JP3755090B2 - 半導体装置の製造方法,及び半導体装置 - Google Patents

半導体装置の製造方法,及び半導体装置 Download PDF

Info

Publication number
JP3755090B2
JP3755090B2 JP14760195A JP14760195A JP3755090B2 JP 3755090 B2 JP3755090 B2 JP 3755090B2 JP 14760195 A JP14760195 A JP 14760195A JP 14760195 A JP14760195 A JP 14760195A JP 3755090 B2 JP3755090 B2 JP 3755090B2
Authority
JP
Japan
Prior art keywords
partial region
semiconductor layer
substrate
iii
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14760195A
Other languages
English (en)
Other versions
JPH098402A (ja
Inventor
隆 元田
加藤  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14760195A priority Critical patent/JP3755090B2/ja
Priority to TW084112183A priority patent/TW352479B/zh
Priority to EP96105482A priority patent/EP0749154A3/en
Priority to CN 96107789 priority patent/CN1144396A/zh
Publication of JPH098402A publication Critical patent/JPH098402A/ja
Application granted granted Critical
Publication of JP3755090B2 publication Critical patent/JP3755090B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、半導体装置の製造方法,及び半導体装置に関し、特に同一半導体基板上にレーザ素子と光変調器とを集積化する半導体装置の製造方法,及びそれにより製造される半導体装置に関するものである。
【0002】
【従来の技術】
オプトエレクトロニクス用を始めとした各種システムの高度化、高機能化に伴い、それらに用いられる半導体装置には高集積化が要求されている。このような半導体装置の一つに、レーザ素子と光変調器を同一半導体基板上に集積化した変調器付き半導体レーザがある。この半導体装置では、別々に作製したレーザ素子と光変調器の光導波路を接続する必要があり、これには様々な困難が伴う。
【0003】
そのため、エレクトロニクスレターズ(Electronics Letters )28巻2号(1992年)153項に示されているような、レーザ素子と光変調器の光導波路を構成する半導体層の成長を同時に行い、それぞれの光導波路を一体として形成する方法が提案されている。このような方法の例について次に説明する。
まず、図17(a) に示すように、n型InP基板1上のレーザ素子を形成すべき領域15の両脇の領域にSiO2 膜40を形成し、このSiO2 膜40が形成された領域以外の領域にレーザ素子及び光変調器の光導波路を構成するn型InPクラッド層2,多重量子井戸(MQW;Multi Quantum-well)構造活性層3,p型InPクラッド層4を有機金属気相成長法(MOCVD法)により選択成長させる。この際、上記のSiO2 膜40に挟まれた領域15における半導体層の成長速度は、この領域以外の領域における成長速度より大きくなる。このため、これらの半導体層を成長させた後の図17(a) のA- A' における断面は、図17(b) に示すようになり、レーザ素子を形成すべき領域15における半導体層の厚さは、変調器を形成すべき領域16における半導体層の厚さより厚くなる。従って、レーザ素子におけるMQW活性層の量子井戸層の厚さは、光変調器におけるそれより厚くなり、この量子井戸の伝導帯における基底準位と価電子帯における基底準位の間のエネルギー差は、レーザ素子より光変調器において大きくなる。従って、光変調器の電極間に印加する電圧がゼロの場合は、レーザ素子で発振された光は、光変調器で吸収されることはない。ここで目的とする光変調器付き半導体レーザを得るためには、この量子井戸層の厚さは、光変調器に適当な逆バイアス電圧を印加した場合に、量子閉じ込めシュタルク効果(QCSE;Quantum-Confinement Stark Effect)によって、レーザ素子からの光を光変調器で吸収できるような厚さに制御される必要がある。レーザ素子の半導体層の成長速度は、上記のSiO2 膜40の間隔と各SiO2 膜40の幅によって変えることができるため、上記のように量子井戸層の厚さを制御することは可能である。
【0004】
【発明が解決しようとする課題】
上記のような従来の変調器付き半導体レーザ装置において、光変調器における光の吸収効率を向上させるためには、MQW活性層の量子井戸の伝導帯における基底準位と価電子帯における基底準位の間のエネルギー差を小さくする方が有利である。そのためには上記量子井戸層が厚い方が良いが、前述のように光変調器の量子井戸層の厚さをレーザ素子の量子井戸層の厚さより厚くすることはできない。このため変調器における上記エネルギー差をレーザ素子におけるそれにできるだけ近い値にすることが望ましい。しかし、この井戸層の厚さの精密な制御は、上記のような選択成長法を用いる限り困難であり、変調器における上記のエネルギー差は、上記の量子井戸層の層厚のバラツキを考慮して、レーザ素子におけるそれより一定程度大きくしておく必要がある。これが変調器における光吸収効率の限界を決定する。従って、変調器における消光比である,(バイアス電圧がゼロの状態の透過光/逆バイアス電圧が印加された状態の透過光)、を向上させることが困難である。
【0005】
また、図17(b) に示されているように、成長後の半導体層の表面にはレーザ素子領域と変調器領域の間で段差が生じ、これによりこの後の製造工程を安定なものとすることができない。
【0006】
さらに、量子井戸層の厚さにより、レーザ素子の発振光の波長と、変調器の吸収光の波長範囲の両方を制御しなくてはならないため、レーザ装置の設計の自由度が小さいという問題がある。
【0007】
この発明は上記の問題に鑑みなされたものであり、光変調器の消光比を向上でき、安定な製造工程により作製でき、さらに設計の自由度の大きい、光変調器と半導体レーザ素子を同一基板上に集積化した半導体装置を製造する半導体装置の製造方法を提供することを目的としている。またこの発明は上記半導体装置の製造方法により製造される半導体装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
この発明(請求項1)に係る半導体装置の製造方法は、有機金属気相成長法を使用して行なう半導体装置の製造方法において、半導体基板の裏面における、該基板を加熱するための熱輻射に対する反射率をその部分領域によって異なるものとし、サセプターからの熱輻射により上記半導体基板を加熱することによって上記半導体基板表面の温度をその部分領域によって異なるものとする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むものである。
【0009】
また、この発明(請求項2)に係る半導体装置の製造方法は、上記半導体装置の製造方法(請求項1)において、上記半導体基板は、その表面が上記半導体基板の裏面の全面と接触して、該半導体基板を受け入れ、支持するための基板支持用凹部を有するサセプターにより支持され、加熱されているものである。
【0010】
また、この発明(請求項3)に係る半導体装置の製造方法は、上記半導体装置の製造方法(請求項1)において、上記半導体基板は、その表面が上記半導体基板の裏面の周縁部と接触して該半導体基板を受け入れ、支持するための第1の凹部と、該第1の凹部の内側に形成され、その表面が空間を介在して上記半導体基板裏面の上記周縁部以外の領域に相対し、その表面からの熱輻射により上記半導体基板を加熱するための第2の凹部とからなる基板支持用凹部を有するサセプターにより支持され、加熱されているものである。
【0011】
また、この発明(請求項4)に係る半導体装置の製造方法は、有機金属気相成長法を使用して行なう半導体装置の製造方法において、半導体基板の裏面のある部分領域に熱伝導率の高い材料からなる伝熱膜を形成し、該伝熱膜が形成された部分領域とサセプター表面とを接触させ、サセプターからの熱伝導により上記半導体基板を加熱することによって上記半導体基板表面の温度をその部分領域によって異なるものとする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むものである。
【0012】
また、この発明(請求項5)に係る半導体装置の製造方法は、上記半導体装置の製造方法(請求項4)において、上記半導体基板の裏面には、凹部が形成されており、その厚さが上記凹部の深さ以上である上記伝熱膜が、上記半導体基板の裏面の上記凹部内のある部分領域に形成されているものである。
【0013】
また、この発明(請求項6)に係る半導体装置の製造方法は、有機金属気相成長法を使用して行なう半導体装置の製造方法において、基板厚がい第1の部分領域と、その基板厚がい第2の部分領域を有する半導体基板の裏面における、上記第の部分領域のみをサセプターの表面に接触させ、上記第の部分領域は、サセプターの表面に直接接触しないようにし、サセプターからの熱伝導により上記半導体基板を加熱することによって、上記半導体基板表面の上記第1の部分領域の温度より上記第2の部分領域の温度高くする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記第1の部分領域と上記第2の部分領域とでその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、上記第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する上記第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むものである。
【0014】
また、この発明(請求項7)に係る半導体装置の製造方法は、有機金属気相成長法を使用して行なう半導体装置の製造方法において、その面が微細な凹凸を有する面である第1の部分領域と、その面が平坦な面である第2の部分領域を有する半導体素子の裏面における、熱輻射に対する反射率が、上記第1の部分領域と上記第2の部分領域とにおいて同じであり、上記半導体素子の裏面全体をサセプターの表面に接触させ、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板裏面の上記第1の部分領域に対応する上記半導体基板表面の部分領域の温度より上記半導体基板裏面の上記第2の部分領域に対応する上記半導体基板表面の部分領域の温度高くする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記第1の部分領域と上記第2の部分領域とでその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、上記第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する上記第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むものである。
【0015】
また、この発明(請求項8)に係る半導体装置の製造方法は、有機金属気相成長法を使用して行なう半導体装置の製造方法において、半導体基板より小さい領域に凹部が設けられたサセプターによって、上記半導体基板の裏面と上記凹部内の該サセプター表面とが接触せず、且つ上記凹部が上記半導体基板により覆われた状態で上記半導体基板を支持し、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板の表面の温度を上記サセプター凹部に対応する部分領域より、該凹部以外のサセプター表面に接触している上記半導体基板裏面の部分領域に対応する部分領域において高くなるようにする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むものである。
【0016】
また、この発明(請求項9)に係る半導体装置の製造方法は、有機金属気相成長法を使用して行なう半導体装置の製造方法において、第1の部分と該部分を構成する材料より熱伝導率の高い材料で構成される第2の部分を含むサセプターによって、上記半導体基板の裏面の全面と上記サセプターの表面とが接触するように上記半導体基板を支持し、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板表面における上記サセプターの第1の部分に対応する部分領域の温度より上記サセプターの第2の部分に対応する部分領域の温度高くする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程を含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むものである。
【0043】
【作用】
この発明(請求項1)に係る半導体装置の製造方法では、有機金属気相成長法を使用して行なう半導体装置の製造方法において、半導体基板の裏面における、該基板を加熱するための熱輻射に対する反射率をその部分領域によって異なるものとし、サセプターからの熱輻射により上記半導体基板を加熱することによって上記半導体基板表面の温度をその部分領域によって異なるものとする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことから、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0044】
また、この発明(請求項2)に係る半導体装置の製造方法では、上記半導体装置の製造方法(請求項1)において、上記半導体基板は、その表面が上記半導体基板の裏面の全面と接触して、該半導体基板を受け入れ、支持するための基板支持用凹部を有するサセプターにより支持され、加熱されているから、上記半導体基板裏面の上記反射率の低い部分領域に対応する上記半導体基板表面の部分領域ほどその温度を高くすることができる。
【0045】
また、この発明(請求項3)に係る半導体装置の製造方法では、上記半導体装置の製造方法(請求項1)において、上記半導体基板は、その表面が上記半導体基板の裏面の周縁部と接触して該半導体基板を受け入れ、支持するための第1の凹部と、該第1の凹部の内側に形成され、その表面が空間を介在して上記半導体基板裏面の上記周縁部以外の領域に相対し、その表面からの熱輻射により上記半導体基板を加熱するための第2の凹部とからなる基板支持用凹部を有するサセプターにより支持され、加熱されているから、上記半導体基板裏面の上記反射率の低い部分領域に対応する上記半導体基板表面の部分領域ほどその温度を高くすることができる。また、この際、サセプターの上記基板支持凹部内の第2の凹部領域においては、上記半導体基板裏面が上記サセプター表面に接触することによる熱伝導は生じないため、上記の半導体基板裏面の熱輻射に対する反射率の違いによる温度差が、上記の半導体装置の製造方法(請求項13)におけるサセプターを用いた場合より大きくなる。
【0046】
また、この発明(請求項4)に係る半導体装置の製造方法では、有機金属気相成長法を使用して行なう半導体装置の製造方法において、半導体基板の裏面のある部分領域に熱伝導率の高い材料からなる伝熱膜を形成し、該伝熱膜が形成された部分領域とサセプター表面とを接触させ、サセプターからの熱伝導により上記半導体基板を加熱することによって上記半導体基板表面の温度をその部分領域によって異なるものとする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことから、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0047】
また、この発明(請求項5)に係る半導体装置の製造方法では、上記半導体装置の製造方法(請求項4)において、上記半導体基板の裏面には、凹部が形成されており、その厚さが上記凹部の深さ以上である上記伝熱膜が、上記半導体基板の裏面の上記凹部内のある部分領域に形成されているので、上記伝熱膜が形成された部分領域の方が、それ以外の部分領域よりサセプターからの熱伝導による熱の流れが大きくなり、これにより上記裏面の上記伝熱膜が形成された部分領域に対応する上記半導体基板表面の部分領域の温度をそれ以外の部分領域の温度より高くすることができる。基板内における熱伝導は、基板面に垂直な方向のみでなく、横方向にも生じるから、上記伝熱膜を形成した領域と、それ以外の領域の境界においては、これら二つの領域の温度の中間の温度を有する遷移領域ができる。基板表面におけるこの遷移領域の幅は、基板厚が厚いほど広くなる。基板表面に半導体素子を形成するに際しては、この遷移領域の幅は狭い方が望ましいが、そのために基板全体の厚さを薄くすると、基板の機械的強度が低下し、半導体装置の製造工程が不安定なものとなる。しかし、上記のように半導体基板裏面の一定領域にのみ凹部を設けるようにすることにより、この領域でのみ基板厚を薄くし、これ以外の領域においては、基板厚を厚くしておくことができ、基板の機械的強度の低下を抑制しながら、上記遷移領域の幅を狭めることができる。
【0048】
また、この発明(請求項6)に係る半導体装置の製造方法では、有機金属気相成長法を使用して行なう半導体装置の製造方法において、基板厚がい第1の部分領域と、その基板厚がい第2の部分領域を有する半導体基板の裏面における、上記第の部分領域のみをサセプターの表面に接触させ、上記第の部分領域は、サセプターの表面に直接接触しないようにし、サセプターからの熱伝導により上記半導体基板を加熱することによって、上記半導体基板表面の上記第1の部分領域の温度より上記第2の部分領域の温度高くする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記第1の部分領域と上記第2の部分領域とでその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、上記第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する上記第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことから、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0049】
また、この発明(請求項7)に係る半導体装置の製造方法では、有機金属気相成長法を使用して行なう半導体装置の製造方法において、その面が微細な凹凸を有する面である第1の部分領域と、その面が平坦な面である第2の部分領域を有する半導体素子の裏面における、熱輻射に対する反射率が、上記第1の部分領域と上記第2の部分領域とにおいて同じであり、上記半導体素子の裏面全体をサセプターの表面に接触させ、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板裏面の上記第1の部分領域に対応する上記半導体基板表面の部分領域の温度より上記半導体基板裏面の上記第2の部分領域に対応する上記半導体基板表面の部分領域の温度高くする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記第1の部分領域と上記第2の部分領域とでその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、上記第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する上記第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことから、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0050】
また、この発明(請求項8)に係る半導体装置の製造方法では、有機金属気相成長法を使用して行なう半導体装置の製造方法において、半導体基板より小さい領域に凹部が設けられたサセプターによって、上記半導体基板の裏面と上記凹部内の該サセプター表面とが接触せず、且つ上記凹部が上記半導体基板により覆われた状態で上記半導体基板を支持し、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板の表面の温度を上記サセプター凹部に対応する部分領域より、該凹部以外のサセプター表面に接触している上記半導体基板裏面の部分領域に対応する部分領域において高くなるようにする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことから、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0051】
また、この発明(請求項9)に係る半導体装置の製造方法では、有機金属気相成長法を使用して行なう半導体装置の製造方法において、第1の部分と該部分を構成する材料より熱伝導率の高い材料で構成される第2の部分を含むサセプターによって、上記半導体基板の裏面の全面と上記サセプターの表面とが接触するように上記半導体基板を支持し、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板表面における上記サセプターの第1の部分に対応する部分領域の温度より上記サセプターの第2の部分に対応する部分領域の温度高くする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことから、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0078】
【実施例】
実施例1.
この発明の第1の実施例について説明する。
図1は本実施例1による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図であり、図3(a),(b) はこの製造方法を用いて作製される半導体装置を示す断面図である。
【0079】
最初に、本実施例1の半導体装置の製造方法について説明する。まず、図1(a) に示すように、n型InP基板1を用意し、次に、この基板1の裏面をその一部が微細な凹凸を有する面111となり、その他の部分が鏡面112となるように仕上げる。これは、この基板裏面の仕上げに用いる研磨または、エッチングの方法を上記の二つの部分で異なるものとすることにより実現できる。また、凹凸面111は写真製版,及びエッチングを用いて形成してもよい。さらに、図1(c) に示すように、n型InP基板1を炭素,Moまたは石英等からなるサセプター12に取り付ける。ただし、このサセプター12の表面には、図1(d) に示すように、半導体基板をはめ込んで支持するための凹部である基板支持用凹部23が設けられている。n型InP基板1は、その裏面の全面がサセプターの基板支持用凹部の表面に接触するように、サセプター12により支持されている。この際、図1(c) に示すように、サセプター12はその裏面側に設けられたヒーター13により加熱され、さらにこのサセプター12からの熱輻射と熱伝導によりInP基板1は加熱される。この際のサセプターの加熱は、ヒーター加熱ではなく、高周波加熱またはランプ加熱等であってもよい。しかしながら、InP基板1の裏面の,凹凸面111の熱輻射に対する反射率は鏡面112のそれより大きいため、サセプター12からの熱輻射(図1(c) における矢印)は、上記鏡面領域112では基板裏面を透過して基板内に到達するが、凹凸面領域111ではその多くが基板裏面で反射される。さらに、サセプターからの熱伝導は、サセプターとInP基板との接触面を通ってInP基板内に進んでいくが、InP基板1の裏面において、基板裏面の単位面積当たり、サセプター12の表面と実際に直接接触する部分の面積は、鏡面領域112の方が凹凸面領域111より大きく、このため、InP基板が熱伝導によって受け取る熱量は、基板裏面の鏡面領域112側の部分の方が凹凸面領域111側の部分より大きい。従って、InP基板1は、その鏡面領域112側の部分142(高温部)の方が凹凸面領域111側の部分141(低温部)より温度が高くなる。このようにn型InP基板1をサセプターを介して加熱しながら、この基板表面上に、図1(e) に示すように、n型InPクラッド層2,n型InGaAsPガイド層51,多重量子井戸活性層3,InGaAsPガイド層52,p型InPクラッド層4,p型InGaAsコンタクト層6を順にMOCVD法により成長させる。これらの成長層は、基板上の温度の異なる上記の二つの領域上に成長することとなる。ここで、多重量子井戸活性層3においては、井戸層,バリア層はともにInGaAsPからなり、それぞれの層のInGaAsPの組成は、井戸層よりバリア層においてそのバンドギャップが大きくなるような組成となっている。
【0080】
長波長半導体レーザ装置の活性層を構成するGaInAsPをMOCVD法により成長させた場合、そのバンドギャップに対応するフォトルミネッセンス(PL)・ピーク波長には、成長温度依存性がある。これは、成長温度によりV族原子の分解効率が変化し、これによりGaInAsPの組成が変化するためである。このPL波長の温度依存性を図2に示す。ただし、図2において、aは格子定数であり、横軸Δa/aは格子定数の変化率である。組成の変化は格子定数aの変化に対応する。この図から成長温度により、組成が変化し、これに対応してPL波長も変化していることがわかる。通常の成長温度である650℃付近では、成長温度が高い程PL波長は短波長化する。すなわち、GaInAsPのバンドギャップは大きくなる。この温度領域においては、20℃の温度差で0.05μmの波長変化に対応するバンドギャップ変化がある。従って、変調器の多重量子井戸活性層の井戸層における伝導帯の基底準位と価電子帯の基底準位の間のエネルギー差に対応する光の波長(以下では、単に活性層の波長と記す)を1.49μm、レーザ素子の活性層の波長を1.55μmとするためには、活性層成長時に高温部142の温度を低温部141の温度より20〜25℃高くすればよい。これにより、高温部142には光変調器の活性層を、低温部141にはレーザ素子の活性層を成長させることができる。図1(e) では、上記成長層のレーザ素子となる部分をレーザ素子部15,光変調器となる部分を変調器部16として示してある。
【0081】
このようにして、InP基板上に上記の活性層3を含む半導体層を成長させた後、これらの半導体層からなる,ストライプ形状の光導波路をレーザ素子部15及び光変調器部16にわたって形成する。この際、必要があれば、光導波路に回折格子を形成してもよい。次に、図3(a) に示すように、上記図1(e) のレーザ素子部15と光変調器部16の境界部分のp型InGaAsコンタクト層6をエッチング除去した後、InP基板1の裏面を研削・研磨し、さらにレーザ素子部15のコンタクト層6の表面にレーザ素子表面電極61,光変調器部16のコンタクト層6の表面に光変調器表面電極62,InP基板1の裏面に裏面電極63を形成する。ただし、表面電極61,62はp型InGaAsコンタクト層6とオーミック接触することが可能な金属からなり、裏面電極63はn型InP基板1とオーミック接触が可能な金属からなる。
【0082】
これにより、同一基板上にレーザ素子215及び光変調器216が集積化され、このレーザ素子及び光変調器にわたって連続した活性層3を有する、図3(a) に示す半導体装置を得ることができる。この半導体装置においては、レーザ素子215で発振された波長1.55μmのレーザ光は、活性層3を含む上記導波路を通って光変調器216の活性層に入射する。このとき、光変調器に印加されているバイアス電圧がゼロの場合は、レーザ光は変調器の活性層を通過し、このバイアス電圧が逆バイアスとなっている場合は、レーザ光は変調器の活性層で吸収される。従って、直流動作させているレーザ素子215から放射されるレーザ光を光変調器216に加えるバイアス電圧を変化させることによって変調することができる。
【0083】
なお、レーザ素子において、活性層3上に回折格子を形成してもよい。このようなレーザは、分布帰還(DFB;Distributed Feedback)型レーザと呼ばれ、安定な単一モード発振を実現することができる。この回折格子は次のようにして形成することができる。すなわち、まず図1(e)に示した半導体層の成長に際して、InGaAsPガイド層52を成長させた後、この層上にレジストを塗布して、干渉露光法によりレーザ素子部15上に周期的なレジストパターンを残す。次に、このレジストをマスクとして、InGaAsPガイド層52をエッチングして、レジスト下に残ったInGaAsPガイド層からなる回折格子をレーザ素子部15にのみ形成する。さらに、レジストを除去した後、全面にp型InPクラッド層4,p型InGaAsコンタクト層をMOCVD法により成長させる。これにより、上記回折格子はp型InPクラッド層4内に埋め込まれる。この後の、光導波路形成工程,レーザ素子と光変調器との間の素子分離工程,及び電極形成工程は、上記の回折格子を形成しない製造方法と同じである。これにより、図3(b)に示す、InGaAsPからなる回折格子53を備えたDFBレーザ素子217,及び光変調器216が同一基板上に集積化されてなり、このDFBレーザ素子及び光変調器にわたって連続した活性層3を有する、図3(b)に示す半導体装置を得ることができる。
【0084】
本実施例1においては、上記のようにInP基板1の裏面が、微細な凹凸面111の領域と鏡面112の領域とからなり、このため熱輻射及び熱伝導によるサセプター12からInP基板への熱の流れが、凹凸面領域においてより鏡面領域において大きくなる。これによって、InP基板の上記凹凸面領域側の部分(低温部141)より上記鏡面領域側の部分(高温部142)の温度が高くなるため、これら二つの部分に成長する半導体層の組成が異なったものとなり、InGaAsP多重量子井戸活性層3において低温部141に成長する部分の波長は、高温部142に成長する部分の波長より長くなる。従って、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することにより、同一基板上に集積化されてなり、連続した活性層3を有するレーザ素子及び光変調器を形成することができる。この際、上記のように成長温度を制御することにより、活性層のInGaAsP組成を精密に制御することができるため、変調器における活性層の量子井戸の伝導帯での基底準位と該量子井戸の価電子帯での基底準位の間のエネルギー差を、レーザ素子におけるそれにきわめて近いものとすることができ、レーザ素子で発振される光に対する変調器の光吸収効率を向上させることができる。従って、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。実際、上記のようにして作製した光変調器において、10dBという良好な消光比が得られている。
【0085】
また、本実施例1においては、前述の従来の製造方法で用いられている選択成長法を用いておらず、InP基板上の全面に半導体層を成長させているため、成長後の半導体層の表面は平坦なものとなり、レーザ素子領域と変調器領域との間で段差が生じることはない。従って、この半導体層成長後の製造工程を安定なものとすることができる。
【0086】
さらに、本実施例1においては、各々の成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、これによってレーザ素子の発振光の波長と、変調器の吸収光の波長範囲を独立に制御することができ、これにより、このような半導体装置の設計の自由度を大きく向上させることができる。
なお、上記活性層3は、上記のような多重量子井戸層ではなく、InGaAsPまたはInGaAsからなるバルク活性層であってもよい。
【0087】
また、n型InGaAsPガイド層51及びInGaAsPガイド層52は、必要がなければ、設けなくてもよい。
【0088】
また、本実施例1の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0089】
実施例2.
この発明の第2の実施例について説明する。
図4は本実施例2による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例2においては、サセプター12の表面に設けられた基板支持用凹部23が、図4(b) に示すように、半導体基板裏面の周縁部に接触してこの基板を支持するための第1の凹部24aと、この内側に形成された第2の凹部24bとからなり、この第2の凹部24bの表面は空間を介して、半導体基板の裏面と相対するようになっている。InP基板1は、図4(a) に示すように、このサセプター12によって支持され,加熱される。ただし、InP基板1の裏面は、上記実施例1と同じように、その一部が微細な凹凸を有する面111となり、その他の部分が鏡面112となるように仕上げられている。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0090】
本実施例2においては、基板1の裏面の大部分がサセプター12に接触していないため、サセプター12から基板1への熱の流れにおいては、基板の裏面と空間を介して相対している第2の凹部24bの表面からの熱輻射が支配的となり、熱輻射に対する反射率は、凹凸面111より鏡面112の方が小さいため、基板1の鏡面112に対応する部分の温度が、凹凸面111に対応する部分の温度より高くなる。上記実施例1においては、上記の熱の流れには熱輻射の他に熱伝導が寄与しているが、基板裏面の凹凸面と鏡面との間の、熱伝導による熱流量の差は、両者間の熱輻射による熱流量の差より小さい。従って、本実施例2の方が上記実施例1より、基板の上記の二つの部分の温度差を大きくすることができる。すなわち、上記実施例1の方法でレーザ素子部と変調器部で温度差が十分に得られない場合、本実施例2の第1の凹部24aと第2の凹部24bとからなる基板支持用凹部23が設けられたサセプターを用いることにより、効果的に温度差を設けることが可能となる。そしてこの方法により活性層の成長時に高温部142の温度を低温部141の温度より20〜25℃高くすることによって、高温部142には波長1.49μmの光変調器の活性層を、低温部141には波長1.55μmのレーザ素子の活性層を成長させることができる。
【0091】
そして、このような本実施例2においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。実際、本実施例2の方法を用いて作製した光変調器において、10dBという良好な消光比が得られている。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0092】
なお、本実施例2の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0093】
実施例3.
この発明の第3の実施例について説明する。
図5は本実施例3による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例3は、上記実施例1,2のように、基板裏面の仕上げを場所により変えるのではなく、InP基板1の裏面の全面を鏡面とし、その一部(実施例1,2の凹凸面に対応する部分)に、厚さ数十nmのSiO膜等からなる反射膜30をスパッタ法等を用いて形成するものである。ここで、上記基板加熱は、上記実施例1または2と同様のサセプターを用いて行う。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0094】
本実施例3においては、InP基板1の上記反射膜30が形成された部分より、これが形成されていない部分の方が、熱輻射を吸収し易いため、この二つの部分で温度差を生じる。すなわち、反射膜30が形成された部分が低温部141となり、反射膜が形成されていない部分が高温部142となる。活性層成長時に高温部142の温度を低温部141の温度より20〜25℃高くすることにより、高温部142には波長1.49μmの光変調器の活性層を、低温部141には波長1.55μmのレーザ素子の活性層を成長させることができる。
【0095】
そして、このような本実施例3においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、上記実施例1と同様に、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。実際、本実施例3に示した方法を用いて作製した光変調器において、10dBという良好な消光比が得られている。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0096】
なお、本実施例3の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0097】
実施例4.
この発明の第4の実施例について説明する。
図6は本実施例4による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例4は、上記実施例1,2のように、基板裏面の仕上げを場所により変えるのではなく、InP基板1の裏面の全面を熱輻射に対する反射率が大きくなるような面仕上げとし、その一部(実施例1,2の鏡面に対応する部分)に反射防止膜31を形成するものである。ここで、上記基板加熱は、上記実施例1または2と同様のサセプターを用いて行う。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0098】
本実施例4においては、InP基板1の上記反射防止膜31が形成された部分より、これが形成されていない部分の方が、熱輻射を吸収し難いため、この二つの部分で温度差を生じる。すなわち、反射防止膜31が形成された部分が高温部142となり、反射膜が形成されていない部分が低温部141となる。活性層成長時に高温部142の温度を低温部141の温度より20〜25℃高くすることにより、高温部142には波長1.49μmの光変調器の活性層を、低温部141には波長1.55μmのレーザ素子の活性層を成長させることができる。
【0099】
そして、このような本実施例4においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。実際、本実施例4に示した方法を用いて作製した光変調器において、10dBという良好な消光比が得られている。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0100】
なお、本実施例4の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0101】
実施例5.
この発明の第5の実施例について説明する。
図7は本実施例5による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例5は、上記実施例1,2のように、基板裏面の仕上げを場所により変えるのではなく、InP基板1の裏面の一部(上記実施例1,2の鏡面に対応する部分)に熱伝導率の高い材料からなる伝熱膜32を形成するものである。ここで、上記基板加熱は、上記実施例1と同様のサセプターを用いて行う。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。この際、図7に示したように、基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となるが、熱伝導は基板面に垂直な方向のみではなく、横方向においても起こるため、高温部と低温部の境界に、これらの部分の温度の中間の温度を有する遷移領域17ができる。この遷移領域17の幅は、基板厚及びこの基板上に成長させた半導体層の厚さが厚いほど広くなるが、本実施例においては、InP基板1とこの上に成長させた上記半導体層の全厚は25μmであるから、この遷移領域の半導体層表面における幅は、図に示すように、50μm程度となる。レーザ素子部15と光変調器部16の間にこの程度の距離があることは、これらが集積化された半導体装置の動作において特に問題とはならない。
【0102】
本実施例5においては、InP基板1において上記伝熱膜32が形成された部分の方が、これが形成されていない部分より、単位時間当たりの,サセプターから流れ込む熱量が多くなり、この二つの部分で温度差を生じる。すなわち、伝熱膜32が形成された部分が高温部となり、この膜が形成されていない部分が低温部となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。
【0103】
そして、このような本実施例5においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。実際、本実施例5に示した方法を用いて作製した光変調器において、10dBという良好な消光比が得られている。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0104】
なお、本実施例5の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0105】
実施例6.
この発明の第6の実施例について説明する。
図8は本実施例6による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例6は、図8に示すように、厚さ300μm程度のInP基板1の裏面に深さ280μm程度の凹部を形成し、この凹部内の一部に、熱伝導率の高い材料からなり、上記凹部の深さ以上の厚さを有する伝熱膜32を形成するものである。ここで、上記基板加熱は、上記実施例1と同様のサセプターを用いて行う。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。図8に示したように、基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となるが、熱伝導は基板面に垂直な方向のみではなく、横方向においても起こるため、高温部と低温部の温度の中間の温度を有する遷移領域17が存在することとなる。InP基板1の凹部内における基板とこの上に成長させた上記半導体層の全厚は20μm程度であるから、この遷移領域の半導体層表面における幅は、図に示すように、50μm程度となる。実施例5で述べたように、これは半導体装置の動作において特に問題とはならない。
【0106】
本実施例6においては、InP基板1において上記伝熱膜32が形成された部分の方が、これが形成されていない部分より、単位時間にサセプターから流れ込む熱量が多くなり、この二つの部分で温度差を生じる。すなわち、伝熱膜32が形成された部分が高温部142となり、この膜が形成されていない部分が低温部となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。
【0107】
また、本実施例6においては、実施例5のようにInP基板1の全体の厚さを25μm程度まで薄くする必要はなく、厚さ300μm程度の厚い基板を用い、素子形成領域に対応する基板裏面の領域にのみ凹部を形成し、この領域での基板厚を20μm程度にすればよいから、基板の機械的強度が実施例5の場合より増し、半導体装置の製造工程がより安定したものとなる。
【0108】
そして、このような本実施例6においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0109】
なお、本実施例6の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0110】
実施例7.
この発明の第7の実施例について説明する。
図9は本実施例7による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例7は、実施例1,2のように、基板裏面の仕上げを場所により変えるのではなく、図9(a) に示すように、InP基板1の裏面の一部(実施例1,2の凹凸面に対応する部分)に凹部35を形成して、この凹部において基板裏面がサセプター表面に接触しないようにするか、または図9(b) に示すように基板裏面の一部(実施例1,2の鏡面に対応する部分)に凸部36を形成して、この凸部においてのみ基板裏面がサセプターに接触するようにするものである。このような基板裏面の凹部及び凸部は、写真製版,及びエッチングを用いて形成することができる。ここで上記基板加熱は、上記実施例1と同様のサセプター12を用いて行う。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0111】
本実施例7においては、InP基板1裏面のサセプター表面に接触している部分では、熱輻射と熱伝導の両方により加熱されるのに対して、基板裏面がサセプター表面に接触していない部分では、熱輻射のみによってしか加熱されないため、この二つの部分で温度差を生じる。すなわち、サセプターに接触していない部分が低温部となり、接触している部分が高温部142となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となる。
【0112】
そして、このような本実施例7においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。実際、本実施例7に示した方法を用いて作製した光変調器において、10dBという良好な消光比が得られている。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0113】
なお、本実施例7の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0114】
実施例8.
この発明の第8の実施例について説明する。
図10は本実施例8による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例8は、実施例1における基板1裏面の鏡面112を平坦でありかつ熱輻射を凹凸面111と同程度に反射する面113で置き換えたものである。これは、基板裏面の仕上げに用いる研磨または、エッチングの方法を上記の凹凸面111部分と平坦面113部分で異なるものとすることにより実現できる。また、凹凸面111は写真製版,及びエッチングを用いて形成してもよい。ここで上記基板加熱は、上記実施例1と同様のサセプターを用いて行う。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0115】
本実施例8においては、InP基板1裏面の凹凸面111の部分より、平坦な面113の部分の方が、サセプター表面と接触する面積が大きいため、サセプター12からInP基板1への熱伝導による熱流は、凹凸面部分より平坦面部分での方が大きくなる。一方、この二つの部分において、熱輻射に対する反射率は上記のように同程度であるため、これらの部分での熱輻射による熱流には、大きな差はない。従って、上記の熱伝導の差によって、この二つの部分で温度差を生じる。すなわち、凹凸面111上の基板部分が低温部となり、平坦面113上の基板部分が高温部142となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となる。
【0116】
そして、このような本実施例8においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。実際、本実施例8に示した方法を用いて作製した光変調器において、10dBという良好な消光比が得られている。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0117】
なお、本実施例8の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0118】
実施例9.
この発明の第9の実施例について説明する。
図11は本実施例9による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例9は、上記実施例1〜8のように、基板裏面を場所により変えるのではなく、図11に示すように、サセプター表面の一部(実施例1の凹凸面に対応する部分)に凹部25を形成して、この凹部において基板裏面がサセプター表面に接触しないようにするものである。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0119】
本実施例9においては、InP基板1裏面のサセプター表面に接触している部分では、熱輻射と熱伝導の両方により加熱されるのに対して、基板裏面がサセプター表面に接触していない部分では、熱輻射のみによってしか加熱されないため、この二つの部分で温度差を生じる。すなわち、サセプターに接触していない部分が低温部となり、接触している部分が高温部142となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となる。
【0120】
そして、このような本実施例9においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0121】
なお、本実施例9の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0122】
実施例10.
この発明の第10の実施例について説明する。
図12は本実施例10による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例10は、上記実施例1〜8のように、基板裏面を場所により変えるのではなく、図12に示すように、サセプターを熱伝導率の高い材料からなる部分26と、これより熱伝導率の低い材料からなる部分27とで構成したものである。熱伝導率の高い材料としてはMo,熱伝導率の低い材料としてはC(炭素),石英等を用いることができる。このサセプターを用いて加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0123】
本実施例10においては、ヒーター13からInP基板1への熱の流れが、サセプター12の上記の二つの部分で異なるため、サセプターの熱伝導率の高い材料からなる部分26に接触するInP基板の部分が高温部となり、熱伝導率の低い材料からなる部分27に接触する基板部分が低温部となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となる。
【0124】
そして、このような本実施例10においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0125】
なお、本実施例10の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0126】
実施例11.
この発明の第11の実施例について説明する。
図13は本実施例11による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例11は、上記実施例1〜10のように、基板裏面の状態,サセプターの形状または材料を場所により変えるのではなく、図13に示すように、InP基板1上に活性層3を成長させる際、基板上の一部分に光(図中の波線矢印)を照射することにより、この部分と他の部分との間に温度差を生じさせるものである。照射光としては、アルゴンレーザ光またはHe−Neレーザ光等を用いることができる。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0127】
本実施例11においては、ヒーター13からサセプター12を通じて流れる熱によりInP基板1全体が加熱されるだけでなく、レーザ光が照射された部分は、この光によりさらに加熱されるため、この部分の温度は、他の部分の温度より高くなる。すなわち、光照射部分が高温部142となり、他の部分が低温部となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となる。
【0128】
そして、このような本実施例11においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。実際、本実施例11に示した方法を用いて作製した光変調器において、10dBという良好な消光比が得られている。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0129】
なお、本実施例の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0130】
実施例12.
この発明の第12の実施例について説明する。
図14は本実施例12による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例12は、上記実施例11における光照射をInP基板1の表面側からではなく、裏面側から行うようにしたものである。すなわち、図14に示すように、サセプター12は基板1の周縁部のみを支持するようにし、さらにヒーター13には照射光が通過できる開口部を設け、活性層3を成長させる際、このヒーター開口部を通じてInP基板1の裏面側から基板の一部分に光(図中の波線矢印)を照射することにより、この部分と他の部分との間に温度差を生じさせるものである。照射光としては、アルゴンレーザ光またはHe−Neレーザ光等を用いることができる。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0131】
本実施例12においては、ヒーター13からの輻射熱によりInP基板1が加熱されるだけでなく、レーザ光が照射された部分は、この光によりさらに加熱されるため、この部分の温度は、他の部分の温度より高くなる。すなわち、光照射部分が高温部142となり、他の部分が低温部となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となる。
【0132】
そして、このような本実施例12においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0133】
なお、本実施例12の半導体装置の製造方法は、MOCVD法のみでなく、MBE(分子ビームエピタキシ),ガス・ソースMBE,CBE(ケミカル・ビーム・エピタキシ)を用いた場合にも適用できる。
【0134】
実施例13.
この発明の第13の実施例について説明する。
図15は本実施例13による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例13は、上記実施例11における光の代わりに電子ビームを用いたものである。すなわち、図15に示すように、InP基板1上に活性層3を成長させる際、基板上の一部分に電子ビーム(図中の点線矢印)を照射することにより、この部分と他の部分との間に温度差を生じさせるものである。ただし、本実施例は、MBE,ガス・ソースMBE,CBE等のように高真空中で半導体層の成長が行われる場合にのみ適用できる。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0135】
本実施例13においては、ヒーター13からサセプター12を通じて流れる熱によりInP基板1全体が加熱されるだけでなく、電子ビームが照射された部分は、この電子ビームによりさらに加熱されるため、この部分の温度は、他の部分の温度より高くなる。すなわち、電子ビーム照射部分が高温部142となり、他の部分が低温部となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となる。
【0136】
そして、このような本実施例13においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0137】
実施例14.
この発明の第14の実施例について説明する。
図16は本実施例14による光変調器とレーザ素子とが同一基板上に集積化された半導体装置の製造方法を示す断面図である。本実施例14は、上記実施例13における電子ビーム照射をInP基板1の表面側からではなく、裏面側から行うようにしたものである。すなわち、図16に示すように、サセプター12は基板1の周縁部のみを支持するようにし、さらにヒーター13には照射電子ビームが通過できる開口部を設け、活性層3を成長させる際、このヒーター開口部を通じてInP基板1の裏面側から基板の一部分に電子ビーム(図中の点線矢印)を照射することにより、この部分と他の部分との間に温度差を生じさせるものである。ただし、本実施例も、実施例13と同様に、MBE,ガス・ソースMBE,CBE等のように高真空中で半導体層の成長が行われる場合にのみ適用できる。このように加熱されたInP基板1上に、上記実施例1に示した工程と同様の工程を用いて、半導体層を成長させ、さらにレーザ素子,光変調器を形成する。
【0138】
本実施例14においては、ヒーター13からの輻射熱によりInP基板1が加熱されるだけでなく、電子ビームが照射された部分は、この電子ビームによりさらに加熱されるため、この部分の温度は、他の部分の温度より高くなる。すなわち、電子ビーム照射部分が高温部142となり、他の部分が低温部となる。活性層成長時に高温部の温度を低温部の温度より20〜25℃高くすることにより、高温部には波長1.49μmの光変調器の活性層を、低温部には波長1.55μmのレーザ素子の活性層を成長させることができる。基板の低温部上に成長した半導体層がレーザ素子部15となり,基板の高温部上に成長した半導体層が光変調器部16となる。
【0139】
そして、このような本実施例14においても、上記実施例1と同様に、InP基板1の上記の二つの部分に成長する半導体層の組成を異なったものとすることができ、低温部に成長する半導体層によってレーザ素子を形成し、高温部に成長する半導体層によって光変調器を形成することができる。この際、活性層のInGaAsPの組成を精密に制御することができるため、変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の半導体層の表面は平坦なものとなり、この後の製造工程を安定なものとすることができる。さらに、成長温度を制御することにより、活性層を構成するInGaAsPの組成をレーザ素子部と変調器部とにおいてそれぞれ独立に制御することができ、レーザ装置の設計の自由度を向上させることができる。
【0140】
【発明の効果】
以上のように、この発明(請求項1)に係る半導体装置の製造方法によれば、有機金属気相成長法を使用して行なう半導体装置の製造方法において、半導体基板の裏面における、該基板を加熱するための熱輻射に対する反射率をその部分領域によって異なるものとし、サセプターからの熱輻射により上記半導体基板を加熱することによって上記半導体基板表面の温度をその部分領域によって異なるものとする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むので、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0141】
また、この発明(請求項2)に係る半導体装置の製造方法によれば、上記半導体装置の製造方法(請求項1)において、上記半導体基板は、その表面が上記半導体基板の裏面の全面と接触して、該半導体基板を受け入れ、支持するための基板支持用凹部を有するサセプターにより支持され、加熱されているので、上記半導体基板裏面の上記反射率の低い部分領域に対応する上記半導体基板表面の部分領域ほどその温度を高くすることができる。
【0142】
また、この発明(請求項3)に係る半導体装置の製造方法によれば、上記半導体装置の製造方法(請求項1)において、上記半導体基板は、その表面が上記半導体基板の裏面の周縁部と接触して該半導体基板を受け入れ、支持するための第1の凹部と、該第1の凹部の内側に形成され、その表面が空間を介在して上記半導体基板裏面の上記周縁部以外の領域に相対し、その表面からの熱輻射により上記半導体基板を加熱するための第2の凹部とからなる基板支持用凹部を有するサセプターにより支持され、加熱されているので、上記半導体基板裏面の上記反射率の低い部分領域に対応する上記半導体基板表面の部分領域ほどその温度を高くすることができる。また、この際、サセプターの上記基板支持凹部内の第2の凹部領域においては、上記半導体基板裏面が上記サセプター表面に接触することによる熱伝導は生じないため、上記の半導体基板裏面の熱輻射に対する反射率の違いによる温度差が、上記の半導体装置の製造方法(請求項13)におけるサセプターを用いた場合より大きくなる。
【0143】
また、この発明(請求項4)に係る半導体装置の製造方法によれば、有機金属気相成長法を使用して行なう半導体装置の製造方法において、半導体基板の裏面のある部分領域に熱伝導率の高い材料からなる伝熱膜を形成し、該伝熱膜が形成された部分領域とサセプター表面とを接触させ、サセプターからの熱伝導により上記半導体基板を加熱することによって上記半導体基板表面の温度をその部分領域によって異なるものとする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むので、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0144】
また、この発明(請求項5)に係る半導体装置の製造方法によれば、上記半導体装置の製造方法(請求項4)において、上記半導体基板の裏面には、凹部が形成されており、その厚さが上記凹部の深さ以上である上記伝熱膜が、上記半導体基板の裏面の上記凹部内のある部分領域に形成されているので、上記伝熱膜が形成された部分領域の方が、それ以外の部分領域よりサセプターからの熱伝導による熱の流れが大きくなり、これにより上記裏面の上記伝熱膜が形成された部分領域に対応する上記半導体基板表面の部分領域の温度をそれ以外の部分領域の温度より高くすることができる。基板内における熱伝導は、基板面に垂直な方向のみでなく、横方向にも生じるから、上記伝熱膜を形成した領域と、それ以外の領域の境界においては、これら二つの領域の温度の中間の温度を有する遷移領域ができる。基板表面におけるこの遷移領域の幅は、基板厚が厚いほど広くなる。基板表面に半導体素子を形成するに際しては、この遷移領域の幅は狭い方が望ましいが、そのために基板全体の厚さを薄くすると、基板の機械的強度が低下し、半導体装置の製造工程が不安定なものとなる。しかし、上記のように半導体基板裏面の一定領域にのみ凹部を設けるようにすることにより、この領域でのみ基板厚を薄くし、これ以外の領域においては、基板厚を厚くしておくことができ、基板の機械的強度の低下を抑制しながら、上記遷移領域の幅を狭めることができる。
【0145】
また、この発明(請求項6)に係る半導体装置の製造方法は、有機金属気相成長法を使用して行なう半導体装置の製造方法において、基板厚がい第1の部分領域と、その基板厚がい第2の部分領域を有する半導体基板の裏面における、上記第の部分領域のみをサセプターの表面に接触させ、上記第の部分領域は、サセプターの表面に直接接触しないようにし、サセプターからの熱伝導により上記半導体基板を加熱することによって、上記半導体基板表面の上記第1の部分領域の温度より上記第2の部分領域の温度高くする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記第1の部分領域と上記第2の部分領域とでその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、上記第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する上記第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むので、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0146】
また、この発明(請求項7)に係る半導体装置の製造方法によれば、有機金属気相成長法を使用して行なう半導体装置の製造方法において、その面が微細な凹凸を有する面である第1の部分領域と、その面が平坦な面である第2の部分領域を有する半導体素子の裏面における、熱輻射に対する反射率が、上記第1の部分領域と上記第2の部分領域とにおいて同じであり、上記半導体素子の裏面全体をサセプターの表面に接触させ、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板裏面の上記第1の部分領域に対応する上記半導体基板表面の部分領域の温度より上記半導体基板裏面の上記第2の部分領域に対応する上記半導体基板表面の部分領域の温度高くする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記第1の部分領域と上記第2の部分領域とでその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、上記第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する上記第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むので、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0147】
また、この発明(請求項8)に係る半導体装置の製造方法によれば、有機金属気相成長法を使用して行なう半導体装置の製造方法において、半導体基板より小さい領域に凹部が設けられたサセプターによって、上記半導体基板の裏面と上記凹部内の該サセプター表面とが接触せず、且つ上記凹部が上記半導体基板により覆われた状態で上記半導体基板を支持し、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板の表面の温度を上記サセプター凹部に対応する部分領域より、該凹部以外のサセプター表面に接触している上記半導体基板裏面の部分領域に対応する部分領域において高くなるようにする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むので、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【0148】
また、この発明(請求項9)に係る半導体装置の製造方法によれば、有機金属気相成長法を使用して行なう半導体装置の製造方法において、第1の部分と該部分を構成する材料より熱伝導率の高い材料で構成される第2の部分を含むサセプターによって、上記半導体基板の裏面の全面と上記サセプターの表面とが接触するように上記半導体基板を支持し、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板表面における上記サセプターの第1の部分に対応する部分領域の温度より上記サセプターの第2の部分に対応する部分領域の温度高くする工程と、上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程とを含み、上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むので、上記レーザ素子形成領域と光変調器形成領域とにおける上記半導体層の組成をそれぞれ精密に制御することができ、変調器における活性層の量子井戸の伝導帯での基底準位と価電子帯での基底準位の間のエネルギー差をレーザ素子におけるそれにきわめて近いものとすることができるため、上記レーザ素子で発振されたレーザ光に対する上記光変調器の光吸収効率を向上させることができる。このため、この光変調器において上記レーザ素子からのレーザ光を変調する場合、良好な消光比を得ることができる。また、成長後の上記半導体層の表面は、上記のレーザ素子形成領域と光変調器形成領域にわたって平坦な面となるため、この半導体層成長後の半導体装置製造工程を安定なものとすることができる。さらに、上記半導体層の組成を上記レーザ素子形成領域と光変調器形成領域とにおいて、それぞれ独立に制御することができるため、半導体装置の設計の自由度を向上させることができる。
【図面の簡単な説明】
【図1】 この発明の第1の実施例による半導体装置の製造方法を示す断面図である。
【図2】 MOCVD法により成長させたInGaAsPの組成(格子定数の変化率)とPL波長の成長温度依存性を示した図。
【図3】 この発明の第1の実施例による半導体装置を示す断面図である。
【図4】 この発明の第2の実施例による半導体装置の製造方法を示す断面図である。
【図5】 この発明の第3の実施例による半導体装置の製造方法を示す断面図である。
【図6】 この発明の第4の実施例による半導体装置の製造方法を示す断面図である。
【図7】 この発明の第5の実施例による半導体装置の製造方法を示す断面図である。
【図8】 この発明の第6の実施例による半導体装置の製造方法を示す断面図である。
【図9】 この発明の第7の実施例による半導体装置の製造方法を示す断面図である。
【図10】 この発明の第8の実施例による半導体装置の製造方法を示す断面図である。
【図11】 この発明の第9の実施例による半導体装置の製造方法を示す断面図である。
【図12】 この発明の第10の実施例による半導体装置の製造方法を示す断面図である。
【図13】 この発明の第11の実施例による半導体装置の製造方法を示す断面図である。
【図14】 この発明の第12の実施例による半導体装置の製造方法を示す断面図である。
【図15】 この発明の第13の実施例による半導体装置の製造方法を示す断面図である。
【図16】 この発明の第14の実施例による半導体装置の製造方法を示す断面図である。
【図17】 従来のレーザ素子と光変調器が同一基板上に集積化された半導体装置の製造方法を示す上面図(図17(a) ),及び断面図(図17(b) )である。
【符号の説明】
1 n型InP基板、2 n型InPクラッド層、3 多重量子井戸活性層、4 p型InPクラッド層、6 p型InGaAsコンタクト層、12 サセプター、13 ヒーター、15 レーザ素子部、16 光変調器部、17 遷移領域、23 基板支持用凹部、24a 基板支持用凹部内の第1の凹部、24b 基板支持用凹部内の第2の凹部、25 サセプター表面の凹部、26 熱伝導率の高い材料からなるサセプターの部分、27 熱伝導率の低い材料からなるサセプターの部分、30 反射膜、31 反射防止膜、32 伝熱膜(熱伝導率の高い材料からなる膜)、35 半導体基板裏面の凹部、36 半導体基板裏面の凸部、40 選択成長マスク(SiO2 膜)、51 n型InGaAsPガイド層、52 InGaAsPガイド層、61 レーザ素子表面電極、62 光変調器表面電極、63 裏面電極、111 微細な凹凸面、112 鏡面、113 半導体基板裏面の平坦な面、141 低温部、142 高温部、215 レーザ素子、216 光変調器。

Claims (9)

  1. 有機金属気相成長法を使用して行なう半導体装置の製造方法において、
    半導体基板の裏面における、該基板を加熱するための熱輻射に対する反射率をその部分領域によって異なるものとし、サセプターからの熱輻射により上記半導体基板を加熱することによって上記半導体基板表面の温度をその部分領域によって異なるものとする工程と、
    上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程を含み、
    上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、
    上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、前記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことを特徴とする半導体装置の製造方法。
  2. 請求項1に記載の半導体装置の製造方法において、
    上記半導体基板は、その表面が上記半導体基板の裏面の全面と接触して、該半導体基板を受け入れ、支持するための基板支持用凹部を有するサセプターにより支持され、加熱されていることを特徴とする半導体装置の製造方法。
  3. 請求項1に記載の半導体装置の製造方法において、
    上記半導体基板は、その表面が上記半導体基板の裏面の周縁部と接触して該半導体基板を受け入れ、支持するための第1の凹部と、該第1の凹部の内側に形成され、その表面が空間を介在して上記半導体基板裏面の上記周縁部以外の領域に相対し、その表面からの熱輻射により上記半導体基板を加熱するための第2の凹部とからなる基板支持用凹部を有するサセプターにより支持され、加熱されていることを特徴とする半導体装置の製造方法。
  4. 有機金属気相成長法を使用して行なう半導体装置の製造方法において、
    半導体基板の裏面のある部分領域に熱伝導率の高い材料からなる伝熱膜を形成し、該伝熱膜が形成された部分領域とサセプター表面とを接触させ、サセプターからの熱伝導により上記半導体基板を加熱することによって上記半導体基板表面の温度をその部分領域によって異なるものとする工程と、
    上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程を含み、
    上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、
    上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことを特徴とする半導体装置の製造方法。
  5. 請求項4に記載の半導体装置の製造方法において、
    上記半導体基板の裏面には、凹部が形成されており、
    その厚さが上記凹部の深さ以上である上記伝熱膜が、上記半導体基板の裏面の上記凹部内のある部分領域に形成されていることを特徴とする半導体装置の製造方法。
  6. 有機金属気相成長法を使用して行なう半導体装置の製造方法において、
    基板厚がい第1の部分領域と、その基板厚がい第2の部分領域を有する半導体基板の裏面における、上記第の部分領域のみをサセプターの表面に接触させ、上記第の部分領域は、サセプターの表面に直接接触しないようにし、サセプターからの熱伝導により上記半導体基板を加熱することによって、上記半導体基板表面の上記第1の部分領域の温度より上記第2の部分領域の温度高くする工程と、
    上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記第1の部分領域と上記第2の部分領域とでその組成が異なるようにする工程を含み、
    上記 III- V族化合物半導体層を成長させる工程は、上記第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する上記第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、
    上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことを特徴とする半導体装置の製造方法。
  7. 有機金属気相成長法を使用して行なう半導体装置の製造方法において、
    その面が微細な凹凸を有する面である第1の部分領域と、その面が平坦な面である第2の部分領域を有する半導体素子の裏面における、熱輻射に対する反射率が、上記第1の部分領域と上記第2の部分領域とにおいて同じであり、上記半導体素子の裏面全体をサセプターの表面に接触させ、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板裏面の上記第1の部分領域に対応する上記半導体基板表面の部分領域の温度より上記半導体基板裏面の上記第2の部分領域に対応する上記半導体基板表面の部分領域の温度高くする工程と、
    上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記第1の部分領域と上記第2の部分領域とでその組成が異なるようにする工程を含み、
    上記 III- V族化合物半導体層を成長させる工程は、上記第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する上記第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、
    上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことを特徴とする半導体装置の製造方法。
  8. 有機金属気相成長法を使用して行なう半導体装置の製造方法において、
    半導体基板より小さい領域に凹部が設けられたサセプターによって、上記半導体基板の裏面と上記凹部内の該サセプター表面とが接触せず、且つ上記凹部が上記半導体基板により覆われた状態で上記半導体基板を支持し、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板の表面の温度を上記サセプター凹部に対応する部分領域より、該凹部以外のサセプター表面に接触している上記半導体基板裏面の部分領域に対応する部分領域において高くなるようにする工程と、
    上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程を含み、
    上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、
    上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことを特徴とする半導体装置の製造方法。
  9. 有機金属気相成長法を使用して行なう半導体装置の製造方法において、
    第1の部分と該部分を構成する材料より熱伝導率の高い材料で構成される第2の部分を含むサセプターによって、上記半導体基板の裏面の全面と上記サセプターの表面とが接触するように上記半導体基板を支持し、サセプターからの熱伝導及び熱輻射により上記半導体基板を加熱することによって、上記半導体基板表面における上記サセプターの第1の部分に対応する部分領域の温度より上記サセプターの第2の部分に対応する部分領域の温度高くする工程と、
    上記半導体基板表面にIII-V族化合物半導体層を成長させ、該成長させたIII-V族化合物半導体層を上記半導体基板表面の上記部分領域によってその組成が異なるようにする工程を含み、
    上記 III- V族化合物半導体層を成長させる工程は、ある温度を有する第1の部分領域と該部分領域に隣接する該部分領域の温度より高い温度を有する第2の部分領域とを含む上記半導体基板表面に上記 III- V族化合物半導体層を成長させるものであり、
    上記半導体層の成長工程の後に、上記 III- V族化合物半導体層からなり、上記第1の部分領域及び上記第2の部分領域にまたがる光導波路を形成し、上記第1の部分領域に該光導波路を有するレーザ素子を、上記第2の部分領域に、上記光導波路を有し、かつ、上記レーザ素子の III- V族化合物半導体層のバンドギャップより大きいバンドギャップの III- V族化合物半導体層を持つ光変調器を形成する工程をさらに含むことを特徴とする半導体装置の製造方法。
JP14760195A 1995-06-14 1995-06-14 半導体装置の製造方法,及び半導体装置 Expired - Fee Related JP3755090B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14760195A JP3755090B2 (ja) 1995-06-14 1995-06-14 半導体装置の製造方法,及び半導体装置
TW084112183A TW352479B (en) 1995-06-14 1995-11-15 Process to producing semiconductor device and comprising device
EP96105482A EP0749154A3 (en) 1995-06-14 1996-04-04 Method of fabricating a III-V compound semiconductor layer
CN 96107789 CN1144396A (zh) 1995-06-14 1996-05-30 半导体器件的制造方法和半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14760195A JP3755090B2 (ja) 1995-06-14 1995-06-14 半導体装置の製造方法,及び半導体装置

Publications (2)

Publication Number Publication Date
JPH098402A JPH098402A (ja) 1997-01-10
JP3755090B2 true JP3755090B2 (ja) 2006-03-15

Family

ID=15434031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14760195A Expired - Fee Related JP3755090B2 (ja) 1995-06-14 1995-06-14 半導体装置の製造方法,及び半導体装置

Country Status (4)

Country Link
EP (1) EP0749154A3 (ja)
JP (1) JP3755090B2 (ja)
CN (1) CN1144396A (ja)
TW (1) TW352479B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086890A (ja) * 2001-09-11 2003-03-20 Oki Electric Ind Co Ltd 半導体発光素子の製造方法
SE520139C2 (sv) 2001-11-30 2003-06-03 Optillion Ab Lasermodulator med elektriskt separerade laser- och modulatorsektioner
JP5100184B2 (ja) * 2007-04-02 2012-12-19 古河電気工業株式会社 半導体装置の製造方法および半導体装置
JP5895676B2 (ja) 2012-04-09 2016-03-30 三菱電機株式会社 半導体装置の製造方法
KR101443987B1 (ko) * 2012-12-31 2014-09-23 삼성전기주식회사 반도체 모듈 패키지
FR3001334B1 (fr) * 2013-01-24 2016-05-06 Centre Nat De La Rech Scient (Cnrs) Procede de fabrication de diodes blanches monolithiques
JP6596845B2 (ja) * 2015-03-06 2019-10-30 株式会社リコー 温度制御装置、画像表示装置、車両
DE102017108949B4 (de) 2016-05-13 2021-08-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterchip
DE102017109809B4 (de) * 2016-05-13 2024-01-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Halbleiterchips
DE102017109812A1 (de) 2016-05-13 2017-11-16 Osram Opto Semiconductors Gmbh Licht emittierender Halbleiterchip und Verfahren zur Herstellung eines Licht emittierenden Halbleiterchips
CN109983639B (zh) * 2016-11-29 2022-03-22 三菱电机株式会社 光器件
CN114552383B (zh) * 2020-11-27 2023-07-18 山东华光光电子股份有限公司 一种无铝有源区的红光半导体激光器及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3407089A1 (de) * 1984-02-27 1985-08-29 Siemens Ag Verfahren und vorrichtung zur lichtinduzierten, fotolytischen abscheidung
DE68920853T2 (de) * 1988-11-28 1995-05-24 Fujitsu Ltd Verfahren für das Wachstum von epitaxialen Schichten.
WO1990009047A1 (en) * 1989-02-02 1990-08-09 Fujitsu Limited Integrated optical semiconductor device and method of producing the same
JPH0828498B2 (ja) * 1989-10-02 1996-03-21 株式会社東芝 半導体素子とその製造方法
JP3263949B2 (ja) * 1991-02-25 2002-03-11 日本電気株式会社 光集積回路の製造方法
US5418183A (en) * 1994-09-19 1995-05-23 At&T Corp. Method for a reflective digitally tunable laser

Also Published As

Publication number Publication date
EP0749154A2 (en) 1996-12-18
JPH098402A (ja) 1997-01-10
TW352479B (en) 1999-02-11
EP0749154A3 (en) 1998-05-20
CN1144396A (zh) 1997-03-05

Similar Documents

Publication Publication Date Title
US5436195A (en) Method of fabricating an integrated semiconductor light modulator and laser
JP3755090B2 (ja) 半導体装置の製造方法,及び半導体装置
JP2842292B2 (ja) 半導体光集積装置および製造方法
US20110134955A1 (en) Semiconductor laser diode device and method of fabrication thereof
US5701325A (en) Compound semiconductor device and fabrication method of producing the compound semiconductor device
JPH06204610A (ja) 半導体レーザ及びその製造方法
JPH04505687A (ja) 分布帰還レーザ
JP3115775B2 (ja) 半導体レーザの製造方法
JP2536390B2 (ja) 半導体レ―ザおよびその製造方法
JP4618854B2 (ja) 半導体装置およびその製造方法
JP3813450B2 (ja) 半導体レーザ素子
US6867057B2 (en) Method of manufacturing a semiconductor laser
JP2622143B2 (ja) 分布帰還型半導体レーザ及び分布帰還型半導体レーザの作成方法
JP2763090B2 (ja) 半導体レーザ装置及びその製造方法、ならびに結晶成長方法
JP4615184B2 (ja) 分布帰還型半導体レーザ素子
JPH0936496A (ja) 半導体光素子及びその製造方法
JP4325558B2 (ja) 半導体レーザ、および半導体レーザを作製する方法
JP2950297B2 (ja) 分布帰還型半導体レーザ及びその製造方法
JP2827952B2 (ja) 半導体レーザ
JP2004134486A (ja) 回折格子を備えた半導体レーザ
JP3817074B2 (ja) 分布帰還型半導体レーザの製造方法
JP4115593B2 (ja) 利得結合型分布帰還半導体レーザ装置及びその製造方法
JPH03214683A (ja) 波長可変半導体レーザ
JPH0745907A (ja) 分布帰還型半導体レーザ
JP3429340B2 (ja) 半導体レーザおよびその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees