JP3716364B2 - Composition containing fine metal particles - Google Patents

Composition containing fine metal particles Download PDF

Info

Publication number
JP3716364B2
JP3716364B2 JP2001069490A JP2001069490A JP3716364B2 JP 3716364 B2 JP3716364 B2 JP 3716364B2 JP 2001069490 A JP2001069490 A JP 2001069490A JP 2001069490 A JP2001069490 A JP 2001069490A JP 3716364 B2 JP3716364 B2 JP 3716364B2
Authority
JP
Japan
Prior art keywords
metal
amine compound
fine particles
organic amine
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001069490A
Other languages
Japanese (ja)
Other versions
JP2002266001A (en
Inventor
憲明 畑
頼重 松葉
智彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Harima Chemical Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical Harima Chemical Inc
Priority to JP2001069490A priority Critical patent/JP3716364B2/en
Publication of JP2002266001A publication Critical patent/JP2002266001A/en
Application granted granted Critical
Publication of JP3716364B2 publication Critical patent/JP3716364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、微粒子表面部分が還元作用をもつアミン化合物で被覆された金属微粒子を含有する組成物に関する。
【0002】
この金属微粒子含有組成物は、電子材料、光学材料、磁性材料や触媒などとして利用される。電子材料としては、プリント配線板の回路パターン形成、各種ビアホールの導体形成や微細部品の接合などの際に用いられる。
【0003】
【従来の技術】
従来、蒸発室および回収室を備えた装置で、次の手順により金属微粒子含有組成物を製造している。
(1)装置内部(蒸発室および回収室)を10-6torrまで減圧する。
(2)ヘリウムガスを蒸発室に導入してそのガス圧を1torrに保持する。
(3)α−テルピネオールの蒸気を回収室に導入しながら、蒸発室のるつぼ内の例えば銅を高周波誘導加熱手段で加熱して銅蒸気を発生させる。この銅蒸気は真空ポンプの排気作用によって回収室に移送される。
(4)回収室の冷却板上に銅微粒子を沈積させる。
【0004】
蒸発室から回収室へと進んだ銅蒸気は、α−テルピネオールの蒸気と混合した状態で冷やされて冷却板上に銅微粒子ペースト(銅微粒子含有組成物)のかたちで回収される。
【0005】
この銅微粒子含有組成物は、銅微粒子がα−テルピネオールの有機溶媒で捕集された状態になっている。
【0006】
【発明が解決しようとする課題】
従来の金属微粒子含有組成物の場合、有機化合物(有機溶媒)の中に金属微粒子がいわば分散しているだけにすぎず、当該組成物の高濃度化や長期的保存の点で安定性に欠けるという問題点があった。
【0007】
そこで、本発明では、金属微粒子の表面を、還元作用をもつアミン化合物で安定的に被覆し、この被覆部分から酸素が入り込みにくいようにし、また入り込んだ酸素が金属を酸化するのを還元作用をもつアミン化合物により防止することにより、金属微粒子同士の凝集がほとんど生じず、酸化に対してより安定な金属微粒子含有組成物を提供することを目的とする。
【0008】
【課題を解決するための手段】
脂肪族アミンの中には穏和に金属イオンを金属に還元する作用を有する化合物があることが知られている。
【0009】
この方法により、金イオン、銀イオンなどの金属イオンから金属微粒子を得ている。この性質を利用して、種々条件を検討した結果、金属微粒子の表面を還元作用をもつアミン化合物で被覆することにより、金属微粒子同士の凝集がほとんど生じず、酸化に対してより安定な金属微粒子含有組成物を得ることができ、この発明を完成するに至った。
【0010】
具体的には、本発明はこの課題を次のようにして解決する。
(1)減圧した不活性ガス雰囲気下で、金属を蒸発させて、この金属蒸気に、還元作用をもつアミン化合物の蒸気を混合することにより、微粒子表面部分が当該アミン化合物で被覆された金属微粒子を含有する組成物を提供する。
(2)上記(1)において、銅、錫や鉄などのように酸化を受けやすい金属を用いる。
【0011】
本発明によれば、銅、錫や鉄などの上記金属と、還元作用をもつアミン化合物の蒸気とを混合し、当該金属微粒子の表面に当該アミン化合物を安定的に被覆している。
【0012】
このアミン化合物で表面を被覆された金属微粒子は、互いに凝集せずに液状の当該アミン化合物の中に高密度の状態で分散する。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
図1は、金属微粒子含有組成物の製造装置を示す説明図である。
【0014】
ここで、
1は蒸発室,
2は処理対象金属を入れるためのるつぼ,
3はるつぼ2を加熱するための高周波誘導加熱手段,
4は不活性ガスを蒸発室1に導入するためのバルブ,
5は回収室,
6は冷却装置(図示省略)で低温に保持した冷却部,
7はアミン化合物の蒸気と、不活性ガスとを回収室5に導入するためのバルブ,8は蒸発室1および回収室5を真空ポンプ(図示省略)により排気するためのバルブ,
9は冷却部6に捕集された金属微粒子含有組成物,
をそれぞれ示している。
【0015】
図2は、金属微粒子含有組成物の製造手順を示す説明図であり、その内容は次のようになっている。
(s11)るつぼの中に銅を入れる。
(s12)バルブ4,7を閉じ、バルブ8を開いて真空ポンプを作動させ、蒸発室1および回収室5の圧力を1×10-3〜1×10-6torrまで下げる。
(s13)バルブ4を開き、アルゴンガスを蒸発室1に導入してその圧力を1〜100torrに保つ。
(s14)バルブ7を開いてアルゴンガスとジエタノールアミンとの混合蒸気を回収室5に導入しながら、るつぼ2を高周波誘導加熱手段3で加熱して、銅の蒸気を発生させる。
(s15)銅微粒子含有組成物9を冷却部6に捕集する。
【0016】
るつぼ2の加熱温度は約1000〜1800℃に設定し、冷却部6の温度は約0〜20℃に設定する。また、上記(s13)〜(s15)の間も真空ポンプで回収室5および蒸発室1を排気する。
【0017】
蒸発室1のるつぼ2で発生した銅蒸気は、バルブ8を介したこの排気作用により回収室5へと進んでジエタノールアミンの蒸気(およびアルゴンガス)との混合ガスとなる。
【0018】
この混合ガスは冷却部6に到達し、このときの冷却部近傍を含む空間領域での冷却作用によって、銅微粒子が冷却部6に析出する。
【0019】
析出した銅微粒子の表面にジエタノールアミンの配位が進行し、当該表面が被覆された状態となる。また、冷却部6の銅微粒子含有組成物9は、この被覆された銅微粒子がジエタノールアミンに分散した状態になっている。冷却部6で得られる銅微粒子は球状でその平均粒径は0.1〜10nmであった。
【0020】
本発明が銅以外に錫や鉄などの上述の各種金属をも対象とすることは勿論である。
また、回収室5に導入するアミン化合物は金属イオンに対して還元作用を有するアミン化合物であればよく、ジエタノールアミンに代えて、それ以外のアミン、2−メチルアミノエタノール、ジエチルメチルアミン、2−ジメチルアミノエタノール、メチルジエタノールアミンなどを用いてもよい。また、ヘリウム、窒素などアルゴン以外の不活性ガスを用いてもよい。
【0021】
また、排気用バルブ8や冷却部6の設置場所・個数は図示のものに限定されず、例えば回収室5の内面を冷却部として用いるようにしてもよい。
【0022】
また、回収室5を設けずに、蒸発室1に有機化合物を導入してこの室内で銅微粒子含有組成物9を回収するようにしてもよい。
【0023】
【発明の効果】
本発明は、金属微粒子の表面を還元作用をもつアミン化合物で安定的に被覆し、この被覆部分から酸素が入り込みにくいようにしており、たとえ酸素が入り込んだとしても、還元作用をもつアミン化合物によって金属微粒子の酸化を防ぐことができるので、金属微粒子同士の凝集がほとんど生じず、酸化に対してより安定な金属微粒子含有組成物を提供することができる。
【0024】
また、この金属微粒子含有組成物を、プリント配線板の回路パターン形成、各種ビアホールの導体形成や微細部品の接合などに用いることにより、微細回路の描画性能、および当該回路パターンなどの導電率特性、光学(透過)特性や接合強度特性などを改善することができる。
【図面の簡単な説明】
【図1】本発明の、金属微粒子含有組成物の製造装置を示す説明図である。
【図2】本発明の、金属微粒子含有組成物の製造手順を示す説明図である。
【符号の説明】
1:蒸発室
2:るつぼ
3:高周波誘導加熱手段
4:不活性ガス導入用のバルブ
5:回収室
6:冷却部
7:アミン化合物の蒸気および不活性ガス導入用のバルブ
8:排気用のバルブ
9:冷却部に捕集された金属微粒子含有組成物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composition containing fine metal particles coated on the surface of fine particles with an amine compound having a reducing action.
[0002]
The metal fine particle-containing composition is used as an electronic material, an optical material, a magnetic material, a catalyst, or the like. As an electronic material, it is used for circuit pattern formation of printed wiring boards, conductor formation of various via holes, bonding of fine parts, and the like.
[0003]
[Prior art]
Conventionally, a metal fine particle-containing composition is manufactured by an apparatus including an evaporation chamber and a recovery chamber according to the following procedure.
(1) The pressure inside the apparatus (evaporation chamber and recovery chamber) is reduced to 10 -6 torr.
(2) Helium gas is introduced into the evaporation chamber and the gas pressure is maintained at 1 torr.
(3) While introducing α-terpineol vapor into the recovery chamber, for example, copper in the crucible of the evaporation chamber is heated by high-frequency induction heating means to generate copper vapor. This copper vapor is transferred to the recovery chamber by the exhaust action of the vacuum pump.
(4) Deposit copper fine particles on the cooling plate in the recovery chamber.
[0004]
The copper vapor that has progressed from the evaporation chamber to the recovery chamber is cooled in a state of being mixed with the α-terpineol vapor and recovered on the cooling plate in the form of a copper fine particle paste (copper fine particle-containing composition).
[0005]
In the copper fine particle-containing composition, the copper fine particles are collected in an organic solvent of α-terpineol.
[0006]
[Problems to be solved by the invention]
In the case of a conventional composition containing metal fine particles, the metal fine particles are merely dispersed in an organic compound (organic solvent), and the composition lacks stability in terms of high concentration and long-term storage. There was a problem.
[0007]
Therefore, in the present invention, the surface of the metal fine particles is stably coated with an amine compound having a reducing action so that oxygen does not easily enter from the coated portion, and the oxygen that has entered reduces the action of oxidizing the metal. An object of the present invention is to provide a metal fine particle-containing composition that is hardly agglomerated between metal fine particles and is more stable against oxidation by being prevented by the amine compound possessed.
[0008]
[Means for Solving the Problems]
It is known that some aliphatic amines have compounds that have a function of gently reducing metal ions to metals.
[0009]
By this method, metal fine particles are obtained from metal ions such as gold ions and silver ions. As a result of investigating various conditions using this property, coating the surface of the metal fine particles with an amine compound having a reducing action results in almost no aggregation of the metal fine particles and more stable metal fine particles against oxidation. A containing composition was obtained, and the present invention was completed.
[0010]
Specifically, the present invention solves this problem as follows.
(1) Metal fine particles in which the surface of the fine particles is coated with the amine compound by evaporating the metal under a reduced inert gas atmosphere and mixing the vapor of the amine compound having a reducing action with the metal vapor. The composition containing this is provided.
(2) In (1) above, a metal that is susceptible to oxidation, such as copper, tin, or iron, is used.
[0011]
According to the present invention, the metal such as copper, tin, and iron and the amine compound vapor having a reducing action are mixed, and the surface of the metal fine particles is stably coated with the amine compound.
[0012]
The metal fine particles whose surface is coated with the amine compound are dispersed in a high density state in the liquid amine compound without aggregating with each other.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 is an explanatory view showing an apparatus for producing a metal fine particle-containing composition.
[0014]
here,
1 is the evaporation chamber,
2 is a crucible for containing the metal to be treated.
3 is a high-frequency induction heating means for heating the crucible 2;
4 is a valve for introducing an inert gas into the evaporation chamber 1;
5 is a collection room,
6 is a cooling unit maintained at a low temperature by a cooling device (not shown);
7 is a valve for introducing the vapor of the amine compound and inert gas into the recovery chamber 5, 8 is a valve for exhausting the evaporation chamber 1 and the recovery chamber 5 by a vacuum pump (not shown),
9 is a composition containing fine metal particles collected in the cooling unit 6;
Respectively.
[0015]
FIG. 2 is an explanatory diagram showing the production procedure of the metal fine particle-containing composition, and the contents thereof are as follows.
(S11) Put copper in the crucible.
(S12) The valves 4 and 7 are closed, the valve 8 is opened, the vacuum pump is operated, and the pressures in the evaporation chamber 1 and the recovery chamber 5 are reduced to 1 × 10 −3 to 1 × 10 −6 torr.
(S13) The valve 4 is opened, and argon gas is introduced into the evaporation chamber 1 to keep the pressure at 1 to 100 torr.
(S14) The crucible 2 is heated by the high-frequency induction heating means 3 while the valve 7 is opened and a mixed vapor of argon gas and diethanolamine is introduced into the recovery chamber 5 to generate copper vapor.
(S15) The copper fine particle-containing composition 9 is collected in the cooling unit 6.
[0016]
The heating temperature of the crucible 2 is set to about 1000 to 1800 ° C., and the temperature of the cooling unit 6 is set to about 0 to 20 ° C. Further, the recovery chamber 5 and the evaporation chamber 1 are also evacuated by a vacuum pump during the above (s13) to (s15).
[0017]
The copper vapor generated in the crucible 2 of the evaporation chamber 1 proceeds to the recovery chamber 5 by this exhaust action through the valve 8 and becomes a mixed gas with the vapor (and argon gas) of diethanolamine.
[0018]
The mixed gas reaches the cooling unit 6, and copper fine particles are deposited on the cooling unit 6 by the cooling action in the space region including the vicinity of the cooling unit at this time.
[0019]
Coordination of diethanolamine proceeds on the surface of the deposited copper fine particles, and the surface is covered. Moreover, the copper fine particle containing composition 9 of the cooling unit 6 is in a state where the coated copper fine particles are dispersed in diethanolamine. The copper fine particles obtained in the cooling unit 6 were spherical and the average particle size was 0.1 to 10 nm.
[0020]
It goes without saying that the present invention covers the above-mentioned various metals such as tin and iron in addition to copper.
The amine compound introduced into the recovery chamber 5 may be an amine compound having a reducing action on metal ions. Instead of diethanolamine, other amines, 2-methylaminoethanol, diethylmethylamine, 2-dimethyl Aminoethanol, methyldiethanolamine, etc. may be used. Moreover, you may use inert gas other than argon, such as helium and nitrogen.
[0021]
Further, the installation location and the number of the exhaust valves 8 and the cooling unit 6 are not limited to those shown in the figure, and for example, the inner surface of the recovery chamber 5 may be used as the cooling unit.
[0022]
Further, without providing the recovery chamber 5, an organic compound may be introduced into the evaporation chamber 1 and the copper fine particle-containing composition 9 may be recovered in this chamber.
[0023]
【The invention's effect】
In the present invention, the surface of the metal fine particles is stably coated with an amine compound having a reducing action so that oxygen does not easily enter from the coated portion. Even if oxygen enters, the amine compound having a reducing action is used. Since the oxidation of the metal fine particles can be prevented, the metal fine particles are hardly aggregated and a composition containing metal fine particles that is more stable against oxidation can be provided.
[0024]
Also, by using this metal fine particle-containing composition for circuit pattern formation of printed wiring boards, conductor formation of various via holes and bonding of fine parts, etc., drawing performance of fine circuits, and conductivity characteristics such as the circuit patterns, Optical (transmission) characteristics and bonding strength characteristics can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an apparatus for producing a composition containing fine metal particles according to the present invention.
FIG. 2 is an explanatory diagram showing the production procedure of the metal fine particle-containing composition of the present invention.
[Explanation of symbols]
1: Evaporation chamber 2: Crucible 3: High frequency induction heating means 4: Valve for introducing inert gas 5: Recovery chamber 6: Cooling unit 7: Valve for introducing vapor and inert gas of amine compound 8: Valve for exhaust 9: Composition containing fine metal particles collected in the cooling section

Claims (4)

金属微粒子と、その分散溶媒とからなる金属微粒子の分散液の形態を有する金属微粒子含有組成物であって、
前記分散溶媒中に分散されている金属微粒子は、その微粒子の金属表面上にアミン化合物が被覆する形態で該分散液中に含まれ、
前記金属微粒子を構成する金属種は、酸素分子と接触した際、酸化を受け、当該金属の酸化物を形成可能な金属種であり、
前記アミン化合物は、前記金属種の酸化により形成される金属酸化物を構成する、酸化数を示す金属イオン種に対して還元作用を有し、かつ、分散溶媒として利用可能な液体状の有機アミン化合物であり、
前記金属微粒子の表面上への該有機アミン化合物の被覆は、
不活性ガス雰囲気下、減圧状態において、
加熱蒸発によって生成される前記金属種の蒸気と、前記有機アミン化合物の蒸気とを混合して、前記不活性ガス雰囲気下において冷却することによって、前記金属種の蒸気から金属微粒子を形成し、
不活性ガス雰囲気下、形成される前記金属微粒子の表面に対して、前記有機アミン化合物の蒸気を作用させて、該有機アミン化合物が被覆する形態であり、
冷却に伴い、前記有機アミン化合物の蒸気から生成する、液体状の該有機アミン化合物を分散溶媒とし、
該金属微粒子は、その微粒子の金属表面上に前記有機アミン化合物が被覆する形態で、分散溶媒の該液体状の該有機アミン化合物中に分散されている分散液である
ことを特徴とする金属微粒子含有組成物。
A metal fine particle-containing composition having the form of a dispersion of metal fine particles comprising metal fine particles and a dispersion solvent thereof,
Metal fine particles dispersed in the dispersion solvent are contained in the dispersion in a form in which an amine compound coats the metal surface of the fine particles,
The metal species constituting the metal fine particles are metal species that can be oxidized to form an oxide of the metal when in contact with oxygen molecules,
The amine compound is a liquid organic amine that constitutes a metal oxide formed by oxidation of the metal species, has a reducing action on the metal ion species exhibiting an oxidation number, and can be used as a dispersion solvent A compound,
The coating of the organic amine compound on the surface of the metal fine particles,
In an inert gas atmosphere, under reduced pressure,
Mixing the vapor of the metal species generated by heat evaporation and the vapor of the organic amine compound, and cooling in the inert gas atmosphere, thereby forming metal fine particles from the vapor of the metal species,
In an inert gas atmosphere, the organic amine compound is coated with the organic amine compound by allowing the vapor of the organic amine compound to act on the surface of the fine metal particles to be formed.
A liquid organic amine compound produced from the vapor of the organic amine compound with cooling is used as a dispersion solvent,
The metal fine particle is a dispersion liquid in which the organic amine compound is coated on the metal surface of the fine particle and dispersed in the liquid organic amine compound in a dispersion solvent. Containing composition.
前記有機アミン化合物は、
2−メチルアミノエタノール、ジエタノールアミン、2−ジメチルアミノエタノール、メチル−ジエタノールアミンからなる群から選択される
ことを特徴とする、請求項1に記載の金属微粒子含有組成物。
The organic amine compound is
The metal fine particle-containing composition according to claim 1, wherein the composition is selected from the group consisting of 2-methylaminoethanol, diethanolamine, 2-dimethylaminoethanol, and methyl-diethanolamine.
前記金属微粒子を構成する金属種は、
銅、錫、鉄からなる群から選択される
ことを特徴とする、請求項1に記載の金属微粒子含有組成物。
The metal species constituting the metal fine particles are:
The metal fine particle-containing composition according to claim 1, wherein the composition is selected from the group consisting of copper, tin, and iron.
金属微粒子と、その分散溶媒とからなる金属微粒子の分散液の形態を有する金属微粒子含有組成物を調製する方法であって、
前記分散溶媒中に分散されている金属微粒子は、その微粒子の金属表面上にアミン化合物が被覆する形態で該分散液中に含まれ、
前記金属微粒子を構成する金属種は、酸素分子と接触した際、酸化を受け、当該金属の酸化物を形成可能な金属種であり、
前記アミン化合物は、前記金属種の酸化により形成される金属酸化物を構成する、酸化数を示す金属イオン種に対して還元作用を有し、かつ、分散溶媒として利用可能な液体状の有機アミン化合物であり、
前記分散液の調製に際して、
前記金属微粒子の表面上への該有機アミン化合物の被覆処理は、
不活性ガス雰囲気下、減圧状態において、
加熱蒸発によって生成される前記金属種の蒸気と、前記有機アミン化合物の蒸気とを混合して、前記不活性ガス雰囲気下において冷却することによって、前記金属種の蒸気から金属微粒子を形成し、
不活性ガス雰囲気下、形成される前記金属微粒子の表面に対して、前記有機アミン化合物の蒸気を作用させて、該有機アミン化合物を被覆する処理工程により、
該金属微粒子の分散溶媒中への分散処理は、
冷却に伴い、前記有機アミン化合物の蒸気から生成する、液体状の該有機アミン化合物を分散溶媒とし、
該金属微粒子は、その微粒子の金属表面上に前記有機アミン化合物が被覆する形態で、分散溶媒の該液体状の該有機アミン化合物中に分散されている分散液とする処理工程により、
それぞれ実施する
ことを特徴とする金属微粒子含有組成物の調製方法。
A method for preparing a metal fine particle-containing composition having a form of a dispersion of metal fine particles comprising metal fine particles and a dispersion solvent thereof,
Metal fine particles dispersed in the dispersion solvent are contained in the dispersion in a form in which an amine compound coats the metal surface of the fine particles,
The metal species constituting the metal fine particles are metal species that can be oxidized to form an oxide of the metal when in contact with oxygen molecules,
The amine compound is a liquid organic amine that constitutes a metal oxide formed by oxidation of the metal species, has a reducing action on the metal ion species exhibiting an oxidation number, and can be used as a dispersion solvent A compound,
In preparing the dispersion,
Coating treatment of the organic amine compound on the surface of the metal fine particles,
In an inert gas atmosphere, under reduced pressure,
Mixing the vapor of the metal species generated by heat evaporation and the vapor of the organic amine compound, and cooling in the inert gas atmosphere, thereby forming metal fine particles from the vapor of the metal species,
By a treatment step of coating the organic amine compound by causing the vapor of the organic amine compound to act on the surface of the fine metal particles formed under an inert gas atmosphere,
Dispersion treatment of the metal fine particles in a dispersion solvent,
A liquid organic amine compound produced from the vapor of the organic amine compound with cooling is used as a dispersion solvent,
The metal fine particles are processed in the form of a dispersion in which the organic amine compound is coated on the metal surface of the fine particles and dispersed in the liquid organic amine compound in a dispersion solvent,
A method for preparing a composition containing fine metal particles, which is carried out respectively.
JP2001069490A 2001-03-12 2001-03-12 Composition containing fine metal particles Expired - Lifetime JP3716364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069490A JP3716364B2 (en) 2001-03-12 2001-03-12 Composition containing fine metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069490A JP3716364B2 (en) 2001-03-12 2001-03-12 Composition containing fine metal particles

Publications (2)

Publication Number Publication Date
JP2002266001A JP2002266001A (en) 2002-09-18
JP3716364B2 true JP3716364B2 (en) 2005-11-16

Family

ID=18927517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069490A Expired - Lifetime JP3716364B2 (en) 2001-03-12 2001-03-12 Composition containing fine metal particles

Country Status (1)

Country Link
JP (1) JP3716364B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336776B2 (en) * 2002-11-12 2013-11-06 Dowaエレクトロニクス株式会社 Fine copper powder
JP4204849B2 (en) * 2002-11-12 2009-01-07 Dowaエレクトロニクス株式会社 Production method of fine copper powder
JP2009120923A (en) * 2007-11-19 2009-06-04 Hitachi Ltd Material for joining
WO2010073021A1 (en) * 2008-12-24 2010-07-01 Intrinsiq Materials Limited Fine particles
FI20096162A0 (en) * 2009-11-10 2009-11-10 Valtion Teknillinen Process for the preparation of nanoparticles
CN110284105B (en) * 2019-06-25 2024-02-09 郑州航空工业管理学院 Powder surface metallization method and device

Also Published As

Publication number Publication date
JP2002266001A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US5750194A (en) Process for producing a metal paste
JP2561537B2 (en) Metal paste and manufacturing method thereof
JP4754488B2 (en) Methods for the synthesis, separation and purification of powder materials
EP0449309B9 (en) Method of making metalic thin film
JP4807933B2 (en) Method for forming transparent conductive film and transparent electrode
KR100733331B1 (en) Method of making nano MPP powder using RF plasma combustion
JP3716364B2 (en) Composition containing fine metal particles
JP2004119686A (en) Method of forming fine wiring pattern
RU2003120052A (en) DECOMPOSITION METHOD FOR PRODUCING SUBMICRON PARTICLES IN A LIQUID BATH
CA1114071A (en) Stabilization process for aluminum microcircuits which have been reactive-ion etched
JP2005298921A (en) Composite metal ultrafine particle and method for producing the same
JPS6320032A (en) Production of hyperfine particle having film
Lin et al. Effect of chelating agents on the structure of electroless copper coating on alumina powder
Chao et al. Synthesis of a supported metal catalyst using nanometer-size clusters
JP2006210197A (en) Metal coating film and its formation method
KR101379751B1 (en) Particulate alloy thin film and their manufacturing method
CN110642245B (en) Preparation method of metal monoatomic doped graphene
JP2982055B2 (en) Method for producing fine metal particles of gold, silver or copper
Zhang et al. Deposition of silver films on copper nanopowders by three-times electroless plating
JP2902381B2 (en) Ultra fine powder production method
KR101828432B1 (en) Method for controlling shape of metal powder by surface energy controlling and metal powder by the same method
JPS6078635A (en) Method and apparatus for forming discrete ultra-fine particles
CN114286602A (en) Nano liquid absorption core and preparation method thereof
CN116140615B (en) Silver graphite electrical contact material with high electrical wear resistance and preparation method thereof
KR20050016702A (en) Alloy nano-particle and method for production thereof, and magnetic recording medium using alloy nano-particle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3716364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term