JP4904572B2 - Extraction method and use of metal fine particles - Google Patents

Extraction method and use of metal fine particles Download PDF

Info

Publication number
JP4904572B2
JP4904572B2 JP2004350581A JP2004350581A JP4904572B2 JP 4904572 B2 JP4904572 B2 JP 4904572B2 JP 2004350581 A JP2004350581 A JP 2004350581A JP 2004350581 A JP2004350581 A JP 2004350581A JP 4904572 B2 JP4904572 B2 JP 4904572B2
Authority
JP
Japan
Prior art keywords
aqueous
metal
fine particles
metal fine
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004350581A
Other languages
Japanese (ja)
Other versions
JP2005270957A (en
Inventor
佳明 高田
寛樹 平田
純悦 佐藤
大剛 溝口
聖人 室内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Original Assignee
Dai Nippon Toryo KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Mitsubishi Materials Corp filed Critical Dai Nippon Toryo KK
Priority to JP2004350581A priority Critical patent/JP4904572B2/en
Publication of JP2005270957A publication Critical patent/JP2005270957A/en
Application granted granted Critical
Publication of JP4904572B2 publication Critical patent/JP4904572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属微粒子の水分散液から金属微粒子を非水溶媒(有機溶媒)に抽出する方法、水系分散剤の効率的な除去方法、および非水溶媒中で金属微粒子が安定に分散する分散液に関する。本発明の抽出処理方法は、金属ナノロッドの製造技術において、水系分散剤を含有する水溶液中で製造された金属ナノロッドを、非水溶媒中に抽出する方法として有用である。 The present invention relates to a method for extracting metal fine particles from an aqueous dispersion of metal fine particles into a non-aqueous solvent (organic solvent), an efficient method for removing an aqueous dispersant, and a dispersion in which metal fine particles are stably dispersed in a non-aqueous solvent. Regarding liquids. The extraction treatment method of the present invention is useful as a method for extracting metal nanorods produced in an aqueous solution containing an aqueous dispersant into a non-aqueous solvent in the technology for producing metal nanorods.

従来、金コロイド水溶液に非イオン性界面活性剤とエタノールを添加して金コロイドを安定に分散させる方法が知られている(特許文献1)。また、貴金属化合物や銅化合物の水溶液に高分子分散剤と共に還元剤を添加してこれらの化合物を還元し、高分子分散剤によって保護された貴金属コロイドや銅コロイドの水分散液を得る方法が知られている(特許文献2)。また、金属微粒子の水分散液に水溶性無機塩を添加して金属微粒子を非水溶媒中に抽出する方法が知られている(特許文献3)。さらに、貴金属を抽出することを目的として抽出剤を用いて貴金属のみ高効率で抽出し、不純物を抽出しない方法が知られている(特許文献4)。また、親水性の4級アンモニウム塩を添加した水溶液中で金などを電解することによって、アスペクト比が1より大きいナノレベルの金属ナノロッドを製造する方法が知られている(非特許文献1)。 Conventionally, a method of stably dispersing a gold colloid by adding a nonionic surfactant and ethanol to a gold colloid aqueous solution is known (Patent Document 1). In addition, a method is known in which a reducing agent is added together with a polymer dispersant to an aqueous solution of a noble metal compound or a copper compound to reduce these compounds to obtain an aqueous dispersion of a noble metal colloid or a copper colloid protected by the polymer dispersant. (Patent Document 2). Further, a method is known in which a water-soluble inorganic salt is added to an aqueous dispersion of metal fine particles to extract the metal fine particles into a non-aqueous solvent (Patent Document 3). Furthermore, for the purpose of extracting noble metals, a method is known in which only noble metals are extracted with high efficiency using an extractant and impurities are not extracted (Patent Document 4). In addition, a method for producing nano-level metal nanorods having an aspect ratio larger than 1 by electrolyzing gold or the like in an aqueous solution to which a hydrophilic quaternary ammonium salt is added is known (Non-patent Document 1).

(イ)特許文献1に記載されている金コロイドは、水とエタノールの混合溶液中では安定であるが、その他の非水溶媒(例えばトルエン)中では不安定である。(ロ)特許文献2の方法によって得られる金属微粒子は、非水系分散剤を使用して非水溶媒中で合成可能であるが、形状は球状粒子であり、ロッド状粒子を合成することができない。また、金属微粒子の分散剤を置き換えて水中から非水溶媒中へ金属微粒子を相間移動させる技術を示したものではない。(ハ)特許文献3に記載されている水中から非水溶媒中への金属微粒子の抽出は、水中での金属微粒子の分散安定性を減少させて非水溶媒中へ相間移動させるものであり、水系分散剤から非水系分散剤に表面処理する技術とは異なる。 (A) The gold colloid described in Patent Document 1 is stable in a mixed solution of water and ethanol, but unstable in other non-aqueous solvents (for example, toluene). (B) The metal fine particles obtained by the method of Patent Document 2 can be synthesized in a non-aqueous solvent using a non-aqueous dispersant, but the shape is spherical and the rod-shaped particles cannot be synthesized. . Further, it does not show a technique for phase-transferring metal fine particles from water to a non-aqueous solvent by replacing the metal fine particle dispersant. (C) Extraction of fine metal particles from water into a non-aqueous solvent described in Patent Document 3 is to reduce the dispersion stability of fine metal particles in water and move the phase to the non-aqueous solvent. This is different from the technique of surface treatment from an aqueous dispersant to a non-aqueous dispersant.

(ニ)特許文献4に記載されている抽出剤を用いる方法では、金属ナノロッドは4級アンモニウム塩などで表面処理されており、抽出剤が吸着しないため、抽出できない。(ホ)非特許文献1によって得られる金属ナノロッド水分散液は、例えば4級アンモニウム塩が分散剤として用いられているが、非水溶媒中では分散できなかった。また、金属ナノロッド水分散液を遠心分離操作などで水洗し、4級アンモニウム塩を取り除くと、分散安定性が得られなくなり金属ナノロッドが凝集してしまうと云う問題がある。
特開平07−204493号 特開平11−80647号 特許第3209816号 特開平07−62462号 S-S.Chang et al, Langmuir 1999, 15 p701-709
(D) In the method using the extractant described in Patent Document 4, the metal nanorods are surface-treated with a quaternary ammonium salt or the like and cannot be extracted because the extractant is not adsorbed. (E) The metal nanorod aqueous dispersion obtained by Non-Patent Document 1 uses, for example, a quaternary ammonium salt as a dispersant, but could not be dispersed in a non-aqueous solvent. In addition, when the aqueous dispersion of metal nanorods is washed with a centrifugal operation or the like and the quaternary ammonium salt is removed, dispersion stability cannot be obtained and the metal nanorods aggregate.
JP 07-204493 A JP-A-11-80647 Japanese Patent No. 3209816 Japanese Patent Application Laid-Open No. 07-62462 SS.Chang et al, Langmuir 1999, 15 p701-709

従来の方法は、以上のように、金属塩の還元によって金属微粒子を製造する従来の方法は殆どが水溶液中での還元反応であり、金属微粒子の水分散液として得られる。ここで生成された金属微粒子の表面には水系分散剤が吸着しており、このため非水溶媒であるn-ヘキサンやシクロヘキサンなどの炭化水素系溶媒やベンゼンやトルエンなどの芳香族系溶媒に対しては分散し難く、容易に凝集するため、金属微粒子が安定に分散した非水溶媒分散液を得ることができないと云う問題がある。 As described above, the conventional methods for producing metal fine particles by reduction of a metal salt are mostly a reduction reaction in an aqueous solution, and can be obtained as an aqueous dispersion of metal fine particles. An aqueous dispersant is adsorbed on the surface of the metal fine particles generated here, and therefore, the non-aqueous solvent such as hydrocarbon solvents such as n-hexane and cyclohexane and aromatic solvents such as benzene and toluene are used. However, it is difficult to disperse and easily agglomerates, so that there is a problem that a non-aqueous solvent dispersion in which metal fine particles are stably dispersed cannot be obtained.

本発明は、上記問題を解決したものであり、水溶液中で製造された金属微粒子を非水溶媒に抽出して安定に分散させた分散性に優れた金属微粒子の非水溶媒分散液を得る方法を提供する。本発明の処理方法は、水溶液中で製造された金属ナノロッドを非水溶媒中に抽出する方法として有用である。また、本発明の処理方法は、金属微粒子の製造に使用されている水系分散剤を金属微粒子から離脱させて水層に残留させることによって、水系分散剤を効果的に除去し、金属微粒子が安定に分散した非水溶媒分散液を得る方法として有用である。 The present invention solves the above-mentioned problem, and a method for obtaining a non-aqueous solvent dispersion of metal fine particles having excellent dispersibility by extracting metal fine particles produced in an aqueous solution into a non-aqueous solvent and stably dispersing the fine particles. I will provide a. The treatment method of the present invention is useful as a method for extracting metal nanorods produced in an aqueous solution into a non-aqueous solvent. In addition, the treatment method of the present invention effectively removes the aqueous dispersant by separating the aqueous dispersant used in the production of the metal fine particles from the metal fine particles and leaving them in the aqueous layer, thereby stabilizing the metal fine particles. It is useful as a method for obtaining a non-aqueous solvent dispersion dispersed in the solution.

本発明によれば、以下に示す金属微粒子の抽出方法が提供される。
〔1〕金属微粒子と水に対して親和性を有する化合物(水系分散剤と云う)を含む金属微粒子水分散液から該金属微粒子を水と相分離する有機溶媒(非水溶媒と云う)に抽出する方法であって、水系分散剤として次式(I)で示される4級アンモニウム塩を用い、
CH 3 (CH 2 ) n N+(CH 3 ) 3 Br - (nは1〜15の整数) …(I)
非水溶媒が水難溶性の有機溶媒であり、
上記水系分散剤を金属微粒子から離脱させる脱離液としてアルコール類またはケトン類を用い、金属微粒子および非水溶媒に対して親和性を有する化合物(非水系分散剤と云う)として金属微粒子に対する吸着部位の窒素原子または硫黄原子を有する化合物を用い、
非水溶媒と金属微粒子水分散液と脱離液と非水系分散剤とを混合して金属微粒子を非水溶媒に移行させ、該金属微粒子が分散する非水溶媒層を水層から分離することを特徴とする金属微粒子の抽出方法。
〔2〕非水溶媒と金属微粒子水分散液と脱離液と非水系分散剤とを混合する際に、脱離剤を非水系分散剤の存在下で添加し、あるいは脱離剤と非水系分散剤を同時に添加する上記[1]に記載する金属微粒子の抽出方法。
〔3〕金属微粒子が、長軸の長さが400nm未満、およびアスペクト比が1より大きいロッド状の金属微粒子(金属ナノロッドと云う)であって、金ナノロッド、銀ナノロッド、または銅ナノロッドである上記[1]または上記[2]に記載する金属微粒子の抽出方法。
〔4〕非水系分散剤を0.001〜10重量%含む非水溶媒100重量部に対し、金属微粒子含有量が0.001〜30重量%で水系分散剤含有量が0.001〜30重量%の金属微粒子水分散液1〜3000重量部を混合し、この混合液に攪拌しながら脱離液10〜30000重量部を添加し、添加後静置して、金属微粒子が分散した非水溶媒層と水系分散剤が残留した水層とに分離する上記[1]〜上記[3]の何れかに記載する金属微粒子の抽出方法。
According to the present invention, the following metal fine particle extraction method is provided.
[1] Extraction from an aqueous dispersion of metal fine particles containing a metal fine particle and a compound having an affinity for water (referred to as an aqueous dispersant) into an organic solvent (referred to as a non-aqueous solvent) for phase separation of the metal fine particles from water. A quaternary ammonium salt represented by the following formula (I) as an aqueous dispersant:
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (I)
The non-aqueous solvent is a poorly water-soluble organic solvent,
Alcohols or ketones are used as a desorbing solution for releasing the aqueous dispersant from the metal fine particles, and the adsorption site for the metal fine particles as a compound having affinity for the metal fine particles and the non-aqueous solvent (referred to as a non-aqueous dispersant). A compound having a nitrogen atom or sulfur atom of
Mixing a non-aqueous solvent, an aqueous dispersion of metal fine particles, a desorption liquid, and a non-aqueous dispersant to transfer the fine metal particles to the non-aqueous solvent, and separating the non-aqueous solvent layer in which the fine metal particles are dispersed from the aqueous layer A method for extracting fine metal particles.
[2] When mixing the non-aqueous solvent, the metal fine particle aqueous dispersion, the desorbing liquid, and the non-aqueous dispersant, the desorbing agent is added in the presence of the non-aqueous dispersant, or the desorbing agent and the non-aqueous system are mixed. The method for extracting metal fine particles according to the above [1], wherein a dispersant is added simultaneously .
[3] The metal fine particles are rod-shaped metal fine particles (referred to as metal nanorods) having a major axis length of less than 400 nm and an aspect ratio of greater than 1, and are gold nanorods, silver nanorods, or copper nanorods [1] or the method for extracting fine metal particles according to [2] above.
[4] With respect to 100 parts by weight of the non-aqueous solvent containing 0.001 to 10% by weight of the non-aqueous dispersant, the metal fine particle content is 0.001 to 30% by weight and the aqueous dispersant content is 0.001 to 30% by weight. 1 to 3000 parts by weight of a metal fine particle aqueous dispersion was mixed, and 10 to 30000 parts by weight of a desorbing solution was added to the mixed liquid while stirring. The method for extracting fine metal particles according to any one of [1] to [3] above, wherein the layer is separated into a water layer in which the aqueous dispersant remains.

また本発明によれば、以下の方法に適用される金属微粒子の抽出方法および製造方法が提供される。
〔5〕水系分散剤に保護されて水中に分散している金属微粒子を非水溶媒中に抽出する方法、または金属微粒子を抽出した非水溶媒から水系分散剤を減少させる方法、または非水溶媒から金属微粒子の濃縮非水溶媒を作製する方法に適用される上記[1]〜上記[4]の何れかに記載する金属微粒子の抽出方法。
〔6〕水系分散剤を含む金属塩水溶液を還元処理することによって金属ナノロッドを製造し、この金属ナノロッドを請求項1〜請求項5の何れかに記載する方法によって非水溶媒層に抽出し、これを水層と分離する金属ナノロッド非水溶媒分散液の製造方法

Moreover, according to this invention, the extraction method and manufacturing method of a metal microparticle applied to the following method are provided.
[5] A method of extracting metal fine particles protected by an aqueous dispersant and dispersed in water into a non-aqueous solvent, a method of reducing an aqueous dispersant from a non-aqueous solvent from which metal fine particles have been extracted, or a non-aqueous solvent The method for extracting metal fine particles according to any one of the above [1] to [4], which is applied to a method for producing a concentrated nonaqueous solvent for metal fine particles.
[6] A metal nanorod is produced by reducing a metal salt aqueous solution containing an aqueous dispersant, and the metal nanorod is extracted into the non-aqueous solvent layer by the method according to any one of claims 1 to 5, The manufacturing method of the metal nanorod non-aqueous solvent dispersion which isolate | separates this from an aqueous layer .

〔具体的な説明〕
本発明の抽出方法は、金属微粒子と水に対して親和性を有する化合物(水系分散剤と云う)を含む金属微粒子水分散液から該金属微粒子を水と相分離する有機溶媒(非水溶媒と云う)に抽出する方法であって、水系分散剤として次式(I)で示される4級アンモニウム塩を用い、
CH 3 (CH 2 ) n N+(CH 3 ) 3 Br - (nは1〜15の整数) …(I)
非水溶媒が水難溶性の有機溶媒であり、
上記水系分散剤を金属微粒子から離脱させる脱離液としてアルコール類またはケトン類を用い、金属微粒子および非水溶媒に対して親和性を有する化合物(非水系分散剤と云う)として金属微粒子に対する吸着部位の窒素原子または硫黄原子を有する化合物を用い、
非水溶媒と金属微粒子水分散液と脱離液と非水系分散剤とを混合して金属微粒子を非水溶媒に移行させ、該金属微粒子が分散する非水溶媒層を水層から分離することを特徴とする金属微粒子の抽出方法である。


[Specific description]
The extraction method of the present invention comprises an organic solvent (non-aqueous solvent) for phase-separating metal fine particles from water from a metal fine particle aqueous dispersion containing metal fine particles and a compound having an affinity for water (referred to as an aqueous dispersant). And a quaternary ammonium salt represented by the following formula (I) as an aqueous dispersant:
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (I)
The non-aqueous solvent is a poorly water-soluble organic solvent,
Alcohols or ketones are used as a desorbing solution for releasing the aqueous dispersant from the metal fine particles, and the adsorption site for the metal fine particles as a compound having affinity for the metal fine particles and the non-aqueous solvent (referred to as a non-aqueous dispersant). A compound having a nitrogen atom or sulfur atom of
Mixing a non-aqueous solvent, an aqueous dispersion of metal fine particles, a desorption liquid, and a non-aqueous dispersant to transfer the fine metal particles to the non-aqueous solvent, and separating the non-aqueous solvent layer in which the fine metal particles are dispersed from the aqueous layer This is a method for extracting metal fine particles.


出発原料の金属微粒子水分散液に用いられる水系分散剤としては、例えば、下記式(I)で表される界面活性剤が用いられる。この界面活性剤は具体的にはヘキサデシルトリメチルアンモニウムブロミド(CTAB)などである。金属微粒子表面にこの界面活性剤が吸着することによって金属微粒子を安定に水中に分散させる。
CH3(CH2)n+(CH3)3Br- (nは1〜15の整数) …(I)
As the aqueous dispersant used in the starting metal fine particle aqueous dispersion, for example, a surfactant represented by the following formula (I) is used. This surfactant is specifically hexadecyltrimethylammonium bromide (CTAB). The surfactant is adsorbed on the surface of the metal fine particles, whereby the metal fine particles are stably dispersed in water.
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (I)

上記水溶液に分散している金属微粒子を抽出する非水溶媒としては、水難溶性溶媒である石油エーテル、ヘキサン、ヘブタン、オクタン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの炭化水素類、クロロホルムなどのハロゲン化炭化水素類、エチルエーテル、イソプロピルエーテルなどのエーテル類が挙げられる。 Non-aqueous solvents for extracting fine metal particles dispersed in the above aqueous solution include hydrocarbons such as petroleum ether, hexane, hebutane, octane, cyclohexane, benzene, toluene, and xylene, which are poorly water-soluble solvents, and halogenated substances such as chloroform. Examples thereof include hydrocarbons, ethers such as ethyl ether and isopropyl ether.

上記水系分散剤によって表面が保護された金属微粒子は水中で安定に分散し、非水溶媒を混合しても直ぐに相分離して金属微粒子は非水溶媒に抽出されない。そこで、本発明の抽出方法は、金属微粒子と非水溶媒に対して親和性を有する化合物(非水系分散剤)と、上記水系分散剤を金属微粒子から離脱させる脱離液を用いる。すなわち、水系分散剤を含む金属微粒子水分散液を、脱離液の存在下で、非水系分散剤を含む非水溶媒に混合し、金属微粒子表面から水系分散剤を離脱させて非水系分散剤に置換することによって、金属微粒子を水相(層)から非水溶媒相(層)に移行させ、非水溶媒相中で安定に分散させる。 The metal fine particles whose surface is protected by the aqueous dispersant are stably dispersed in water, and even when a non-aqueous solvent is mixed, the metal fine particles are immediately phase-separated and the metal fine particles are not extracted into the non-aqueous solvent. Therefore, the extraction method of the present invention uses a compound (non-aqueous dispersant) having an affinity for metal fine particles and a non-aqueous solvent, and a desorbing liquid for releasing the aqueous dispersant from the metal fine particles. That is, an aqueous dispersion of metal fine particles containing an aqueous dispersant is mixed with a non-aqueous solvent containing a non-aqueous dispersant in the presence of a desorbing liquid, and the aqueous dispersant is released from the surface of the metal fine particles. By substituting with, the fine metal particles are transferred from the aqueous phase (layer) to the non-aqueous solvent phase (layer) and stably dispersed in the non-aqueous solvent phase.

なお、従来は金属微粒子の製造に使用した水系分散剤を除去する場合には、遠心分離や透析などの煩雑な手段を必要としていたが、本発明の上記抽出方法によれば、水と非水系溶媒が相分離を起こした抽出後の溶液では、水系分散剤が水中に優先的に残留するため、非水溶媒中から水系分散剤を効果的に減少させることが可能である。 Conventionally, when removing the aqueous dispersant used for the production of the metal fine particles, complicated means such as centrifugation and dialysis have been required. However, according to the extraction method of the present invention, water and non-aqueous In the solution after extraction in which the solvent causes phase separation, the aqueous dispersant remains preferentially in water, and thus the aqueous dispersant can be effectively reduced from the non-aqueous solvent.

非水系分散剤としては、金属微粒子と非水溶媒に対して親和性を有する化合物が用いられる。具体的には、例えば、金属微粒子に対して吸着性の高い元素である窒素原子、硫黄原子の何れかを吸着部位として有し、かつ非水溶媒に溶解する化合物が好ましい。例えば、(イ)窒素原子を主鎖中に有し、かつ非水溶媒に対して親和性のある側鎖を有する化合物、(ロ)チオール基を有し、かつ非水溶媒に対して親和性の側鎖を有する化合物、(ハ)アミノ基を有し、かつ非水溶媒に対して親和性のある側鎖を有する化合物などが挙げられる。 As the non-aqueous dispersant, a compound having affinity for the metal fine particles and the non-aqueous solvent is used. Specifically, for example, a compound that has either a nitrogen atom or a sulfur atom, which is an element having high adsorptivity to metal fine particles, as an adsorption site and is soluble in a non-aqueous solvent is preferable. For example, (a) a compound having a nitrogen atom in the main chain and a side chain having affinity for a nonaqueous solvent, (b) having a thiol group and affinity for a nonaqueous solvent And (c) a compound having an amino group and having a side chain having an affinity for a non-aqueous solvent.

上記(イ)の化合物は、市販されているものを使用することができ、例えば、ソルスパース13940、ソルスパース24000SC、ソルスパース28000、ソルスパース32000(以上、アビシア社製品)、フローレンDOPA−15B、フローレンDOPA−17(以上、共栄社化学社製品)、アジスパーPB814、アジスパーPB711(以上、味の素ファインテクノ社製品)などが挙げられる。これらの数平均分子量は100〜10000が適当であり、1000〜3000が好ましい。上記数平均分子量が100未満であると非水溶媒中での分散安定性が充分ではなく、10000を超えると非水溶媒中への溶解性が低下し、抽出効率が低下するばかりでなく、分散剤自体が不純物となり金属微粒子の性能(例えば電気特性)が低下する。例えば、ソルスパース24000SCは、金属微粒子に吸着性の高い元素である窒素を吸着部位として主鎖中に多数有し、側鎖は芳香族類、ケトン類、エステル類などの非水溶媒に対して高い溶解性を有するいわゆる櫛型構造の分散剤であり、金属微粒子表面に窒素部位で吸着した状態で非水溶媒中に安定分散することが可能である。 A commercially available compound can be used as the compound (a). For example, Solsperse 13940, Solsperse 24000SC, Solsperse 28000, Solsperse 32000 (above, manufactured by Abyssia), Floren DOPA-15B, Floren DOPA-17 (Above, Kyoeisha Chemical Co., Ltd. product), Ajisper PB814, Ajisper PB711 (above, Ajinomoto Fine Techno Co., Ltd.) and the like. The number average molecular weight is suitably from 100 to 10,000, preferably from 1,000 to 3,000. When the number average molecular weight is less than 100, the dispersion stability in the non-aqueous solvent is not sufficient, and when it exceeds 10,000, the solubility in the non-aqueous solvent is lowered, the extraction efficiency is lowered, and the dispersion is The agent itself becomes an impurity, and the performance (for example, electrical characteristics) of the metal fine particles is deteriorated. For example, Solsperse 24000SC has a large amount of nitrogen, which is an element having high adsorptivity to metal fine particles, in the main chain as an adsorption site, and the side chain is higher than non-aqueous solvents such as aromatics, ketones, and esters. It is a so-called comb-shaped dispersant having solubility, and can be stably dispersed in a non-aqueous solvent while adsorbed on the surface of metal fine particles at a nitrogen site.

上記(ロ)の化合物は、例えば、ブタンチオール、ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオールなどが挙げられる。また、上記(ハ)の化合物は、例えば、グリシン、アラニン、リシン、グルタミン酸、アスパラギン酸、フェニルアラニン、バリン、ロイシンなどが挙げられる。 Examples of the compound (b) include butanethiol, hexanethiol, octanethiol, decanethiol, dodecanethiol, and the like. Examples of the compound (c) include glycine, alanine, lysine, glutamic acid, aspartic acid, phenylalanine, valine, and leucine.

上記脱離液は、親水性を有し、かつ上記水系分散剤の溶解度を高めるものであればよい。具体的には、例えばメタノール、エタノールなどのアルコール類、アセトン、エチルメチルケトンなどのケトン類を用いることができる。 The desorbing liquid only needs to have hydrophilicity and increase the solubility of the aqueous dispersant. Specifically, for example, alcohols such as methanol and ethanol, and ketones such as acetone and ethyl methyl ketone can be used.

上記抽出処理の各溶液の具体的な量比は、例えば、非水系分散剤0.001〜10重量%、好ましくは0.1〜3重量%含む非水溶媒100重量部に対し、金属微粒子含有量が0.001〜30重量%で水系分散剤含有量が0.001〜30重量%、好ましくは1〜20重量%の金属微粒子水分散液1〜3000重量部、好ましくは100〜1000重量部を混合し、この混合液に攪拌しながら、脱離液10〜30000重量部、好ましくは100〜1000重量部を添加した後に静置すると良い。 The specific amount ratio of each solution of the above extraction treatment is, for example, containing metal fine particles with respect to 100 parts by weight of the non-aqueous solvent containing 0.001 to 10% by weight, preferably 0.1 to 3% by weight of the non-aqueous dispersant. 1 to 3000 parts by weight, preferably 100 to 1000 parts by weight of an aqueous dispersion of metal fine particles having an amount of 0.001 to 30% by weight and an aqueous dispersant content of 0.001 to 30% by weight, preferably 1 to 20% by weight. It is good to stand still after adding 10-30000 weight part of desorption liquid, preferably 100-1000 weight part, stirring this liquid mixture.

非水系分散剤の使用量が上記範囲より多過ぎるとコスト的に不利であり、また非水系分散剤自体が不純物となる場合がある。一方、この使用量が少なすぎると、金属微粒子表面に吸着する非水系分散剤の量が少ないために抽出が不十分になり、また非水溶媒中での分散安定性が低下して凝集しやすくなる。また、脱離液の使用量が上記範囲より多過ぎるとコスト的に不利であり、一方、この使用量が少なすぎると、水系分散剤の除去が不十分になり抽出効果が低下する。 If the amount of the non-aqueous dispersant used is more than the above range, it is disadvantageous in terms of cost, and the non-aqueous dispersant itself may be an impurity. On the other hand, if the amount used is too small, extraction is insufficient due to the small amount of non-aqueous dispersant adsorbed on the surface of the metal fine particles, and the dispersion stability in the non-aqueous solvent is lowered and aggregation tends to occur. Become. Further, if the amount of the desorbing liquid used is more than the above range, it is disadvantageous in terms of cost. On the other hand, if the amount used is too small, the removal of the aqueous dispersant becomes insufficient and the extraction effect decreases.

金属微粒子水分散液、非水溶媒、脱離液、非水系分散剤を混合すると、脱離液の作用で金属微粒子表面の水系分散剤が溶解し、あるいは水系分散剤の金属微粒子に対する吸着力が弱まり、水系分散剤が金属微粒子表面から除去され、代わりに非水系分散剤が金属微粒子に対する吸着部位を介して金属微粒子表面に吸着し、水系分散剤が非水系分散剤に置換される。非水系分散剤はその側鎖の非水溶媒に対する高い分散性によって上記金属微粒子を非水溶媒中に安定に分散させる。 When the metal fine particle aqueous dispersion, non-aqueous solvent, desorbing liquid, and non-aqueous dispersant are mixed, the water-based dispersant on the surface of the metal fine particles is dissolved by the action of the desorbing liquid, or the adsorbing power of the aqueous dispersant to the metal fine particles is increased. The water-based dispersant is removed from the surface of the metal fine particles, and instead, the non-aqueous dispersant is adsorbed on the surface of the metal fine particles through the adsorption site for the metal fine particles, and the water-based dispersant is replaced with the non-aqueous dispersant. The non-aqueous dispersant stably disperses the metal fine particles in the non-aqueous solvent due to the high dispersibility of the side chain in the non-aqueous solvent.

非水系分散剤は予め非水溶媒に添加してもよく、あるいは金属微粒子水分散液と非水溶媒の混合液に非水系分散剤を添加しても良い。脱離液は非水系分散剤の存在下で添加するのが好ましい。非水系分散剤が存在しない状態で脱離液を添加すると金属微粒子が凝集するので好ましくない。なお、脱離液と非水系分散剤の種類によってはこれらを同時に添加してもよい。 The non-aqueous dispersant may be added in advance to the non-aqueous solvent, or the non-aqueous dispersant may be added to a mixed liquid of the metal fine particle aqueous dispersion and the non-aqueous solvent. The detachment liquid is preferably added in the presence of a non-aqueous dispersant. It is not preferable to add the detachment liquid in the absence of the non-aqueous dispersant because the metal fine particles aggregate. Depending on the types of the desorbing liquid and the non-aqueous dispersant, these may be added simultaneously.

本発明の抽出法は、(イ)水系分散剤に保護されて水中に分散している金属微粒子を、任意の非水溶媒中へ安定に分散させ、あるいは任意の非水溶媒中に抽出する方法、(ロ)金属微粒子製造に使用された余分な水系分散剤を除去する方法、(ハ)金属微粒子の濃縮非水溶媒を作製する方法などに広く適用することができる。 The extraction method of the present invention is (a) a method in which metal fine particles protected by an aqueous dispersant and dispersed in water are stably dispersed in an arbitrary non-aqueous solvent or extracted into an arbitrary non-aqueous solvent. It can be widely applied to (b) a method for removing excess aqueous dispersant used in the production of metal fine particles, and (c) a method for producing a concentrated nonaqueous solvent for metal fine particles.

本発明の金属微粒子の抽出法は金属ナノロッドの製造方法に適用することができる。具体的には、水系分散剤を含む金属塩水溶液に、化学的還元、電気化学的還元、光還元、超音波還元のいずれかの方法によって還元処理することによって金属ナノロッドを製造し、この金属ナノロッドが分散した水分散液に上記抽出方法を適用して金属ナノロッドが安定に分散した非水溶媒分散液を製造することができる。金属塩としては、例えば、ハロゲン化金、シアン化金、などが挙げられる。さらに水系分散剤として上記化学式(I)で表される界面活性剤を含むものを合成原液として用いることができる。 The method for extracting metal fine particles of the present invention can be applied to a method for producing metal nanorods. Specifically, a metal nanorod is manufactured by reducing a metal salt aqueous solution containing an aqueous dispersant by any one of chemical reduction, electrochemical reduction, photoreduction, and ultrasonic reduction. A non-aqueous solvent dispersion in which metal nanorods are stably dispersed can be produced by applying the above extraction method to an aqueous dispersion in which is dispersed. Examples of the metal salt include gold halide and gold cyanide. Further, an aqueous dispersant containing a surfactant represented by the above chemical formula (I) can be used as a synthetic stock solution.

さらに上記合成溶液は、金属ナノロッドの成長促進剤として下記化学式(II)(III)で表される界面活性剤を添加したものを用いることができる。式(II)で表される具体的な界面活性剤はジドデシルジメチルアンモニウムブロミド(DDAB)などであり、式(III)で表される具体的な界面活性剤はテトラヘキシルアンモニウムブロミド(TC6AB)、テトラオクチルアンモニウムブロミド(TC8AB)などである。
[CH3(CH2)n]2+(CH3)2Br- (nは1〜15の整数)…(II)
[CH3(CH2)n]4+Br- (nは1〜15の整数)…(III)
Further, the synthetic solution may be a solution obtained by adding a surfactant represented by the following chemical formulas (II) and (III) as a growth promoter for metal nanorods. The specific surfactant represented by the formula (II) is didodecyldimethylammonium bromide (DDAB) and the like, and the specific surfactant represented by the formula (III) is tetrahexylammonium bromide (TC6AB), Tetraoctylammonium bromide (TC8AB) and the like.
[CH 3 (CH 2 ) n ] 2 N + (CH 3 ) 2 Br (n is an integer of 1 to 15) (II)
[CH 3 (CH 2 ) n ] 4 N + Br (N is an integer from 1 to 15) ... (III)

上記方法によって得た金属ナノロッドの水分散液に、上記抽出方法を適用し、混合溶液を約一昼夜静置すると、金属ナノロッドが非水溶媒層に抽出される。これを水層と分離して金属ナノロッドが安定に分散した金属ナノロッド非水溶媒分散液を得ることができる。具体的には、例えば、上記製造方法によれば、可視光、近赤外光に対する選択的な吸収機能および電磁波遮蔽機能を有する長軸長さが400nm未満、好ましくは20〜300nmであって、アスペクト比が1より大きい、好ましくはアスペクト比が2〜10の金などに代表される金属ナノロッドが分散した水分散液が得られるので、この金属ナノロッド水分散液に上記抽出方法を適用することによって、上記長軸長さとアスペクト比を有する金属ナノロッドが分散した非水溶媒分散液を得ることができる。 When the extraction method is applied to the aqueous dispersion of metal nanorods obtained by the above method and the mixed solution is allowed to stand for about one day, the metal nanorods are extracted into the non-aqueous solvent layer. By separating this from the aqueous layer, a metal nanorod non-aqueous solvent dispersion in which metal nanorods are stably dispersed can be obtained. Specifically, for example, according to the above production method, the long axis length having a selective absorption function and an electromagnetic wave shielding function for visible light and near infrared light is less than 400 nm, preferably 20 to 300 nm, Since an aqueous dispersion in which metal nanorods represented by gold or the like having an aspect ratio of greater than 1, preferably an aspect ratio of 2 to 10 is dispersed is obtained, by applying the above extraction method to this metal nanorod aqueous dispersion A nonaqueous solvent dispersion in which metal nanorods having the major axis length and aspect ratio are dispersed can be obtained.

この金属ナノロッド非水溶媒分散液から、エバポレーターなどで非水溶媒と脱離液とを除去することによって、非水系分散剤で被覆された金属ナノロッドを得ることができる。なお、非水系分散剤が固体の場合は粉体、液体の場合はペーストの金属ナノロッドが得られる。粉体のものは非水系分散剤を溶剤で溶解すればペーストの金属ナノロッドを得ることが可能である。また、このペーストは遠心分離、透析、などの手法で残留する水系分散剤や余剰の非水系分散剤を低減ないし除去することが可能である。 The metal nanorods coated with the nonaqueous dispersant can be obtained by removing the nonaqueous solvent and the desorbed liquid from the metal nanorod nonaqueous solvent dispersion with an evaporator or the like. When the non-aqueous dispersant is a solid, a powder metal nanorod is obtained, and when the non-aqueous dispersant is a liquid, a paste metal nanorod is obtained. In the case of a powder, it is possible to obtain a paste of metal nanorods by dissolving a non-aqueous dispersant in a solvent. In addition, this paste can reduce or remove the remaining aqueous dispersant and excess non-aqueous dispersant by means of centrifugation, dialysis, and the like.

本発明の抽出方法によれば、金属微粒子の水分散液から金属微粒子を非水溶媒に抽出して安定に分散させることができる。従って、金属微粒子が安定に分散した非水溶媒分散液を得ることができる。本発明の処理方法は、金属ナノロッドの製造技術において、水溶液中で製造された金属ナノロッドを非水溶媒中に抽出する方法、あるいは金属ナノロッドの非水溶媒分散液の製造方法として有用である。金属ナノロッドとしては金ナノロッド、銀ナノロッド、銅ナノロッドなどが挙げられる。因みに、金ナノロッドはアスペクト比の調整によって可視光線から近赤外線にかけて選択的な吸収を有し、かつ熱的にも化学的にも非常に安定である。これらの金属ナノロッドはコーティング組成物、塗膜、フィルム、配線材料、触媒、着色剤、化粧品、近赤外線吸収材、偽造防止インク、電磁波シールド材などに広く用いることができる。金属ナノロッドをこれらの材料として用いる場合、非水溶媒の分散液にすることによってその適用範囲を広げることができる。 According to the extraction method of the present invention, metal fine particles can be extracted from an aqueous dispersion of metal fine particles into a non-aqueous solvent and stably dispersed. Accordingly, a non-aqueous solvent dispersion in which metal fine particles are stably dispersed can be obtained. The treatment method of the present invention is useful as a method for extracting metal nanorods produced in an aqueous solution into a non-aqueous solvent or a method for producing a non-aqueous solvent dispersion of metal nanorods in the technology for producing metal nanorods. Examples of metal nanorods include gold nanorods, silver nanorods, and copper nanorods. Incidentally, gold nanorods have selective absorption from visible light to near infrared by adjusting the aspect ratio, and are very stable both thermally and chemically. These metal nanorods can be widely used in coating compositions, coating films, films, wiring materials, catalysts, colorants, cosmetics, near-infrared absorbing materials, anti-counterfeiting inks, electromagnetic shielding materials, and the like. When metal nanorods are used as these materials, the application range can be expanded by using a dispersion of a non-aqueous solvent.

本発明の上記何れかの方法によって抽出した金属微粒子ないし金属ナノロッドは、これらを含む組成物であって、コーティング組成物、塗膜、フィルム、光学フィルター材料、配線材料、電極材料、触媒、着色剤、化粧品、近赤外線吸収剤、偽造防止インク、電磁波シールド材、表面増強蛍光センサー、生体マーカー、ナノ導波路、記録材料、記録素子、偏光材料、薬物送達システム(DDS)用薬物保持体、バイオセンサー、DNAチップ、または検査薬に適用することができる。 Metal fine particles or metal nanorods extracted by any one of the above methods of the present invention are compositions containing these, and are coating compositions, coating films, films, optical filter materials, wiring materials, electrode materials, catalysts, colorants. , Cosmetics, near-infrared absorber, anti-counterfeiting ink, electromagnetic shielding material, surface-enhanced fluorescent sensor, biomarker, nanowaveguide, recording material, recording element, polarizing material, drug delivery system (DDS) drug holder, biosensor It can be applied to a DNA chip or a test drug.

以下、本発明を実施例によって具体的に示す。なお、実施例と共に比較例を示す。各例について、金ナノロッド水分散液の成分、非水系分散剤および水系分散剤、非水溶媒、脱離液の種類、抽出割合、分散安定性を表1に示す。 Hereinafter, the present invention will be specifically described by way of examples. In addition, a comparative example is shown with an Example. Table 1 shows the components of the gold nanorod aqueous dispersion, the non-aqueous dispersant and the aqueous dispersant, the non-aqueous solvent, the type of the detachment liquid, the extraction ratio, and the dispersion stability for each example.

表1に示す配合量で、非水系分散剤を非水溶媒に溶解し、この溶液に金ナノロッドと水系分散剤を含む金属微粒子水分散液250重量部を攪拌しながら添加し混合した。なお、上記金属微粒子水分散液の金ナノロッドは長軸長さ40nm、短軸長さ10nm、アスペクト比4.0であり、金ナノロッド含有量は0.03重量%、水系分散剤の含有量は5重量%である。上記混合液を攪拌しながら、表1に示す配合量で、離脱液を5回に分けて添加した後にそのまま5分間攪拌した。攪拌停止後、24時間静置すると、非水系分散剤で表面処理された金ナノロッドが分散した鮮やかな赤色の非水溶媒層と水系分散剤が溶解した無色の水層とに分離した。その後、非水溶媒層のみを採取し、エバボレーターを用いて非水溶媒を除去すると、金ナノロッドを含有する非水系分散剤粉末またはペーストが得られた。誘導結合プラズマ分析装置(ICP)にて金の含有量を測定し、抽出効率を調べた。また、粉末またはペースト1重量部を非水系溶媒10重量部で希釈し、目視による分散安定性を調べた。この結果を表1に示した(実施例1:No.1〜No.3、比較例:No.1〜No.4)。 In a blending amount shown in Table 1, a non-aqueous dispersant was dissolved in a non-aqueous solvent, and 250 parts by weight of a metal fine particle aqueous dispersion containing gold nanorods and an aqueous dispersant was added and mixed with this solution while stirring. In addition, the gold nanorod of the metal fine particle aqueous dispersion has a major axis length of 40 nm, a minor axis length of 10 nm, an aspect ratio of 4.0, a gold nanorod content of 0.03% by weight, and an aqueous dispersant content of 5% by weight. While stirring the mixed liquid, the release liquid was added in five portions at the blending amount shown in Table 1, and then stirred for 5 minutes. After the stirring was stopped, the mixture was allowed to stand for 24 hours. The mixture was separated into a bright red non-aqueous solvent layer in which gold nanorods surface-treated with a non-aqueous dispersant were dispersed and a colorless aqueous layer in which the aqueous dispersant was dissolved. Thereafter, only the non-aqueous solvent layer was collected, and the non-aqueous solvent was removed using an evaporator, whereby a non-aqueous dispersant powder or paste containing gold nanorods was obtained. The gold content was measured with an inductively coupled plasma analyzer (ICP) to examine the extraction efficiency. Further, 1 part by weight of the powder or paste was diluted with 10 parts by weight of a non-aqueous solvent, and the visual stability of dispersion was examined. The results are shown in Table 1 (Example 1: No. 1 to No. 3, Comparative example: No. 1 to No. 4).

表1の結果に示すように、実施例1の試料No.1〜試料No.3では、非水系分散剤と脱離液が併用されており、従って、脱離液によって金ナノロッド表面の水系分散剤が非水系分散剤に置換されるので、金ナノロッドが非水溶媒中にほぼ完全に抽出されており、分散安定性も優れている。 As shown in the results of Table 1, in Sample No. 1 to Sample No. 3 of Example 1, a non-aqueous dispersant and a desorbing liquid are used together. Since the agent is replaced with a non-aqueous dispersant, the gold nanorods are almost completely extracted in the non-aqueous solvent, and the dispersion stability is also excellent.

一方、比較例試料No.1、2は非水系分散剤に代えて水系分散剤(分散剤D)を用いた例であるが、脱離液を添加しても非水系分散剤を含まないため金ナノロッドは非水溶媒中に殆ど抽出されず、また分散安定性も悪い。比較例試料No.3、4は脱離液を用いず、非水溶媒のトルエンの使用量を増やした例であるが、トルエンは水系分散剤を離脱させる作用がないので、金ナノロッド表面の水系分散剤が溶解されず、非水系分散によって金ナノロッドが表面処理されないため、金ナノロッドは非水溶媒中へ殆ど抽出されず、また分散安定性も悪い。 On the other hand, Comparative Sample Nos. 1 and 2 are examples in which an aqueous dispersant (dispersant D) is used in place of the non-aqueous dispersant. Gold nanorods are hardly extracted in a non-aqueous solvent and have poor dispersion stability. Comparative Example Sample Nos. 3 and 4 are examples in which the amount of toluene used as a non-aqueous solvent was increased without using a desorbing solution, but since toluene does not have an action of releasing the aqueous dispersant, the aqueous system on the gold nanorod surface Since the dispersant is not dissolved and the gold nanorods are not surface-treated by non-aqueous dispersion, the gold nanorods are hardly extracted into the non-aqueous solvent, and the dispersion stability is poor.

Figure 0004904572
Figure 0004904572

ヘキサデシルトリメチルアンモニウムブロミド(CTAB)80mM、テトラドデシルアンモニウムブロミド(TC8AB)16mMを含む水溶液500gに、アセトン5.5g、シクロヘキサノン4.5gを添加したものを電解液として用い、陽極に純度99.9%以上の金板を用い、陰極に純度99.9%以上の白金板を用い、さらに99.9%以上の銀板を挿入し、20mAの低電流を120分通電して電解還元を行い、金ナノロッド水分散液(長軸長さ40nm、短軸長さ10nm、アスペクト比4.0)を得た。この金ナノロッド水分散液(金:0.03wt%、0.075g)250gを、非水系分散剤(ソルスパース24000SC:アビシア社製品)を1wt%含むトルエン100gに混合し、この混合溶液を攪拌しながらエタノール500gを添加した。24時間静置後、水相と有機相を分離して金ナノロッドのトルエン分散液を得た。トルエン分散液からエバポレーターでトルエンを除去し、分散剤で被覆された金ナノロッド粉末を得た。この粉末に少量のトルエン(2g)を添加し、金ナノロッドトルエン分散ペーストが得られた。誘導結合プラズマ分析装置(ICP)にて金含有量を測定したところ、水中は0.001g、トルエン分散ペースト中は0.074gであり、99%の金が水相からトルエン相に抽出された。





A solution of 5.5 g of acetone and 4.5 g of cyclohexanone in 500 g of an aqueous solution containing 80 mM hexadecyltrimethylammonium bromide (CTAB) and 16 mM tetradodecylammonium bromide (TC8AB) was used as the electrolyte, and the anode had a purity of 99.9%. Using the above gold plate, a platinum plate with a purity of 99.9% or more is used as the cathode, a silver plate with a purity of 99.9% or more is further inserted, and a 20 mA low current is applied for 120 minutes to perform electrolytic reduction. A nanorod aqueous dispersion (major axis length 40 nm, minor axis length 10 nm, aspect ratio 4.0) was obtained. 250 g of this gold nanorod aqueous dispersion (gold: 0.03 wt%, 0.075 g) is mixed with 100 g of toluene containing 1 wt% of a non-aqueous dispersant (Solsperse 24000SC: manufactured by Avicia), and 500 g of ethanol is stirred while stirring the mixed solution. Was added. After standing for 24 hours, the aqueous phase and the organic phase were separated to obtain a toluene dispersion of gold nanorods. Toluene was removed from the toluene dispersion with an evaporator to obtain a gold nanorod powder coated with a dispersant. A small amount of toluene (2 g) was added to this powder to obtain a gold nanorod toluene-dispersed paste. When the gold content was measured by an inductively coupled plasma analyzer (ICP), it was 0.001 g in water and 0.074 g in the toluene dispersion paste, and 99% of gold was extracted from the aqueous phase to the toluene phase.





Claims (6)

金属微粒子と水に対して親和性を有する化合物(水系分散剤と云う)を含む金属微粒子水分散液から該金属微粒子を水と相分離する有機溶媒(非水溶媒と云う)に抽出する方法であって、水系分散剤として次式(I)で示される4級アンモニウム塩を用い、
CH 3 (CH 2 ) n N+(CH 3 ) 3 Br - (nは1〜15の整数) …(I)
非水溶媒が水難溶性の有機溶媒であり、
上記水系分散剤を金属微粒子から離脱させる脱離液としてアルコール類またはケトン類を用い、金属微粒子および非水溶媒に対して親和性を有する化合物(非水系分散剤と云う)として金属微粒子に対する吸着部位の窒素原子または硫黄原子を有する化合物を用い、
非水溶媒と金属微粒子水分散液と脱離液と非水系分散剤とを混合して金属微粒子を非水溶媒に移行させ、該金属微粒子が分散する非水溶媒層を水層から分離することを特徴とする金属微粒子の抽出方法。
A method of extracting metal fine particles from an aqueous dispersion of metal fine particles containing a metal fine particle and a compound having affinity for water (referred to as an aqueous dispersant) into an organic solvent (referred to as a non-aqueous solvent) for phase separation from water. A quaternary ammonium salt represented by the following formula (I) as an aqueous dispersant:
CH 3 (CH 2 ) n N + (CH 3 ) 3 Br (n is an integer of 1 to 15) (I)
The non-aqueous solvent is a poorly water-soluble organic solvent,
Alcohols or ketones are used as a desorbing solution for releasing the aqueous dispersant from the metal fine particles, and the adsorption site for the metal fine particles as a compound having affinity for the metal fine particles and the non-aqueous solvent (referred to as a non-aqueous dispersant). A compound having a nitrogen atom or sulfur atom of
Mixing a non-aqueous solvent, an aqueous dispersion of metal fine particles, a desorption liquid, and a non-aqueous dispersant to transfer the fine metal particles to the non-aqueous solvent, and separating the non-aqueous solvent layer in which the fine metal particles are dispersed from the aqueous layer A method for extracting fine metal particles.
非水溶媒と金属微粒子水分散液と脱離液と非水系分散剤とを混合する際に、脱離剤を非水系分散剤の存在下で添加し、あるいは脱離剤と非水系分散剤を同時に添加する請求項1に記載する金属微粒子の抽出方法。 When mixing the non-aqueous solvent, the metal fine particle aqueous dispersion, the release liquid, and the non-aqueous dispersant, the release agent is added in the presence of the non-aqueous dispersant, or the release agent and the non-aqueous dispersant are added. The method for extracting metal fine particles according to claim 1, which is added simultaneously . 金属微粒子が、長軸の長さが400nm未満、およびアスペクト比が1より大きいロッド状の金属微粒子(金属ナノロッドと云う)であって、金ナノロッド、銀ナノロッド、または銅ナノロッドである請求項1または請求項2に記載する金属微粒子の抽出方法。 The metal fine particles are rod-shaped metal fine particles (referred to as metal nanorods) having a major axis length of less than 400 nm and an aspect ratio of greater than 1, and are gold nanorods, silver nanorods, or copper nanorods. The method for extracting metal fine particles according to claim 2. 非水系分散剤を0.001〜10重量%含む非水溶媒100重量部に対し、金属微粒子含有量が0.001〜30重量%で水系分散剤含有量が0.001〜30重量%の金属微粒子水分散液1〜3000重量部を混合し、この混合液に攪拌しながら脱離液10〜30000重量部を添加し、添加後静置して、金属微粒子が分散した非水溶媒層と水系分散剤が残留した水層とに分離する請求項1〜請求項3の何れかに記載する金属微粒子の抽出方法。 A metal having a metal fine particle content of 0.001 to 30% by weight and an aqueous dispersant content of 0.001 to 30% by weight with respect to 100 parts by weight of the non-aqueous solvent containing 0.001 to 10% by weight of the non-aqueous dispersant. Mix 1 to 3000 parts by weight of the fine particle aqueous dispersion, add 10 to 30000 parts by weight of the desorbing solution with stirring to the mixed liquid, and leave the mixture to stand after addition, and the nonaqueous solvent layer in which the metal fine particles are dispersed and the aqueous system The method for extracting fine metal particles according to any one of claims 1 to 3, wherein the metal fine particles are separated into an aqueous layer in which the dispersant remains. 水系分散剤に保護されて水中に分散している金属微粒子を非水溶媒中に抽出する方法、または金属微粒子を抽出した非水溶媒から水系分散剤を減少させる方法、または非水溶媒から金属微粒子の濃縮非水溶媒を作製する方法に適用される請求項1〜請求項4の何れかに記載する金属微粒子の抽出方法。 A method of extracting metal fine particles protected by an aqueous dispersant and dispersed in water into a non-aqueous solvent, a method of reducing an aqueous dispersant from a non-aqueous solvent from which metal fine particles have been extracted, or a metal fine particle from a non-aqueous solvent The method for extracting fine metal particles according to any one of claims 1 to 4, which is applied to a method for producing a concentrated nonaqueous solvent . 水系分散剤を含む金属塩水溶液を還元処理することによって金属ナノロッドを製造し、この金属ナノロッドを請求項1〜請求項5の何れかに記載する方法によって非水溶媒層に抽出し、これを水層と分離する金属ナノロッド非水溶媒分散液の製造方法 Metal nanorods are produced by reducing a metal salt aqueous solution containing an aqueous dispersant, and the metal nanorods are extracted into a non-aqueous solvent layer by the method according to any one of claims 1 to 5, and this is extracted with water. The manufacturing method of the metal nanorod non-aqueous solvent dispersion liquid which isolate | separates from a layer .
JP2004350581A 2004-02-26 2004-12-03 Extraction method and use of metal fine particles Expired - Fee Related JP4904572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350581A JP4904572B2 (en) 2004-02-26 2004-12-03 Extraction method and use of metal fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004052217 2004-02-26
JP2004052217 2004-02-26
JP2004350581A JP4904572B2 (en) 2004-02-26 2004-12-03 Extraction method and use of metal fine particles

Publications (2)

Publication Number Publication Date
JP2005270957A JP2005270957A (en) 2005-10-06
JP4904572B2 true JP4904572B2 (en) 2012-03-28

Family

ID=35171158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350581A Expired - Fee Related JP4904572B2 (en) 2004-02-26 2004-12-03 Extraction method and use of metal fine particles

Country Status (1)

Country Link
JP (1) JP4904572B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113059A (en) * 2005-10-19 2007-05-10 Fujifilm Corp Method for producing dispersion of metal microparticles, dispersion of metal microparticles, coloring composition using the same, photosensitive printing material, substrate provided with light-shielding image, color filter and liquid crystal display
JP4938285B2 (en) * 2005-10-28 2012-05-23 トヨタ自動車株式会社 Method for producing core / shell composite nanoparticles
JP5157468B2 (en) * 2007-01-19 2013-03-06 三菱マテリアル株式会社 Metal film forming method and metal film obtained by the method
EP2140957A4 (en) * 2007-04-25 2012-09-19 Toyota Motor Co Ltd Process for producing core/shell composite nanoparticle
US8722562B2 (en) * 2008-08-22 2014-05-13 Nissan Chemical Industries, Ltd. Metal fine particle dispersant containing branched polymer compound having ammonium group
CN101905331B (en) * 2010-08-24 2012-02-22 厦门大学 Method for extracting nano-silver in aqueous phase by using ionic liquid
WO2016136723A1 (en) * 2015-02-23 2016-09-01 株式会社フルヤ金属 Method for nanoparticle purification

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209816B2 (en) * 1991-12-28 2001-09-17 平井 英史 Method for preparing non-aqueous dispersion of metal fine particles and / or metal compound fine particles
JP3266066B2 (en) * 1997-09-05 2002-03-18 三菱マテリアル株式会社 Composition for forming conductive film containing fine metal particles with excellent storage stability
JP3402214B2 (en) * 1998-09-14 2003-05-06 三菱マテリアル株式会社 Method for producing metal fine particle dispersion
WO2000076699A1 (en) * 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
JP2001335804A (en) * 2000-05-25 2001-12-04 Nobuo Kimizuka Silver colloid substance and silver colloid associated body substance
JP2002256308A (en) * 2001-02-28 2002-09-11 Mitsuboshi Belting Ltd Method for manufacturing fine noble-metal particle
JPWO2002094953A1 (en) * 2001-05-21 2004-10-07 日本ペイント株式会社 Alcohol solution of noble metal or copper colloid, method for producing the same, and coating composition
JP3778074B2 (en) * 2001-10-23 2006-05-24 住友金属鉱山株式会社 Method for producing nickel powder dispersed organic slurry
JP4221556B2 (en) * 2002-08-08 2009-02-12 セイコーエプソン株式会社 Method for producing gold aqueous dispersion
JP4221557B2 (en) * 2002-08-08 2009-02-12 セイコーエプソン株式会社 Method for producing gold non-aqueous dispersion, method for producing gold aqueous dispersion, method for producing gold oil-in-water emulsion, and ink jet recording ink
JP4066247B2 (en) * 2002-10-07 2008-03-26 日本ペイント株式会社 Nickel colloid solution and method for producing the same
JP4332610B2 (en) * 2003-07-15 2009-09-16 三菱マテリアル株式会社 Composition containing metal nanorod and metal oxide powder and use thereof
JP2005097581A (en) * 2003-08-25 2005-04-14 Mitsubishi Materials Corp Metal nano rod with small minor axis, composition containing the rod, and application thereof
JP2005068019A (en) * 2003-08-25 2005-03-17 Mitsubishi Materials Corp Metal nanorod-containing cosmetic
JP4259220B2 (en) * 2003-08-25 2009-04-30 三菱マテリアル株式会社 Metal nanorod manufacturing method

Also Published As

Publication number Publication date
JP2005270957A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP2007217794A (en) Metal nanoparticle and method of producing the same
JP4821951B2 (en) Wire-shaped gold fine particles, production method thereof, containing composition and use
JP5070153B2 (en) Method for producing metal nanoparticles
EP2649621B1 (en) Stable dispersions of monocrystalline nanometric silver particles
Waters et al. Purification of dodecanethiol derivatised gold nanoparticles
EP2151293B1 (en) Method for production of silver fine powder covered with organic substance
KR20100112555A (en) Silver micropowder, silver ink, silver coating, and methods for production of these materials
JP4524745B2 (en) Metal nanowire-containing conductive material and use thereof
JP5062506B2 (en) Extraction method of metal fine particles
JP2006070300A (en) Metal particulate-containing composition and its application
JP4904572B2 (en) Extraction method and use of metal fine particles
JP5139848B2 (en) Silver nanoparticles coated with a derivative of gallic acid
WO2009087919A1 (en) Silver micropowder having excellent affinity for polar medium, and silver ink
CN103827035A (en) Methods of preparing metal quantum clusters in molecular confinement
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP2009138243A (en) Silver fine powder with excellent affinity for polar medium, silver ink, and method for producing silver particle
JP2013151753A (en) Silver micropowder excellent in affinity for polar medium, and silver ink
JP4279329B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP2006118036A (en) Metal fine particle, method for producing metal fine particle, composition containing same, and application thereof
JP2005281781A (en) Method for producing copper nanoparticle
JP5083685B2 (en) Surface treatment method of metal fine particles and dried or dispersion of metal fine particles
JP2020063487A (en) AgPd CORE-SHELL PARTICLE AND USE THEREOF
JP2009215502A (en) Silver ink containing alicyclic and aromatic hydrocarbon as solvent
JP2003147417A (en) Nano-size metal particles and method for manufacturing the same
JP2005317394A (en) Conductive material containing metal nanorods and its intended use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees