JP3735846B2 - Method and apparatus for preheating steel sheet in continuous vacuum deposition apparatus - Google Patents

Method and apparatus for preheating steel sheet in continuous vacuum deposition apparatus Download PDF

Info

Publication number
JP3735846B2
JP3735846B2 JP21886895A JP21886895A JP3735846B2 JP 3735846 B2 JP3735846 B2 JP 3735846B2 JP 21886895 A JP21886895 A JP 21886895A JP 21886895 A JP21886895 A JP 21886895A JP 3735846 B2 JP3735846 B2 JP 3735846B2
Authority
JP
Japan
Prior art keywords
steel plate
preheating
chamber
steel sheet
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21886895A
Other languages
Japanese (ja)
Other versions
JPH0967664A (en
Inventor
至康 松田
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP21886895A priority Critical patent/JP3735846B2/en
Publication of JPH0967664A publication Critical patent/JPH0967664A/en
Application granted granted Critical
Publication of JP3735846B2 publication Critical patent/JP3735846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、連続真空蒸着装置における鋼板の予備加熱方法及び装置に関するものである。
【0002】
【従来の技術】
真空蒸着装置は、真空中で金属を加熱して蒸発させ、蒸発金属を基板(鋼板)の表面に凝固させて被膜を作る成膜プロセスである。かかる成膜プロセスにおいて蒸着用金属を加熱するために電子ビームを用い薄板状の連続した走行鋼板に金属を蒸着させる連続真空蒸着装置が従来から知られている。この連続真空蒸着装置は、通常の湿式メッキでは扱えない高融点金属及び窒化物、炭化物、酸化物などのセラミックスの蒸着が可能であり、かつ付着速度が大きい等の長所を有している。
【0003】
かかる従来の連続真空蒸着装置は、例えば図5に示すように、連続走行する鋼板1と、電子ビーム2を放射する電子銃3と、溶解した蒸着材料4を収容するルツボ5と、これらを内蔵する真空チャンバー6とを備え、電子銃3により電子ビーム2を放射し、図示しない磁界により電子ビーム2の方向をルツボ5内に曲げてルツボ5内の金属を加熱・蒸発させ、蒸発金属を鋼板1の表面に凝固させて被膜を作るようになっている。
【0004】
【発明が解決しようとする課題】
上述した連続真空蒸着装置では、鋼板1の表面に密着性に優れた蒸着膜を形成するために、鋼板1を成膜前に適当な温度(例えば100〜500℃)に予備加熱する必要がある。従来かかる予備加熱は、図6に例示する抵抗加熱ヒータ7からの輻射熱を用いた輻射加熱、或いは図示しない誘導加熱により行われていた。なお、図中の8は断熱材である。
【0005】
しかし、従来の輻射加熱及び誘導加熱では、▲1▼ヒータの熱容量が大きいため、ヒータ自体の昇温及び冷却に時間がかかり、かつ▲2▼鋼板の移動速度が変化した場合などに、ヒータ温度が一定になるまでに長時間を必要とし、さらに▲3▼内部を点検などする場合には、ヒータの酸化防止のために、発熱体の温度が200℃以下に下がるまで大気解放することができず、長時間放置したり、2〜3時間余分に真空ポンプを運転させたりする必要がある、などの問題点があった。
【0006】
また、▲4▼ヒータから鋼板への伝熱は真空中の熱輻射によるため、高速(50〜400m/min)で真空蒸着する場合には、ヒータ面積が相当に大きくなるとともに予備加熱領域が非常に大きくなり、かつ▲5▼鋼板以外へも熱輻射により伝熱されるため、放熱ロスが大きい、などの問題点があった。
また、かかる従来の加熱手段では、▲6▼鋼板表面に付着した油、ゴミ及び酸化物を加熱しただけでは除去できなかった。
【0007】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、短時間に起動又は停止ができ、鋼板の移動速度の変化にも短時間に対応でき、停止後の大気解放が短時間ででき、比較的小さい予備加熱領域で高速走行する鋼板を予備加熱することができ、放熱ロスが少なく熱効率が高く、かつ鋼板表面の付着物の除去もできる、連続真空蒸着装置における鋼板の予備加熱方法及び装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、真空チャンバー内で連続的に走行する鋼板に蒸発材料を蒸着する成膜室の上流側において、鋼板を囲み内部が真空に保持された予備加熱室を設け、その予備加熱室内で蒸着前の鋼板に電子ビームを照射して鋼板を加熱するとともに、その予備加熱室に磁場を生じさせて、鋼板で反射した電子を偏向させて鋼板に再照射し、さらに鋼板を加熱する、ことを特徴とする連続真空蒸着装置における鋼板の予備加熱方法が提供される。
【0009】
本発明の好ましい実施の形態によれば、上記反射した電子の進行方向の後方から見て左側から右側に向かう方向に磁場を生じさせて、鋼板で反射した電子を鋼板に再照射するように偏向させることが好ましい。
【0010】
また、本発明によれば、真空チャンバー内で連続的に走行する鋼板に蒸発材料を蒸着する成膜室の上流側に設けられ、鋼板を囲み内部が真空に保持された予備加熱室と、その予備加熱室内で蒸着前の鋼板に電子ビームを照射する電子銃と、その鋼板で反射した電子の進行方向の後方から見て左側から右側に向かう方向に磁場を生じさせる一対の電磁コイルと、を備え、電子ビームにより鋼板を直接加熱するとともに、その反射した電子によっても鋼板を加熱する、ことを特徴とする連続真空蒸着装置における鋼板の予備加熱装置が提供される。
【0011】
本発明の好ましい実施の形態によれば、上記電子銃は予備加熱室の上流側下方から下流側上方の向きに取付けられており、一対の電磁コイルは電子銃よりも下流側に設置されている。
【0012】
さらに本発明の好ましい実施の形態によれば、上記電子銃は予備加熱室の下面から垂直上向きに取付けられており、上記一対の電磁コイルは電子銃の上流側および下流側の両方に設置されている。
【0013】
上述の本発明の方法及び装置によれば、成膜室の上流側に予備加熱室と電子銃を備えて予備加熱室内で蒸着前の鋼板に電子ビームを照射するので、電子ビームにより直接鋼板を加熱することができ、これにより、比較的小さい予備加熱領域で高速走行する鋼板を予備加熱でき、かつ電子ビームにより鋼板表面がボンバードされるので鋼板表面の付着物の除去もできる。また、電子銃は熱容量が小さく起動及び停止が瞬時にできるので、予備加熱を短時間に開始又は停止でき、鋼板の移動速度の変化にも瞬時に対応でき、停止後の大気解放が短時間でできる。
【0014】
また、鋼板で反射した電子の進行方向の後方から見て左側から右側に向かう方向に磁場を生じさせて偏向させることにより、その反射した電子を鋼板に再照射して加熱すれば、放熱ロスを低減し、熱効率を高めるとともに、鋼板表面をボンバードして鋼板表面の付着物を除去することができる。
【0015】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図1から図4を参照して説明する。なお、各図において従来と共通する部分には同一の符号を付して使用する。
【0016】
図1は本発明による鋼板の予備加熱装置を有する連続真空蒸着装置の全体構成図であり、図2は本発明による鋼板の予備加熱装置の詳細図であり、(A)はその側面図、(B)はその平面図である。これらの図において、連続真空蒸着装置は、真空チャンバー6内で連続的に走行する鋼板1に蒸発材料を蒸着する成膜室11を有し、この成膜室11内に電子銃3により電子ビーム2を放射し、図示しない磁場により電子ビーム2の方向を曲げてルツボ5内の金属を加熱及び蒸発させ、蒸発金属を鋼板1の表面に凝固させて被膜を作るようになっている。
【0017】
本発明の鋼板の予備加熱装置10は、成膜室11の上流側に設けられ鋼板1を囲み内部が真空に保持された予備加熱室12と、予備加熱室12内で蒸着前の鋼板1に電子ビーム13を照射する電子銃14と、その鋼板1で反射した電子(以下、反射電子という)15の進行方向の後方から見て左側から右側に向かう方向に磁場を生じさせる一対の電磁コイル(いわゆる電磁石)16,17と、を備えている。なお、電磁コイル17は予備加熱室12を挟んで反対側にあるので、図1および図2(A)では図示していない。
【0018】
図2に示すようにこの電磁コイル16,17は、鋼板1の走行方向と平行な予備加熱室12の側面18に対し、その軸心が垂直になるように設けられている。一方の電磁コイル16は、その外側から見て鉄心にコイルが右巻きに巻かれ、他方の電磁コイル17は、その外側から見て鉄心19にコイル20が左巻きに巻かれている。したがって、電磁コイル16の予備加熱室12側がN極、電磁コイル17の予備加熱室12側がS極となり、電磁コイル16から電磁コイル17に向かう磁場が発生する。なお、図中の電磁コイル16から電磁コイル17に向かう矢印は磁力線であり、二点鎖線は鋼板1である。ここで、電磁コイルの代わりに永久磁石を用いてもよい。
【0019】
また、図では、電磁コイル16,17は予備加熱室12の外部に設けられているが、予備加熱室12の内部に設けるようにしてもよい。ただし、図に示すように予備加熱室12の外部に設けた方が、電磁コイル16,17のメンテナンスや予備加熱室12の洗浄などが容易になる。
【0020】
図3は反射電子が偏向する様子を示す図である。図に示すように反射角θで反射した電子ビーム13の反射電子15が、電磁コイル16,17により紙面の表から裏に向かう向きに発生した磁場(その磁束密度をBとする)に進入すると、反射電子15の進行方向eとは反対の向きに電流Iが流れることになり、反射電子15はフレミングの左手の法則により反射電子15の進行方向eおよび電流Iの向きと垂直をなす方向に力F(=I×B)を受ける。したがって、反射電子15は徐々に鋼板1の方向へと偏向され、鋼板1に再照射されることになる。さらに、その再照射された反射電子15の反射電子も同様にして鋼板1に再照射される。ここで、磁場を発生させる手段として電磁コイル16,17を用いることにより、電磁コイル16,17に流す電流の大きさを変化させるだけで、その磁束密度Bの大きさを自由に調節することができる。したがって、容易に最適な反射電子15の到達範囲や衝突速度を得ることができる。また、ほとんどの反射電子15が反射を繰り返したのち最終的に鋼板1に吸収されるため、予備加熱室12に吸収される反射電子15が激減し、予備加熱室12の加熱を抑えることができる。したがって、予備加熱室12の冷却水量を減らすなどその冷却機能を縮小することができる。
【0021】
上述したような鋼板の予備加熱装置10により、まず予備加熱室12内で移動している鋼板1の下面(蒸着面)に下方向より電子銃14から発射された電子ビーム13を照射して鋼板1を直接加熱する。したがって、比較的小さい予備加熱領域で高速走行する鋼板を予備加熱でき、かつ電子ビーム13により鋼板1の表面がボンバードされるので鋼板表面の付着物の除去もできる。また、電子銃14は熱容量が小さく起動及び停止が瞬時にできるので、予備加熱を短時間に開始又は停止でき、鋼板1の移動速度の変化にも瞬時に対応でき、停止後の大気解放が短時間でできる。
【0022】
さらに、反射電子15を偏向させて鋼板に再照射し、さらに鋼板を加熱する。したがって、反射電子15を予備加熱室12に吸収させることなく再加熱に利用しているため、放熱ロスが少なく、熱効率が良い。また、その反射電子15により、さらに鋼板1の表面がボンバードされ、鋼板表面の付着物を除去することができる。
【0023】
図4は本発明による鋼板の予備加熱装置の他の実施の形態を示す詳細図であり、(A)はその断面図、(B)はその平面図である。この図において、電子銃14は、予備加熱室12の下面に垂直上向きに取付けられており、図1および図2に示す電磁コイル16,17と同様のものが電子銃14の上流側および下流側の両方に設置されている。ただし、磁場の向きは図に示すように上流側と下流側とでは反対の向きになるように設置されている。鋼板1の下方向から垂直に電子ビーム13を照射した場合、電子ビーム13は負電荷であるので互いに反発してわずかに広がり、鋼板1により反射電子15は四方八方に反射する。このような反射電子15を全て吸収するように、電磁コイル16,17を前後に設置することにより、放熱ロスをさらに低減し、熱効率を高めることができる。
【0024】
なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0025】
【発明の効果】
上述した本発明の鋼板の予備加熱方法及び装置により、▲1▼短時間、短距離で鋼板を急昇温することが可能であり、▲2▼電子銃から出力されるエネルギーを鋼板の昇温に有効使用でき、▲3▼電子ビームを照射することにより、鋼板の加熱はもちろんのこと、鋼板表面がボンバードされ、鋼板表面に付着している油、ゴミ及び酸化物を除去することができ、これによって膜の密着性が向上することができ、▲4▼抵抗加熱ヒータの場合は、発熱体の温度が下がるまで大気解放することができないが、本発明の場合は、電子銃の出力をOFFにするだけですぐに大気解放することができるため、操業中のロス時間がなく、ランニングコストも下がり、▲5▼電子ビームは応答性が非常に良いため、鋼板の移動速度が変化した場合や予備加熱温度を変更したい場合でもすぐに対応できる。▲6▼また、予備加熱室に吸収される反射電子を激減することができるため、予備加熱室自身の加熱を抑えることができ、その冷却水量を減らすなど冷却機能を縮小することができるとともに、ランニングコストも下げることができ、▲7▼さらに、電磁コイルを予備加熱室外部に設置することにより、そのメンテナンスや予備加熱室の洗浄を容易にすることができる。
【0026】
したがって、本発明の連続真空蒸着装置における鋼板の予備加熱方法及び装置は、短時間に起動又は停止ができ、鋼板の移動速度の変化にも短時間に対応でき、停止後の大気解放が短時間ででき、比較的小さい予備加熱領域で高速走行する鋼板を予備加熱することができ、放熱ロスが少なく熱効率が高く、かつ鋼板表面の付着物の除去もできる、などの優れた効果を有する。
【図面の簡単な説明】
【図1】本発明による鋼板の予備加熱装置を有する連続真空蒸着装置の全体構成図である。
【図2】本発明による鋼板の予備加熱装置の詳細図であり、(A)はその側面図、(B)はその平面図である。
【図3】反射電子が偏向する様子を示す図である。
【図4】本発明による鋼板の予備加熱装置の詳細図であり、(A)はその側面図、(B)はその平面図である。
【図5】従来の連続真空蒸着装置の全体構成図である。
【図6】従来の鋼板予備加熱装置の構成図である。
【符号の説明】
1 鋼板
2 電子ビーム
3 電子銃
4 蒸着材料
5 ルツボ
6 真空チャンバー
7 抵抗加熱ヒータ
8 断熱材
10 鋼板予備加熱装置
11 成膜室
12 予備加熱室
13 電子ビーム
14 電子銃
15 反射電子
16,17 電磁コイル
18 予備加熱室の側面
19 鉄心
20 コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for preheating steel sheets in a continuous vacuum deposition apparatus.
[0002]
[Prior art]
The vacuum deposition apparatus is a film forming process in which a metal is heated and evaporated in a vacuum, and the evaporated metal is solidified on the surface of a substrate (steel plate) to form a film. 2. Description of the Related Art Conventionally, a continuous vacuum vapor deposition apparatus that deposits metal on a thin plate-like continuous traveling steel plate using an electron beam to heat the metal for vapor deposition in such a film forming process is known. This continuous vacuum deposition apparatus has advantages such as high-melting point metals and ceramics such as nitrides, carbides and oxides that cannot be handled by ordinary wet plating, and a high deposition rate.
[0003]
For example, as shown in FIG. 5, the conventional continuous vacuum vapor deposition apparatus includes a steel plate 1 that continuously travels, an electron gun 3 that emits an electron beam 2, a crucible 5 that accommodates a melted vapor deposition material 4, and a built-in structure. A vacuum chamber 6 that radiates an electron beam 2 by an electron gun 3, bends the direction of the electron beam 2 into the crucible 5 by a magnetic field (not shown), heats and evaporates the metal in the crucible 5, The surface of 1 is solidified to form a coating.
[0004]
[Problems to be solved by the invention]
In the continuous vacuum vapor deposition apparatus described above, in order to form a vapor deposition film having excellent adhesion on the surface of the steel plate 1, it is necessary to preheat the steel plate 1 to an appropriate temperature (for example, 100 to 500 ° C.) before film formation. . Conventionally, such preheating has been performed by radiant heating using radiant heat from the resistance heater 7 illustrated in FIG. 6 or induction heating not shown. In addition, 8 in a figure is a heat insulating material.
[0005]
However, in conventional radiant heating and induction heating, (1) since the heater has a large heat capacity, it takes time to heat up and cool the heater itself, and (2) the heater temperature changes when the moving speed of the steel plate changes. When it takes a long time for the temperature to become constant and (3) the interior is to be inspected, it can be released to the atmosphere until the temperature of the heating element drops below 200 ° C to prevent oxidation of the heater. However, it has been necessary to leave it for a long time or to operate the vacuum pump for an extra 2-3 hours.
[0006]
(4) Since heat transfer from the heater to the steel plate is due to heat radiation in vacuum, when vacuum deposition is performed at a high speed (50 to 400 m / min), the heater area becomes considerably large and the preheating area is extremely large. And (5) heat is transferred by heat radiation to other than the steel plate, and there is a problem that the heat dissipation loss is large.
In addition, with such conventional heating means, (6) oil, dust and oxides adhering to the steel sheet surface could not be removed simply by heating.
[0007]
The present invention has been made to solve such problems. That is, the object of the present invention is that it can be started or stopped in a short time, can respond to changes in the moving speed of the steel plate in a short time, can be released to the atmosphere after the stop in a short time, and can operate at a high speed in a relatively small preheating region. An object of the present invention is to provide a method and an apparatus for preheating a steel plate in a continuous vacuum vapor deposition apparatus, which can preheat a traveling steel plate, have low heat dissipation loss, have high thermal efficiency, and can remove deposits on the surface of the steel plate.
[0008]
[Means for Solving the Problems]
According to the present invention, on the upstream side of the film forming chamber for depositing the evaporation material on the steel plate continuously running in the vacuum chamber, the preheating chamber that surrounds the steel plate and is maintained in vacuum is provided. In addition to heating the steel sheet by irradiating the steel sheet before vapor deposition with the preheating chamber, generating a magnetic field, deflecting the electrons reflected by the steel sheet, re-irradiating the steel sheet, and further heating the steel sheet, There is provided a method for preheating steel sheets in a continuous vacuum vapor deposition apparatus.
[0009]
According to a preferred embodiment of the present invention, a magnetic field is generated in a direction from the left side to the right side when viewed from the back of the traveling direction of the reflected electrons, and the electron beam reflected by the steel plate is deflected so as to re-irradiate the steel plate. It is preferable to make it.
[0010]
Further, according to the present invention, a preheating chamber provided upstream of a film forming chamber for depositing an evaporation material on a steel plate continuously running in a vacuum chamber, surrounding the steel plate, and maintaining the inside in a vacuum, and An electron gun that irradiates an electron beam onto a steel plate before vapor deposition in a preheating chamber, and a pair of electromagnetic coils that generate a magnetic field in a direction from the left side to the right side when viewed from the rear of the traveling direction of electrons reflected by the steel plate, There is provided a preheating apparatus for a steel sheet in a continuous vacuum vapor deposition apparatus, wherein the steel sheet is directly heated by an electron beam and the steel sheet is also heated by the reflected electrons.
[0011]
According to a preferred embodiment of the present invention, the electron gun is mounted from the lower upstream side to the lower upstream side of the preheating chamber, and the pair of electromagnetic coils are installed downstream of the electron gun. .
[0012]
Furthermore, according to a preferred embodiment of the present invention, the electron gun is mounted vertically upward from the lower surface of the preheating chamber, and the pair of electromagnetic coils are installed on both the upstream side and the downstream side of the electron gun. Yes.
[0013]
According to the above-described method and apparatus of the present invention, the preheating chamber and the electron gun are provided upstream of the film forming chamber, and the electron beam is irradiated to the steel plate before vapor deposition in the preheating chamber. Thus, the steel plate traveling at a high speed in a relatively small preheating region can be preheated, and the surface of the steel plate is bombarded by the electron beam, so that the deposits on the surface of the steel plate can be removed. In addition, since the electron gun has a small heat capacity and can be started and stopped instantly, preheating can be started or stopped in a short time, and changes in the moving speed of the steel sheet can be handled instantly. it can.
[0014]
In addition, by generating a magnetic field in the direction from the left side to the right side when viewed from the back of the traveling direction of the electrons reflected by the steel plate, if the reflected electrons are re-irradiated to the steel plate and heated, heat dissipation loss is reduced. In addition to reducing and increasing the thermal efficiency, the steel plate surface can be bombarded to remove deposits on the steel plate surface.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described below with reference to FIGS. In addition, in each figure, the same code | symbol is attached | subjected and used for the part which is common in the past.
[0016]
FIG. 1 is an overall configuration diagram of a continuous vacuum deposition apparatus having a steel sheet preheating apparatus according to the present invention, FIG. 2 is a detailed view of a steel sheet preheating apparatus according to the present invention, (A) is a side view thereof, B) is a plan view thereof. In these drawings, the continuous vacuum vapor deposition apparatus has a film forming chamber 11 for vapor-depositing an evaporation material on a steel plate 1 continuously running in a vacuum chamber 6. 2, the direction of the electron beam 2 is bent by a magnetic field (not shown), the metal in the crucible 5 is heated and evaporated, and the evaporated metal is solidified on the surface of the steel plate 1 to form a coating.
[0017]
The steel plate preheating device 10 of the present invention is provided on the upstream side of the film forming chamber 11 and surrounds the steel plate 1 and the inside of the preheating chamber 12 is kept in vacuum. A pair of electromagnetic coils that generate a magnetic field in the direction from the left side to the right side when viewed from the rear of the traveling direction of the electron gun 14 that irradiates the electron beam 13 and the electrons reflected by the steel plate 1 (hereinafter referred to as reflected electrons) 15. So-called electromagnets) 16 and 17. Since the electromagnetic coil 17 is on the opposite side of the preheating chamber 12, it is not shown in FIGS. 1 and 2A.
[0018]
As shown in FIG. 2, the electromagnetic coils 16 and 17 are provided so that the axis is perpendicular to the side surface 18 of the preheating chamber 12 parallel to the traveling direction of the steel plate 1. One electromagnetic coil 16 has a coil wound around the iron core when viewed from the outside, and the other electromagnetic coil 17 has a coil 20 wound around the iron core 19 when viewed from the outside. Therefore, the preheating chamber 12 side of the electromagnetic coil 16 becomes the N pole, and the preheating chamber 12 side of the electromagnetic coil 17 becomes the S pole, and a magnetic field from the electromagnetic coil 16 toward the electromagnetic coil 17 is generated. In addition, the arrow which goes to the electromagnetic coil 17 from the electromagnetic coil 16 in a figure is a magnetic force line, and a dashed-two dotted line is the steel plate 1. FIG. Here, a permanent magnet may be used instead of the electromagnetic coil.
[0019]
In the figure, the electromagnetic coils 16 and 17 are provided outside the preheating chamber 12, but may be provided inside the preheating chamber 12. However, as shown in the drawing, the maintenance of the electromagnetic coils 16 and 17 and the cleaning of the preheating chamber 12 are facilitated by providing them outside the preheating chamber 12.
[0020]
FIG. 3 is a diagram showing how reflected electrons are deflected. As shown in the figure, when the reflected electrons 15 of the electron beam 13 reflected at the reflection angle θ enter a magnetic field (the magnetic flux density is B) generated by the electromagnetic coils 16 and 17 in the direction from the front to the back of the paper. The current I flows in a direction opposite to the traveling direction e of the reflected electrons 15, and the reflected electrons 15 are in a direction perpendicular to the traveling direction e of the reflected electrons 15 and the direction of the current I according to Fleming's left-hand rule. Receives force F (= I × B). Therefore, the reflected electrons 15 are gradually deflected in the direction of the steel plate 1 and re-irradiated on the steel plate 1. Furthermore, the reflected electrons of the re-irradiated reflected electrons 15 are re-irradiated on the steel plate 1 in the same manner. Here, by using the electromagnetic coils 16 and 17 as means for generating a magnetic field, the magnitude of the magnetic flux density B can be freely adjusted by merely changing the magnitude of the current flowing through the electromagnetic coils 16 and 17. it can. Therefore, it is possible to easily obtain the optimum reachable range and collision speed of the reflected electrons 15. Moreover, since most of the reflected electrons 15 are repeatedly absorbed by the steel plate 1 after being repeatedly reflected, the number of reflected electrons 15 absorbed in the preheating chamber 12 is drastically reduced, and heating of the preheating chamber 12 can be suppressed. . Therefore, the cooling function can be reduced, for example, by reducing the amount of cooling water in the preheating chamber 12.
[0021]
The steel plate preheating device 10 as described above first irradiates the lower surface (vapor deposition surface) of the steel plate 1 moving in the preheating chamber 12 with the electron beam 13 emitted from the electron gun 14 from below. 1 is heated directly. Therefore, the steel plate that travels at a high speed in a relatively small preheating region can be preheated, and the surface of the steel plate 1 is bombarded by the electron beam 13, so that deposits on the surface of the steel plate can be removed. Further, since the electron gun 14 has a small heat capacity and can be started and stopped instantaneously, the preheating can be started or stopped in a short time, can respond to changes in the moving speed of the steel plate 1 instantly, and the release of the atmosphere after the stop is short. You can do it in time.
[0022]
Further, the reflected electrons 15 are deflected to irradiate the steel plate again, and the steel plate is further heated. Therefore, since the reflected electrons 15 are used for reheating without being absorbed by the preheating chamber 12, there is little heat loss and heat efficiency is good. Moreover, the surface of the steel plate 1 is further bombarded by the reflected electrons 15, and the deposits on the surface of the steel plate can be removed.
[0023]
FIG. 4 is a detailed view showing another embodiment of the steel sheet preheating apparatus according to the present invention, in which (A) is a sectional view thereof and (B) is a plan view thereof. In this figure, the electron gun 14 is mounted vertically upward on the lower surface of the preheating chamber 12, and the electromagnetic coils 16 and 17 shown in FIGS. 1 and 2 are upstream and downstream of the electron gun 14. Are installed in both. However, as shown in the figure, the magnetic field is installed so that the upstream side and the downstream side are in opposite directions. When the electron beam 13 is irradiated vertically from the lower side of the steel plate 1, the electron beam 13 is negatively charged and repels each other and slightly spreads. The reflected electrons 15 are reflected by the steel plate 1 in all directions. By installing the electromagnetic coils 16 and 17 at the front and rear so as to absorb all such reflected electrons 15, heat dissipation loss can be further reduced and thermal efficiency can be increased.
[0024]
It should be noted that the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention.
[0025]
【The invention's effect】
With the above-described method and apparatus for preheating a steel sheet according to the present invention, (1) it is possible to quickly raise the temperature of the steel sheet in a short time and at a short distance, and (2) the energy output from the electron gun is increased to the temperature of the steel sheet. (3) By irradiating an electron beam, the steel plate surface is bombarded by irradiating the electron beam, and oil, dust and oxides adhering to the steel plate surface can be removed. As a result, the adhesion of the film can be improved. (4) In the case of a resistance heater, the air cannot be released to the atmosphere until the temperature of the heating element is lowered, but in the case of the present invention, the output of the electron gun is turned off. It can be immediately released to the atmosphere, so there is no loss time during operation, running costs are reduced, and (5) the electron beam is very responsive, so if the moving speed of the steel plate changes Preheating Immediately available even if you want to change the time. (6) In addition, since the reflected electrons absorbed in the preheating chamber can be drastically reduced, the heating of the preheating chamber itself can be suppressed, and the cooling function can be reduced such as reducing the amount of cooling water, The running cost can also be reduced. (7) Furthermore, the maintenance and cleaning of the preheating chamber can be facilitated by installing the electromagnetic coil outside the preheating chamber.
[0026]
Therefore, the preheating method and apparatus for the steel sheet in the continuous vacuum deposition apparatus of the present invention can be started or stopped in a short time, can respond to changes in the moving speed of the steel sheet in a short time, and the release of the atmosphere after the stop is short. It is possible to preheat a steel plate that travels at a high speed in a relatively small preheating region, and has excellent effects such as low heat dissipation loss, high thermal efficiency, and removal of deposits on the steel plate surface.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a continuous vacuum deposition apparatus having a steel sheet preheating apparatus according to the present invention.
FIG. 2 is a detailed view of a steel sheet preheating apparatus according to the present invention, in which (A) is a side view thereof and (B) is a plan view thereof.
FIG. 3 is a diagram showing how reflected electrons are deflected.
FIG. 4 is a detailed view of a steel sheet preheating apparatus according to the present invention, in which (A) is a side view thereof and (B) is a plan view thereof.
FIG. 5 is an overall configuration diagram of a conventional continuous vacuum deposition apparatus.
FIG. 6 is a configuration diagram of a conventional steel plate preheating apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Electron beam 3 Electron gun 4 Evaporation material 5 Crucible 6 Vacuum chamber 7 Resistance heater 8 Heat insulating material 10 Steel plate preheating apparatus 11 Deposition chamber 12 Preheating chamber 13 Electron beam 14 Electron gun 15 Reflected electrons 16, 17 Electromagnetic coil 18 Side surface of preheating chamber 19 Iron core 20 Coil

Claims (5)

真空チャンバー内で連続的に走行する鋼板に蒸発材料を蒸着する成膜室の上流側において、鋼板を囲み内部が真空に保持された予備加熱室を設け、その予備加熱室内で蒸着前の鋼板に電子ビームを照射して鋼板を加熱するとともに、その予備加熱室に磁場を生じさせて、鋼板で反射した電子を偏向させて鋼板に再照射し、さらに鋼板を加熱する、ことを特徴とする連続真空蒸着装置における鋼板の予備加熱方法。A preheating chamber that surrounds the steel plate and is maintained in a vacuum is provided on the upstream side of the film forming chamber for depositing the evaporation material on the steel plate that runs continuously in the vacuum chamber. Continuously heating the steel sheet by irradiating an electron beam, generating a magnetic field in the preheating chamber, deflecting electrons reflected by the steel sheet, re-irradiating the steel sheet, and further heating the steel sheet A method for preheating steel sheets in a vacuum deposition apparatus. 上記反射した電子の進行方向の後方から見て左側から右側に向かう方向に磁場を生じさせて、鋼板で反射した電子を鋼板に再照射するように偏向させる請求項1記載の連続真空蒸着装置における鋼板の予備加熱方法。The continuous vacuum deposition apparatus according to claim 1, wherein a magnetic field is generated in a direction from the left side to the right side as viewed from the rear of the reflected electron traveling direction, and deflected so that the electrons reflected by the steel plate are re-irradiated on the steel plate. Preheating method for steel sheet. 真空チャンバー内で連続的に走行する鋼板に蒸発材料を蒸着する成膜室の上流側に設けられ、鋼板を囲み内部が真空に保持された予備加熱室と、その予備加熱室内で蒸着前の鋼板に電子ビームを照射する電子銃と、その鋼板で反射した電子の進行方向の後方から見て左側から右側に向かう方向に磁場を生じさせる一対の電磁コイルと、を備え、電子ビームにより鋼板を直接加熱するとともに、その反射した電子によっても鋼板を加熱する、ことを特徴とする連続真空蒸着装置における鋼板の予備加熱装置。A preheating chamber provided on the upstream side of the film forming chamber for depositing the evaporation material on the steel plate continuously running in the vacuum chamber and surrounding the steel plate, and the inside of the preheating chamber is kept in vacuum, and the steel plate before vapor deposition in the preheating chamber A pair of electromagnetic coils that generate a magnetic field in a direction from the left side to the right side when viewed from the rear of the traveling direction of the electrons reflected by the steel plate. A preheating device for a steel plate in a continuous vacuum vapor deposition apparatus, characterized in that the steel plate is also heated by the reflected electrons while heating. 上記電子銃は予備加熱室の上流側下方から下流側上方の向きに取付けられており、一対の電磁コイルは電子銃よりも下流側に設置されている請求項3記載の連続真空蒸着装置における鋼板の予備加熱装置。4. The steel plate in the continuous vacuum evaporation apparatus according to claim 3, wherein the electron gun is mounted from the upstream lower side to the downstream upper side of the preheating chamber, and the pair of electromagnetic coils are installed downstream of the electron gun. Preheating device. 上記電子銃は予備加熱室の下面から垂直上向きに取付けられており、上記一対の電磁コイルは電子銃の上流側および下流側の両方に設置されている請求項3記載の連続真空蒸着装置における鋼板の予備加熱装置。4. The steel plate in the continuous vacuum evaporation apparatus according to claim 3, wherein the electron gun is mounted vertically upward from the lower surface of the preheating chamber, and the pair of electromagnetic coils are installed on both the upstream side and the downstream side of the electron gun. Preheating device.
JP21886895A 1995-08-28 1995-08-28 Method and apparatus for preheating steel sheet in continuous vacuum deposition apparatus Expired - Fee Related JP3735846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21886895A JP3735846B2 (en) 1995-08-28 1995-08-28 Method and apparatus for preheating steel sheet in continuous vacuum deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21886895A JP3735846B2 (en) 1995-08-28 1995-08-28 Method and apparatus for preheating steel sheet in continuous vacuum deposition apparatus

Publications (2)

Publication Number Publication Date
JPH0967664A JPH0967664A (en) 1997-03-11
JP3735846B2 true JP3735846B2 (en) 2006-01-18

Family

ID=16726571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21886895A Expired - Fee Related JP3735846B2 (en) 1995-08-28 1995-08-28 Method and apparatus for preheating steel sheet in continuous vacuum deposition apparatus

Country Status (1)

Country Link
JP (1) JP3735846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381102A1 (en) * 2020-06-04 2021-12-09 Applied Materials, Inc. Temperature-controlled shield, material deposition apparatus and method for depositing a material onto a substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240368A (en) * 1985-08-13 1987-02-21 Kawasaki Steel Corp Continuous treatment installation for decreasing iron loss of grain oriented silicon steel sheet
JPH0254753A (en) * 1988-08-18 1990-02-23 Kawasaki Steel Corp Preheating method in continuous dry plating treatment
JPH0533137A (en) * 1991-07-30 1993-02-09 Kobe Steel Ltd Vacuum-deposition plating equipment
JPH05239644A (en) * 1992-02-28 1993-09-17 Nkk Corp Method for continuously forming thin film on metallic thin sheet
JP3331563B2 (en) * 1992-08-28 2002-10-07 石川島播磨重工業株式会社 Electron beam heating equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381102A1 (en) * 2020-06-04 2021-12-09 Applied Materials, Inc. Temperature-controlled shield, material deposition apparatus and method for depositing a material onto a substrate

Also Published As

Publication number Publication date
JPH0967664A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
KR101143067B1 (en) Apparatus and method for levitation of an amount of conductive material
JP5740485B2 (en) Dry coating equipment
JP2009542900A (en) Electron beam evaporator
JP3735846B2 (en) Method and apparatus for preheating steel sheet in continuous vacuum deposition apparatus
TWI351440B (en)
US3655902A (en) Heating system for electron beam furnace
JPH0827568A (en) Vapor generating method and device therefor
JPH093624A (en) Method and device for preheating steel sheet in continuous vacuum deposition device
US3535428A (en) Apparatus for producing and directing an electron beam
JPH0543784B2 (en)
JP3877178B2 (en) Vacuum deposition equipment
JP3335375B2 (en) Electron beam heating type vapor deposition apparatus and vapor deposition method
KR0160067B1 (en) Vapor source heated by resistance for vacuum deposited steel sheet
JP2554488B2 (en) Magnetic recording medium manufacturing equipment
JP2618695B2 (en) Manufacturing method of magnetic recording medium
US3414251A (en) Metal vaporization crucible with upstanding walls for confining and condensing vapor
JPH09165674A (en) Vacuum coating apparatus
JP2000297361A (en) Formation of hyper-fine particle film and device for forming hyper-fine particle film
JP2008050667A (en) Thin-film-forming apparatus
JP2006260659A (en) Manufacturing apparatus of magnetic recording medium
JPH05106028A (en) Vapor deposition method by energy beam
JPH06172984A (en) Deposition method and device therefor
JP2021505776A (en) Systems and methods for additive manufacturing for the adhesion of metal and ceramic materials
JP2898652B2 (en) Evaporator for ion plating
JPH0544023A (en) Method and device for evaporating substance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051016

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees