JP3827334B2 - ITO sintered body and sputtering target - Google Patents

ITO sintered body and sputtering target Download PDF

Info

Publication number
JP3827334B2
JP3827334B2 JP19938893A JP19938893A JP3827334B2 JP 3827334 B2 JP3827334 B2 JP 3827334B2 JP 19938893 A JP19938893 A JP 19938893A JP 19938893 A JP19938893 A JP 19938893A JP 3827334 B2 JP3827334 B2 JP 3827334B2
Authority
JP
Japan
Prior art keywords
sintered body
ito
tin oxide
indium oxide
ito sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19938893A
Other languages
Japanese (ja)
Other versions
JPH0754132A (en
Inventor
展弘 小川
和明 山本
公貴 隈
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP19938893A priority Critical patent/JP3827334B2/en
Publication of JPH0754132A publication Critical patent/JPH0754132A/en
Application granted granted Critical
Publication of JP3827334B2 publication Critical patent/JP3827334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、スパッタリングターゲットとして優れたITO焼結体に関するものである。
【0002】
【従来の技術】
液晶を中心とする表示デバイスの発展に伴い、透明導電膜の需要が増加しているなか、透明導電膜は低抵抗、高透明性という点でITO(酸化インジウム、酸化錫)膜が広く用いられている。ITO透明導電膜の形成方法としては操作性の簡便さという点からスパッタリング法が一般的であり、ITO焼結体からなるターゲットを用いたスパッタリング法が広く適用されている。特に最近では液晶のカラー化、素子の微細化、アクティブマトリックス方式の採用に伴い、高性能なITO透明導電膜が要求されている。
【0003】
通常、ITO焼結体は、酸化インジウム粉末と酸化錫粉末の混合粉末(ITO粉末)を加圧成型後、焼結して製造されている。
【0004】
ITO焼結体の原料として用いる酸化インジウム粉末または酸化錫粉末の調製は、各々の金属水酸化物、有機金属塩、無機金属塩やゾル、ゲル等を熱分解したり、また、直接ITO粉末を調製する方法としては、インジウムと錫との均一混合溶液に沈殿形成剤を添加して共沈させた生成物(例えば、特開昭62−7627、特開昭60−186416号公報等)や加水分解により生成した生成物(例えば、特開昭58−36925号公報等)を加熱分解して製造する方法等が知られている。
【0005】
しかし、このような方法で得られた原料粉末から得られた焼結体の密度は、いまだ十分な密度を有することができず、ITO焼結体(酸化錫10%含有)の理論密度である7.15g/cm3の65%程度のもの(〜4.65g/cm3)であった。このような密度の低いITO焼結体は、導電性が悪く、熱伝導性、抗折力が低いため、これをスパッタリングターゲットとして使用した場合、導電性、光透過性に優れた高性能なITO膜の成膜が極めて困難であったばかりか、ターゲット表面の還元によるノジュールの発生、成膜速度が遅い等スパッタ操作性が悪いという問題点を有していた。
【0006】
このような問題を解決するために、高密度なITO焼結体を得る方法が種々検討され、その一例として、ITO焼結体に焼結助剤としてSi、Ge等を添加する方法が提案されている(例えば、特開昭61−136954号公報)。
【0007】
しかしながら、高密度な焼結体を得るためには、Si、Ge等の添加量を多くする必要があり、また、このような焼結体からなるスパッタリングタヘゲットから得られた透明導電膜中には、Si、Geが混入し、低抵抗な膜を得ることが難しかった。
【0008】
【発明が解決しようとする課題】
したがって、導電性、光透過性に優れたITO膜を与えることができ、ターゲット表面の還元によるノジュールの発生や、ターゲットの割れ、ターゲットからの破損微粒物の飛散りの問題がないITO焼結体が望まれていた。
【0009】
【課題を解決するための手段】
本発明者らは、上記のような現状に鑑み鋭意検討を重ねた結果、酸化インジウムおよび酸化錫からなる焼結体において、亜鉛、銅、アンチモン、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素を含有する焼結体が高い焼結密度が達成できることを見出し、本発明を完成するに至った。
【0010】
以下、本発明を詳細に説明する。
【0011】
本発明のITO焼結体は、亜鉛、銅、アンチモン、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素を含有する。これらの元素の含有量としては、焼結体全量に対して総含有量が5〜5000ppm、好ましくは10〜500ppm、特に好ましくは、20〜200ppmである。添加量が5ppm未満ではその効果が不十分であり、一方、5000ppmをこえて加えてもその焼結密度向上の効果が飽和し、経済的ではない。
【0012】
本発明におけるITO焼結体中の錫の含有量は、酸化錫換算で1〜20重量%、特に好ましくは2〜15重量%である。
【0013】
本発明のITO焼結体の密度は真密度の90%〜100%、このITO焼結体をスパッタリングターゲットとして用いて得られた膜の比抵抗は、1×10-3Ωcm以下、特に5×10-5〜7×10-4Ωcmとなる。このような低抵抗な膜が得られるのは、焼結体の抵抗が低いため、消費電力が少なく、低い電圧で放電が可能となり、プラズマ中で発生する負イオンによる膜へのダメージが少なくなるからである。
【0014】
また本発明のITO焼結体は焼結粒径が1〜20μmであり、特に2〜20μmである。従来のITO焼結体の焼結粒径は、ホットプレスでは1μm未満、酸素中加圧高温焼結では30μm以上である。焼結粒径が1μm未満の小さい焼結体では成膜速度が遅く、焼結体強度が弱いため、スパッタ中に割れたり、焼結体が欠けたりして粒状物が膜に飛散るという問題を有している。一方、焼結粒径が20μmをこえる焼結体は耐衝撃性が小さいため割れ易く、さらに熱膨張係数が大きいため、スパッタ中にボンディング面からはく離したり、割れたりし易い。
次に、本発明の焼結体の製造方法に関し、その一例を例示する。
【0015】
本発明のITO焼結体は、酸化インジウム、酸化錫と、亜鉛、銅、アンチモン、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素の化合物、例えば酸化物、塩等を混合、成型、焼結することによって製造することができる。酸化インジウム、酸化錫および上記の元素を含有する化合物の混合方法は、特に限定しないが、例えば酸化インジウム、酸化錫と該化合物とを混合後、熱処理すればよい。なお、本発明は、酸化インジウムおよび/または酸化錫中に亜鉛、銅、アンチモン、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素を不純物として含有している場合を除くものではない。
【0016】
他の方法として、インジウムおよび/または錫と該化合物との前駆体を共沈法等によって得た後、熱処理する方法を例示することができる。
【0017】
酸化インジウム、酸化錫と亜鉛、銅、アンチモン、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素とは混合状態でも、結合状態でもよいが、特に亜鉛、銅、アンチモンは、酸化錫と結合状態であることが好ましく、また、チタン、ツリウム、リチウム、マグネシウムは、酸化インジウムと結合状態であることが好ましい。結合状態とは、例えば固溶状態等が例示でき、例えば酸化インジウムおよび/または酸化錫とこれら元素の化合物を600℃〜1800℃で熱処理することにより達成される。
【0018】
即ち、本発明では、亜鉛、銅、アンチモンは酸化錫に固溶させた後、酸化インジウムと混合し、ITOとすることが好ましく、チタン、ツリウム、リチウム、マグネシウムは酸化インジウムに固溶させた後、酸化錫と混合し、ITOとすることが好ましい。
【0019】
酸化インジウム、酸化錫に対するこれら元素の固溶量は、最終的に得られるITO焼結体中の含有量がが5〜5000ppmになるよう調整する。
【0020】
用いる酸化インジウムは特に限定されないが、焼結性に優れた微細で均一な酸化インジウムであることが好ましい。例えば酸化インジウム粉末のBET表面積は10m2/g以上であることが好ましい。
【0021】
一方、用いる酸化錫は表面積が小さいことが好ましく、BET表面積が3m2/g以下、特に1m2/g以下であることが好ましい。
【0022】
酸化インジウム粉末、酸化錫粉末および亜鉛、銅、アンチモン、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素からなる化合物の混合方法は特に限定されず、ジルコニア、ウレタン樹脂等のボールを用いたボールミル、振動ミル、或いはV型ブレンダー、らいかい機等の湿式或いは乾式の混合方法が例示される。
【0023】
次に粉末を成型するが、成型方法は、目的とした形状に合った成型方法を選べばよく、金型成型法、鋳込み成型法等が挙げられるが特に限定されない。
【0024】
焼結体の高密度化のために、成型体は冷間静水圧プレスにて加圧処理することが好ましい。その時の圧力は3〜5t/cm2程度でよく、必要に応じて処理を2〜5回繰り返してもよい。
【0025】
得られた成型体は1250〜1600℃、特に好ましくは1350〜1500℃の温度で焼結する。焼結温度が1250℃未満の場合、密度が90%未満のITO焼結体が得られたり、また、焼結温度が1600℃を越える場合、焼結体粒子の異常な成長が生じることがある。焼結時間は数時間〜数十時間、特に10時間から30時間で十分である。焼結雰囲気は特に限定されず、大気中、酸素中、不活性ガス中等で行えばよい。
【0026】
【発明の効果】
以上の説明から明らかなように、本発明の亜鉛、銅、アンチモン、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素を含有するITO焼結体からなるスパッタリングターゲットは、加熱された高温基板においても加熱されていない低温基板においても極めて低抵抗で高透明な透明導電膜を与え、なおかつ、その成膜速度が速く、ターゲット表面の粒状生成物もなく、ターゲットの割れ、ターゲットからの破損粒子の飛散りもなく、極めて生産性に優れている。
【0027】
【実施例】
以下、実施例により本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。
【0028】
実施例1
BET表面積1m2/gの酸化錫と亜鉛、銅、アンチモンの各元素の酸化物とをそれぞれ混合後、大気中で加熱し、酸化錫にこれら元素を固溶させた。これら元素を含有した酸化錫と酸化インジウムとをさらに混合し、得られた混合粉末を金型プレスした後、3ton/cm2で静水圧プレス処理し、酸素中、1500℃で24時間焼結し、ITO焼結体を得た(酸化インジウム/酸化錫=約90/10(重量比)、焼結粒径=9μm)。なお、亜鉛、銅、アンチモンの添加量は、最終生成物であるITO焼結体中の各元素の含有量が50ppm、100ppm、500ppmとなるようにした。これらの焼結体の物性を表1に示す。
【0029】
続いて、得られた焼結体をターゲットとして用い、表3に示すスパッタ条件にて、スパッタリング成膜した結果をあわせて表1に示す。
【0030】
実施例2
BET表面積20m2/gの酸化インジウムとチタン、ツリウム、リチウム、マグネシウムの各元素の酸化物とをそれぞれ混合後、大気中で加熱し、酸化インジウムのこれら元素を固溶させた。これら元素を含有した酸化インジウムと酸化錫とをさらに混合し、得られた混合粉末を金型プレスした後、3ton/cm2で静水圧プレス処理し、酸素中、1500℃で24時間焼結し、ITO焼結体を得た(酸化インジウム/酸化錫=約90/10(重量比)、焼結粒径=8μm)。なお、各元素の添加量は、実施例1と同様に設定した。これらの焼結体の物性を表2に示す。
【0031】
続いて、得られた焼結体をターゲットとして用い、実施例1と同様のスパッタ条件にて、スパッタリング成膜した結果をあわせて表2に示す。
【0032】
比較例
BET表面積20m2/gの酸化インジウムとBET表面積1m2/gの酸化錫とを混合し、得られた混合粉末を金型プレスした後、3ton/cm2で静水圧プレス処理し、酸素中、1500℃で24時間焼結し、ITO焼結体を得た (酸化インジウム/酸化錫=約90/10(重量比)、焼結粒径=7μm)。この物性を表2に示す。
【0033】
続いて、得られた焼結体をターゲットとして用い、実施例1と同様のスパッタ条件にて、スパッタリング成膜した結果をあわせて表2に示す。
【0034】
【表1】

Figure 0003827334
【0035】
【表2】
Figure 0003827334
【0036】
【表3】
Figure 0003827334
[0001]
[Industrial application fields]
The present invention relates to an ITO sintered body excellent as a sputtering target.
[0002]
[Prior art]
With the development of display devices centering on liquid crystals, the demand for transparent conductive films is increasing, and transparent conductive films are widely used in terms of low resistance and high transparency. ing. As a method for forming the ITO transparent conductive film, a sputtering method is generally used from the viewpoint of easy operability, and a sputtering method using a target made of an ITO sintered body is widely applied. In recent years, in particular, along with the colorization of liquid crystals, the miniaturization of elements, and the adoption of the active matrix method, a high-performance ITO transparent conductive film is required.
[0003]
Usually, the ITO sintered body is manufactured by press-molding a mixed powder (ITO powder) of indium oxide powder and tin oxide powder and then sintering.
[0004]
Preparation of indium oxide powder or tin oxide powder used as raw material for ITO sintered body can be achieved by thermally decomposing each metal hydroxide, organic metal salt, inorganic metal salt, sol, gel, etc. As a preparation method, a product obtained by coprecipitation by adding a precipitation-forming agent to a homogeneous mixed solution of indium and tin (for example, JP-A-62-2627, JP-A-60-186416, etc.) or water A method for producing a product produced by decomposition (for example, JP-A-58-36925) by thermal decomposition is known.
[0005]
However, the density of the sintered body obtained from the raw material powder obtained by such a method cannot yet have a sufficient density, and is the theoretical density of the ITO sintered body (containing 10% tin oxide). It was about 65% of 7.15 g / cm 3 (˜4.65 g / cm 3 ). Such a low-density ITO sintered body has poor electrical conductivity, low thermal conductivity, and low bending strength. Therefore, when it is used as a sputtering target, high-performance ITO excellent in electrical conductivity and light transmittance. In addition to being extremely difficult to form a film, there was a problem that sputter operability was poor such as generation of nodules due to reduction of the target surface and a slow film formation rate.
[0006]
In order to solve such problems, various methods for obtaining a high-density ITO sintered body have been studied, and as an example, a method of adding Si, Ge, etc. as a sintering aid to the ITO sintered body has been proposed. (For example, Japanese Patent Application Laid-Open No. 61-136954).
[0007]
However, in order to obtain a high-density sintered body, it is necessary to increase the addition amount of Si, Ge, etc., and in a transparent conductive film obtained from a sputtering tageget made of such a sintered body. In this case, Si and Ge were mixed, and it was difficult to obtain a low resistance film.
[0008]
[Problems to be solved by the invention]
Therefore, an ITO sintered body that can provide an ITO film excellent in conductivity and light transmittance and has no problems of nodule generation due to reduction of the target surface, cracking of the target, and scattering of broken fine particles from the target. Was desired.
[0009]
[Means for Solving the Problems]
As a result of intensive studies in view of the present situation as described above, the present inventors have selected 1 selected from zinc, copper, antimony, titanium, thulium, lithium and magnesium in a sintered body made of indium oxide and tin oxide. The present inventors have found that a sintered body containing elements of more than seeds can achieve a high sintered density, and have completed the present invention.
[0010]
Hereinafter, the present invention will be described in detail.
[0011]
The ITO sintered body of the present invention contains one or more elements selected from zinc, copper, antimony, titanium, thulium, lithium, and magnesium. The content of these elements is 5 to 5000 ppm, preferably 10 to 500 ppm, particularly preferably 20 to 200 ppm, based on the total amount of the sintered body. If the addition amount is less than 5 ppm, the effect is insufficient. On the other hand, if the addition amount exceeds 5000 ppm, the effect of improving the sintered density is saturated, which is not economical.
[0012]
The content of tin in the ITO sintered body in the present invention is 1 to 20% by weight, particularly preferably 2 to 15% by weight in terms of tin oxide.
[0013]
The density of the ITO sintered body of the present invention is 90% to 100% of the true density, and the specific resistance of the film obtained using this ITO sintered body as a sputtering target is 1 × 10 −3 Ωcm or less, particularly 5 × 10 −5 to 7 × 10 −4 Ωcm. The reason why such a low-resistance film is obtained is that the sintered body has low resistance, so that power consumption is low, discharge is possible at a low voltage, and damage to the film due to negative ions generated in the plasma is reduced. Because.
[0014]
The ITO sintered body of the present invention has a sintered particle size of 1 to 20 μm, particularly 2 to 20 μm. The sintered particle size of the conventional ITO sintered body is less than 1 μm in the hot press, and 30 μm or more in the pressurized high temperature sintering in oxygen. A small sintered body with a sintered particle size of less than 1 μm has a slow film formation speed and a weak sintered body, so that the granular material is scattered in the film due to cracking during sputtering or chipping of the sintered body. have. On the other hand, a sintered body having a sintered particle size exceeding 20 μm is easily cracked due to its low impact resistance, and further has a large thermal expansion coefficient, so that it is easily peeled off from the bonding surface during sputtering or cracked.
Next, an example of the method for producing a sintered body of the present invention will be illustrated.
[0015]
The ITO sintered body of the present invention is a mixture of indium oxide, tin oxide, and a compound of one or more elements selected from zinc, copper, antimony, titanium, thulium, lithium, magnesium, such as oxides and salts, It can be manufactured by molding and sintering. A method for mixing indium oxide, tin oxide and the compound containing the above element is not particularly limited. For example, indium oxide, tin oxide and the compound may be mixed and then heat-treated. The present invention does not exclude the case where indium oxide and / or tin oxide contains one or more elements selected from zinc, copper, antimony, titanium, thulium, lithium, and magnesium as impurities. .
[0016]
As another method, a method in which a precursor of indium and / or tin and the compound is obtained by a coprecipitation method or the like and then heat-treated can be exemplified.
[0017]
One or more elements selected from indium oxide, tin oxide and zinc, copper, antimony, titanium, thulium, lithium and magnesium may be in a mixed state or in a combined state. In particular, zinc, copper and antimony are tin oxides. In addition, titanium, thulium, lithium, and magnesium are preferably in a bonded state with indium oxide. Examples of the bonded state include, for example, a solid solution state, and can be achieved by, for example, heat-treating indium oxide and / or tin oxide and a compound of these elements at 600 ° C. to 1800 ° C.
[0018]
That is, in the present invention, zinc, copper and antimony are dissolved in tin oxide and then mixed with indium oxide to form ITO, and titanium, thulium, lithium and magnesium are preferably dissolved in indium oxide. It is preferable to mix with tin oxide to make ITO.
[0019]
The solid solution amount of these elements with respect to indium oxide and tin oxide is adjusted so that the content in the finally obtained ITO sintered body is 5 to 5000 ppm.
[0020]
The indium oxide used is not particularly limited, but is preferably fine and uniform indium oxide having excellent sinterability. For example, the BET surface area of the indium oxide powder is preferably 10 m 2 / g or more.
[0021]
On the other hand, the tin oxide used preferably has a small surface area, and preferably has a BET surface area of 3 m 2 / g or less, particularly 1 m 2 / g or less.
[0022]
The mixing method of the compound consisting of one or more elements selected from indium oxide powder, tin oxide powder and zinc, copper, antimony, titanium, thulium, lithium and magnesium is not particularly limited, and balls such as zirconia and urethane resin are used. Examples thereof include a wet or dry mixing method such as a ball mill, a vibration mill, a V-type blender or a raking machine.
[0023]
Next, the powder is molded. As the molding method, a molding method suitable for the intended shape may be selected, and examples thereof include a mold molding method and a casting molding method, but are not particularly limited.
[0024]
In order to increase the density of the sintered body, the molded body is preferably subjected to pressure treatment with a cold isostatic press. The pressure at that time may be about 3 to 5 t / cm 2 , and the treatment may be repeated 2 to 5 times as necessary.
[0025]
The obtained molded body is sintered at a temperature of 1250 to 1600 ° C., particularly preferably 1350 to 1500 ° C. When the sintering temperature is less than 1250 ° C., an ITO sintered body with a density of less than 90% can be obtained, and when the sintering temperature exceeds 1600 ° C., abnormal growth of the sintered body particles may occur. . The sintering time is sufficient from several hours to several tens of hours, particularly from 10 hours to 30 hours. The sintering atmosphere is not particularly limited, and may be performed in air, oxygen, inert gas, or the like.
[0026]
【The invention's effect】
As is clear from the above description, the sputtering target made of an ITO sintered body containing one or more elements selected from zinc, copper, antimony, titanium, thulium, lithium, and magnesium of the present invention was heated. Even a high temperature substrate or an unheated low temperature substrate gives a highly transparent transparent conductive film with a very low resistance, and the film formation speed is fast, there is no granular product on the target surface, the target cracks, There is no scattering of damaged particles, and it is extremely productive.
[0027]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[0028]
Example 1
A tin oxide having a BET surface area of 1 m 2 / g and an oxide of each element of zinc, copper, and antimony were mixed, and then heated in the atmosphere to dissolve these elements in tin oxide. Tin oxide and indium oxide containing these elements are further mixed, and the obtained mixed powder is press-molded and then hydrostatically pressed at 3 ton / cm 2 and sintered in oxygen at 1500 ° C. for 24 hours. An ITO sintered body was obtained (indium oxide / tin oxide = about 90/10 (weight ratio), sintered particle size = 9 μm). In addition, the addition amount of zinc, copper, and antimony was set so that the content of each element in the ITO sintered body as the final product was 50 ppm, 100 ppm, and 500 ppm. Table 1 shows the physical properties of these sintered bodies.
[0029]
Subsequently, Table 1 shows the results of sputtering film formation under the sputtering conditions shown in Table 3 using the obtained sintered body as a target.
[0030]
Example 2
Indium oxide having a BET surface area of 20 m 2 / g and oxides of each element of titanium, thulium, lithium, and magnesium were mixed and then heated in the atmosphere to dissolve these elements of indium oxide. Indium oxide and tin oxide containing these elements are further mixed, and the obtained mixed powder is press-molded and then hydrostatically pressed at 3 ton / cm 2 and sintered in oxygen at 1500 ° C. for 24 hours. An ITO sintered body was obtained (indium oxide / tin oxide = about 90/10 (weight ratio), sintered particle size = 8 μm). In addition, the addition amount of each element was set similarly to Example 1. Table 2 shows the physical properties of these sintered bodies.
[0031]
Next, Table 2 shows the results of sputtering film formation under the same sputtering conditions as in Example 1 using the obtained sintered body as a target.
[0032]
A tin oxide indium oxide and BET surface area of 1 m 2 / g of Comparative Example BET surface area of 20 m 2 / g were mixed, mixed powder thus obtained was mold press, hydrostatic pressing at 3 ton / cm 2, oxygen Medium was sintered at 1500 ° C. for 24 hours to obtain an ITO sintered body (indium oxide / tin oxide = about 90/10 (weight ratio), sintered particle size = 7 μm). The physical properties are shown in Table 2.
[0033]
Next, Table 2 shows the results of sputtering film formation under the same sputtering conditions as in Example 1 using the obtained sintered body as a target.
[0034]
[Table 1]
Figure 0003827334
[0035]
[Table 2]
Figure 0003827334
[0036]
[Table 3]
Figure 0003827334

Claims (3)

酸化インジウムおよび酸化錫からなるITO焼結体において、銅、アンチモン、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素を合計で5〜5000ppm含有するとともに、焼結粒径が1μm〜20μm、比抵抗が2.8×10−4Ωcm以下かつ密度が90%〜100%であることを特徴とするITO焼結体。In the ITO sintered body composed of indium oxide and tin oxide, it contains 5 to 5000 ppm in total of one or more elements selected from copper , antimony, titanium, thulium, lithium, and magnesium, and the sintered particle diameter is 1 μm to An ITO sintered body characterized by having a specific resistance of 20 μm, a specific resistance of 2.8 × 10 −4 Ωcm or less, and a density of 90% to 100%. 請求項1記載のITO焼結体からなるスパッタリングターゲット。  A sputtering target comprising the ITO sintered body according to claim 1. 酸化インジウムおよび酸化錫からなるITO焼結体であって、亜鉛、銅、アンチモン、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素を合計で5〜5000ppm含有するとともに、焼結粒径が1μm〜20μm、比抵抗が2.8×10 −4 Ωcm以下かつ密度が90%〜100%であるITO焼結体の製造方法であって、亜鉛、銅、アンチモンから選ばれた1種以上の元素を酸化錫に固溶させた後、酸化インジウムと混合して得られた混合粉末、又は、チタン、ツリウム、リチウム、マグネシウムから選ばれた1種以上の元素を酸化インジウムに固溶させた後、酸化錫と混合して得られた混合粉末を成形し、1250℃〜1600℃の温度で焼結することを特徴とするITO焼結体の製造方法。 An ITO sintered body composed of indium oxide and tin oxide, containing a total of 5 to 5000 ppm of one or more elements selected from zinc, copper, antimony, titanium, thulium, lithium and magnesium, and sintered grains A method for producing an ITO sintered body having a diameter of 1 μm to 20 μm, a specific resistance of 2.8 × 10 −4 Ωcm or less and a density of 90% to 100%, one type selected from zinc, copper, and antimony After the above elements are dissolved in tin oxide, mixed powder obtained by mixing with indium oxide, or one or more elements selected from titanium, thulium, lithium, and magnesium are dissolved in indium oxide. It was followed, by forming a mixed powder obtained by mixing tin oxide, 1250 ° C. to 1600 manufacturing method of I tO sintered you characterized by sintering at a temperature of ° C..
JP19938893A 1993-08-11 1993-08-11 ITO sintered body and sputtering target Expired - Fee Related JP3827334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19938893A JP3827334B2 (en) 1993-08-11 1993-08-11 ITO sintered body and sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19938893A JP3827334B2 (en) 1993-08-11 1993-08-11 ITO sintered body and sputtering target

Publications (2)

Publication Number Publication Date
JPH0754132A JPH0754132A (en) 1995-02-28
JP3827334B2 true JP3827334B2 (en) 2006-09-27

Family

ID=16406948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19938893A Expired - Fee Related JP3827334B2 (en) 1993-08-11 1993-08-11 ITO sintered body and sputtering target

Country Status (1)

Country Link
JP (1) JP3827334B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252206B2 (en) 2007-06-26 2012-08-28 Jx Nippon Mining & Metals Corporation Amorphous film of composite oxide, crystalline film of composite oxide, method of producing said films and sintered compact of composite oxide
US8277694B2 (en) 2007-07-13 2012-10-02 Jx Nippon Mining & Metals Corporation Sintered compact of composite oxide, amorphous film of composite oxide, process for producing said film, crystalline film of composite oxide and process for producing said film
KR20180014037A (en) 2016-03-14 2018-02-07 제이엑스금속주식회사 Oxide sintered compact

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918737B2 (en) * 2001-03-23 2012-04-18 東ソー株式会社 Oxide sintered body and sputtering target
JP4724330B2 (en) * 2001-09-07 2011-07-13 株式会社アルバック Tin-antimony oxide sintered compact target and method for producing the same
JP3906766B2 (en) * 2002-08-30 2007-04-18 住友金属鉱山株式会社 Oxide sintered body
JP4556407B2 (en) 2002-10-04 2010-10-06 住友金属鉱山株式会社 Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and photodetector
US7141186B2 (en) 2002-10-29 2006-11-28 Sumitomo Metal Mining Co., Ltd. Oxide sintered body and sputtering target, and manufacturing method for transparent conductive oxide film as electrode
JP4488184B2 (en) * 2004-04-21 2010-06-23 出光興産株式会社 Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP4855964B2 (en) * 2007-02-09 2012-01-18 株式会社アルバック ITO sintered body, ITO sputtering target and manufacturing method thereof
WO2009044893A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide transparent conductive film and method for producing the same
GB2482544A (en) * 2010-08-06 2012-02-08 Advanced Tech Materials Making high density indium tin oxide sputtering targets
JP6078189B1 (en) 2016-03-31 2017-02-08 Jx金属株式会社 IZO sintered compact sputtering target and manufacturing method thereof
KR102375637B1 (en) * 2017-08-08 2022-03-17 미쓰이금속광업주식회사 Oxide sintered compact and sputtering target
CN113149614A (en) * 2021-05-28 2021-07-23 通威太阳能(合肥)有限公司 Sintered body, target material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252206B2 (en) 2007-06-26 2012-08-28 Jx Nippon Mining & Metals Corporation Amorphous film of composite oxide, crystalline film of composite oxide, method of producing said films and sintered compact of composite oxide
KR20160063403A (en) 2007-06-26 2016-06-03 제이엑스금속주식회사 Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
US8277694B2 (en) 2007-07-13 2012-10-02 Jx Nippon Mining & Metals Corporation Sintered compact of composite oxide, amorphous film of composite oxide, process for producing said film, crystalline film of composite oxide and process for producing said film
US8728358B2 (en) 2007-07-13 2014-05-20 Jx Nippon Mining & Metals Corporation Sintered compact, amorphous film and crystalline film of composite oxide, and process for producing the films
KR20180014037A (en) 2016-03-14 2018-02-07 제이엑스금속주식회사 Oxide sintered compact

Also Published As

Publication number Publication date
JPH0754132A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
JP3827334B2 (en) ITO sintered body and sputtering target
KR950010806B1 (en) Oxide powder sintered body process for preparation thereof and target composed thereof
JP3746094B2 (en) Target and manufacturing method thereof
JPH04219359A (en) Electrically conductive zinc oxide sintered compact
JPH07258836A (en) Aluminum doped zinc oxide sintered compact and its production as well as its application
JP5472655B2 (en) Vapor deposition tablet and manufacturing method thereof
WO2007004473A1 (en) Process for producing izo sputtering target
JP4508079B2 (en) Manufacturing method of sputtering target
JP4122547B2 (en) Reproduction method and use of ITO sintered body
JP2001098359A (en) MANUFACTURE OF Mg-CONTAINING ITO SPUTTERING TARGET AND Mg-CONTAINING ITO EVAPORATION MATERIAL
JP3496239B2 (en) ITO sintered body and sputtering target
JP2008214169A (en) ITiO SINTERED COMPACT FOR VACUUM VAPOR DEPOSITION AND ITS PRODUCTION METHOD
JP2010185129A (en) METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL
JP4075361B2 (en) Method for producing Mg-containing ITO sputtering target
JP3734540B2 (en) Manufacturing method of indium oxide-zinc oxide based sintered compact target
JPH03126655A (en) Indium oxide-tin oxide sintered body and production therefor
JPH0668935B2 (en) Oxide sintered body, method for producing the same, and target using the same
JP4724330B2 (en) Tin-antimony oxide sintered compact target and method for producing the same
JP2007302556A (en) Method for producing ito sintered compact
JPH11100660A (en) Ito pellet for vapor deposition and its production
JP2002274956A (en) Method for manufacturing ceramic sintered compact
JPS6065760A (en) Manufacture of highly electroconductive tin oxide film material
CN114057481A (en) Method for producing zinc oxide target material and zinc oxide target material
JPH0729770B2 (en) Oxide powder and method for producing the same
JPH10330169A (en) Production of ceramic sintered compact

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040302

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees