JP3787943B2 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
JP3787943B2
JP3787943B2 JP07613997A JP7613997A JP3787943B2 JP 3787943 B2 JP3787943 B2 JP 3787943B2 JP 07613997 A JP07613997 A JP 07613997A JP 7613997 A JP7613997 A JP 7613997A JP 3787943 B2 JP3787943 B2 JP 3787943B2
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
electrolyte secondary
aqueous electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07613997A
Other languages
English (en)
Other versions
JPH10270080A (ja
Inventor
篤雄 小丸
晃 山口
政幸 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP07613997A priority Critical patent/JP3787943B2/ja
Publication of JPH10270080A publication Critical patent/JPH10270080A/ja
Application granted granted Critical
Publication of JP3787943B2 publication Critical patent/JP3787943B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池に関する。
【0002】
【従来の技術】
近年の電子技術のめざましい進歩は、電子機器の小型・軽量化を次々と実現させている。それに伴い、ポータブル用電源としての電池に対しても益々小型・軽量且つ高エネルギー密度への要求が高まっている。
【0003】
従来、一般用途の二次電池としては鉛電池、ニッケル・カドミウム電池等の水溶液系電池が主流である。しかし、これらの水溶液系の二次電池は、サイクル特性にはある程度満足できるが、電池重量やエネルギー密度の点では満足できる特性とは言えない。
【0004】
一方、最近、リチウムあるいはリチウム合金を負極に用いた非水電解液二次電池の研究開発が盛んに行われている。この電池は、例えばLiCoO2に代表されるようなLi含有複合酸化物を正極材料に用いることで高エネルギー密度を有するものになり、また、自己放電も少なく、軽量という優れた特性を有する。
【0005】
しかしながら、このようなリチウムあるいはリチウム合金を負極に用いた非水電解液二次電池は、充放電サイクルの進行に伴って、充電時にリチウムがデンドライト状に結晶成長し、正極に到達して内部ショートに至るといった可能性がある。また、デンドライト生成が促進されてしまうために、実用的な急速充放電ができないといった問題がある。この理由から、このリチウムまたはリチウム合金を負極に用いる非水電解液二次電池の実用化は遠いものとなっている。
【0006】
そこで、このような問題を解消するものとして、酸化物や炭素等の層状化合物にリチウムイオンを取り込んだものを負極材料に用いる、いわゆるロッキングチエアー型の非水電解液二次電池(リチウムイオン二次電池)が注目されている。
【0007】
この非水電解液二次電池は、このような層状化合物の層間にリチウムイオンがドープ・脱ドープされるのを負極反応に利用するものであり、充放電サイクルが進行しても、デンドライト状析出が認められず、良好な充放電サイクル特性を示す。
【0008】
ところで、非水電解液二次電池の負極材料として使用し得る炭素材料は各種挙げられるが、初めに負極材料として実用化されたものはコークスやガラス状炭素等の難黒鉛化性炭素材料,すなわち有機材料を比較的低温で熱処理することによって得られる結晶性の低い炭素材料である。これら難黒鉛化性炭素材料で構成された負極と炭酸プロピレン(PC)を主溶媒とする電解液を組み合わせた非水電解液二次電池が既に商品化されている。
【0009】
さらに、最近では、結晶構造が発達した黒鉛類も負極材料として使用できるようになっている。黒鉛類の場合、主溶媒として用いられるPCを分解してしまうことから、このことが、負極材料とする上での障害となっていた。しかし、安定性の高い炭酸エチレン(EC)を主溶媒とすることでこのような問題も解消され、負極材料として使用できるようになっている。
【0010】
黒鉛類は、鱗片状のものが比較的容易に入手でき、従来よりアルカリ電池用導電剤等として広く用いられている。この黒鉛類は、難黒鉛化性炭素材料に比べて結晶性が高く、真密度が高い。したがって、黒鉛類によって負極を構成すれば、高い電極充填性が得られ、電池のエネルギー密度が高められることになる。このことから、黒鉛類は負極材料として期待の大きな材料であると言える。
【0011】
【発明が解決しようとする課題】
ところで、このように炭素材料を負極に用いるリチウムイオン二次電池は、金属リチウムやリチウム合金を負極に用いる二次電池に比べれば、サイクル寿命が向上している。
【0012】
しかしながら、最近では地球環境や省エネルギーの観点から、二次電池に対する要求はさらに高まっている。
【0013】
例えば、1回の充放電における容量が大きいことに加え、電池サイクル時の累積エネルギーの向上も求められている。特に、自動車用途等で用いられる二次電池では、車体本体と同等以上の耐用年数が要求され、サイクル寿命のより一層の向上が切望される。
【0014】
このような点から見たときに、これまでのリチウムイオン二次電池の充放電サイクル寿命は十分であるとは言えず、さらなる改良が必要である。
【0015】
そこで、本発明は、このような従来の実情に鑑みて提案されたものであって、充放電サイクル寿命を向上させることによって、1回の充放電容量が大きく、さらにサイクル累積容量が大きな非水電解液二次電池を提供することを目的とする。
【0016】
【課題を解決するための手段】
上述の目的を達成するために、本発明の非水電解液二次電池は、リチウムイオンをドープ・脱ドープすることが可能な負極、正極及び非水溶媒に電解質が溶解されてなる非水電解液を有してなる非水電解液二次電池であって、上記非水電解液は、Naイオンが70ppm〜2000ppmなる濃度で含有されてなることを特徴とするものである。
【0017】
非水電解液二次電池において、非水電解液にNaイオンを70ppm〜2000ppmなる濃度で含有させると、充放電の繰り返しによる容量劣化が抑えられ、充放電サイクル寿命が長くなり、サイクル累積容量が向上する。
【0018】
【発明の実施の形態】
以下、本発明の具体的な実施の形態について説明する。
【0019】
本発明の非水電解液二次電池は、リチウムをドープ・脱ドープすることが可能な負極、正極及び非水溶媒に電解質が溶解されてなる非水電解液を有して構成される。
【0020】
そして、この非水電解液二次電池では、特に上記非水電解液にNaイオンが5〜3000ppmなる濃度で含有されている。非水電解液に、この濃度でNaイオンが含有されていると、電池の充放電サイクル特性が向上する。Naイオンによって効果が得られる詳細な理由は不明であるが、例えば炭素材料を負極に用いる場合には以下のように考えられる。
【0021】
すなわち、炭素材料よりなる負極では、充電時には負極の炭素層間にLiイオンがドープされ黒鉛層間化合物あるいは炭素層間化合物が形成される。また、放電時にはこのドープされたLiイオンが炭素層間から引き抜かれる。このように負極にはリチウムがドープ・脱ドープされるが、このリチウムのドープ・脱ドープに際しては負極が膨張・収縮する現象が見られる。この負極の膨張・収縮は、電極構造を劣化させ、電池の充放電サイクル寿命を短くする原因となる。
【0022】
ここで、Naイオンを電解液中に存在させておくと、Naはリチウムと同じアルカリ金属ではあるが黒鉛層間化合物や炭素層間化合物を形成せず、負極の炭素層間の入り口に存在し、柱となって負極の収縮を抑制するものと考えられる。このことが、電池の充放電サイクルを向上させるものと推測される。
【0023】
但し、電解液中に含有させるNaイオン濃度は、5ppm以上3000ppm以下であることが必要である。Naイオン濃度が5ppmを下回る場合には、効果が小さ過ぎ、電池の充放電サイクルを十分に向上させることができない。また、Naイオン濃度が3000ppmよりも高い場合には、金属Naの析出等により充放電反応が阻害される。なお、Naイオン濃度のより好ましい範囲は、70ppm以上2000ppm以下である。
【0024】
Naイオンを含有する電解液を得るには、電解質を溶解させた非水溶液に、ナトリウムを含むイオン結晶を添加して電解液を調製すれば良い。
【0025】
イオン結晶としては、電解液に溶解可能なあらゆるナトリウム塩が使用可能である。具体的には、NaCl、NaBr、NaClO4、NaBF4、NaAsF6、NaB(C654、CH3SO3Na、CF3SO3Na、NaN(CF3SO22、NaC(CF3SO23等が挙げられ、中でもNaPF6が好適である。NaPF6を電解液に添加すると、電解質として汎用されるLiPF6を用いた場合には、NaPF6を添加した分だけ電解質濃度を高くしたのと同様の効果が得られる。なお、これらイオン結晶は1種類を単独で用いても、複数種を組み合わせて用いても差し支えない。
【0026】
また、Naイオン源としては金属Naも使用できる。アルカリ金属は非水溶媒に溶解することができ、金属Naも同様である。したがって、金属Naを電解液に添加することによって、間接的あるいは直接的に電解液中にNaイオンを生じさせることができる。
【0027】
なお、電解液の非水溶媒や電解質としては、この種の非水電解液二次電池で通常用いられているものがいずれも使用可能である。
【0028】
例えば非水溶媒としては、テトラヒドロフラン,エチレングリコールジエチルエーテル,ジメチルエーテルや環状ポリエーテル等のエーテル類、ヘキサメチルホスホルアミド等のアミン類の他、液体アンモニア等も使用可能である。
【0029】
また、次のような比較的誘電率の高い溶媒を主体とし、これに低粘度溶媒を添加したものを用いるようにしても良い。
【0030】
誘電率の高い溶媒としては、エチレンカーボネート(EC)の他、プロピレンカーボネート(PC),ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、スルホラン酸、ブチロラクトン酸、バレロラクトン類等が使用可能である。
【0031】
低粘度溶媒としては、ジエチルカーボネート,ジメチルカーボネート等の対称の鎖状炭酸エステル、メチルエチルカーボネート,メチルプロピルカーボネート等の非対称の鎖状炭酸エステル、プロピオン酸メチル,プロピオン酸エチル等のカルボン酸エステル、さらにリン酸トリメチル,リン酸トリエチル等のリン酸エステル等が使用可能である。これらのうち1種類を用いてもよく、2種類以上を組み合わせて用いても差し支えない。
【0032】
但し、負極に黒鉛材料を用いる場合には、他の高誘電率溶媒に比べて黒鉛による分解がされ難いことから、エチレンカーボネートあるいはエチレンカーボネートの水素原子をハロゲンで置換した化合物を主溶媒として用いるのが望ましい。
【0033】
なお、プロピレンカーボネートのように黒鉛材料と反応性があるものであっても、エチレンカーボネートやエチレンカーボネートのハロゲン化物を主溶媒とし、これの一部を置き換える第2の成分溶媒として添加するのであれば使用しても差し支えない。
【0034】
第2の成分溶媒として用いられるものは、プロピレンカーボネートの他、ブチレンカーボネート、ビニレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシメタン、γ−ブチロラクトン、バレロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、スルホラン、メチルスルホラン等が挙げられる。このうち、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の炭酸エステル系溶媒を用いるのが好ましい。なお、これらの添加量は40容量%以下、さらには20容量%以下とするのが望ましい。
【0035】
非水溶媒に溶解する電解質塩としては、この主の電池に用いられるものがいずれも使用可能である。具体的にはLiPF6 、LiClO4 、LiAsF6 、LiBF4 、LiB(C6 5 4 、CH3 SO3 Li、CF3 SO3 Li,LiN(CF3 SO22、LiC(CF3SO23、LiCl、LiBr等が挙げられる。これら電解質塩は1種類を単独で使用しても、複数種を組み合わせて使用しても構わない。なお、組み合わせて使用する場合、LiPF6 を主成分とするのが望ましい。
【0036】
なお、電解液にNaイオンを含有させるには、このように直接電解液にNaイオン源を添加することの他、電解液以外の電池の構成要素に、Naのイオン結晶を付着させておき、これを電解液中に溶出させることで行っても良い。このNaのイオン結晶を含ませておく電池の構成要素としては、セパレータ、インシュレータ等の樹脂材料、電池缶,リード等の金属材料、リチウム遷移金属複合酸化物を主体とする正極材料等が挙げられる。
【0037】
以上のように本発明ではNaイオンを含有する電解液を用いるが、負極,正極としては次のようなものが使用される。
【0038】
まず、負極材料としては、リチウムイオンをドープ・脱ドープすることが可能な炭素材料や、結晶質あるいは非晶質の金属カルコゲン化物が用いられる。
【0039】
このうち、炭素材料としては、易黒鉛化性炭素材料、難黒鉛化性炭素材料、黒鉛材料が使用できる。
【0040】
難黒鉛化性炭素材料としては、(002)面間隔が0.37nm以上、真密度が1.70g/cm3未満、空気中での示差熱分析(DTA)において、700℃以上に発熱ピークを有さないといった物性パラメータを有する材料が好適である。
【0041】
このような難黒鉛化性炭素材料は、有機材料を例えば1000℃程度の低温で熱処理することで得られる。
【0042】
出発原料の代表としては、フルフリルアルコールやフルフラールのホモポリマー,コポリマーあるいは他の樹脂と共重合したフラン樹脂等が挙げられる。
【0043】
さらに、フェノール樹脂、アクリル樹脂、ハロゲン化ビニル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリアセチレン、ポリ(p−フェニレン)等の共役系樹脂、セルロースおよびその誘導体、任意の有機高分子系化合物を使用することができる。
【0044】
また、特定のH/C原子比を有する石油ピッチに、酸素を含む官能基を導入(いわゆる酸素架橋)したものも、上記フラン樹脂と同様、炭素化の過程(400℃以上)で溶融せず、固相状態で最終的に難黒鉛化性炭素材料になる。
【0045】
上記石油ピッチは、コールタール,エチレンボトム油,原油等の高温熱分解で得られるタール類、アスファルトなどより蒸留(真空蒸留、常圧蒸留、スチーム蒸留),熱重縮合,抽出,化学重縮合等の操作によって得られる。このとき、石油ピッチのH/C原子比が重要で、難黒鉛化性炭素とするためにはこのH/C原子比を0.6〜0.8とする必要がある。
【0046】
これらの石油ピッチに、酸素架橋を形成するための具体的な手段は限定されないが、例えば硝酸,混酸,硫酸,次亜塩素酸等の水溶液による湿式法、あるいは酸化性ガス(空気、酸素)による乾式法、さらに硫黄,硝酸アンモニウム,過硫酸アンモニア,塩化第二鉄等の固体試薬による反応などが用いられる。
【0047】
この酸素含有率は、特に限定されないが、特開平3−252053号公報に記載されるように、好ましくは3%以上、さらに好ましくは5%以上である。この酸素含有率は、最終的に製造される炭素材料の結晶構造に影響を与え、酸素含有率をこの範囲としたときに、上述したような(002)面間隔を0.37nm以上、空気気流中での示差熱分析(DTA)において700℃以上に発熱ピークを有さないといった物性パラメータを有するものになり、負極容量が向上する。
【0048】
なお、出発原料はこれらに限定されず、他のあらゆる有機材料、すなわち酸素架橋処理等によって固相炭素化過程を経て難黒鉛化炭素材料となるものであればいずれも使用可能である。
【0049】
また、以上のような有機材料を出発原料とする難黒鉛化性炭素材料の他、特開平3−137010号公報に記載されるリン、酸素、炭素を主成分とする化合物も難黒鉛化性炭素材料と同様の物性パラメータを示し、負極の材料として好ましい。
【0050】
難黒鉛化性炭素材料は、以上のような有機材料を焼成等によって炭素化することによって得られるが、この焼成は次のようなプロセスで行うのが望ましい。
【0051】
すなわち、難黒鉛化性炭素材料を合成するには、有機材料を温度300〜700℃で炭化した後、昇温速度毎分1〜100℃、到達温度900〜1300℃、到達温度での保持時間0〜30時間程度の条件で焼成を行う。なお、場合によっては炭化操作は省略しても良い。そして、このようにして得られた焼結体は、この後、粉砕・分級して負極に供されるが、この粉砕は炭化、か焼、高温熱処理の前後で行っても昇温過程の間で行っても構わない。
【0052】
次に、黒鉛材料としては、真密度が2.1g/cm3以上であるのが好ましく、2.18g/cm3以上であるのがより好ましい。そのような真密度を得るには、X線回折法で測定される(002)面間隔が好ましくは0.340nm未満、さらに好ましくは0.335nm以上、0.337nm以下であり、(002)面のC軸結晶子厚みが14.0nm以上であることが必要である。
【0053】
また、黒鉛材料では、以上のような真密度や結晶構造パラメータの他、嵩密度、平均形状パラメータxave,比表面積,粒度分布,粒子破壊強度といった特性も重要になる。次に、これらの特性について説明する。
【0054】
まず、嵩密度は、JIS K−1469に記載される方法に準じて測定される。この測定方法を以下に示す。
【0055】
<嵩密度測定方法>
予め質量を測定しておいた容量100cm3 のメスシリンダーを斜めにし、これに試料粉末100cm3 を、さじを用いて徐々に投入する。そして、全体の質量を最小目盛り0.1gで測り、その質量からメスシリンダーの質量を差し引くことで試料粉末の質量Mを求める。
【0056】
次に、試料粉末が投入されたメスシリンダーにコルク栓をし、その状態のメスシリンダーを、ゴム板に対して約5センチメートルの高さから50回落下させる。その結果、メスシリンダー中の試料粉末は圧縮されるので、その圧縮された試料粉末の容積Vを読み取る。そして、下記の式1により嵩密度(g/cm3 )を算出する。
【0057】
D=M/V・・・式1
D:嵩密度(g/cm3
M:メスシリンダー中の試料粉末の質量(g)
V:50回落下後のメスシリンダー中の試料粉末の容積(cm3
黒鉛材料としては、この嵩密度が0.4g/cm3以上のものを用いるのが望ましい。黒鉛材料は形状が鱗片状であることから電極から剥がれ落ち易く、このことがサイクル寿命を短くする原因になる。但し、このように嵩密度が0.4g/cm3以上の黒鉛材料であれば、剥がれ落ちが抑えられ、サイクル寿命が向上する。なお、嵩密度のより好ましい範囲は、0.5g/cm3以上、さらには0.6g/cm3以上である。
【0058】
次に、平均形状パラメータxaveは以下のようにして求められるものである。
【0059】
<平均形状パラメータxave:SEM法>
すなわち、黒鉛材料の代表的な粒子形状は、図1あるいは図2の模式図で示すように偏平な円柱状あるいは直方体状である。この黒鉛粒子の最も厚さの薄い部分の厚さをT、最も長さの長い長軸方向の長さをL、奥行きに相当する長軸と直交する方向の長さをWとしたときに、LとWそれぞれをTで除した値の積が上記形状パラメータxである。この形状パラメータxが小さいもの程、底面積に対する高さが高く偏平度が小さいことを意味する。
【0060】
x=(W/T)×(L/T)・・・式2
x:形状パラメータ
T:粉末の最も厚さの薄い部分の厚さ
L:粉末の長軸方向の長さ
W:粉末の長軸と直交する方向の長さ
このような形状パラメータxを、実際の黒鉛粉末について測定するには、黒鉛粉末の形状をSEM(走査型電子顕微鏡)を用いて観察し、最も長さの長い部分の長さが平均粒径の±30%であるような粉末を10個選択する。そして、選択した10個の粉末それぞれについて式2により形状パラメータを計算し、その平均を算出する。この算出された平均値が平均形状パラメータxaveである。
【0061】
この平均形状パラメータxaveは125以下であるのが望ましい。嵩密度が上述の範囲内であって、且つこのようにして求められる平均形状パラメータxaveが125以下であるような偏平度の低い黒鉛粉末を用いると、電極の構造がさらに改善され、黒鉛粉末が剥がれ落ち難くなる。これにより、サイクル寿命がより一層向上することになる。なお、平均形状パラメータxave のより好ましい範囲は、2以上115以下、さらには2以上100以下である。
【0062】
続いて、黒鉛粉末の比表面積であるが、これは窒素吸着BET法によって求められ、9m2/g以下であるのが望ましい。嵩密度、平均形状パラメータxaveが上記条件を満たすとともに、この比表面積が9m2/g以下の黒鉛粉末を用いることによって、電池のサイクル寿命がさらに改善される。
【0063】
なお、比表面積の規制が電池のサイクル寿命に効果を示すのは、この比表面積が、黒鉛粉末への微粒子の付着を反映するからである。
【0064】
すなわち、黒鉛粉末にはサブミクロン程度の微粒子が付着している場合が多く、微粒子の付着が黒鉛材料の嵩密度を低くしているものと考えられる。したがって、黒鉛粉末への微粒子の付着はできるだけ少ない方が望ましい。
【0065】
一方、黒鉛粉末の比表面積は、同じ粒度であれば、微粒子の付着が多い程大きくなり、逆に微粒子の付着が少ない程小さくなる。つまり、比表面積は微粒子の付着の程度の指標となり、この比表面積が9m2/g以下に抑えれているということは、この微粒子の付着が非常に少ないことを意味しており、高い嵩密度が得られ長サイクル寿命が得られる。なお、この比表面積は、より好ましくは7m2/g以下、さらに好ましくは5m2/g以下である。
【0066】
黒鉛粉末の粒度は、粒度分布図(横軸:粒径、縦軸:粒子個数)から求められる累積10%粒径、累積50%粒径、累積90%粒径によって最適化される。この累積10%粒径、累積50%粒径、累積90%粒径とは、粒度分布図において、それぞれ0μmから積分した面積が全面積の10%,50%,90%となったときの粒径のことである。
【0067】
このうち、累積10%粒径は3μm以上、累積50%粒径は10μm以上、累積90%粒径は70μm以下であるのが望ましい。これは 以下の理由からである。
【0068】
すなわち、電極充填性を考えた場合、黒鉛粉末の粒度分布は、横軸(粒径)にある程度幅をもった分布であり、特に正規分布となっていると高い充填効率が得られ、望ましい。
【0069】
但し、過充電等の異常事態になった場合、電池に発熱が生じる可能性があり、このような場合に、小粒径の黒鉛粉末の分布嵩が大きいと、発熱温度が高くなる傾向がある。
【0070】
一方、電池の充電時には、黒鉛層間へリチウムイオンが挿入されるため結晶子が約10%膨張する。そして、この膨張によって正極やセパレータが圧迫され、初充電時に内部ショート等の初期不良が起こり易い状態になる。このような膨張による不良は、大粒径の黒鉛粉末の分布嵩が大きい程顕著になる。
【0071】
つまり、黒鉛粉末は、小粒径のものが多すぎても、大粒径のものが多すぎても不具合があり、粒径の大きい粒子から小さい粒子までバランス良く配合されているのが望ましい。
【0072】
上述の累積10%粒径、累積50%粒径、累積90%粒径の範囲はこれらの点に着目して設定されたものであり、これを満たす黒鉛材料は粒径の大きい粒子から小さい粒子までバランス良く配合されている。したがって、過充電時等において電池の発熱が抑えられるとともに初期不良が低減し、高い信頼性が得られる。なお、これら累積粒径のうち、特に累積90%粒径は、初期不良を防止する点から60μm以下であるのが望ましい。
【0073】
なお、粒子の粒径及び粒子個数は、例えばマイクロトラック粒度分析計を用い、レーザー光の散乱によって測定することができる。
【0074】
次に、黒鉛粉末の破壊強度は次のようにして測定される、
<平均粒子破壊強度の測定方法>
破壊強度の測定は、島津微小圧縮試験機(島津製作所社製 商品名MCTM−500)を用いて行う。
【0075】
まず、付属の光学顕微鏡によって黒鉛粉末を観察し、最も長さの長い部分の長さが平均粒径の±10%であるような粉末を10個選択する。そして、選択した10個の粉末それぞれについて、荷重を掛けて破壊強度を測定し、その平均値を算出する。この算出された平均値が黒鉛粉末の平均粒子破壊強度である。
【0076】
実用電池として十分な重負荷特性を得るには、黒鉛粉末の平均粒子破壊強度が6.0kgf/mm2以上であるのが望ましい。なお、この破壊強度と負荷特性には次のような関係がある。
【0077】
まず、負荷特性には放電時のイオンの動き易さが影響する。
【0078】
ここで、電極材料に空孔が多く存在する場合には、電極中に電解液が含浸され易いため、イオンが移動し易く、良好な負荷特性が得られる。電極材料に空孔が少ないと、イオンが移動し難いため、負荷特性の点で劣ってしまう。
【0079】
一方、結晶性の高い黒鉛材料は、a軸結晶方向に黒鉛六角網面が発達しており、その積み重なりによってC軸の結晶子が成り立っている。この炭素六角網面同士の結合はファンデルワールス力という弱い結合であり、応力に対して変形しやすい。このため、黒鉛材料は、通常、圧縮成型によって電極に充填する際に潰れ易く、イオンの移動をし易くするための空孔を確保しておくのが難しい。
【0080】
上述したような破壊強度は、このような空孔の潰れ難さの指標となるものである。黒鉛材料であっても、破壊強度を6.0kg/mm2以上に規制して用いれば、空孔が確保され、良好な負荷特性が得られるようになる。
【0081】
黒鉛材料としては以上のような物性を有するものが選択して用いられるが、この黒鉛材料は、天然黒鉛であっても、有機材料を炭素化し、さらに高温処理することで得られる人造黒鉛であっても良い。
【0082】
人造黒鉛を生成するに際して、出発原料となる有機材料としては石炭やピッチが代表的である。
【0083】
ピッチとしては、コールタール、エチレンボトム油、原油等の高温熱分解で得られるタール類、アスファルトなどより蒸留(真空蒸留、常圧蒸留、スチーム蒸留)、熱重縮合、抽出、化学重縮合等の操作によって得られるものや、その他木材材乾留時に生成するピッチ等もある。
【0084】
さらにピッチとなる出発原料としてはポリ塩化ビニル樹脂,ポリビニルアセテート,ポリビニルブチラート,3,5−ジメチルフェノール樹脂等がある。
【0085】
これら石炭,ピッチは、炭素化の途中、最高400℃程度で液状で存在し、その温度で保持することで芳香環同士が縮合,多環化し積層配向した状態となり、その後500℃程度以上の温度になると固体の炭素前駆体,すなわちセミコークスを形成する。このような過程を液相炭素化過程と呼び、易黒鉛化炭素の典型的な生成過程である。
【0086】
その他、ナフタレン,フェナントレン,アントラセン,トリフェニレン,ピレン,ペリレン,ペンタフェン,ペンタセン等の縮合多環炭化水素化合物、その他誘導体(例えばこれらのカルボン酸,カルボン酸無水物,カルボン酸イミド等)あるいは混合物、アセナフチレン,インドール,イソインドール,キノリン,イソキノリン,キノキサリン,フタラジン,カルバゾール,アクリジン,フェナジン,フェナントリジン等の縮合複素環化合物、さらにはその誘導体も原料として使用可能である。
【0087】
以上の有機材料を出発原料として人造黒鉛を生成するには、例えば、上記有機材料を窒素等の不活性ガス気流中、温度300〜700℃で炭化した後、不活性ガス気流中、昇温速度毎分1〜100℃、到達温度900〜1500℃、到達温度での保持時間0〜30時間程度の条件で仮焼し(このプロセスまで経たものが易黒鉛化性炭素材料である)、さらに温度2000℃以上、好ましくは2500℃以上で熱処理する。勿論、場合によっては炭化や仮焼操作は省略しても良い。
【0088】
生成された黒鉛材料は分級あるいは粉砕・分級して負極材料に供されるが、粉砕は、炭化、仮焼の前後、あるいは、黒鉛化前の昇温過程の間のいずれで行っても良い。なお、これらの場合には、最終的に粉末状態で黒鉛化のための熱処理が行われる。
【0089】
但し、嵩密度や破壊強度の高い黒鉛粉末を得るには、原料を成型体としたかたちで熱処理を行い、得られた黒鉛化成型体を粉砕、分級するのが望ましい。
【0090】
すなわち、黒鉛化成型体を作製するには、フィラーとなるコークスと、成型剤あるいは焼結剤となるバインダーピッチを混合して成型する。そして、この成型体を1000℃以下の低温で熱処理した後、溶融させたバインダーピッチを含浸させるといったピッチ含浸/焼成工程を数回繰り返した後、高温で熱処理する。含浸させたバインダーピッチは、以上の熱処理過程で炭素化し、黒鉛化される。そして、得られた黒鉛化成型体を粉砕して黒鉛粉末とする。
【0091】
このようにして得られた黒鉛化成型体の粉砕粉は、嵩密度や破壊強度が高く、性能に優れた電極が得られる。
【0092】
また、フィラー(コークス)とバインダーピッチを原料にしているため、多結晶体として黒鉛化し、また原料に含まれる硫黄や窒素が熱処理時にガスとなって発生するため、その通り路にミクロな空孔が形成される。空孔が形成されていると、負極の反応、すなわちリチウムのドープ・脱ドープ反応が進行し易くなる。また、空孔が空いていると、工業的に処理効率が高いという利点もある。
【0093】
なお、成型体の原料としては、それ自身に成型性、焼結性を有するフィラーを用いても良い。この場合には、バインダーピッチの使用は不要である。
【0094】
負極材料としては、炭素材料の他、リチウムイオンのドープ・脱ドープ可能な金属酸化物も使用可能である。
【0095】
金属酸化物としては、遷移金属を含有する酸化物が好適であり、具体的には酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ、酸化珪素等を主体とする結晶化合物あるいは非結晶化合物が挙げられる。なお、このうち充放電電位が比較的金属Liに近いものを用いるのは望ましい。
【0096】
以上のように負極の材料としては、黒鉛、難黒鉛化性炭素材料、金属酸化物等が使用されるが、このうちリチウムイオンのドープ・脱ドープに伴った膨張・収縮は黒鉛において顕著である。本発明の効果、すなわち電解液にNaイオンを含有させる効果は、このような黒鉛を用いた場合に最も大きく発揮される。
【0097】
次に、正極の材料について説明する。
【0098】
正極材料は、十分な量のLiを含んでいることが好ましく、例えば一般式LiMO2(但し、MはCo,Ni,Mn,Fe,Al,V,Tiの少なくとも1種を表す)で表されるリチウムと遷移金属からなる複合金属酸化物やLiを含んだ層間化合物等が好適である。
【0099】
特に、高容量を達成するためには、正極は、定常状態(例えば5回程度充放電を繰り返した後)で、負極材料1g当たり300mAh以上の充放電容量相当分のLiをふくむことが必要であり、350mAh以上の充放電容量相当分のLiを含むことがより好ましい。
【0100】
なお、Liは必ずしも正極からすべて供給される必要はなく、要は電池系内に負極材料1g当たり250mAh以上の充放電容量相当分のLiが存在すれば良い。なお、この電池系内のLi量は、電池の放電容量を測定することによって判断することとする。
【0101】
【実施例】
以下、本発明に具体的な実施例について実験結果に基づいて説明する。
【0102】
作製した電池の構造
後述の各実施例において作製した電池の構造を図3に示す。
【0103】
この非水電解液二次電池は、図3に示すように、負極集電体10に負極活物質を塗布してなる負極1と、正極集電体11に正極活物質を塗布してなる正極2とを、セパレータ3を介して巻回し、この巻回体の上下に絶縁体4を載置した状態で電池缶5に収納してなるものである。
【0104】
前記電池缶5には電池蓋7が封口ガスケット6を介してかしめることによって取付けられ、それぞれ負極リード12及び正極リード13を介して負極1あるいは正極2と電気的に接続され、電池の負極あるいは正極として機能するように構成されている。
【0105】
そして、本実施例の電池では、前記正極リード13は電池遮断用薄板8に溶接されて取り付けられ、この電流遮断用薄板8と熱感抵抗素子(PTC素子)9を介して電池蓋7との電気的接続が図られている。
【0106】
このような構成を有する電池においては、電池温度が異常上昇した場合には、、PTC素子9の電気抵抗が高くなり、電流が遮断される。また、電池内部の圧力が上昇すると、前記電流遮断等薄板8が押し上げられて変形する。すると、正極リード13が電流遮断用薄板8と溶接された部分を残して切断され、電流が遮断される。
【0107】
実施例1
まず、負極活物質を次のようにして合成した。
【0108】
フィラーとなる石炭系コークス100重量部に対し、バインダーとなるコールタール系ピッチを30重量部加え、温度約100℃で混合した後、プレスにて圧縮成型し、炭素成型体の前駆体を得た。
【0109】
次いで、この前駆体を1000℃以下の温度で熱処理して炭素材料成型体を作製した。そして、この炭素材料成型体に、200℃以下の温度で溶融させたバインダーピッチを含浸し、1000℃以下の温度で熱処理するというピッチ含浸/焼成工程を繰り返し行った。
【0110】
その後、この炭素成型体を、不活性雰囲気下、温度2700℃で熱処理することによって黒鉛化成型体とし、粉砕,分級することによって黒鉛試料粉末を作製した。
【0111】
このとき得られた黒鉛材料の物性値を以下に示す。
【0112】
(002)面の面間隔:0.337nm
(002)面のC軸結晶子厚み:50.0nm
真密度:2.23g/cm3
嵩密度:0.83g/cm3
平均形状パラメータXave:10
比表面積:4.4m2/g
粒度:
平均粒径;31.2μm
累積10%粒径;12.3μm
累積50%粒径;29.5μm
累積90%粒径;53.7μm
粒子の破壊強度の平均値;7.1kgf/mm2
なお、(002)面の面間隔及び(002)面のC軸結晶子厚みはX線回折測定、真密度はピクノメータ法、比表面積はBET法、粒度はレーザ回折法による粒度分布からそれぞれ測定した。
【0113】
そして、以上のようにして得た黒鉛試料粉末を負極活物質として負極1を作製した。
【0114】
まず、黒鉛試料粉末を90重量部と、結着剤としてポリフッ化ビニリデン(PVDF)10重量部を混合して負極合剤を調製し、溶剤となるN−メチルピロリドンに分散させることで負極合剤スラリー(ペースト状)とした。
【0115】
次いで、負極集電体10として厚さ10μmの帯状銅箔を用意し、この負極集電体10の両面に上記負極合剤スラリーを均一に塗布、乾燥させた後、一定圧力で圧縮成型することによって帯状負極1を作製した。
【0116】
一方、正極活物質は次のようにして生成した。
【0117】
炭酸リチウム0.5モルと炭酸コバルト1モルを混合し、この混合物を、空気中、温度900℃で5時間焼成した。得られた材料についてX線回折測定を行った結果、JCPDSファイルに登録されたLiCoO2のピークと良く一致していた。
【0118】
このLiCoO2を粉砕し、レーザ回折法で得られる累積50%粒径が15μmのLiCoO2粉末を得た。
【0119】
そして、このLiCoO2粉末95重量部と炭酸リチウム粉末5重量部を混合し、この混合物のうち91重量部を、導電剤として燐片状黒鉛6重量部と結着剤としてポリフッ化ビニリデン3重量部と混合して正極合剤を調製し、N−メチルピロリドンに分散させることで正極合剤スラリー(ペースト状)とした。
【0120】
次いで、正極集電体11として厚さ20μmの帯状のアルミニウム箔を用意し、この正極集電体11の両面に上記正極合剤スラリーを均一に塗布、乾燥させた後、圧縮成型することで帯状正極2を作製した。
【0121】
以上のようにして作製された帯状負極1、帯状正極2を、図3に示すように厚さ25μmの微多孔性ポリプロピレンフィルムよりなるセパレータを介して、負極1、セパレータ3、正極2、セパレータ3の順に積層してから多数回巻回し、外径18mmの渦巻型電極体を作製した。
【0122】
このようにして作製した渦巻型電極体を、ニッケルめっきを施した鉄製電池缶5に収納した。
【0123】
そして、渦巻式電極の上下両面に絶縁板4を配設し、アルミニウム製正極リード13を正極集電体11から導出して電流遮断用薄板8に、ニッケル製負極リード12を負極集電体10から導出して電池缶5に溶接した。
【0124】
一方、エチレンカーボネートとジメチルカーボネートの等容量混合溶媒に、LiPF6を1mol/lなる濃度で溶解し、さらにNaPF6をNa換算で5ppmとなるように添加することで電解液を調製した。そして、この電解液を電池缶5の中に注入した。
【0125】
次いで、アスファルトで表面を塗布した絶縁封口ガスケット6を介して電池缶5をかしめることで、電流遮断用薄板8、PTC素子9並びに電池蓋7を固定し、電池内の気密性を保持させ、直径18mm、高さ65mmの円筒型非水電解液二次電池を作製した。
【0126】
実施例2〜実施例7
電解液に添加するNaPF6の量を、Na換算で表1に示すppm濃度となるように設定したこと以外は、実施例1と同様にして直径18mm、高さ65mmの円筒型非水電解液二次電池を作製した。
【0127】
比較例1
電解液にNaPF6を添加しないこと以外は、実施例1と同様にして直径18mm、高さ65mmの円筒型非水電解液二次電池を作製した。
【0128】
比較例2
電解液に添加するNaPF6の量を、Na換算で2ppmとなるように設定したこと以外は、実施例1と同様にして直径18mm、高さ65mmの円筒型非水電解液二次電池を作製した。
【0129】
比較例3
電解液に添加するNaPF6の量を、Na換算で5000ppmとなるように設定したこと以外は、実施例1と同様に直径18mm、高さ65mmの円筒型非水電解液二次電池を作製した。
【0130】
以上のようにして作製された非水電解液二次電池について、充放電サイクル試験を行い、初期サイクルに対する100サイクル後の容量維持率〔(100サイクル後の容量)/(初期容量)〕×100%を算出した。
【0131】
なお、充放電は、最大充電電圧4.2V、充電電流1Aで2.5時間充電した後、放電電流700mAで2.75Vまで定電流放電するといった条件で行った。
【0132】
容量維持率の測定結果を電解液のNaイオン濃度と併せて表1に示す。また、Naイオン濃度と容量維持率の関係を図4に示す。
【0133】
【表1】
Figure 0003787943
【0134】
図4に示すように、容量維持率は、電解液のNaイオン濃度に依存して変化し、電解液にNaイオンを含有させることによって電池の容量維持率を大きくできることがわかる。
【0135】
但し、Naイオン濃度が2ppmの場合の容量維持率は、Naイオンを電解液に含有させたなかった場合と変わらない。
【0136】
また、Naイオン濃度を3000ppmよりも大きくした場合の容量維持率は、Naイオンを電解液に含有させたなかった場合よりもかえって低くなる。
【0137】
このことから、電解液に含有させるNaイオンの濃度は5ppm〜3000ppmが適当である。
【0138】
次に、他の例として電解液に含有させるナトリウム塩としてNaBF4,NaCF3SO3を用いた場合、また負極活物質として難黒鉛化性炭素材料を用いた場合について検討を行った。
【0139】
実施例8
電解液に添加するナトリウム塩として、NaBF4をNa換算で100ppmとなるように添加したこと以外は、実施例1と同様にして直径18mm、高さ65mmの円筒型非水電解液二次電池を作製した。
【0140】
実施例9
電解液に添加するナトリウム塩として、NaCF3SO3をNa換算で100ppmとなるように添加したこと以外は、実施例1と同様にして直径18mm、高さ65mmの円筒型非水電解液二次電池を作製した。
【0141】
実施例10
負極活物質として難黒鉛化性炭素材料を用いるとともに、電解液に添加するNaPF6の量をナトリウム換算で100ppmとなるように設定したこと以外は、実施例1と同様にして直径18mm、高さ65mmの円筒型非水電解液二次電池を作製した。
【0142】
なお、難黒鉛化性炭素材料は、次のようにして合成した。
【0143】
フルフリルアルコール100重量部に対し、85%酢酸0.5重量部、水10重量部を混合したものを湯浴上で5時間加熱し、粘調な重合体(フルフリルアルコール樹脂)を得た。ここで残留した水及び未反応アルコールは真空蒸留で除去した。
【0144】
次に、得られたフルフリルアルコール樹脂(PFA)を、窒素気流中、温度500℃で5時間炭化し、その後、粉砕した。そして、この粉砕物を、温度1200℃で1時間熱処理し、さらに粉砕することによって平均粒径20μmの炭素材料粉末(難黒鉛化性炭素材料)とした。
【0145】
このとき得られた難黒鉛化性炭素材料の物性値を以下に示す。
【0146】
(002)面の面間隔:0.383nm
真密度:1.52g/cm3
空気気流中の示差熱分析における酸化発熱ピーク温度:634℃
なお、(002)面の面間隔はX線回折測定、真密度はピクノメータ法によってそれぞれ測定した。
【0147】
比較例4
電解液にNaPF6を添加しないこと以外は、実施例10と同様にして直径18mm、高さ65mmの円筒型非水電解液二次電池を作製した。
【0148】
以上のようにして作製した電池について、上述と同様にして充放電サイクル試験を行い初期サイクルに対する100サイクル後の容量維持率を求めた。その結果を表2に示す。
【0149】
【表2】
Figure 0003787943
【0150】
表2に示すように、実施例8,実施例9の電池では、電解液にそれぞれNaBF4,NaCF3SO3を添加しており、いずれも表1に示す比較例1よりも大きな容量維持率が得られている。すなわち、NaBF4やNaCF3SO3といったナトリウム塩も、電池の容量維持率を高める効果を有しており、この効果はナトリウム塩の種類に依らないことがわかる。
【0151】
但し、ナトリウム塩としてNaPF6を用い、Naイオン濃度を100ppmとした実施例4の電池と、実施例8,実施例9の電池を比べると、実施例4の電池の方が高い容量維持率になっている。このことから、NaBF4やNaCF3SO3よりも、NaPF6を用いる方が効果が高いことがわかる。
【0152】
次に、負極活物質として難黒鉛化性炭素材料を用いた実施例10と比較例4を比較すると、電解液にNaイオンを含有させた実施例10の電池は、Naイオンを含有させていない比較例4に比べて大きな容量維持率が得られている。
【0153】
このことから、難黒鉛化性炭素材料を負極活物質として用いる場合にも、電解液にNaイオンを含有させることによって電池の容量維持率が大きくなることがわかる。
【0154】
しかし、比較例1に対する実施例4の容量維持率の増大分と、比較例4に対する実施例10の容量維持率の増大分を比較すると、前者の方が後者に比べて容量維持率の増大分が大きい。つまり、電解液にNaイオンを含有させることによる効果は、負極活物質として黒鉛を用いた場合に顕著に発揮されることがわかる。
【0155】
【発明の効果】
以上の説明からも明らかなように、本発明の非水電解液二次電池では、電解液にナトリウムイオンを70ppm以上2000ppmなる濃度で含有させるので、充放電サイクルに伴った容量劣化が小さく抑えられ、充放電サイクル特性に優れている。したがって、大きなサイクル累積容量が求められる電気自動車等の供給電源として好適である。
【図面の簡単な説明】
【図1】黒鉛の粒子形状の一例を示す模式図である。
【図2】黒鉛の粒子形状の他の例を示す模式図である。
【図3】本発明を適用した非水電解液二次電池の一構成例を示す縦断面図である。
【図4】電解液のNaイオン濃度と容量維持率の関係を示す特性図である。
【符号の説明】
1 負極、2 正極 3セパレータ

Claims (7)

  1. リチウムイオンをドープ・脱ドープすることが可能な負極、正極及び非水溶媒に電解質が溶解されてなる非水電解液を有してなる非水電解液二次電池において、
    上記非水電解液は、Naイオンが70ppm〜2000ppmなる濃度で含有されてなることを特徴とする非水電解液二次電池。
  2. Naイオン源は、NaPFであることを特徴とする請求項1記載の非水電解液二次電池。
  3. 正極は、LiMO(但し、MはCo,Ni,Mn,Fe,Al,V,Tiの少なくとも1種を表す。)で表されるリチウム遷移金属複合酸化物よりなり、電解液は、環状炭酸エステルと鎖状炭酸エステルの少なくともいずれかを含む非水溶媒にリチウム塩を溶解してなることを特徴とする請求項1記載の非水電解液二次電池。
  4. 負極は、炭素材料よりなることを特徴とする請求項1記載の非水電解液二次電池。
  5. 炭素材料は、黒鉛材料であることを特徴とする請求項4記載の非水電解液二次電池。
  6. 炭素材料は、難黒鉛化性炭素材料であることを特徴とする請求項4記載の非水電解液二次電池。
  7. 負極は、結晶質あるいは非晶質の金属カルコゲン化物よりなることを特徴とする請求項1記載の非水電解液二次電池。
JP07613997A 1997-03-27 1997-03-27 非水電解液二次電池 Expired - Fee Related JP3787943B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07613997A JP3787943B2 (ja) 1997-03-27 1997-03-27 非水電解液二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07613997A JP3787943B2 (ja) 1997-03-27 1997-03-27 非水電解液二次電池

Publications (2)

Publication Number Publication Date
JPH10270080A JPH10270080A (ja) 1998-10-09
JP3787943B2 true JP3787943B2 (ja) 2006-06-21

Family

ID=13596659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07613997A Expired - Fee Related JP3787943B2 (ja) 1997-03-27 1997-03-27 非水電解液二次電池

Country Status (1)

Country Link
JP (1) JP3787943B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880930B2 (ja) * 2005-07-11 2012-02-22 株式会社豊田中央研究所 非水電解液及びリチウム二次電池
WO2011037250A1 (ja) * 2009-09-28 2011-03-31 住友化学株式会社 ナトリウムイオン型蓄電デバイス
JP2012069894A (ja) * 2009-09-28 2012-04-05 Sumitomo Chemical Co Ltd ナトリウムイオン型蓄電デバイス
JP2019057372A (ja) * 2017-09-20 2019-04-11 株式会社東芝 リチウムイオン二次電池、電池パック、及び車両

Also Published As

Publication number Publication date
JPH10270080A (ja) 1998-10-09

Similar Documents

Publication Publication Date Title
JP4161376B2 (ja) 非水電解液二次電池
JP4529274B2 (ja) 非水電解質電池
JP3436033B2 (ja) 非水電解液二次電池
JP3844495B2 (ja) 非水電解液二次電池
JP2001102049A (ja) 非水電解液型二次電池
JP2014099419A (ja) 負極および二次電池
JPH08315817A (ja) 炭素負極材料の製造方法及び非水電解液二次電池
JP3709628B2 (ja) 非水電解液二次電池
JP4150087B2 (ja) 非水電解液二次電池
JPH0927344A (ja) 非水電解液二次電池
JP3552377B2 (ja) 二次電池
JP2001006730A (ja) 非水電解質電池
JP2001085016A (ja) 非水電解質電池
US6083646A (en) Non-aqueous electrolyte secondary battery and method for producing cathode material
JP3787943B2 (ja) 非水電解液二次電池
JP2002198036A (ja) 負極及び非水電解質電池並びにそれらの製造方法
JP4781545B2 (ja) 非水電解質系リチウム二次電池
JP2001148241A (ja) 非水電解質電池
JP3557240B2 (ja) 非水電解液二次電池
JP4080110B2 (ja) 非水電解質電池
JPH09283178A (ja) 非水電解液二次電池
JPH08180873A (ja) 負極材料の製造方法及び非水電解液二次電池
JPH07320785A (ja) 非水電解液二次電池
JP2000348719A (ja) 非水電解液二次電池
JP2002289256A (ja) 非水電解質二次電池の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees