JP3736227B2 - ドライブ回路 - Google Patents

ドライブ回路 Download PDF

Info

Publication number
JP3736227B2
JP3736227B2 JP26585699A JP26585699A JP3736227B2 JP 3736227 B2 JP3736227 B2 JP 3736227B2 JP 26585699 A JP26585699 A JP 26585699A JP 26585699 A JP26585699 A JP 26585699A JP 3736227 B2 JP3736227 B2 JP 3736227B2
Authority
JP
Japan
Prior art keywords
current
voltage
drive circuit
igbt
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26585699A
Other languages
English (en)
Other versions
JP2001094406A (ja
Inventor
直樹 熊谷
浩之 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP26585699A priority Critical patent/JP3736227B2/ja
Priority to US09/661,905 priority patent/US6570413B1/en
Publication of JP2001094406A publication Critical patent/JP2001094406A/ja
Application granted granted Critical
Publication of JP3736227B2 publication Critical patent/JP3736227B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/0406Modifications for accelerating switching in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches

Landscapes

  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電力変換装置、特にモータの可変速制御用インバータなどに使用されるIGBTなどの電圧駆動型半導体スイッチング素子のドライブ回路(即ち、外部からのオン/オフ信号を入力として、該電圧駆動型半導体スイッチング素子の制御端子に直接加えるオン/オフ駆動用の信号を生成し印加する回路)であって、特に駆動対象の電圧駆動型半導体スイッチング素子のターンオン時に生ずるノイズを抑制しながら、ターンオンの遅れやターンオン損失の増加を防ぐ機能を備えたドライブ回路に関する。
なお以下各図において同一の符号は同一もしくは相当部分を示す。
【0002】
【従来の技術】
図4は従来の最も単純なドライブ回路の構成例を示し、駆動対象素子としてIGBTlをドライブする場合を示している。本例ではIGBTlを充電しオンさせる手段としてPチャネルMOSFET2を、オフする手段としてNチャネルMOSFET4を使用している。
【0003】
プリドライバ7は、オンオフ信号入力端子8にオン信号が入力された場合には、先ず出力7bを低電位(Lとも略記する)としてNチャネルMOSFET4をオフし、次に出力7aをLとしてPチャネルMOSFET2をオンし、IGBTlのゲートを充電しこれをオンする。出力7bと7aに時間差を設ける理由はMOSFETの遅れ時間などにより両方のMOSFET2,4が同時にオン状態となり、短絡電流が流れることを防止するためである。
【0004】
一方、オンオフ信号入力端子8にオフ信号が入力された場合には、プリドライバ7は先ず出力7aを高電位(Hとも略記する)としてPチャネルMOSFET2をオフし、次に出力7bをHとしてNチャネルMOSFET4をオンする。これによりIGBTlのゲート電荷は放電されIGBT1はオフする。
【0005】
駆動対象のIGBT,MOSFETなどのパワー素子はオン電圧による定常損失と、スイッチング損失(ターンオン損失、ターンオフ損失)との総合損失を低減することが重要であるが、スイッチング損失の低減のためにスイッチング速度を高めると、一方では急激なdV/dt、di/dtによるノイズの問題が発生する。このノイズ発生は通常、パワー素子のターンオン時により大きくなる。
【0006】
近年、この間題を解決し、スイッチング損失の低減とノイズの低減を両立させるドライブ方式が盛んに検討されている。このようなドライブ方式としては、特開昭61−237513号、特開平7−240676号が開示されており、これらの技術においては、いずれも駆動対象の電界効果型トランジスタの素子自体のゲートとドレインの間にオン/オフ速度を緩衝するためのコンデンサを接続するようにしている。
【0007】
図5は半導体スイッチング素子のスイッチングの動作を説明するために、実際のモータのPWM(パルス幅変調)制御などに使用されるインバータの回路を簡略化したもので、図6はこのような回路でのIGBT1のターンオン動作の波形を示している。次に図5,6を使用してこのターンオン動作を説明する。
【0008】
まずIGBTlをターンオンすると負荷のインダクタンスLに電流が流れ、このインダクタンスLと電源電圧Ed〔正確には、Ed−(IGBT1のオン電圧)=インダクタンスLに印加される電圧〕で決定されるdi/dt(=Ed/L)で電流が増加する。
【0009】
次に或る一定の電流値に達した時点でIGBT1をオフすると、それまで流れていた電流はフリーホイルダイオード31を通じて転流される(図5におけるI0からI1への遷移)。
【0010】
次に再度IGBTlをオンすると、フリーホイルダイオード31に流れていた電流は、IGBT1の電流が増加し、インダクタンスLに流れていた電流(図5におけるIl:実際にはフリーホイルダイオード31のオン電圧などによる減衰があるため若干減少しているが、インダクタンスLが十分大きいので減衰はわずかである。)に等しくなった時点で、すべての電流がIGBT1に移る。
【0011】
図6はこの状態でのIGBT1がターンオンする際のゲート電圧VGE、コレクタ電流Ic、コレクタ・エミツタ間電圧VCEの波形を示している。
【0012】
いま、IGBT1を図4のドライブ回路が駆動するものとすると、時刻tlで図4のドライブ回路はPチヤネルMOSFET2をオンし、IGBTlのゲートに電流供給を開始する。時刻t2でIGBTlのゲート電圧VGEはゲートしきい値に達しコレクタ電流Icが流れ始め、ゲート電圧が上昇するにつれてIcが増加する。
【0013】
時刻t3において、コレクタ電流Icがそれまでフリーホイルダイオード31が流していた電流に達すると、IGBTlへはインダクタンスL側からはそれ以上の電流は流れない。これはインダクタンスLが十分大きいため、インダクタンスLに流れる電流の急激な増加は抑制されるためである。
【0014】
しかしながら、フリーホイルダイオード31には電流が0になっても、電流が流れていた時に伝導度変調によって生じた過剰キャリアが残っており、IGBTlのゲート電圧がそれ以上のコレクタ電流Icを流せる電圧であれば、フリーホイルダイオード31にそれまで流れていた方向と逆方向に電流(逆回復電流という)I2が過渡的に流れる。
この逆回復電流I2は図5に示すようにIGBT1を通じて流れ、従ってIGBTlを流れる電流はIl(=I0)+I2となる。IGBT1のゲート電圧VGEはPチャネルMOSFET2からの充電電流によって上昇を続けようとするが、IGBT1のコレクタ・エミッタ間電圧VCEが低下するに伴い低下する。これは、この電圧低下によってIGBTlのコレクタ・ゲート間容量を通じて電流が流れること(所謂ミラー効果)に起因する。
【0015】
なお、IGBT1のコレクタ・エミッタ間電圧VCEの低下開始時期(t4)がフリーホイルダイオード31の逆回復電流I2の流れ開始時期(t3)より遅れる理由は以下の通りである。フリーホイルダイオード31が内部のキャリア分布の変化に伴う拡散電流によってIGBTlのゲート電圧に見合った電流供給ができる領域では空乏層が伸びる必要がなく、フリーホイルダイオード31の電圧上昇が起こらず、したがってIGBTlのコレクタ・エミッタ間電圧VCEの電圧低下は起こらない。
【0016】
フリーホイルダイオード31の逆回復電流が流れ続け空乏層が伸びることによってしか電流供給できない領域になると、フリーホイルダイオード31の逆回復電圧が増加し、IGBTlのコレクタ・エミッタ間電圧VCEが低下し始める。このためミラー効果によりIGBT1のゲート電圧VGEは低下し、IGBTlを流れるコレクタ電流Icは時点t4付近でピーク値をとり、以後それまでフリーホイルダイオード31が流していた電流Ilまで低下する。この後、時点t5〜t6の期間、ゲート電圧VGEはそれまでフリーホイルダイオード31が流していた電流をIGBT1が維持できる値でほぼ一定になる。
【0017】
一方、コレクタ・エミッタ間電圧VCEは図6に示すように電圧が低下するに従いdV/dtが小さくなっている。これは、VCEの低下に伴いIGBTlのコレクタ・ゲート間容量を通じて流れる電流がPチヤネルMOSFET2からの充電電流と等しくなる状態でバランスするためで、コレクタ・エミッタ間電圧VCEの低下にしたがってIGBT1の空乏層が縮むためIGBT1のコレクタ・ゲート間容量が増加することに対応している。
【0018】
図6においてほぼ時点t5以後、ゲート電圧VGEが一定の電圧になった後のコレクタ電流Icの値は一定となっている。実際にはインダクタンスLの値とそれに印加される電圧できまるdi/dtで電流が増加するが、インダクタンスLが十分大きいため本図の時間スケールでは、ほぼ一定と考えて良い。
【0019】
以上述べたように時点t3からt5にかけてインダクタンスLを流れていた電流(I0=I1)以上の電流がIGBTlに流れる。インダクタンスLを流れていた電流を上回る分の電流(フリーホイルダイオードの逆回復電流)はフリーホイルダイオード31での損失となると共にIGBT1での損失の増加にもなる。
【0020】
さらに、逆回復電流の低下速度が非常に早いと、図5における浮遊インダクタンスLsにLs・di/dtの電圧が発生し、フリーホイルダイオード31及びこれに並列接続されたIGBT35に過電圧が印加され、素子の破壊を引き起こす場合や、IGBT35の誤点弧を引き起こす場合が発生する。また、そのようなことが発生しないにしても、図6に示すようにコレクタ電流Icの振動が発生し、放射ノイズの増加などの原因となる。
【0021】
次にIGBT1のターンオンの遅れや損失を低く押さえ、しかもノイズの発生などの不具合を抑制する従来の方法について述べる。
図7はこのような目的を持った従来のドライブ回路の例を示し、図4と異なるところは、PチヤネルMOSFET2の代わりにPチヤネルMOSFET36および37が接続されている点と、PチヤネルMOSFET36のゲートがプリドライバ7で直接駆動されるのではなく、パルス回路38によって駆動される点である。
【0022】
図8は図7の回路の動作を説明するためのタイミング図で、図7におけるA〜D点の波形を示している。プリドライバ7のオンオフ信号入力端子8(A点)にオン信号が入力されると、プリドライバ7は先ず出力7b(つまりMOSFET4のゲート(D点)の電位)をLとしMOSFET4を遮断する。次にプリドライバ7はtdlの遅れ時間後、出力7a(つまりMOSFET37のゲート及びパルス回路38の入力(B点)の電位)をLとしMOSFET37をオンさせると共に、パルス回路38を介して予め決められた期間td2,td3ずつMOSFET36のゲート(C点)の電位をL,Hと切り替えた後、さらにLに切り替える。
【0023】
ここで、td2の期間は図6における時点tlからt2の期間に対応し、td3の期間は図6における時点t2からt4の期間に対応する。すなわち、時点t2からt4の期間(期間td3)においてはMOSFET37だけでIGBTlのゲートを充電し、時点tlからt2の期間(期間td2)及び時点t4以降(期間td3の後)はMOSFET36及び37で充電する。これによって以下の効果が得られる。
【0024】
まず、時点tlからt2の期間をMOSFET36及び37で充電することにより、オン信号の入力時点からIGBT1のゲート電圧VGEがしきい値に達するまでの時間(ターンオンの遅れ時間)を短くすることができる。これはIGBT1のスイッチング損失を低減する効果は無いが、オン信号入力時点から実際にIGBT1がターンオン(通流開始)するまでの遅れ時間が短くなり制御性が向上する。
【0025】
次に、時点t2からt4の間はMOSFET37だけでIGBT1のゲートを充電するのでIGBT1のコレクタ電流のdi/dtが小さくなるため、時点t2からt3の期間のIGBT1のスイッチング損失は若干増加するものの、ゲート電圧VGEのオーバーシュート(図6の時点t3からt5にかけてのゲート電圧VGEの山)が低くなることにより、コレクタ電流Icのピーク電流が低減されると共にIcの急激な減少も抑えられるため、浮遊インダクタンスLsによるサージ電圧や電流振動による放射ノイズの発生が抑えられる。
【0026】
時点t4以後の期間では、再度MOSFET36及び37で充電することによりミラー効果によってIGBT1のゲート電圧が一定となる期間(図6の時点t5〜t6の期間)を短くし、IGBT1のコレクタ・エミッタ間電圧VCEの低下を早めることができ、この間のターンオン損失を低減できる。
【0027】
従って図7の回路では、IGBT1の図6の時点t2〜t3の期間のターンオン損失は増加するものの、時点t5からt6の期間のターンオン損失を低減することができるので、スイッチング損失(この場合、ターンオン損失)を増加させないで、サージ電圧及びノイズの発生を抑えることが可能となる。
【0028】
なお、図8におけるtd4の期間は期間tdlと同様、MOSFET36又は37と、MOSFET4とが同時にオンする期間が存在することを防止するためのものである。
【0029】
【発明が解決しようとする課題】
実際のモータ制御などを行うインバータ回路ではPWM制御によりインバータ回路の出力電流が正弦波形になるように制御するため、IGBT1の電流は一定でない。従って図6における時点t2からt3の期間は一定でない。従って図7におけるMOSFET37をオンしたまま36をオフする期間(図8の期間td3)は最大電流時を想定した十分長い期間にする必要がある。
【0030】
従って実際にはIGBT1のゲート充電電流を大きくすべき図6の時点t5以降の区間の始めの部分は充電電流が低いままであり、時点t5〜t6の期間のスイッチング損失を十分低減することができなかった。また、温度特性などにより図6の時点tl、t2などの時間が変動した場合についても適切な制御が行えないという欠点があった。
【0031】
次にIGBT1の負荷に短絡が発生した場合でのIGBT1のターンオンを考える。図9はIGBT1をオフ状態からその負荷を短絡してオンさせた場合の電流及び電圧の波形を示す。時点tllでIGBT1のゲートの充電を開始し、時点t12でゲート電圧VGEがゲートしきい値に達するとIGBT1に電流が流れ始める。
【0032】
負荷短絡の場合、配線などの浮遊インダクタンスによる影響を無視すれば、IGBT1に印加される電圧は一定である。従って図6に示すIGBT1のコレクタ電圧VCEの低下に伴うミラー効果によって、IGBT1のゲート電圧VGEが一定となる期間が存在しない。従ってゲート電圧VGEは上昇を続け、t13において駆動回路の電源11の電圧Vccに達する。
【0033】
しかしながら、短絡時にはIGBT1の内部のキャリアの振る舞いによってIGBT1のゲートからドライブ回路の方向に電流が流れ、駆動回路のインピーダンスやゲート配線のインダクタンスによる電圧降下により、ゲート電圧VGEが駆動回路の電源電圧Vcc以上に上昇する。この現象は特に図4には図示されていないゲート抵抗(IGBT1のゲートとMOSFET2のドレイン間に接続)が有る場合に顕著になる。やがてゲート電圧VGEは過渡期間を経て時点t14で最大値をとり、時点t15で電源電圧Vccに戻る。
【0034】
一方、コレクタ電流Icはゲート電圧VGEの上昇に伴い増加し、ゲート電圧VGEが時点t14でピークを迎えたあとは、ゲート電圧の低下に従い減少する。なお、コレクタ電流Icがゲート電圧VGEが一定になった後も減少しているのはIGBT1の温度上昇の影響である。
【0035】
最近のIGBTはオン電圧の低減などで高性能化が進んでいるが、高性能なIGBTほど負荷短絡時のコレクタ電流が大きく、短い時間で破壊し易い。このため、負荷短絡を検知し、ゲート電圧の上昇を抑える電流制限回路が使用されるのが一般的になりつつある。
【0036】
しかしながらゲート電圧の上昇速度が早く、コレクタ電流の上昇速度が早いと、電流制限回路が動作する前に破壊が発生する。図4の回路ではIGBT1の通常のスイッチング速度を低下させないことを前提にすると、MOSFET2のオン抵抗を大きくできないのでIGBT1のコレクタ電流の上昇速度が大きくなり、保護が不可能になる。
【0037】
図7の回路では、コレクタ電流の上昇の初期段階での上昇速度は抑えられるものの、一定時間後にはIGBT1のゲートを急速に充電する。短絡電流を検出する電流レベルは、通常使用する電流のレベルより高いので、図7の回路の場合、負荷短絡を検出してから保護回路が動作するまでの間の電流上昇は、図4の回路よりむしろ大きくなり、短絡保護はむしろ困難になる。
【0038】
そこで本発明は、これら従来のドライブ回路が持つ問題を解消し、駆動対象の電圧駆動型半導体スイッチング素子のターンオン時に生ずるノイズを抑制しながら、ターンオンの遅れや損失を低減し得ると共に、負荷短絡状態でのターンオン時の保護も容易なドライブ回路を提供することを課題とする。
【0039】
【課題を解決するための手段】
前記の課題を解決するために、請求項1のドライブ回路では、
(プリドライバ9のオンオフ信号入力端子8への)オン信号の入力に基づいて駆動対象の電圧駆動型半導体スイッチング素子(IGBT1,センスIGBT20など)の制御端子(ゲートなど)に電流を供給する手段と、(オンオフ信号入力端子8への)オフ信号の入力に基づいて該電圧駆動型半導体スイッチング素子の制御端子から電流を引き抜く手段(NチャネルMOSFET4など)とを備え前記電流を供給する手段が、前記制御端子にドレインが接続された電圧駆動型トランジスタ(PチャネルMOSFET2など)を持ち、該電圧駆動型トランジスタのゲート・ドレイン間にコンデンサ(10)が接続されたドライブ回路において、前記電流を供給する手段がさらに、前記駆動対象の電圧駆動型半導体スイッチング素子と直列に接続されたフリーホイルダイオード(31)の電流が該電圧駆動型半導体スイッチング素子に転流され終わる転流終了時点(t3)を検出する手段と、前記オン信号の入力時点から該転流終了時点までの期間、前記電圧駆動型半導体スイッチング素子の制御端子を急速に充電する手段(制御回路17,PチャネルMOSFET14)とを持つようにする。
また、請求項2のドライブ回路では、請求項1に記載のドライブ回路において、前記転流終了時点を検出する手段が、前回、前記電圧駆動型半導体スイッチング素子に流れた電流をサンプルホールドする手段(サンプルホールド回路15)と、このサンプルホールドされた電流値と、今回該電圧駆動型半導体スイッチング素子に流れている電流とを比較する電流比較手段(コンパレータ16)とを持つようにする。
また請求項3のドライブ回路では、請求項1に記載のドライブ回路において、
前記電流比較手段が、比較する電流値に前記転流終了時点を早めに検出する所定のオフセット(19)を付加するようにする。
【0040】
また請求項のドライブ回路では、請求項1〜3に記載のドライブ回路において、
前記電流を供給する手段が、前記オン信号の入力に基づいて前記電圧駆動型トランジスタのゲートを比較的緩やかに充電する緩充電手段を持つようにする。
【0041】
また請求項のドライブ回路では、請求項に記載のドライブ回路において、
前記緩充電手段が半導体スイッチング素子(NチャネルMOSFET5)と、これに直列接続された抵抗(6)とで構成されるようにする。
【0042】
また請求項のドライブ回路では、請求項に記載のドライブ回路において、
前記緩充電手段が電流導通能力の低い((チャネル幅/チャネル長)が小さく、オン抵抗が高い)半導体スイッチング素子(NチャネルMOSFET12)で構成されるようにする。するドライブ回路。
【0043】
また請求項のドライブ回路では、請求項に記載のドライブ回路において、
前記緩充電手段が定電流源で構成されるようにする。
【0044】
【0045】
【0046】
【0047】
【0048】
本発明の作用は次の如くである。即ち、駆動対象の半導体スイッチング素子(説明の便宜上、主パワー素子という)のターンオン時にその制御端子の充電に用いるMOSFETのゲート・ドレイン間にコンデンサを挿入することにより、主パワー素子のターンオン時に、制御端子充電用のMOSFETのドレイン電圧(つまり、主パワー素子の制御端子の電圧)が変化する場合に発生するミラー効果が大きくなるようにし、
主パワー素子の制御端子の電圧上昇(下降)速度が大きい領域では、制御端子充電用MOSFETのオン抵抗の低下速度が遅く(速く)なるようにして、主パワー素子の制御端子の電圧変化速度、従って図6の時点t2〜t5の期間の主パワー素子の電流のdi/dt及びコレクタ・エミッタ間電圧の下降初期のdV/dtを小さく、且つ電流のピークを抑えてノイズを抑制し、さらに、主パワー素子の負荷が短絡した場合でのターンオンの際も電流の増加速度を低減し、保護回路により主パワー素子を保護することを容易にする。
【0049】
また、主パワー素子の制御端子の電圧変化速度が小さい領域では、逆にミラー効果が働かず、制御端子充電用MOSFETのオン抵抗の低下速度が早くなるようにして、図6の時点t5〜t6の期間を短縮し、ターンオン後期の損失を低減する
さらにターンオン前期(図6の時点t2〜t3の期間)が長引き、この期間の損失が増加することを防ぐためには、オン信号の入力時点から主パワー素子と直列に接続されたフリーホイルダイオードの電流が主パワー素子に転流され終わる図6の時点(転流終了時点)t3までの期間、主パワー素子の制御端子を急速に充電する手段を別に設ける(請求項1)。
なお、前記転流終了時点を検出する手段として、前回、主パワー素子に流れた電流をサンプルホールドする手段、このサンプルホールドされた電流値と、今回該電圧駆動型半導体スイッチング素子に流れている電流とを比較する電流比較手段を設ける(請求項2)。
さらに、上記転流終了時点を検出する手段等による主パワー素子の制御端子の急速充電の終了が遅れることを防ぐには前記電流比較手段にオフセットを付加する(請求項3)。
【0050】
また、制御端子充電用のMOSFETのゲートを比較的緩やかに充電する手段を設け、上記の主パワー素子のdi/dtやdV/dtを小さくする効果を高める(請求項4〜7)。
【0051】
【0052】
【0053】
【0054】
【0055】
【発明の実施の形態】
図1は本発明の第1の参考例としての回路図で、図4と異なるところはMOSFET2のゲート・ドレイン間にコンデンサ10が接続されている点、プリドライバ7の代わりにプリドライバ9が設けられ、その出力9aの信号論理が、プリドライバ7の出力7aの信号論理と反対である点、プリドライバ9の出力端9aとMOSFET2のゲートの間に、MOSFET2をドライブするためのMOSFET3及び5と、抵抗6が設けられている点である。
【0056】
次に図5,図6の説明に用いたIGBTlを図1のIGBTlに置き換えて、図5,図6を参照しつつ図1の動作を説明する。
【0057】
オンオフ入力端子8にオン信号が印加されると、プリドライバ9はまず出力9bをLにしてMOSFET4をオフし、次にMOSFET2をオンするために出力9aをHにしてMOSFET3をオフし、MOSFET5をオンする。
【0058】
MOSFET5がオンすると、MOSFET2のゲートから抵抗6を通して電流が流れ、MOSFET2のゲート電位が低下し、MOSFET2がオンすることにより、IGBTlのゲート電位は上昇し始める。
【0059】
図6における時点tlからt4の期間は、IGBT1のゲート電圧VGEは上昇するので、コンデンサ10を通じてMOSFET2のドレインからゲート方向に電流が流れる。従って、MOSFET2のゲート電位は緩やかにしか低下しない。
【0060】
このため、MOSFET2のオン抵抗は徐々にしか低下せず、IGBTlのゲート電圧VGEの上昇は緩やかになる。このことを図7の回路と比べると、図6の時点tlからt2の期間もIGBTlのゲート電圧VGEの上昇速度が減少することが異なるが、図6の時点t2〜t4の期間のIGBTlのゲート電圧VGEの上昇速度を低下させる点で図7の回路と同様の効果がある。
【0061】
図6の時点tl〜t2の期間が長くなることは、先に述べたようにターンオンディレイ時間が長くなる短所があるものの、スイッチング損失には影響しないので問題は小さい。また、図1の回路では、図8における期間tdlを無くしてもよくなる、つまり図1ではプリドライバ9の出力9aと9bとが同時に出力されてもよくなるので実質上の問題は少ない。
【0062】
次に図6の時点t4からt5の期間では、IGBTlのゲート電圧VGE、すなわちMOSFET2のドレイン電位のdV/dtが負となるため、コンデンサ10にはMOSFET2のゲートからドレインに向かって電流が流れ、IGBTlのゲート電位の低下を抑制する方向に働くと同時に、MOSFET2のゲート電位は、より低下する方向に遷移する。このため、MOSFET2のオン抵抗は若干減少し、IGBTlのゲート電圧VGEがピークを迎えたあと急激に低下するのを防止する。
【0063】
このようにIGBTlのゲート電圧VGEの上昇速度および下降速度が緩やかになることから、IGBTlのコレクタ電流Icのピーク電流は抑えられ、ピーク後のIcの急激な減少も抑制されるので、浮遊インダクタンスLsによるサージ電圧やノイズの抑制の効果が大きい。
【0064】
次に図6の時点t5以後のIGBT1のゲート電圧VGEが一定になる期間では、MOSFET2のドレイン電圧の変化がないため、所謂ミラー効果がなくなり、MOSFET2のゲート電位は急激に低下する。このため、MOSFET2のオン抵抗は急激に低下し、図6の時点t5からt6までの期間を短くし、スイッチング損失を低減することができる。
【0065】
さらに、図6の時点t5付近では、まだMOSFET2のオン抵抗が十分低くはなく、徐々に低抵抗になるため、図6におけるIGBT1のコレクタ・エミッタ間電圧VCEが初期に急激に低下し、徐々に緩やかになる特性が改善され、比較的一定のdV/dtで電圧VCEが低下するため、IGBT1のコレクタ・エミッタ間電圧VCEのdV/dtによるノイズの低減の効果も期待できる。
【0066】
MOSFET3については、オフ信号がオンオフ入力端子8に印加された際にMOSFET2のオフが遅れ、MOSFET4と同時にオンする期間が無いように、十分急速にMOSFET2のゲートを充電できるように設計する必要がある。
【0067】
次に、図1のIGBT1の負荷短絡の場合のターンオンを考える。負荷短絡の場合、図9に示したようにIGBT1のミラー効果によりIGBT1のゲート電圧VGEが一定になる領域がないため、MOSFET2に対してはミラー効果が常に発生する。従って、MOSFET2のゲート電位の低下、すなわちMOSFET2のオン抵抗の低下は緩やかになり、IGBTlのゲート電圧VGEの上昇速度は図9の破線のように抑制される。このため、コレクタ電流Icの上昇速度も図9の破線に示すように抑えられ短絡保護が容易になる。
【0068】
図2は本発明の第2の参考例としての回路図で、図1と異なるところは、[1]MOSFET5の代わりにMOSFET12が接続され、抵抗6が無い点、[2]IGBTlのゲート電圧VGEを検出するゲート電圧検出回路13と、これにより制御されるMOSFET14が接続されている点である。
【0069】
MOSFET12はMOSFET5に比較しW/L(チヤネル幅/チャネル長)が小さくオン抵抗が高いものを使用し抵抗6を省略したものである。
【0070】
従って、前記[1]の点の違いは単に同じ効果を別の方法で実現したこととなる。但し図2の回路では、MOSFET2のゲート電圧が高い領域ではMOSFET12の定電流領域となり、定電流でMOSFET2のゲートが放電され、MOSFET2のゲート電圧が低い領域では抵抗領域となり、MOSFET2のゲート放電電流が減少する。このように図1の場合とは若干の特性の違いがあるものの、基本的な動作に違いはない。MOSFET12の代わりに定電流源によりMOSFET2のゲートを放電しても同様である。
【0071】
実質的な変更点である前記[2]の点について説明する。図2では図1におけるIGBT1のゲート電圧VGEがゲートしきい値に達するまでの時間が長くなるという欠点を改善するもので、ゲート電圧検出回路13はプリドライバ9からのHの信号9aによりMOSFET14をオンさせる。さらにIGBT1のゲート電圧VGEを検出し、このゲート電圧VGEがゲートしきい値に達したことを検出すると、MOSFET14をオフする。従って、IGBTlのゲート電圧VGEがゲートしきい値に達するまではIGBTlのゲートを急速に充電し、それ以後は図1と同じ動作を行う。
【0072】
IGBT1のゲート電圧VGEがしきい値に達したことは、ゲート電圧検出回路13による代わりに、IGBT1に図3に示すようなセンスIGBT20等を用いてIGBTにコレクタ電流が流れ始めたことを検出しても、検出可能である。またIGBT1のゲートを急速に充電する方法として図2の構成に代わり、電源11とは別にゲートしきい値電圧以下の電圧の第2の電源によりターンオン前期(図6の時点tlからt2の期間)にIGBT1のゲートを充電する方法も考えられる。この場合は、IGBT1のゲート電圧VGEがゲートしきい値に達すると自動的に充電が停止するので、途中でオフするなどの制御が不要になる。
【0073】
図2の構成によれば、放射ノイズを増大させないでIGBT1の損失の低減を実現すると共に、IGBT1がターンオン開始(通流開始)するまでの遅れ時間、いわゆるストレージ時間の増大を防止し制御性が悪化することを防止することができる。
【0074】
図3は本発明の実施例としての回路図で、図2と異なるところはゲート電圧検出回路13が無く、IGBTlがエミッタ電極の一部を分離してコレクタ電流をセンスできるようにしたセンスIGBT20に置き換って、センスIGBT20のセンス端子とメインエミッタ端子間にセンス抵抗18が接続されている点、さらにセンス抵抗18の電圧降下を保持するためのサンプルホールド回路15と、サンプルホールド回路15の出力としてのサンプルホールド値とセンス抵抗18の電圧降下とを比較するコンパレータ16と、このコンパレータ16の出力16aとプリドライバ9の出力9aによってMOSFETの14のゲートを制御する制御回路17とが付加されている点である。
【0075】
以下に図3の動作を図5,図6を参照しつつ説明する。図1と図2において、図6の時点t2からt3の間のIGBTのゲート電圧VGEの上昇速度を低下させるとを実施しているが、実際にゲート電圧VGEの上昇(下降)速度を低下させることが必要なのは時点t3から時点t5にかけての期間である。
【0076】
これはフリーホイルダイオード31の逆回復時にIGBTに流れる電流がIGBTのゲート電圧VGEのオーバーシュートによっているためである。従って、図6の時点t2〜t3の期間のIGBTのゲート電圧VGEの上昇速度を抑えることは必要ではなく、このことは逆にIGBTのコレクタ電流のdi/dt減少によりターンオン損失の増大を招く。
【0077】
しかしながら、実際のPWMインバータでは電流を正弦波形に近似するため、インバータの出力電流は0から定格電流以上まで変化する。インバータ出力電流が0付近の場合においても、IGBTにはフリーホイルダイオードの接合容量に基づくコレクタ電流が流れ、この場合は始めからゲート電圧VGEの上昇速度を低減する必要があるが、インバータ出力電流が0でない場合には、フリーホイルダイオード31に流れていた電流がIGBTに転流され終わるタイミングでIGBTのゲート電圧VGEの上昇速度を低減する必要がある。
【0078】
しかしながら、フリーホイルダイオード31に流れている電流を前もって検出しないと、どのタイミングで図6の時点t3の領域が終了するか予測できない。図3の回路ではフリーホイルダイオード31に流れている電流は、ほぼ前回のターンオン時にIGBTに流れていた電流であることを利用して制御することを特徴としている。
【0079】
サンプルホールド回路15は図6の時点t5以後のコレクタ電流Icがほぼ一定になったタイミングで、図示されてないパルス発生回路により、IGBTに流れている電流値をセンス抵抗18の電圧降下として取込んで保持する。コンパレータ16は次回のターンオンのタイミングでIGBT20に流れる電流を検出し、サンプルホールド回路15の出力と比較することによってフリーホイルダイオード31の電流がIGBT20に転流され終わったことを検出し、制御回路17に信号を送出する。
【0080】
制御回路17はプリドライバ9のHの出力9a(オン信号)により、まずMOSFET14をオンし、次にコンパレータ16の出力16aによりMOSFET14をオフさせる。
【0081】
コンパレータ16の(+)入力に接続された電池の記号で示したオフセット19は、コンパレータ16、制御回路17等の遅れ時間を考慮し、センスIGBT20のコレクタ電流がサンプルホールド回路15に保持された値より低い、すなわち時間的に早い段階でコンパレータ16の出力を16aを反転させるためのものである。
【0082】
このオフセット19は、回路的に付加するか、あるいはコンパレータ16内の入力部の図外のMOSFET素子のチャネル長/チヤネル幅比を変えるなどの種々の方法で実現することができる。
【0083】
このようにして図3の方式によれば放射ノイズを増大させないで、さらにIGBTのターンオン損失を低減することができる。
【0084】
【発明の効果】
請求項1に関わる発明によれば、駆動対象の半導体スイッチング素子(説明の便宜上、主パワー素子という)のターンオン時にその制御端子を充電するために用いるMOSFETのゲート・ドレイン間にコンデンサを挿入するようにしたので、
主パワー素子のターンオン時、制御端子充電用のMOSFETのドレイン電圧(つまり、主パワー素子の制御端子の電圧)が変化する場合に発生するミラー効果が大きくなり、主パワー素子の制御端子の電圧上昇(下降)速度が大きい領域で、制御端子充電用MOSFETのオン抵抗の低下速度が遅く(速く)なり、主パワー素子の制御端子の電圧変化速度、従って図6の時点t2〜t5の期間の主パワー素子の電流のdi/dt及びコレクタ・エミッタ間電圧の下降初期のdV/dtを小さく、且つ電流のピークを抑えてノイズを抑制することができ、さらに、主パワー素子の負荷が短絡した場合でのターンオンの際も電流の増加速度を低減することができるので保護回路により保護することが容易になる。
【0085】
また、主パワー素子の制御端子の電圧変化速度が小さい領域で、逆にミラー効果が働かず、制御端子充電用MOSFETのオン抵抗の低下速度が早くなり、図6の時点t5〜t6の期間が短縮されるので、ターンオン後期の損失を低減することができる。
さらに、オン信号の入力時点から主パワー素子と直列に接続されたフリーホイルダイオードの電流が主パワー素子に転流され終わる図6の時点(転流終了時点)t3までの期間、主パワー素子の制御端子を急速に充電する手段を別に設けるようにしたので、請求項1〜5に関わる発明の実施でターンオン前期(図6の時点t2〜t3の期間)が長引き、この期間の損失が増加することを防ぐことができる。後述の請求項3〜7にかかわる発明においても同様である。
また、請求項2に関わる発明によれば、請求項1に関わる発明において、前記転流終了時点を検出する手段として、前回、主パワー素子に流れた電流をサンプルホールドする手段、このサンプルホールドされた電流値と、今回該電圧駆動型半導体スイッチング素子に流れている電流とを比較する電流比較手段を設けるようにしたので、主パワー素子が正弦波電流を流しつつモータをPWM制御するインバータ回路に使用されることで、主パワー素子の電流レベルが大きく変化しても、その時々の転流終了時点を正しく検出することができる。
また、請求項3に関わる発明によれば、請求項2に関わる発明において、前記電流比較手段にオフセットを付加するようにしたので、前記転流終了時点を検出する手段等による主パワー素子の制御端子の急速充電の終了が遅れることを防ぐことができる。
【0086】
また、請求項に関わる発明によれば、請求項1〜3に関わる発明において、制御端子充電用のMOSFETのゲートを比較的緩やかに充電する手段を設けるようにしたので、上記の主パワー素子のdi/dtやdV/dtを小さくする効果を高めることができる。
【0087】
【0088】
【0089】
【0090】
【図面の簡単な説明】
【図1】 本発明の第1の参考例としてのドライブ回路の構成図
【図2】 本発明の第2の参考例としてのドライブ回路の構成図
【図3】 本発明実施例としてのドライブ回路の構成図
【図4】 従来のドライブ回路の例を示す構成図
【図5】 IGBTのスイッチング動作を説明する回路図
【図6】 IGBTのスイッチング動作を説明する電圧電流の波形図
【図7】 従来のドライブ回路の別の例を示す構成図
【図8】 図7のドライブ回路の動作を説明する図
【図9】 IGBTの負荷短絡状態でのターンオン時の電圧電流の波形図
【符号の説明】
1 駆動対象IGBT
2,3 PチャネルMOSFET
4,5 NチャネルMOSFET
6 抵抗
8 オンオフ信号入力端子
9 プリドライバ
10 コンデンサ
11 直流電源
12 NチャネルMOSFET
13 ゲート電圧検出回路
14 PチャネルMOSFET
15 サンプルホールド回路
16 コンバレータ
17 制御回路
18 センス抵抗
19 オフセット
20 センスIGBT
31 フリーホイルダイオード
t1〜t6 時点

Claims (7)

  1. オン信号の入力に基づいて駆動対象の電圧駆動型半導体スイッチング素子の制御端子に電流を供給する手段と、オフ信号の入力に基づいて該電圧駆動型半導体スイッチング素子の制御端子から電流を引き抜く手段とを備え、前記電流を供給する手段が、前記制御端子にドレインが接続された電圧駆動型トランジスタを持ち、該電圧駆動型トランジスタのゲート・ドレイン間にコンデンサが接続されたドライブ回路において、
    前記電流を供給する手段がさらに、前記駆動対象の電圧駆動型半導体スイッチング素子と直列に接続されたフリーホイルダイオードの電流が該電圧駆動型半導体スイッチング素子に転流され終わる転流終了時点を検出する手段と、
    前記オン信号の入力時点から該転流終了時点までの期間、前記電圧駆動型半導体スイッチング素子の制御端子を急速に充電する手段とを持つことを特徴とするドライブ回路。
  2. 請求項1に記載のドライブ回路において、
    前記転流終了時点を検出する手段が、前回、前記電圧駆動型半導体スイッチング素子に流れた電流をサンプルホールドする手段と、
    このサンプルホールドされた電流値と、今回該電圧駆動型半導体スイッチング素子に流れている電流とを比較する電流比較手段とを持つことを特徴とするドライブ回路。
  3. 請求項2に記載のドライブ回路において、前記電流比較手段が、比較する電流値に前記転流終了時点を早めに検出する所定のオフセットを付加することを特徴とするドライブ回路。
  4. 請求項1〜3に記載のドライブ回路において、
    前記電流を供給する手段が、前記オン信号の入力に基づいて前記電圧駆動型トランジスタのゲートを比較的緩やかに充電する緩充電手段を持つことを特徴とするドライブ回路。
  5. 請求項に記載のドライブ回路において、
    前記緩充電手段が半導体スイッチング素子と、これに直列接続された抵抗とで構成されたことを特徴とするドライブ回路。
  6. 請求項に記載のドライブ回路において、
    前記緩充電手段が電流導通能力の低い半導体スイッチング素子で構成されたことを特徴とするドライブ回路。
  7. 請求項に記載のドライブ回路において、
    前記緩充電手段が定電流源で構成されたことを特徴とするドライブ回路。
JP26585699A 1999-09-20 1999-09-20 ドライブ回路 Expired - Lifetime JP3736227B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26585699A JP3736227B2 (ja) 1999-09-20 1999-09-20 ドライブ回路
US09/661,905 US6570413B1 (en) 1999-09-20 2000-09-14 Driver circuit for switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26585699A JP3736227B2 (ja) 1999-09-20 1999-09-20 ドライブ回路

Publications (2)

Publication Number Publication Date
JP2001094406A JP2001094406A (ja) 2001-04-06
JP3736227B2 true JP3736227B2 (ja) 2006-01-18

Family

ID=17423044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26585699A Expired - Lifetime JP3736227B2 (ja) 1999-09-20 1999-09-20 ドライブ回路

Country Status (2)

Country Link
US (1) US6570413B1 (ja)
JP (1) JP3736227B2 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4105407B2 (ja) * 2001-06-15 2008-06-25 富士通株式会社 磁界印加装置用コイル駆動回路及び情報記憶装置並びに磁界印加装置用コイル駆動制御方法
DE10217611B4 (de) * 2002-04-19 2005-06-30 Infineon Technologies Ag Verfahren und Vorrichtung zur EMV-optimierten Ansteuerung eines Halbleiterschaltelements
JP2004096318A (ja) * 2002-08-30 2004-03-25 Mitsubishi Electric Corp 電力用半導体装置
JP2005045590A (ja) * 2003-07-23 2005-02-17 Mitsubishi Electric Corp 半導体装置
US7330017B2 (en) * 2004-01-29 2008-02-12 Enpirion, Inc. Driver for a power converter and a method of driving a switch thereof
JP4144541B2 (ja) * 2004-03-19 2008-09-03 日産自動車株式会社 電圧駆動型半導体素子用駆動回路
GB2417625A (en) * 2004-08-31 2006-03-01 Bombardier Transp Gmbh Digital adaptive control of IGBT or MOS gate charging current in a converter for a railway traction motor
JP2007013916A (ja) * 2005-05-30 2007-01-18 Denso Corp 信号生成装置
US7080639B1 (en) 2005-06-30 2006-07-25 Visteon Global Technologies, Inc. Soft IGBT turn-on ignition applications
JP4742828B2 (ja) * 2005-11-18 2011-08-10 日産自動車株式会社 電圧駆動型スイッチング回路
US7521907B2 (en) 2006-03-06 2009-04-21 Enpirion, Inc. Controller for a power converter and method of operating the same
US7893676B2 (en) * 2006-07-20 2011-02-22 Enpirion, Inc. Driver for switch and a method of driving the same
US7948280B2 (en) * 2006-10-20 2011-05-24 Enpirion, Inc. Controller including a sawtooth generator and method of operating the same
EP2001130B1 (en) * 2007-06-05 2012-01-25 Saab Ab Gate driver circuit for a monolithic microwave integrated circuit power converter
US8526206B2 (en) * 2007-07-09 2013-09-03 Power Concepts Nz Limited Drive circuit
WO2009017704A1 (en) * 2007-07-27 2009-02-05 International Rectifier Corporation Dc brushed motor drive with circuit to reduce di/dt and emi
US7876080B2 (en) * 2007-12-27 2011-01-25 Enpirion, Inc. Power converter with monotonic turn-on for pre-charged output capacitor
US8692532B2 (en) * 2008-04-16 2014-04-08 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US8541991B2 (en) * 2008-04-16 2013-09-24 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US9246390B2 (en) 2008-04-16 2016-01-26 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US8410769B2 (en) 2008-04-16 2013-04-02 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US8686698B2 (en) 2008-04-16 2014-04-01 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US7679342B2 (en) * 2008-04-16 2010-03-16 Enpirion, Inc. Power converter with power switch operable in controlled current mode
US9548714B2 (en) * 2008-12-29 2017-01-17 Altera Corporation Power converter with a dynamically configurable controller and output filter
US8698463B2 (en) 2008-12-29 2014-04-15 Enpirion, Inc. Power converter with a dynamically configurable controller based on a power conversion mode
WO2010122597A1 (ja) 2009-04-21 2010-10-28 富士通株式会社 集積回路の出力ドライバ装置
US8867295B2 (en) 2010-12-17 2014-10-21 Enpirion, Inc. Power converter for a memory module
EP2911298A1 (en) 2014-02-25 2015-08-26 ABB Oy Gate drive circuit with a voltage stabilizer and a method
FR3018659B1 (fr) * 2014-03-14 2020-03-27 Koito Manufacturing Co., Ltd. Lampe pour vehicule et dispositif de commande de lampe pour vehicule
US9509217B2 (en) 2015-04-20 2016-11-29 Altera Corporation Asymmetric power flow controller for a power converter and method of operating the same
JP6915351B2 (ja) * 2017-04-05 2021-08-04 富士電機株式会社 スイッチング素子駆動装置
JP7052598B2 (ja) * 2018-06-27 2022-04-12 株式会社デンソー スイッチの駆動回路
JP7006547B2 (ja) * 2018-09-10 2022-01-24 三菱電機株式会社 半導体装置
JP7318335B2 (ja) * 2019-06-14 2023-08-01 富士電機株式会社 集積回路、半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237513A (ja) * 1985-04-12 1986-10-22 Mitsubishi Electric Corp 電界効果型トランジスタの駆動回路
JP3089873B2 (ja) * 1993-01-13 2000-09-18 富士電機株式会社 出力回路
EP0707758B1 (en) * 1994-05-09 1999-08-04 Koninklijke Philips Electronics N.V. Integrated circuit comprising an output stage with a miller capacitor
CN1056949C (zh) * 1995-11-27 2000-09-27 皇家菲利浦电子有限公司 电源电路
EP0814564A1 (en) * 1996-06-20 1997-12-29 ANSALDO INDUSTRIA S.p.A. Electronic switching circuit with reduction of switching transients
JP3132648B2 (ja) * 1996-09-20 2001-02-05 富士電機株式会社 電力変換器におけるゲート駆動回路
JP3430878B2 (ja) * 1997-09-19 2003-07-28 富士電機株式会社 Mosゲート形素子の駆動回路
US5949259A (en) * 1997-11-19 1999-09-07 Atmel Corporation Zero-delay slew-rate controlled output buffer
JP3164065B2 (ja) * 1998-06-24 2001-05-08 日本電気株式会社 半導体装置
US6208177B1 (en) * 1999-05-27 2001-03-27 Lucent Technologies Inc. Output buffer having immediate onset of gentle state transition
US6208125B1 (en) * 1999-09-20 2001-03-27 Lergity, Inc. Low noise current source

Also Published As

Publication number Publication date
US6570413B1 (en) 2003-05-27
JP2001094406A (ja) 2001-04-06

Similar Documents

Publication Publication Date Title
JP3736227B2 (ja) ドライブ回路
US10790818B1 (en) Slew rate control by adaptation of the gate drive voltage of a power transistor
US7710187B2 (en) Gate drive circuit
US7151401B2 (en) Semiconductor apparatus
John et al. High-performance active gate drive for high-power IGBT's
US8427225B2 (en) Gate driving circuit
JP4432215B2 (ja) 半導体スイッチング素子のゲート駆動回路
US6208185B1 (en) High performance active gate drive for IGBTs
US20190363706A1 (en) Transistor drive circuit and motor drive control apparatus
JP3339311B2 (ja) 自己消弧形半導体素子の駆動回路
JP4915158B2 (ja) 電力用スイッチング素子の駆動装置
US10910823B2 (en) Semiconductor device driving device
JP5993749B2 (ja) 半導体装置のゲート駆動回路およびそれを用いた電力変換装置
JP2007166734A (ja) 電力変換装置
CN113765341B (zh) 一种驱动器、电机驱动电路及动力***
JPH11285238A (ja) 絶縁ゲート型半導体素子のゲート駆動回路、電力変換装置
JP2015023774A (ja) ゲート駆動回路
JPH0947015A (ja) 自己消弧形半導体素子の駆動回路
US20150116006A1 (en) Driving an mos transistor with constant precharging
JP3379562B2 (ja) インバータ装置
Papadopoulos et al. BIGT control optimisation for overall loss reduction
JP4321491B2 (ja) 電圧駆動型半導体素子の駆動装置
JP4506276B2 (ja) 自己消弧形半導体素子の駆動回路
US9813055B2 (en) Gate driver that drives with a sequence of gate resistances
CN114667679A (zh) 栅极驱动电路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Ref document number: 3736227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term