JPH0544023A - Method and device for evaporating substance - Google Patents

Method and device for evaporating substance

Info

Publication number
JPH0544023A
JPH0544023A JP20207191A JP20207191A JPH0544023A JP H0544023 A JPH0544023 A JP H0544023A JP 20207191 A JP20207191 A JP 20207191A JP 20207191 A JP20207191 A JP 20207191A JP H0544023 A JPH0544023 A JP H0544023A
Authority
JP
Japan
Prior art keywords
substance
container
vessel
molten
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20207191A
Other languages
Japanese (ja)
Inventor
Kazunori Shioda
和則 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20207191A priority Critical patent/JPH0544023A/en
Publication of JPH0544023A publication Critical patent/JPH0544023A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evaporate a substance with high energy efficiency and excellent mechanical reliability by reducing heat loss caused by energy transfer from the molten substance in a vessel to the vessel and protecting the vessel against the chemical activity of the molten substance. CONSTITUTION:Gas blowing nozzles 10 are fitted to both ends of a vessel 2. Inert gas 11 nonreactive with a molten substance in the vessel 2 is fed from the nozzles 10 and jetted into the vessel 2 from gas blowing holes 12 pierced in the vessel 2 so as to maintain a prescribed gap between the vessel 2 and the molten substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、荷電粒子ビームを用い
た表面加熱に基づく蒸発方法及びその装置に係わり、蒸
発のエネルギ効率を大幅に向上し、さらに化学的活性な
溶融物質による容器材料の腐食を防止して装置としての
信頼性を高めた蒸発方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporation method and apparatus based on surface heating using a charged particle beam, which significantly improves the energy efficiency of evaporation, and further improves the container material by a chemically active molten substance. The present invention relates to an evaporation method and apparatus for preventing corrosion and improving reliability as an apparatus.

【0002】[0002]

【従来の技術】従来、光学機器の製造工程、半導体成膜
処理、機能性材料の開発等ではCVD、PVD、MBE
などに代表される様な真空蒸着による薄膜生成技術が一
般的に駆使されている。
2. Description of the Related Art Conventionally, CVD, PVD, MBE have been used in the manufacturing process of optical equipment, semiconductor film formation processing, development of functional materials, etc.
Generally, a thin film forming technique by vacuum vapor deposition, as represented by the above, is used.

【0003】上記では当該物質または当該物質の組成原
材料を蒸気化して固体壁に蒸着させるものであり、物質
を蒸発または昇華させるための手段としては、ヒータ加
熱、高周波加熱、ビーム加熱等があげられる。このうち
ビーム加熱はレーザビーム、中性粒子ビーム、荷電粒子
ビームなどをエネルギドライバとするもので、物質の表
面のみを直接的かつ効率良く加熱するため、他の方法に
はない利点を多数有している。さらに、荷電粒子ビーム
はレーザビームや中性粒子ビームと比較してもエネルギ
効率が高く、ビーム生成方法の簡便性からも一般工学用
途に適している。特に、電子ビームはビーム源の生成、
ビーム伝播・集束が容易であり、装置全体の価格が廉価
であるなどの理由により広く使用されている。以下に荷
電粒子ビームとして電子ビームを使用した物質の蒸発方
法及びその装置の従来例を図4ないし図6を参照して説
明する。
In the above, the substance or the composition raw material of the substance is vaporized and vapor-deposited on the solid wall. Means for vaporizing or sublimating the substance include heater heating, high frequency heating, beam heating and the like. .. Among them, beam heating uses a laser beam, a neutral particle beam, a charged particle beam, etc. as an energy driver. Since it directly and efficiently heats only the surface of a substance, it has many advantages over other methods. ing. Furthermore, the charged particle beam has high energy efficiency as compared with a laser beam or a neutral particle beam, and is suitable for general engineering applications because of the simplicity of the beam generation method. In particular, electron beam generation of the beam source,
It is widely used because the beam propagation and focusing are easy and the price of the entire device is low. A conventional method of vaporizing a substance and an apparatus thereof using an electron beam as a charged particle beam will be described below with reference to FIGS. 4 to 6.

【0004】図4は、従来の物質の蒸発装置の構成を模
式的に示す斜視図である。蒸発処理対象となる物質1
は、熱化学耐性を有する例えば坩堝などの容器2の内に
装荷されている。次に電子銃3から発射される電子ビー
ム4を、図示しない外部磁場コイルにより印加される直
流磁場5により偏向して、容器2の内の物質1の表面上
に照射する。電子ビーム4の照射を受けた物質1は、そ
の蒸発温度以上の高温に加熱され分子蒸気流6を生成す
る。
FIG. 4 is a perspective view schematically showing the structure of a conventional substance evaporation device. Substance to be evaporated 1
Is loaded in a container 2 having thermochemical resistance, such as a crucible. Next, the electron beam 4 emitted from the electron gun 3 is deflected by a DC magnetic field 5 applied by an external magnetic field coil (not shown), and is irradiated onto the surface of the substance 1 in the container 2. The substance 1 irradiated with the electron beam 4 is heated to a temperature higher than its evaporation temperature to generate a molecular vapor stream 6.

【0005】図5は、図4の従来例の装置構成を模式的
に示す斜視図において、容器2及び容器2に収納された
物質1の熱流動状態を示す要部拡大図であり、図6は図
5におけるII−II矢視断面図である。
FIG. 5 is an enlarged view of an essential part showing the heat flow state of the container 2 and the substance 1 contained in the container 2 in the perspective view schematically showing the structure of the conventional apparatus shown in FIG. FIG. 6 is a sectional view taken along the line II-II in FIG.

【0006】物質1の表面のうち中央部1aは、電子ビー
ム4が照射されて高温化する。これに対して周縁部1bは
容器2に接しているため、温度はそれ程高温化しない。
すなわち、物質1の表面上で中央部1aと周縁部1bとの間
で温度差が発生することになる。さらに、溶融状態の物
質1における表面張力が温度に依存して変化する場合、
表面張力の小さい中央部1aが表面張力の大きい周縁部1b
により引っ張られてマランゴニ対流7が図中実線矢印の
通り表面上に発生する。また、物質1が温度による密度
変化を伴う場合、重力場中では図中破線矢印の通りベナ
ード対流8が誘起される。但し、マランゴニ対流7があ
くまでも物質1の表面上に限定されるのに対して、ベナ
ード対流8は物質1の内部においても誘起される。
The central portion 1a of the surface of the substance 1 is irradiated with the electron beam 4 and becomes high in temperature. On the other hand, since the peripheral portion 1b is in contact with the container 2, the temperature does not rise so much.
That is, a temperature difference occurs between the central portion 1a and the peripheral portion 1b on the surface of the substance 1. Furthermore, when the surface tension of the substance 1 in the molten state changes depending on the temperature,
The central part 1a with low surface tension is the peripheral part 1b with high surface tension.
And Marangoni convection 7 is generated on the surface as indicated by the solid arrow in the figure. When the substance 1 changes in density due to temperature, Benard convection 8 is induced in the gravitational field as indicated by the broken line arrow in the figure. However, while the Marangoni convection 7 is limited to the surface of the substance 1, the Benard convection 8 is also induced inside the substance 1.

【0007】この様に主に中央部1aに照射される電子ビ
ーム4のエネルギは、これらの熱対流により周縁部1bへ
と搬送される。高温状態の周縁部1bは接触界面9を介し
て容器2の縁2aとエネルギ授受を行っており、容器2を
高温化している。
As described above, the energy of the electron beam 4, which is mainly applied to the central portion 1a, is transferred to the peripheral portion 1b by the thermal convection. The peripheral edge portion 1b in a high temperature state transfers energy to and from the edge 2a of the container 2 via the contact interface 9 to raise the temperature of the container 2.

【0008】[0008]

【発明が解決しようとする課題】よって従来の物質の蒸
発方法及びその装置においては、電子ビーム4のエネル
ギにより分子蒸気流6を生成させる上で、上記の様な容
器2へのエネルギ損失は蒸発効率を低下させる要因とな
る。さらに、物質1が化学的に活性である場合などは容
器2との接触界面9において、特に高温となる縁2aが腐
蝕し、容器2の信頼性を損なうおそれが生じる。
Therefore, in the conventional method and apparatus for vaporizing a substance, when the molecular vapor stream 6 is generated by the energy of the electron beam 4, the energy loss to the container 2 as described above is vaporized. It becomes a factor to reduce the efficiency. Further, when the substance 1 is chemically active, especially at the contact interface 9 with the container 2, the edge 2a, which has a particularly high temperature, is corroded, which may impair the reliability of the container 2.

【0009】この様な課題を解決するために、従来より
様々な熱流動抑制の研究が成されてきたが、表面張力や
密度の温度変化の大きい金属の蒸発においては、熱流動
を充分に制御することは困難である。そのため、導電性
流体としての溶融金属に対しては、外部磁場印加による
対流抑制の研究が行われている。また、化学的活性な物
質1を収納するための容器2の構成材料の研究開発も盛
んに行われているが、より高温状態の活性物質との接触
界面9を伴う場合は長寿命で高信頼性の容器2を提供す
るまでには至っていないのが現状である。
In order to solve such a problem, various researches on heat flow suppression have been made so far, but when vaporizing a metal whose surface tension and density change largely with temperature, heat flow can be sufficiently controlled. Is difficult to do. Therefore, for molten metal as a conductive fluid, research on suppression of convection by applying an external magnetic field has been conducted. Moreover, research and development of the constituent material of the container 2 for accommodating the chemically active substance 1 are being actively conducted, but when the contact interface 9 with the active substance in a higher temperature state is involved, it has a long life and high reliability. The present situation is that the container 2 having sex is not provided yet.

【0010】このため近年、溶融金属の様な導電性流体
に限って適用される磁気浮上の研究も成されているが、
前記に述べた磁場による熱流動抑制技術と共に、磁場発
生装置を新たに付加しなければならず、装置が複雑化す
ることは避けられない。
Therefore, in recent years, research on magnetic levitation, which is applied only to a conductive fluid such as molten metal, has been conducted.
A magnetic field generation device must be newly added in addition to the above-described heat flow suppression technique using a magnetic field, and it is inevitable that the device becomes complicated.

【0011】本発明は、上記の問題点を解決するために
なされたものであり、電子ビームなどの荷電粒子ビーム
加熱による表面加熱を受けた溶融物質の蒸発技術におい
て、容器と溶融物質との間に空隙を生じさせ、以って溶
融物質から容器へのエネルギ移動に伴う熱損失を低減さ
せ、併せて容器自体を溶融物質の化学的活性から防護す
ることにより、エネルギ効率が高く、機器信頼性が優れ
た物質の蒸発方法及びその装置を提供することを目的と
する。
The present invention has been made in order to solve the above-mentioned problems, and in the technique of evaporating a molten material which has been subjected to surface heating by heating a charged particle beam such as an electron beam, a technique is applied between a container and the molten material. By creating voids in the container, thereby reducing heat loss due to energy transfer from the molten material to the container, and also protecting the container itself from the chemical activity of the molten material, high energy efficiency and equipment reliability are achieved. It is an object of the present invention to provide an excellent method of vaporizing a substance and an apparatus thereof.

【0012】[0012]

【課題を解決するための手段】本件第1の発明に係わる
物質の蒸発方法は、熱化学耐性容器に収納された物質
を、外部印加の直流磁場により偏向された線状の荷電粒
子ビームの照射による表面加熱により蒸発せしめて分子
蒸気流を生成させる物質の蒸発方法において、容器側部
から噴出ガスを供給することにより容器内の溶融物質と
容器内壁の間隙に気流層を形成し、この気流層が形成さ
れたことによって高温の溶融物質と容器内壁とが直接的
には接触しないようにし、以って容器内に収容された高
温状態の溶融物質から容器内壁への熱伝導によるエネル
ギ損失を大幅に低減し、さらには容器内に化学的に活性
な溶融物質を収納しても溶融物質と容器材料との接触界
面が存在しないため、容器材料の腐食を防止して材料の
長寿命化を企画したことを特徴とする。
A method for vaporizing a substance according to the first aspect of the present invention is to irradiate a substance stored in a thermochemical resistant container with a linear charged particle beam deflected by an externally applied DC magnetic field. In the method of vaporizing a substance that is vaporized by surface heating to generate a molecular vapor flow, a jet gas is supplied from the side of the container to form an air flow layer in the gap between the molten substance in the container and the inner wall of the container. Since the molten material at high temperature and the inner wall of the container do not come into direct contact with each other due to the formation of, the energy loss due to the heat conduction from the molten material in the high temperature state stored in the container to the inner wall of the container is significantly increased. Furthermore, even if a chemically active molten substance is stored in the container, there is no contact interface between the molten substance and the container material, so corrosion of the container material is prevented and a longer life of the material is planned. did And wherein the door.

【0013】本件第2の発明に係わる物質の蒸発装置
は、蒸発対象となる物質を加熱蒸発せしめる荷電粒子ビ
ーム発生装置と、この荷電粒子ビームを偏向させる直流
磁場発生装置と、溶融状態の蒸発対象物質を収納する熱
化学耐性容器と、溶融状態の蒸発対象物質と容器内壁の
間隙に気流層を形成するために、容器側壁の複数箇所に
噴出ガス注入口を設けたことを特徴とする。
A vaporizer for a substance according to the second aspect of the present invention is a charged particle beam generator for heating and vaporizing a substance to be vaporized, a DC magnetic field generator for deflecting the charged particle beam, and a vaporized substance in a molten state. In order to form a gas flow layer in the gap between the thermochemical resistant container that stores the substance and the evaporation target substance in the molten state and the inner wall of the container, ejection gas injection ports are provided at a plurality of locations on the side wall of the container.

【0014】また、本件第3の発明に関わる物質の蒸発
装置は、本件第2の物質の蒸発装置において熱化学耐性
容器と溶融状態の蒸発対象物質との間に耐熱性のライナ
状の多孔質材料を敷設し、噴出ガスが適当に分散されて
一様な気流層を形成する様にしたことを特徴とする。
The vaporizer for a substance according to the third aspect of the present invention is a liner-like porous heat-resistant material between the thermochemical resistant container and the substance to be vaporized in the molten state in the vaporizer for the second substance. The material is laid so that the jetted gas is appropriately dispersed to form a uniform airflow layer.

【0015】[0015]

【作用】本発明に係わる物質の蒸発方法及びその装置に
よれば、物質が非導電性である場合でも、噴出ガスの圧
力により微少の空隙を以って容器内壁面から浮遊させる
ことが可能となる。これは、噴出ガスが容器内壁と溶融
物質との空隙をカーテン状に流れることによる気流層が
形成され、空隙内のガス圧に押されて溶融物質が直接に
容器内壁面に接触することがなくなるからである。これ
により容器と溶融物質との間の熱抵抗が著しく向上する
と共に、材料の腐蝕等の懸念なくなる。
According to the method and apparatus for vaporizing a substance according to the present invention, even if the substance is non-conductive, it can be floated from the inner wall surface of the container with a minute gap due to the pressure of the ejected gas. Become. This is because an airflow layer is formed by the jetted gas flowing in a gap between the inner wall of the container and the molten substance in a curtain shape, and the molten substance is not directly contacted with the inner wall face of the container by being pushed by the gas pressure in the gap. Because. As a result, the thermal resistance between the container and the molten substance is significantly improved, and there is no concern about corrosion of the material.

【0016】以上の通り、本発明は従来の物質の蒸発方
法及びその装置に対して、装置構成を複雑化することな
く容易に実施することが可能であり、目的とする様なエ
ネルギ効率の高さと材料寿命の長さを同時に達成するこ
とができる。
As described above, the present invention can be easily implemented with respect to the conventional method for vaporizing a substance and its apparatus without complicating the apparatus configuration, and has a desired high energy efficiency. And long material life can be achieved at the same time.

【0017】[0017]

【実施例】以下、本発明の一実施例について、図面に従
って説明する。図1は本発明に係わる物質の蒸発装置の
一実施例の装置構成を示す斜視図、図2は図1における
I−I矢視断面図であり、それぞれ従来例の構成を示す
図5、及び図6に対応するものである。尚、図4、図
5、及び図6に示す従来例と同一の構成要素、部品には
同一の番号を付している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a perspective view showing an apparatus configuration of an embodiment of a substance evaporation apparatus according to the present invention, FIG. 2 is a sectional view taken along the line II in FIG. 1, and FIG. 5 showing the configuration of a conventional example, and FIG. This corresponds to FIG. The same components and parts as those in the conventional example shown in FIGS. 4, 5 and 6 are designated by the same reference numerals.

【0018】容器2の両側部2bにはガス注入口10が複数
箇所設けられており、溶融状態の物質1と反応しない例
えばアルゴンの様な不活性ガス11がガス注入口10から供
給される。不活性ガス11はガス注入孔12を通り物質1と
容器2との間隙13に噴出される。このとき、間隙13に充
満しながら流れる不活性ガス11の圧力pは次の通り与え
られる。(1)式においてp0 は雰囲気圧力[Pa]、δ
は間隙13の厚さ[m]、μ、Q0 はそれぞれ不活性ガス
11の粘性率[Pa・s]、流量[m3 /s]L、βはそれ
ぞれ容器2の長さ[m]、側壁傾斜角[rad ]、dはガ
ス注入孔12の液面からの深さ[m]である。但し、x座
標は間隙13内のガス注入孔12の位置を原点として間隙上
向き方向にとる。
A plurality of gas inlets 10 are provided on both sides 2b of the container 2, and an inert gas 11 such as argon which does not react with the substance 1 in a molten state is supplied from the gas inlet 10. The inert gas 11 passes through the gas injection hole 12 and is ejected into the gap 13 between the substance 1 and the container 2. At this time, the pressure p of the inert gas 11 flowing while filling the gap 13 is given as follows. In the equation (1), p 0 is the atmospheric pressure [Pa], δ
Is the thickness of the gap 13 [m], μ, Q 0 are each an inert gas
11 viscosity [Pa · s], flow rate [m 3 / S] L, β are the length [m] of the container 2, the sidewall inclination angle [rad], and d is the depth [m] of the gas injection hole 12 from the liquid surface. However, the x coordinate is set in the upward direction of the gap with the position of the gas injection hole 12 in the gap 13 as the origin.

【0019】また溶融状態の物質1内の静水圧力分布p
s は(1)式に準拠して(2)式の様に表わすことがで
きる。ここでρは物質1の密度[kg/m3 ]、gは重力
加速度[m/s2 ]である。 ps (x)=p0 +ρg(d−xsin β) (2) すなわち、間隙13の厚さδは(1)式と(2)式に示さ
れるガス圧力pと静水圧力ps とが均衡を維持しながら
(3)式で与えられる値をとる。
Further, the hydrostatic pressure distribution p in the molten substance 1
s can be expressed as in equation (2) according to equation (1). Where ρ is the density of substance 1 [kg / m 3 ], G is the acceleration of gravity [m / s 2 ]. p s (x) = p 0 + ρg (d−x sin β) (2) That is, the thickness δ of the gap 13 is a balance between the gas pressure p and the hydrostatic pressure p s shown in the equations (1) and (2). The value given by the equation (3) is taken while maintaining

【0020】実際にはガス注入口10の充填圧力により流
量Q0 が決まるが、ここで仮に物質1が銅、不活性ガス
11がアルゴン(単位長さ当たり流量Q0 /L=10-32
/s)とすると、δはほぼ0.2mm という値が得られる。
Actually, the flow rate Q 0 is determined by the filling pressure of the gas injection port 10. Here, if the substance 1 is copper, an inert gas is used.
11 is argon (flow rate per unit length Q 0 / L = 10 -3 m 2
/ S), a value of δ of approximately 0.2 mm is obtained.

【0021】すなわち、本実施例ではガス注入孔12の位
置より上部に厚さδの間隙13が維持される様になり、こ
の部位では図3の本技術従来例に示す様な接触界面9が
存在しない。従って、物質1の特に高温部位である周縁
部1bから容器2の縁2aへの伝導伝熱量が大幅に低減さ
れ、エネルギ効率の向上を図ることができる。同様に、
従来においては接触界面9での容器2の材料腐蝕の問題
が発生していたが、本実施例においては間隙13がこの様
な問題を解決してくれる。
That is, in this embodiment, the gap 13 having the thickness δ is maintained above the position of the gas injection hole 12, and at this portion, the contact interface 9 as shown in the conventional example of the present technology of FIG. 3 is formed. not exist. Therefore, the amount of conduction heat transfer from the peripheral edge portion 1b, which is a particularly high temperature portion of the substance 1, to the edge 2a of the container 2 is significantly reduced, and the energy efficiency can be improved. Similarly,
Conventionally, the problem of material corrosion of the container 2 at the contact interface 9 has occurred, but in the present embodiment, the gap 13 solves such a problem.

【0022】以上、不活性ガス11を噴出させることによ
る気力浮上の原理に基づき、容器2内に収納される物質
1が導電性流体/非導電性流体の区別なく適当な部位に
間隙13を設けることができ、以って高効率で高信頼性の
物質蒸発を行うことができる。 (他の実施例)
As described above, based on the principle of pneumatic levitation by ejecting the inert gas 11, the substance 1 contained in the container 2 is provided with the gap 13 at an appropriate portion without distinction between the conductive fluid and the non-conductive fluid. Therefore, it is possible to perform highly efficient and highly reliable substance evaporation. (Other embodiments)

【0023】本発明の他の実施例について図3により以
下に説明する。図3は既に述べた本発明の一実施例を示
す図2に対応するものであり、物質1と容器2との間に
は多孔質ライナ14が配設されている。ここで不活性ガス
11はガス注入孔12を経由してこの多孔質ライナ14内へ供
給される。多孔質ライナ14に注入された不活性ガス11
は、多孔質ライナ14内部で分散されて間隙13に湧出すた
め、物質1に対して作用する圧力の局所化が避けられ
る。
Another embodiment of the present invention will be described below with reference to FIG. FIG. 3 corresponds to FIG. 2 showing an embodiment of the present invention described above, and a porous liner 14 is arranged between the substance 1 and the container 2. Inert gas here
11 is supplied into the porous liner 14 via the gas injection hole 12. Inert gas 11 injected into porous liner 14
Is dispersed inside the porous liner 14 and springs out into the gap 13, so that the pressure acting on the substance 1 is prevented from being localized.

【0024】[0024]

【発明の効果】以上説明の通り、本発明に係わる物質の
蒸発方法及びその装置によれば、従来の荷電粒子ビーム
加熱による物質の蒸発方法に比べて、効率、経済性、装
置信頼性共に優れた技術が提供されることになる。また
本発明は磁場印加による類似技術に比べ、周辺装置を複
雑化、大型化することなく、適用することができる。
As described above, according to the method of vaporizing a substance and the apparatus therefor according to the present invention, the efficiency, economy, and reliability of the device are superior to those of the conventional method of vaporizing a substance by heating a charged particle beam. Technology will be provided. Further, the present invention can be applied without complicating and enlarging the peripheral device as compared with a similar technique by applying a magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる物質の蒸発方法を実施する蒸発
装置の装置構成の一実施例を示す斜視図
FIG. 1 is a perspective view showing an embodiment of the device configuration of an evaporation device for carrying out a method for evaporating a substance according to the present invention.

【図2】図1におけるI−I矢視断面図FIG. 2 is a sectional view taken along the line II in FIG.

【図3】本発明に係わる他の実施例を示す断面図FIG. 3 is a sectional view showing another embodiment according to the present invention.

【図4】従来の物質の蒸発装置の構成を模式的に示す斜
視図
FIG. 4 is a perspective view schematically showing the configuration of a conventional substance evaporation device.

【図5】図4における容器及び容器に収納された物質の
熱流動状態を示す要部拡大図
5 is an enlarged view of an essential part showing the heat flow state of the container and the substance housed in the container in FIG. 4;

【図6】図5におけるII−II矢視断面図6 is a sectional view taken along the line II-II in FIG.

【符号の説明】[Explanation of symbols]

1…物質 1a…中央部 1b…周縁部 2…容器 2a…縁 2b…両側部 3…電子銃 4…電子ビーム 5…直流磁場 6…分子蒸気流 7…マランゴニ対流 8…ベナード対
流 9…接触界面 10…ガス注入口 11…不活性ガス 12…ガス注入孔 13…間隙 14…多孔質ライ
ナ d…ガス注入孔の液面からの深さ g…重力加速度 L…容器長さ p…ガス圧力 ps …静水圧力 Q0 …ガス流量 x…間隙に沿う座標 β…容器側壁傾
斜角 δ…間隙厚さ μ…ガス粘性率 ρ…物質密度
1 ... Material 1a ... Central part 1b ... Peripheral part 2 ... Container 2a ... Edge 2b ... Both sides 3 ... Electron gun 4 ... Electron beam 5 ... DC magnetic field 6 ... Molecular vapor flow 7 ... Marangoni convection 8 ... Benard convection 9 ... Contact interface 10 ... Gas inlet 11 ... Inert gas 12 ... Gas inlet 13 ... Gap 14 ... Porous liner d ... Depth of gas inlet from liquid level g ... Gravity acceleration L ... Container length p ... Gas pressure p s … Hydrostatic pressure Q 0 … Gas flow rate x… Coordinates along the gap β… Vessel side wall inclination angle δ… Gap thickness μ… Gas viscosity ρ… Material density

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱化学耐性容器に収納された物質を、外
部印加の直流磁場により偏向された線状の荷電粒子ビー
ムの照射による表面加熱により蒸発せしめて分子蒸気流
を生成させる物質の蒸発方法において、容器側部から噴
出ガスを供給することにより容器内の溶融物質と容器内
壁の間隙に気流層を形成し、この気流層が形成されたこ
とによって高温の溶融物質と容器内壁とが直接的には接
触しないようにして分子蒸気流を生成させることを特徴
とする物質の蒸発方法。
1. A method of evaporating a substance contained in a thermochemical resistant container to generate a molecular vapor stream by evaporating the substance by surface heating by irradiation of a linear charged particle beam deflected by an externally applied DC magnetic field. In the above, by supplying jet gas from the side of the container, an airflow layer is formed in the gap between the molten substance in the container and the inner wall of the container, and the high temperature molten substance and the inner wall of the container are directly formed by the formation of this airflow layer. A method for vaporizing a substance, characterized in that a molecular vapor stream is generated without contact with the.
【請求項2】 蒸発対象となる物質を加熱蒸発せしめる
荷電粒子ビーム発生装置と、この荷電粒子ビームを偏向
させる直流磁場発生装置と、溶融状態の蒸発対象物質を
収納する熱化学耐性容器と、溶融状態の蒸発対象物質と
容器内壁の間隙に気流層を形成するための噴出ガス注入
口を容器側壁の複数箇所に設けたことを特徴とする物質
の蒸発装置。
2. A charged particle beam generator for heating and evaporating a substance to be evaporated, a DC magnetic field generator for deflecting the charged particle beam, a thermochemical resistant container for containing a substance to be evaporated in a molten state, and melting. A vaporization device for a substance, characterized in that jet gas inlets for forming an air flow layer are formed at a plurality of positions on the side wall of the container in a gap between the substance to be evaporated and the inner wall of the container.
【請求項3】 熱化学耐性容器と溶融状態の蒸発対象物
質との間に耐熱性のライナ状の多孔質材料を敷設したこ
とを特徴とする請求項2に記載の物質の蒸発装置。
3. The evaporation device for a substance according to claim 2, wherein a heat-resistant liner-like porous material is laid between the thermochemical resistant container and the substance to be evaporated in a molten state.
JP20207191A 1991-08-13 1991-08-13 Method and device for evaporating substance Pending JPH0544023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20207191A JPH0544023A (en) 1991-08-13 1991-08-13 Method and device for evaporating substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20207191A JPH0544023A (en) 1991-08-13 1991-08-13 Method and device for evaporating substance

Publications (1)

Publication Number Publication Date
JPH0544023A true JPH0544023A (en) 1993-02-23

Family

ID=16451471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20207191A Pending JPH0544023A (en) 1991-08-13 1991-08-13 Method and device for evaporating substance

Country Status (1)

Country Link
JP (1) JPH0544023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19750429A1 (en) * 1997-11-14 1999-05-20 Gerro Plast Gmbh Bottle or container with removable sleeve
KR100665951B1 (en) * 2004-02-23 2007-01-10 엘지전자 주식회사 Source for depositing organic EL device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19750429A1 (en) * 1997-11-14 1999-05-20 Gerro Plast Gmbh Bottle or container with removable sleeve
KR100665951B1 (en) * 2004-02-23 2007-01-10 엘지전자 주식회사 Source for depositing organic EL device

Similar Documents

Publication Publication Date Title
KR101671489B1 (en) Evaporation source for organic material and vapor depositing apparatus including the same
SE458205B (en) PROCEDURE AND DEVICE FOR COATING A SUBSTRATE OF MATERIAL THAT WAS TRANSFERRED ON THE ELECTRICAL ROAD
US3329524A (en) Centrifugal-type vapor source
US5849371A (en) Laser and laser-assisted free electron beam deposition apparatus and method
JP2000195665A (en) Forming method for organic film
JPS625228B2 (en)
KR100287978B1 (en) MG evaporation method with increased evaporation rate
JPH0544023A (en) Method and device for evaporating substance
US4438153A (en) Method of and apparatus for the vapor deposition of material upon a substrate
JPH0827568A (en) Vapor generating method and device therefor
JP4056680B2 (en) Film forming apparatus and method
EP3587618B1 (en) Selective vapor deposition process for additive manufacturing
JP2019183248A (en) Vapor deposition source for vacuum deposition apparatus
JPH0955169A (en) Sample evaporation source for ion source
JP2020190013A (en) Vacuum deposition method
JPH09111441A (en) Magnesium evaporating method
JP2000297361A (en) Formation of hyper-fine particle film and device for forming hyper-fine particle film
JPH0715839B2 (en) High speed atomic beam emitter
JP3152548B2 (en) High frequency induction plasma deposition equipment
EP4249627A1 (en) Apparatus and method for coating substrate
JP4515158B2 (en) Electron beam gun and plasma equipment
JPH0673543A (en) Continuous vacuum vapor deposition device
JPS6314859A (en) Method for evaporating metal
JP2005048244A (en) Molecular beam source for depositing organic thin film
JPH08199345A (en) Film forming device and film formation