JP3823092B2 - 分離分析装置 - Google Patents

分離分析装置 Download PDF

Info

Publication number
JP3823092B2
JP3823092B2 JP2003064319A JP2003064319A JP3823092B2 JP 3823092 B2 JP3823092 B2 JP 3823092B2 JP 2003064319 A JP2003064319 A JP 2003064319A JP 2003064319 A JP2003064319 A JP 2003064319A JP 3823092 B2 JP3823092 B2 JP 3823092B2
Authority
JP
Japan
Prior art keywords
pump
solution
separation
flow path
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003064319A
Other languages
English (en)
Other versions
JP2004271409A (ja
JP2004271409A5 (ja
Inventor
喜三郎 出口
伸也 伊藤
正人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003064319A priority Critical patent/JP3823092B2/ja
Priority to US10/776,263 priority patent/US7135111B2/en
Priority to EP04004088A priority patent/EP1457774B1/en
Priority to EP10008245A priority patent/EP2246697A3/en
Priority to DE602004029114T priority patent/DE602004029114D1/de
Publication of JP2004271409A publication Critical patent/JP2004271409A/ja
Publication of JP2004271409A5 publication Critical patent/JP2004271409A5/ja
Application granted granted Critical
Publication of JP3823092B2 publication Critical patent/JP3823092B2/ja
Priority to US11/581,147 priority patent/US7699990B2/en
Priority to US12/685,724 priority patent/US8048312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • G01N35/1097Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers characterised by the valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、分離分析技術に係り、特に、ナノフロー流量(nl/min)レベルでの分離分析の実現をするためのグラジエントを行う分離分析装置に関する。
【0002】
【従来の技術】
クロマトグラフ等の分離分析装置において、ナノフローレベルの流量(nl/min) でグラジエント溶出を行いながら分析を行うには、マイクロフローレベルの流量(μl/min)の低圧(または高圧)グラジエント機能付きポンプで送られてくる溶液をスプリッターで分割(例えば、1:100のスプリット比)し、ナノフローレベルの流量(nl/min) を得る方式や、1分析に要するグラジエント溶液を、あらかじめ1個または多数のチューブやホールに充満させてから、送液ポンプ(またはガスボンベ)とバルブを利用して、これらの溶液を順次分離カラムに導入する方式(例えば、下記特許文献1,2及び非特許文献1に記載されている)がある。
【0003】
【特許文献1】
特開2002−365272号公報
【特許文献2】
特開2002−71657号公報
【非特許文献1】
BUNSEKI KAGAKU, Vol.50, 825(2001)
【0004】
【発明が解決しようとする課題】
上記に示すスプリッターで分割を行う場合では、流路の詰まりが流量変動につながり、安定した流量を得ることが困難であり、また、1分析に要するグラジエント溶液を、あらかじめ1個または多数のチューブやホールに充満する場合では、1分析ごとに1個または多数のチューブやホールに溶液の充填が必要であり、連続分析を効率良く行うことができない。
【0005】
本発明の目的は、上記問題を解決し、ナノフローレベルの流量(nl/min)でのグラジエント溶出による分離分析を、安定で、効率よく連続して行えるようにすることである。
【0006】
【課題を解決するための手段】
上記目的を達成するための本発明の特徴は、複数の溶液を混合比を変更しながら送液する第1のポンプと、送液用の溶液を送液する第2のポンプと、試料を導入する試料導入部と、試料を分離する分離カラムと、分離カラムから溶出される溶液を検出する検出器を備えた分離分析装置において、前記第1のポンプからの流路、前記第2のポンプからの流路、及び前記試料導入部への流路が接続され、且つ溶液を一時的に保留する第1及び第2のサンプリングループを備えた流路切り替え手段を有し、前記流路切り替え手段は、前記第1のポンプからの溶液を前記第1のサンプリングループに送液しながら、前記第2のポンプによって前記第2のサンプリングループ内の溶液を前記試料導入部側へ押出す第1の状態と、前記第1のポンプからの溶液を前記第2のサンプリングループに送液しながら、前記第2のポンプによって前記第1のサンプリングループ内の溶液を前記試料導入部側へ押出す第2の状態とを交互に繰り返すことである。
【0007】
これにより、第1のポンプからマイクロフローレベル(μl/min)の流量でグラジエント溶液を送液しても、流路切り替え手段により第2のポンプからの送液量に容易に変更することが出来、且つグラジエントカーブも第1のポンプから送液されたグラジエントカーブに再現性良く追従することが出来る。
【0008】
【発明の実施の形態】
以下、本発明の実施例を説明する。
【0009】
図1に、本発明の概略構成図を示す。ポンプ1は、マイクロフローレベル(μl/min)の流量で二つの溶液6,7を低圧グラジエント方式、即ち、電磁弁(ソレノイドバルブ)9,10のオン/オフで溶液6,7の組成比を決めて混合し送液を行う(高圧グラジエント方式の場合は、それぞれの溶液に送液ポンプが備えられる)。ポンプ1から送られる溶液は、ミキサー11で混合した後、10方バルブ3へ送液される。
【0010】
10方バルブ3は、サンプリングループ100,101を備え、ポンプ1から送液された溶液は、バルブ内の流路を切り替えることで、サンプリングループ100,101の何れか一つに連通する。サンプリングループ100,101の容積は、それぞれ1マイクロリットル(μl)位である。また、切り替えられる流路は、各穴を結ぶ流路である(流路21を除く)。図1の状態では、ポンプ1からの溶液は、サンプリングループ100を経由した後、流路21を介して、抵抗コイル(または、抵抗カラムや圧量調整バルブ)5を経てドレインに流れる流路を形成している。バルブが切り替えられると、ポンプ1からの溶液は、流路21を介して、サンプリングループ101を経由した後、抵抗コイル5を経てドレインに流れる流路を形成する。
【0011】
また、10方バルブ3へは、溶液8をナノフローレベル(nl/min)の流量で送液するポンプ2(例えば、シリンジ型やレシプロ型のポンプ)がダンパー12を介して接続されている。図1の状態では、ポンプ2からサンプリングループ101を介して溶液に試料を導入するサンプルインジェクタ13に通じる流路が形成されている。バルブが切り替えられると、ポンプ2からサンプリングループ100を介してサンプルインジェクタ13に通じる流路が形成される。
【0012】
サンプルインジェクタ13で試料が注入された後は、分離カラム14で試料が分離され、検出器15によって検出が行われる。検出器15には、例えば、UV−VIS吸光度検出器,蛍光検出器,電気化学検出器、及び質量分析装置等を使用することが出来る。
【0013】
コントローラ4は、ポンプ1,2の流量,グラジエントプログラム及び10方バルブ3の定期的な切り替えを制御する。もし、ポンプ1自身が定期的にイベント信号を出す機能を持っている場合は、10方バルブ3はポンプ1から制御可能なので、コントローラ4は必ずしも必要ではない。
【0014】
抵抗コイル5は、分離カラム14が連通している時にかかる圧力と同等レベルの圧力がかかるような流路抵抗を有するものである。これにより、10方バルブ3の切り替えに伴う圧力変動を最小限にする効果がある。さらに、ポンプ2のあとのダンパー12も同様の効果を果たす。また、ダンパー12はレシプロ型やシリンジ型のポンプ2が発生するパルスモータ由来の脈流を軽減する効果もある。
【0015】
上記ポンプ2が送り出す溶液8は、ポンプ1からの流量に比べて桁違いに小さいために、実際に分離カラム14に到達するわけではない。したがって、ポンプ2には、電気浸透流を起こすのに最適な溶液を用いた電気浸透流ポンプを用いても良い。また同様の理由により、一定圧で送液する場合はガスボンベを用いても良い。
【0016】
図2は、図1の構成で得られるグラジエントカーブを説明するための図である。実線のグラジエントカーブ(実線)はポンプ1から送液される溶液を示し、点線のグラジエントカーブは10方バルブ3を経た後の溶液を示す。
【0017】
10方バルブ3からの送液は、ポンプ2側に連通しているサンプリングループに充填されている溶液が、ポンプ2がナノフローレベル(nl/min)の流量で送液する溶液8によって押出されることで行われる。サンプリングループの容積は前述のように1μl程度であるのに対して、ポンプ2側からの送液はナノフローレベル(nl/min)の流量であるため、数分間送液しても溶液8がサンプリングループを超えてサンプルインジェクタ13側へ送液されることは無い。サンプルループ内に進入した溶液8は、10方バルブ3が切り替えられた際に、ポンプ1からの新たな組成の溶液によってドレインへ押出され、機外へ排出される。
【0018】
図1の構成において、10方バルブ3が2分ごとに切り替え制御された場合には、10方バルブ3を経た後の溶液のナノフローグラジエントカーブ(点線)は、図2に示すように、2分間隔で階段状に、ポンプ1のグラジエントカーブ(実線)を追随する。10方バルブ3の切り替えを1分毎に早めれば、ナノフローグラジエントカーブ(点線)は1分間隔で階段状となり、元のグラジエントカーブ(実線)との追随性は更に改善される。最小のバルブ切り替え時間間隔は、ポンプ1の流量とサンプリングループの容積で決まる。即ち、次式で計算される:
最小のバルブ切り替え時間間隔=サンプリングループの容積/ポンプ1の流量
【0019】
図3は、ポンプ2の流量500nl/min,ポンプ1の流量50μl/min,サンプリングループの容積1μl,10方バルブ3は1分毎に流路が切り替えられるという条件の基に得られたナノフローグラジエントカーブを示している。溶液6,7,8はそれぞれ、水,0.1% アセトンを含んだアセトニトリル80%液水を使用した。
【0020】
(A)は、UV吸光度検出器をポンプ1と10方バルブ3の間に接続して、ポンプ1が作製して10方バルブ3に送液する溶液の吸光度(250nm)変化を測定したグラジエントカーブであり、(B)は、UV吸光度検出器を10方バルブ3の後に接続して、実際に分離カラム14に送液される溶液の吸光度(250nm)変化を測定したグラジエントカーブである。(A)と(B)の比較から、この条件下でも追随性の良いグラジエントカーブが得られることが分かる。(B)のカーブの立ち上がりの遅れは、500nlといった低流量であるために、10方バルブ3の下流に接続したUV吸光度検出器に到達する時間が遅れたことによる。
【0021】
本発明においては、サンプルインジェクタ13におけるサンプル導入と同期して、上記ポンプ1のグラジエントカーブ作製のタイムプログラムをスタートさせることにより、サンプルの連続分離分析が可能になる。ポンプ2のシリンジ容積と1分析に必要な溶液量があらかじめ計算されるので、分析中にポンプ2が吸引過程に入る場合は、コントローラ4が、サンプルインジェクタ13にスタート信号を出さないように制御することも可能である。また、1分析終了後のカラム洗浄および平衡化の時間中に、消費した液量を吸引補充できる機能を持つポンプを使用し、吸引過程による流量変動を、分析中に起らないようにすることも可能である。
【0022】
一般に、有機溶媒の組成を時間と共に変えるグラジエント溶出においては、溶液の粘性の変化により、1分析中にカラム圧力が変化する。この時、抵抗コイル5にかかる圧力を分離カラムにかかる圧力と同等レベルにしておくことにより、10方バルブ3の切り替えに伴う圧力変動を最小限にすることが出来る。その結果、1分析中に起る分離カラムの圧力の変動による流量変動を最小限にする効果がある。
【0023】
また、装置全体を恒温器等の内部に配置するようにし、装置全体を一定温度に保温するようにすると、ナノフロー流量のより安定した送液を図ることができる。
【0024】
図4は、本発明の他の実施例を示す概略構成図である。図1の実施例との違いは、分取を行う手段を追加した点にある。分離カラム14から溶出する流量は、ナノフローレベルの流量(nl/min) であり、このレベルの流量になると排出後は液滴とならず、分取は非常に困難になる。そこで本実施例では、分離カラム14からの溶液に対して、メイクアップ溶媒16をメイクアップポンプ17によりミキサー18で合流させるようにする。メイクアップポンプ17の流量は、マイクロフローレベルの流量(μl/min) である。合流後の溶液は、分取プレート19上に分取(分画)される。この時、分取プレート19は、各分画毎に、前後左右に移動可能に構成される。本実施例では、排出後の溶液をマイクロフローレベルの流量(μl/min) とするため、排出後も液滴とすることができ、分取が可能となる。
【0025】
尚、メイクアップ溶媒16として、マトリックスレーザー脱離イオン化(MALDI)質量分析計に適した一種または複数の化合物(マトリクス)を溶解した溶液を用いることも可能である。
【0026】
図5,図6は、本発明で用いる改良された10方バルブ3の構成図である。
10方バルブ3は、図6に示されるように、ローターシール22,ステーターリング25,ステーターシール24,ステーター23から構成される。
【0027】
図5の円内の細い実線は、ステーターシール24上に刻まれた溝であり、バルブ内の流路の切り替えはこの部分が回転することで行われる。一方、太い実線は、本実施例特有のものであり、ステーター23上に刻まれた溝である。通常の10方バルブでは、サンプリングループ100,101および流路21には、PEEKやSUSチューブが使用されている。しかし、ナノフロー流量を扱う装置に必要なサンプリングループ容積は、前述のように1マイクロリットル位なので、バルブ内のステーター23上の溝(100,101)でこれらの構成を代用することができる。また、流路21も同様である。この結果、6個のチューブ接続用の押しネジ穴が節約でき、チューブ接続が簡単になる。また、目詰まりの原因となるゴミがチューブ接続時に混入する可能性を軽減するといった効果がある。
【0028】
【発明の効果】
本発明によれば、1分析に要するグラジエント溶液を予め作製しておく必要は無く、ナノフロー(nl/min) レベルの流量においても再現性の良いグラジエント溶出による分離分析を行うことが出来る。したがって、本発明を用いたナノフロー(nl/min) 流量レベルのグラジエントを行う分析を効率よく連続して行うことが出来る液体クロマトグラフを実現することが可能になる。
【図面の簡単な説明】
【図1】本発明の実施例の概略構成図である。
【図2】ポンプ1で送液されるグラジエントカーブ(実線)と10方バルブ3から送液されるグラジエントカーブ(点線)を示す図である。
【図3】ポンプ1で送液されるグラジエントカーブ(実線)と10方バルブ3から送液されるグラジエントカーブ(点線)を実際に測定して得られた結果を示す図である。
【図4】本発明の他の実施例の概略構成図である。
【図5】本発明で用いる改良された10方バルブの流路図である。
【図6】本発明で用いる改良された10方バルブの構成図である。
【符号の説明】
1,2…ポンプ、3…10方バルブ、4…コントローラ、5…抵抗コイル、6,7,8…溶液、9,10…電磁弁(ソレノイドバルブ)、11,18…ミキサー、12…ダンパー、13…サンプルインジェクタ、14…分離カラム、15…検出器、16…メイクアップ溶媒、17…メイクアップポンプ、19…分取プレート、21…流路、22…ローターシール、23…ステーター、24…ステーターシール、25…ステーターリング、100,101…サンプリングループ。

Claims (7)

  1. 複数の溶液を混合比を変更しながら送液する第1のポンプと、送液用の溶液を送液する第2のポンプと、試料を導入する試料導入部と、試料を分離する分離カラムと、分離カラムから溶出される溶液を検出する検出器を備えた分離分析装置において、
    前記第1のポンプからの流路、前記第2のポンプからの流路、及び前記試料導入部への流路が接続され、且つ溶液を一時的に保留する第1及び第2のサンプリングループを備えた流路切り替え手段を有し、
    前記流路切り替え手段は、前記第1のポンプからの溶液を前記第1のサンプリングループに送液しながら、前記第2のポンプによって前記第2のサンプリングループ内の溶液を前記試料導入部側へ押出す第1の状態と、前記第1のポンプからの溶液を前記第2のサンプリングループに送液しながら、前記第2のポンプによって前記第1のサンプリングループ内の溶液を前記試料導入部側へ押出す第2の状態とを交互に繰り返すことを特徴とする分離分析装置。
  2. 請求項1において、
    前記流路切り替え手段は、溶液を機外へ排出し、且つ前記分離カラムと同等の流路抵抗を有する排出流路を備え、
    前記第1の状態では、前記第1のサンプリングループが当該排出流路へ接続され、前記第2の状態では、前記第2のサンプリングループが当該排出流路へ接続されることを特徴とする分離分析装置。
  3. 請求項1において、
    前記第1のポンプは、マイクロリットル/分(μl/min) レベルの流量で送液を行い、前記第2のポンプは、ナノリットル/分(nl/min) レベルの流量で送液を行うことを特徴とする分離分析装置。
  4. 請求項1において、
    前記第1及び第2のサンプリングループの容積は、略1マイクロリットル(μl)であることを特徴とする分離分析装置。
  5. 請求項2において、
    前記流路切り替え手段は、前記第1のポンプからの流路が接続される接続口(1)、前記第2のポンプからの流路が接続される接続口(2)、前記試料導入部への流路が接続される接続口(3)、前記排出流路が接続される接続口(4)を備えた第1の部材と、前記第1の状態と第2の状態を切り替える切り替え流路が形成された第2の部材を有し、
    前記第1の部材内に、前記第1及び第2のサンプリングループが形成されることを特徴とする分離分析装置。
  6. 請求項1において、
    マイクロリットル/分 (μl/min)レベルの流量を送液する第3のポンプと、前記分離カラムからの溶出液と前記第3のポンプから送液される溶液を混合するミキサーと、当該ミキサーによって混合された後の溶液の分取を行う分取部とを備えたことを特徴とする分離分析装置。
  7. 請求項1において、装置全体を一定温度に保つ恒温器を備えたことを特徴とする分離分析装置。
JP2003064319A 2003-03-11 2003-03-11 分離分析装置 Expired - Fee Related JP3823092B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003064319A JP3823092B2 (ja) 2003-03-11 2003-03-11 分離分析装置
US10/776,263 US7135111B2 (en) 2003-03-11 2004-02-12 Separation analyzer
EP10008245A EP2246697A3 (en) 2003-03-11 2004-02-23 Separation analyzer
DE602004029114T DE602004029114D1 (de) 2003-03-11 2004-02-23 Trennanalysator
EP04004088A EP1457774B1 (en) 2003-03-11 2004-02-23 Separation analyser
US11/581,147 US7699990B2 (en) 2003-03-11 2006-10-16 Separation analyzer
US12/685,724 US8048312B2 (en) 2003-03-11 2010-01-12 Separation analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064319A JP3823092B2 (ja) 2003-03-11 2003-03-11 分離分析装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006154151A Division JP4253667B2 (ja) 2006-06-02 2006-06-02 分離分析装置

Publications (3)

Publication Number Publication Date
JP2004271409A JP2004271409A (ja) 2004-09-30
JP2004271409A5 JP2004271409A5 (ja) 2006-07-20
JP3823092B2 true JP3823092B2 (ja) 2006-09-20

Family

ID=32767899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064319A Expired - Fee Related JP3823092B2 (ja) 2003-03-11 2003-03-11 分離分析装置

Country Status (4)

Country Link
US (3) US7135111B2 (ja)
EP (2) EP1457774B1 (ja)
JP (1) JP3823092B2 (ja)
DE (1) DE602004029114D1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4077674B2 (ja) * 2002-07-24 2008-04-16 憲一 工藤 ナノ/ミクロ液体クロマトグラフのグラジエント送液装置および送液方法
JP4377761B2 (ja) * 2004-07-01 2009-12-02 株式会社日立ハイテクノロジーズ 液体クロマトグラフ装置
JP3898688B2 (ja) * 2003-11-07 2007-03-28 株式会社日立ハイテクノロジーズ グラジエント送液装置
JP4254958B2 (ja) * 2004-06-09 2009-04-15 株式会社日立ハイテクノロジーズ グラジエント送液システム
US8881582B2 (en) * 2005-01-31 2014-11-11 Waters Technologies Corporation Method and apparatus for sample injection in liquid chromatography
JP4467454B2 (ja) 2005-03-31 2010-05-26 株式会社日立ハイテクノロジーズ 多次元液体クロマトグラフ及びそれを用いた分析方法
WO2007109157A2 (en) * 2006-03-17 2007-09-27 Waters Investments Limited Solvent delivery system for liquid chromatography that maintains fluid integrity and pre-forms gradients
JP4253667B2 (ja) * 2006-06-02 2009-04-15 株式会社日立ハイテクノロジーズ 分離分析装置
WO2007141718A2 (en) * 2006-06-09 2007-12-13 Firmenich Sa Method and apparatus for providing samples of volatiles to analysis using a multi-port valve and cryo-modulation
US7823468B2 (en) * 2007-01-26 2010-11-02 Teledyne Isco, Inc. Valve
US20080308494A1 (en) * 2007-05-30 2008-12-18 Groton Biosystems, Llc Fluid sampling interface apparatus
US7950296B2 (en) 2007-06-01 2011-05-31 Siemens Industry, Inc. Continuous flow sample introduction apparatus and method
ITVE20070072A1 (it) * 2007-10-16 2009-04-17 Dani Instr Spa Dispositivo per la generazione di gradienti di fase mobile a micro- e nanoflussi per cromatografia liquida ad alte prestazioni.
US8961783B2 (en) 2008-09-12 2015-02-24 Waters Technologies Corporation Apparatus and methods for preparative liquid chromatography
JP2010085146A (ja) * 2008-09-30 2010-04-15 Hitachi High-Technologies Corp グラジエント送液装置,グラジエント送液システム、および液体クロマトグラフ
WO2011001460A1 (ja) * 2009-06-29 2011-01-06 株式会社島津製作所 流路切換バルブ
US20120145937A1 (en) * 2010-12-13 2012-06-14 Richman Bruce A Rotary valve for sample handling in fluid analysis
US9228982B2 (en) * 2011-09-16 2016-01-05 Agilent Technologies, Inc. Single injection valve for HPLC combining sample introduction, wash cycles and diagnosis
JP5861569B2 (ja) * 2012-06-21 2016-02-16 株式会社島津製作所 移動相送液装置及び液体クロマトグラフ
US9335309B2 (en) 2012-06-26 2016-05-10 Agilent Technologies, Inc. Fluidic valve with selectively switchable storage paths
CN103969348B (zh) * 2013-01-29 2018-01-09 深圳普门科技有限公司 一种医用检验仪器的气泡抑制方法及其检验仪器
JP6207872B2 (ja) * 2013-04-18 2017-10-04 株式会社日立ハイテクノロジーズ 液体クロマトグラフ装置および液体クロマトグラフ分析方法
JP6331484B2 (ja) * 2014-03-04 2018-05-30 株式会社島津製作所 液体クロマトグラフ制御装置及び液体クロマトグラフ制御方法
WO2016082154A1 (zh) * 2014-11-27 2016-06-02 王峰 一种液相色谱仪
JP6651238B2 (ja) * 2014-12-15 2020-02-19 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ ロータリーバルブおよびシステム
EP3093335A1 (de) * 2015-05-13 2016-11-16 Bayer Technology Services GmbH Prozessleitsystem zur regelung und steuerung einer modular aufgebauten anlage zur produktion von biopharmazeutischen und biologischen makromolekularen produkten
US10393710B2 (en) 2015-10-31 2019-08-27 Mls Acq, Inc. Coupled analytical instruments for dual mode FTIR/GC-FTIR
US10487954B2 (en) * 2017-02-03 2019-11-26 Micromeritics Instrument Corporation Blend valve
US20190227040A1 (en) * 2018-01-22 2019-07-25 Thermo Finnigan Llc Method and Apparatus for Chromatograph Nano-Flow Fractionator
US11573212B2 (en) * 2018-06-18 2023-02-07 Shimadzu Corporation Flow channel mechanism and liquid chromatograph including the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158630A (en) * 1978-02-24 1979-06-19 Stearns Stanley D Chromatographic multi-sample valving apparatus
US4352780A (en) * 1979-07-13 1982-10-05 Fiatron Systems, Inc. Device for controlled injection of fluids
DE4018928C2 (de) 1990-06-13 1996-03-28 Bodenseewerk Perkin Elmer Co Vorrichtung zur Eingabe von flüssigen Proben in einen Trägerflüssigkeitsstrom
DE4104075C1 (ja) * 1991-02-11 1992-03-19 Bruker Analytische Messtechnik Gmbh, 7512 Rheinstetten, De
US5462660A (en) * 1994-04-22 1995-10-31 The United States Of America As Represented By The Secretary Of Agriculture High performance liquid chromatography injection system for the simultaneous concentration and analysis of trace components
EP0727661B1 (en) * 1995-02-18 2003-05-07 Agilent Technologies Deutschland GmbH Mixing liquids using electroosmotic flow
US5935443A (en) * 1995-03-03 1999-08-10 Alltech Associates, Inc. Electrochemically regenerated ion neutralization and concentration devices and systems
JP3452936B2 (ja) * 1996-01-19 2003-10-06 コヒースィヴ テクノロジーズ,インク. 高速液体クロマトグラフィー法および装置
US5958227A (en) * 1997-07-15 1999-09-28 Tosoh Corporation Liquid chromatograph apparatus with a switching valve
US6502448B1 (en) * 1999-09-07 2003-01-07 Edward Rapkin Chromatography detection system and method
JP2002071657A (ja) 2000-08-29 2002-03-12 Jasco Corp グラジェント液体クロマトグラム測定装置および測定方法
US6989129B2 (en) * 2001-04-05 2006-01-24 The President And Fellows Of Harvard College Automated capillary liquid chromatography small volume analysis system
US7588725B2 (en) * 2001-04-25 2009-09-15 Biotrove, Inc. High throughput autosampler
US7066011B2 (en) 2001-06-07 2006-06-27 Nano Solution, Inc. Liquid chromatograph and analysis system
JP4603203B2 (ja) * 2001-07-02 2010-12-22 積水化学工業株式会社 液体クロマトグラフ装置
JP3816883B2 (ja) * 2003-03-06 2006-08-30 株式会社日立ハイテクノロジーズ 液体クロマトグラフ質量分析装置

Also Published As

Publication number Publication date
EP1457774B1 (en) 2010-09-15
JP2004271409A (ja) 2004-09-30
US7699990B2 (en) 2010-04-20
US8048312B2 (en) 2011-11-01
US20100107782A1 (en) 2010-05-06
US7135111B2 (en) 2006-11-14
US20070031285A1 (en) 2007-02-08
US20040178133A1 (en) 2004-09-16
EP2246697A3 (en) 2011-05-18
DE602004029114D1 (de) 2010-10-28
EP2246697A2 (en) 2010-11-03
EP1457774A1 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
JP3823092B2 (ja) 分離分析装置
CN108956788B (zh) 用于多维液体分析的阀和分流***
US10722816B2 (en) Method for adjusting a gradient delay volume
AU2009347432B2 (en) Sample injector with metering device balancing pressure differences in an intermediate valve state
US7921696B2 (en) Liquid chromatograph device
JP4253667B2 (ja) 分離分析装置
US9791107B2 (en) Packet-wise proportioning followed by immediate longitudinal mixing
JP2004271272A (ja) 液体クロマトグラフ質量分析装置
US20210372972A1 (en) Field flow fractionation device
KR20210078442A (ko) 분자량 여과 시스템 및 장치
US20210389282A1 (en) Injector Serving Multiple Sample Separation Apparatuses
JP2003014718A (ja) 移動相グラジエント装置及びそれを用いた高速液体クロマトグラフ
JP4174599B2 (ja) 高速液体クロマトグラフの分画装置
JP2010085146A (ja) グラジエント送液装置,グラジエント送液システム、および液体クロマトグラフ
JP2007127562A (ja) 送液ポンプ
JPH05307026A (ja) 超臨界流体クロマトグラフィーによる物質の分離方法及びその方法に使用する超臨界流体クロマト分離装置
JP7262360B2 (ja) 液体クロマトグラフィ分析システム
JP2006118374A (ja) 送液システム
Heiduk et al. Multi-stage liquid/liquid extraction with a zaiput apparatus
CN112672799B (zh) 具有推挽调制的二维流体分离
JPH1183823A (ja) 液体クロマトグラフィーの試料導入方法
JPH0989858A (ja) 液体クロマトグラフィ装置及びこれを用いた分析方法
CN113316719A (zh) 液相色谱仪
WO2020109838A1 (en) Removing portions of undefined composition from the mobile phase
JPH08152426A (ja) 液体クロマトグラフィ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees