing the same
JP2010077520A (en) Method for producing fine copper particle, and fine copper particle
JP5586364B2 (en) Method for producing gold nanoparticles
JP4904572B2 (en) Extraction method and use of metal fine particles
CN110090648B (en) Reduced graphene oxide loaded copper palladium oxide nanoparticle and preparation method and application thereof
JP4923120B2 (en) Particle and near-field optical waveguides
JP4896908B2 (en) Nanoparticles and nanoparticle thin films
GOGOI et al. CTAB-assisted synthesis of reduced graphene oxide supported Pd nanoparticles (Pd@ rGO) as a sustainable heterogeneous catalyst for C-2 arylation of indoles with arylboronic acids.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

R150 Certificate of patent or registration of utility model

Ref document number: 3855057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term