JP3706267B2 - Voltage-controlled semiconductor device, manufacturing method thereof, and power conversion device using the same - Google Patents

Voltage-controlled semiconductor device, manufacturing method thereof, and power conversion device using the same Download PDF

Info

Publication number
JP3706267B2
JP3706267B2 JP05627299A JP5627299A JP3706267B2 JP 3706267 B2 JP3706267 B2 JP 3706267B2 JP 05627299 A JP05627299 A JP 05627299A JP 5627299 A JP5627299 A JP 5627299A JP 3706267 B2 JP3706267 B2 JP 3706267B2
Authority
JP
Japan
Prior art keywords
region
voltage control
control gate
conductivity type
drift layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05627299A
Other languages
Japanese (ja)
Other versions
JP2000252475A (en
Inventor
良孝 菅原
勝則 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP05627299A priority Critical patent/JP3706267B2/en
Publication of JP2000252475A publication Critical patent/JP2000252475A/en
Application granted granted Critical
Publication of JP3706267B2 publication Critical patent/JP3706267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は大電流を制御するパワ−半導体装置に係り、特に高耐圧の電圧制御型半導体装置に関する。
【0002】
【従来の技術】
大電流を制御するための従来の半導体装置としては、Si(シリコン)製のパワ−半導体装置が使用されているが、Siの電気的物理的特性の限界から大幅な性能改善は困難になってきている。そこでSiに比べて電気的物理的特性が優れているワイドギャップ半導体材料を用いたパワー半導体装置の開発が進められている。ワイドギャップ半導体材料の代表的な例として2.9から3.2eVのエネルギーギャップを持つSiC(炭化珪素)がある。このSiCを用いた半導体装置の従来例を図16および図17に示す。図16はSiC蓄積型電界効果トランジスタ(ACCUFET:Accumulation Field Effect Transistor)の断面図であり、例えば文献 IEEE Electron Device Letters, Vol.18、No.12、December 1997に開示されている。また図17はSiC静電誘導型トランジスタの断面図であり、文献 Proceedings of IEEE International Symposium on Power Semiconductor Devices and ICs, p.149, 1997 に開示されている。
【0003】
【発明が解決しようとする課題】
図16に示すSiC蓄積型電界効果トランジスタは、ゲ−トGの電圧が零であってもソースSとドレインDの間をオフ状態にできるという優れた機能を有する。しかしMOSゲート構造であるために、ゲート絶縁膜104が高い電界強度で破壊されると大量の漏れ電流が発生する。このためワイドギャップ半導体であるSiC本来の、高い耐絶縁破壊電界を生かした高耐圧を実現できないという問題があり、従来のものの耐圧は約1kV以下にとどまっている。
【0004】
図17に示すSiC静電誘導型トランジスタはゲートGに高い逆電圧を印加しないとオフ状態にできない。すなわち、低い逆電圧では高いオフ耐圧を実現できないという問題があった。図17に示す例では5kVのオフ耐圧を実現するためにはゲートGに80V以上の逆電圧を印加する必要がある。そのためSiC静電誘導型トランジスタを駆動しない時でも100V程度の高いゲートG用の電圧を発生しておかなければならず、ゲート回路の消費電力が大きくなるという問題があった。
【0005】
オン抵抗に関しては、図16に示すSiC蓄積型電界効果トランジスタはMOSゲート構造を有するために、ゲート絶縁膜104とSiCn型チャネル領域103との界面に不完全な結晶構造が存在する。そのため電流通路となるチャネル領域103のチャネル移動度を大きくできずオン抵抗が高いという問題があった。図17に示すSiC静電誘導型トランジスタでは、電流通路となるゲート領域109及び110の間のチャネル112Aがn型ドリフト領域112のバルク結晶内に存在するためにゲートGの電圧を低くして高耐圧を実現しようとすると、チャネル112Aを極端に狭くしなければならず、この結果としてオン抵抗が著しく高くなってしまうという問題があった。
【0006】
更に、ノイズに関しては、図16のSiC蓄積型電界効果トランジスタはMOSゲート構造を有するために、ゲート絶縁膜104とSiCn型チャネル領域103との界面に不完全な結晶構造が存在する。そのため界面での電子の散乱に起因するノイズが発生するという問題があった。
また、これらのトランジスタを用いて構成した装置はトランジスタの消費電力が大きいために効率が悪く、水冷・空冷等の冷却設備も大型化するという問題があった。
【0007】
本発明は、高耐圧で低オン抵抗・低ノイズの電圧制御半導体装置を提供することを目的とする。特にワイドギャップ半導体装置を対象とし、ゲ−ト電圧がゼロ(ノ−マリ−オフ形)もしくは低い電圧で高耐圧を達成できる半導体装置を提供することも目的とする。更に、量産性の高い半導体装置の製法と本半導体装置を用いた小型高効率の応用装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
【0009】
上述のように、薄い活性層の上下の表面電圧制御ゲ−ト半導体領域と埋め込み電圧制御ゲ−ト半導体領域を活性領域と反対極性の半導体領域で構成し、ソ−ス領域の表面を表面電圧制御ゲ−トよりも低位置に構成することにより、高耐圧が実現出来る。特に、表面電圧制御ゲ−ト半導体領域をワイドギャップ半導体材料で構成することにより高い絶縁破壊電界に対応する高耐圧を実現出来る。ソ−ス領域の表面を表面電圧制御ゲ−ト半導体領域よりも低い位置に形成することにより、ソ−ス領域と表面電圧制御ゲ−ト半導体領域を構成する半導体領域の接触部分が少なくなり電界が緩和されるので、更に高耐圧が得られる。
【0010】
本発明の他の観点の電圧制御型半導体装置は、第1の導電型の高不純物濃度の半導体基板、前記半導体基板の上に形成した、低不純物濃度の第1の導電型のドリフト層、前記ドリフト層の両端部領域において、前記ドリフト層の表面を含む内部領域に形成した、第2の導電型の埋め込み電圧制御ゲート半導体領域、前記両埋め込み電圧制御ゲート半導体領域の各々の上面の一部分を含み、前記ドリフト層の中央領域の表面に形成した第1の導電型の、厚みが前記ドリフト層より薄い活性領域、前記活性領域の両端部に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した第1の導電型のソース領域、前記ソース領域の、前記活性領域と反対側に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した、第2の導電型のゲートコンタクト半導体領域、前記ソース領域に形成したソース電極、前記活性領域の表面に形成した、第2の導電型の表面電圧制御ゲート半導体領域、前記表面電圧制御ゲート半導体領域および前記ゲートコンタクト半導体領域に形成したゲート電極、及び前記半導体基板の、前記ドリフト層を有する面の反対面に形成したドレイン電極を備え、前記ソース領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるように構成されていることを特徴とする。
【0011】
さらに、薄い活性領域の両端のソ−ス領域を、その底面が表面電圧制御ゲ−ト半導体領域の底面よりも低い位置で且つ端部が同位置になるように、埋め込み電圧制御ゲ−ト半導体領域上に形成することによって低オン抵抗が実現出来る。ソ−ス領域と埋め込み電圧制御ゲ−ト半導体領域の間またはソ−ス領域の端と表面電圧制御ゲ−ト半導体領域の端の間に活性領域と同程度の不純物濃度の半導体領域が存在するとソ−ス抵抗が増大する。ソ−ス間距離を縮めて静電誘導現象が支配的になるようにするとこのソ−ス抵抗の半導体装置全体の抵抗に占める割合が大きくなるのでこの効果は大きい。また、少数キャリアが注入される電圧制御サイリスタ等の半導体装置では伝導度変調によってドリフト領域や活性領域の抵抗が大幅に低減されるので、このソ−ス抵抗の半導体装置全体の抵抗に占める割合が大きくなる。従ってソ−ス領域の底面を低い位置で且つ端部が表面電圧制御ゲ−ト端部と同位置になるようにしてこの半導体領域を減らすことによる効果は大きい。
【0012】
本発明の他の観点の電圧制御型半導体装置は、第2の導電型の高不純物濃度の半導体基板、前記半導体基板の上に形成した、低不純物濃度の第1の導電型のドリフト層、前記ドリフト層の両端部領域において、前記ドリフト層の表面を含む内部領域に形成した、第2の導電型の埋め込み電圧制御ゲート半導体領域、前記埋め込み電圧制御ゲート半導体領域の各々の上面の一部分を含み、前記ドリフト層の中央領域の表面に形成した第1の導電型の、厚みが前記ドリフト層より薄い活性領域、前記活性領域の両端部に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した第1の導電型のカソード領域、前記埋め込み電圧制御ゲート半導体領域の各々の上面の端部領域において、前記カソード領域の端部近傍に形成した、第2の導電型のゲートコンタクト半導体領域、前記カソード領域に接して形成したカソード電極、前記活性領域の表面に形成した、第2の導電型の表面電圧制御ゲート半導体領域、前記表面電圧制御ゲート半導体領域に形成したゲート電極、及び前記半導体基板の、前記ドリフト層を有する面の反対面に形成したアノード電極を備え、前記カソード領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるよう構成されていることを特徴とする。
この構成により低いON抵抗と高耐圧が得られる。
【0013】
さらに表面電圧制御ゲ−ト半導体領域を活性領域と反対極性の半導体領域で構成し、且つカソード領域の底面が表面電圧制御ゲ−ト半導体領域の底面よりも低い位置で且つ端部が同位置になるようにしたことにより低ノイズ化を実現出来る。特に、本構成では表面電圧制御ゲート半導体領域形成時の拡散により接合が活性領域内部に形成されので結晶構造が均一になりノイズを低減出来る。また、カソード領域と埋め込み電圧制御ゲート半導体領域との間または表面電圧制御ゲート半導体領域の端との間に存在する半導体領域は熱雑音を発生するが、カソード領域の底面が表面電圧制御ゲ−ト半導体領域の底面よりも低い位置で且つ端部が同位置になるようにし上記の半導体領域を減らすことにより熱雑音の発生領域が低減し低ノイズ化が実現出来る。
【0014】
本発明の他の観点の電圧制御型半導体装置は、第1の導電型の高不純物濃度の半導体基板、前記半導体基板の上に形成した、低不純物濃度の第2の導電型のドリフト層、前記ドリフト層の表面を含む内部領域において、中央部に所定の間隔を設けて形成した、第1の導電型の埋め込み電圧制御ゲート半導体領域、埋め込み電圧制御ゲート半導体領域の各々の上面の一部分を含み前記ドリフト層の中央領域の表面に形成した第2の導電型の、厚みが前記ドリフト層より薄い活性領域、前記活性領域の両端部に隣接して形成した第2の導電型のアノード領域、前記埋め込み電圧制御ゲート半導体領域の各々の上面の端部領域において、前記アノード領域に接するように形成した、第2の導電型のゲートコンタクト半導体領域、前記アノード領域に接して形成したアノード電極、前記活性領域の表面に形成した、第1の導電型の表面電圧制御ゲート半導体領域、前記表面電圧制御ゲート半導体領域に接して形成したゲート電極、及び前記半導体基板の、前記ドリフト層を有する面の反対面に形成したカソード電極を備え、前記アノード領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるように構成されていることを特徴とする。
この構成により低いON抵抗と高耐圧が得られる。
本発明の他の観点の電圧制御型半導体装置は、第1の導電型の高不純物濃度の半導体基板、前記半導体基板の上に形成した、低不純物濃度の第1の導電型のドリフト層、前記ドリフト層の両端部領域において、前記ドリフト層の表面を含む内部領域に形成した、第2の導電型の埋め込み電圧制御ゲート半導体領域、前記両埋め込み電圧制御ゲート半導体領域の各々の上面の一部分を含み、前記ドリフト層の中央領域の表面に形成した第1の導電型の、厚みが前記ドリフト層より薄い活性領域、前記活性領域の両端部に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した第1の導電型のソース領域、前記ソース領域の、前記活性領域とは反対の側に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した、第2の導電型のゲートコンタクト半導体領域、前記ソース領域に形成したソース電極、前記活性領域の表面に形成した、第2の導電型の表面電圧制御ゲート半導体領域、前記表面電圧制御ゲート半導体領域および前記ゲートコンタクト半導体領域にそれぞれ形成したゲート電極、及び前記半導体基板の、前記ドリフト層を有する面の反対面に形成したドレイン電極を備え、前記ソース領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるように構成されており、前記第2の導電型のゲートコンタクト半導体領域と第1の導電型のソース領域との間に、活性領域が介在することを特徴とする電圧制御型半導体装置。
【0015】
本発明の電圧制御型半導体装置の製造方法は、第1の導電型の高不純物濃度の半導体基板の上に低不純物濃度の第1の導電型のドリフト層を形成するステップ、前記ドリフト層の両端部領域において、前記ドリフト層の表面を含む内部領域に第2の導電型の埋め込み電圧制御ゲート半導体領域を形成するステップ、前記埋め込み電圧制御ゲート半導体領域の各々の上面を含み、前記ドリフト層の中央領域の表面に第1の導電型の、厚みが前記ドリフト層より薄い活性領域を形成するステップ、前記活性領域の表面を含む内部領域の端部近傍に第1の導電型の2つのソース領域を形成するステップ、前記埋め込み電圧制御ゲート半導体領域の各々の上面の端部領域において、前記ソース領域の外側の端部近傍に第2の導電型のゲートコンタクト半導体領域を形成するステップ、前記ソース領域に接してソース電極を形成するステップ、前記活性領域の表面に、第2の導電型の表面電圧制御ゲート半導体領域を形成するステップ、前記表面電圧制御ゲート半導体領域に接してゲート電極を形成するステップ、及び前記半導体基板の、前記ドリフト層を有する面の反対面にドレイン電極を形成するステップ、を備え、前記ソース領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるように構成されることを特徴とする。
この製造方法では、半導体形成技術を用いているので、量産性にすぐれ、安価に半導体装置を製造することができる。
【0016】
【発明の実施の形態】
以下に、本発明の好適な実施例を図1から図15を参照して説明する。
【0017】
《第1実施例》
図1は本発明の第1実施例の耐圧5kVのSiC接合型電界効果トランジスタのセグメントの断面図である。このセグメントは図1の紙面に垂直な方向に長いストライプ状である。このセグメントを図1の左右方向に複数個連結して形成することにより、大容量のSiC接合型電界効果トランジスタが構成される複数のセグメントを連結する構成は第2ないし第9実施例においても同様である。図1において、厚さ約350μmの、高不純物濃度のn型のSiCのドレイン領域1の上に厚さ約50μmの低不純物濃度のn型のSiCのドリフト層2が形成されている。図1のII−II断面図である図2に示すように、ドリフト層2の上面の中央部を除く両端部の領域に長方形のp型SiCの埋め込み電圧制御ゲート半導体領域5が形成されており、その厚さの最適値は0.7μmであるが、0.3μmから3.0μmの範囲にあればよい。埋め込み電圧制御ゲート半導体領域5の上面、及びドリフト層2の露出部にn型の活性領域3が形成されており、その最適厚さは約0.7μmである。活性領域3の厚さは0.2μmから3.0μmの範囲にあればよい。活性領域3の表面領域の両端部には、ソース電極22に接続されているn型SiCのソース領域4がそれぞれ形成されており、その厚さは0.2μmであるが、0.1μmから0.5μm程度でもよい。n型活性領域3の上にはp型表面電圧制御ゲート半導体領域7が形成されている。その厚さは0.3μm程度である。
【0018】
n型ソース領域4とn型活性領域3との接合面は、p型表面電圧制御ゲート半導体領域7とn型活性領域3との接合面より低位置のドレイン領域1に近い位置にある。p型の埋め込み電圧制御ゲート半導体領域5は、n型のソース領域4より1μm程度中央部へ突出しているのが望ましいが、0.5μm以上突出していればよい。両側のp型の埋め込み電圧制御ゲート半導体領域5の間隔は2μmが最適であるが、1μmないし5μmであればよい。p型ゲートコンタクト半導体領域6が、p型の埋め込み電圧制御ゲート半導体領域5の上の端部領域に形成され、埋め込み電圧制御ゲート半導体領域5と、その上に形成されるp型の表面電圧制御ゲート半導体領域16とを接続している。ゲートコンタクト半導体領域6は、図3に示すように、ソース領域4から所定距離離れていてもよく、また図4に示すように、ソース領域4に接していてもよい。また、片側が接して他方の側が離れていてもよい。なお、埋め込み電圧制御ゲート半導体領域5とゲートコンタクト半導体領域6は図の紙面に垂直方向に連続する帯状であってもよい。表面電圧制御ゲート半導体領域16にはゲート電極23が設けられている。n型ソース領域4を除くn型の活性領域3上に形成されたp型表面電圧制御ゲート半導体領域7には、ゲート電極23が設けられている。表面に保護層70を設けるのが望ましい。本実施例では、SiC接合型電界効果トランジスタの形状は紙面に垂直な方向に長いストライプ状であるが、その形状は例えば円形や四角形等であってもかまわない。
【0019】
本実施例の接合型電界効果トランジスタの製造方法の一例を、図5及び図6の断面図を用いて説明する。
図5の(a)に示すように、まず、n型のドレイン領域1として機能する厚さ約350μmのn型SiC基板上に、厚さ約50μmのn型のドリフト層2をエピタキシャル成長法等により形成する。次に、図5の(b)に示すように、ドリフト層2の中央部を除いてp型の埋め込み電圧制御ゲート半導体領域5をアルミニウム等のイオン打ち込み等により形成する。さらに図5の(c)に示すように、ドリフト層2の中央部と埋め込み電圧制御ゲート半導体領域5の上に薄いn型の活性領域3を形成する。そして図5の(d)に示すように、両端部において、p型埋め込み電圧制御ゲート半導体領域5に達するp型ゲートコンタクト半導体領域6を、アルミニウムのイオン打ち込み法等により形成する。その上に薄いp型表面電圧制御ゲート半導体領域7をエピタキシャル成長法等の薄膜形成法により形成する。
【0020】
次に、p型表面電圧制御ゲート半導体領域7の上にマスクを形成し、ホトリソ技術でエッチング加工して図6の(a)に示すように所定の形状の表面電圧制御ゲート半導体領域7及び16を得る。この表面電圧制御ゲート半導体領域7及び16をマスクとして利用するセルフアラインにより、図6の(b)に示すように、n型ソース領域4を窒素等のイオン打ち込み法や拡散法などにより形成する。n型ソース領域4は必ずしもp型ゲートコンタクト半導体領域6に接触している必要はない。最後に図6の(c)に示すように、p型表面電圧制御ゲート半導体領域7及び16の上にゲート電極23を形成する。またn型ソース領域4の上にソース電極22を形成する。さらに、n型ドレイン領域1にドレイン電極21を形成して完成する。
【0021】
本実施例のSiC接合型電界効果トランジスタでは、ドレインDの電位がソースSの電位より高い状態で、ゲートGとソースS間の電位を0Vにすると、p型埋め込み電圧制御ゲート半導体領域5及びp型表面電圧制御ゲート半導体領域7と、これらの領域に接するn型活性領域3の接合部からビルトイン電圧に対応した空乏層が広がり、n型活性領域3をピンチオフ状態にできる。その結果、ソースSとドレインD間の電流を遮断することができノーマリオフとなる。n型ソース領域4の表面をp型表面電圧制御ゲート半導体領域7の表面よりも低い位置に構成しているので、n型ソース領域4とp型表面電圧制御ゲート半導体領域7との接触部が少なくなる。この接続部は高電界となる部分であるが、これを減らすことにより高電界部分を少なくでき、高耐圧のSiC接合型電界効果トランジスタを実現できる。
【0022】
ドレインDの電位をソースSの電位より高くし、かつゲートGに、ソースSを基準としてビルトイン電圧以下の電圧を印加する。その結果p型埋め込み電圧制御ゲート半導体領域5とp型表面電圧制御ゲート半導体領域7の間のn型活性領域3内の空乏層が狭くなる。電流はドレインから両p型埋め込み電圧制御ゲート半導体領域5の間を通り、n型活性領域3を経て、ソースSに流れ込む。本実施例ではn型ソース領域4をn型活性領域3にセルフアラインにより形成しているので、矢印Jで示すp型表面電圧制御ゲート半導体領域7の端部とn型ソース領域4の端部は段違いとなり、両端部間にn型の半導体領域が存在しない。これにより、n型ソース領域4の、n型活性領域3に接する縦の壁面部分の抵抗が減少し、オン抵抗が低くなる。もしn型の半導体領域が存在するとノイズ源となることを発明者は見いだしており、このn型の半導体領域をなくすことにより低ノイズ化も実現できる。更に、n型ソース領域4の、n型活性領域3に接する底面をp型表面電圧制御ゲート半導体領域7の底面より低い位置にした結果、n型ソース領域4の下のn型の半導体領域が薄くなり更にオン抵抗を減らしかつノイズを減らすことができる。
【0023】
この実施例の接合型電界効果トランジスタの耐圧は約5.5kVである。オン抵抗は、ゲート電圧を2.5Vとしたとき、約75mΩcm2と非常に低い値であった。ノイズも10-92/Hz以下と非常に低い値であった。また、ゲートGのゲート電圧をビルトイン電圧(SiCでは約2.5V)以下の値にするため、ゲートGには空乏層の容量による電流しか流れず、駆動電力を低く抑えることができる。また、n型活性領域3の厚さや不純物濃度によりトランジスタがノーマリオフとならない場合でも、小さいゲート電圧でp型埋め込み電圧制御ゲート半導体領域5及びp型表面電圧制御ゲート半導体領域7とn型活性領域3との接合部から空乏層が広がる。その結果、n型活性領域3がピンチオフし駆動電力を低く抑えつつ高耐圧を実現できる。
【0024】
本実施例では、n型ソース領域4をセルフアラインにより形成することにより、p型表面電圧制御ゲート半導体領域7端部とn型ソース領域4端部の間にn型の半導体領域が存在しない。これにより低オン抵抗化と低ノイズ化を同時に達成できるとともに、高い量産性が得られる。また、図5の(c)と図5の(d)の工程は逆にしてもよい。本製造方法に関しては本発明の本質を損ねることなく各種の変形ができるものである。
【0025】
《第2実施例》
図7は本発明の第2実施例の接合型電界効果トランジスタのセグメントの断面図である。図7において、第2実施例の接合型電界効果トランジスタは、n型ソース領域4がn型活性領域3を貫通して、その底面がp型埋め込み電圧制御ゲート半導体領域5と接するように構成されている。従って、n型ソース領域4とp型埋め込み電圧制御ゲート半導体領域5の間にはn型活性領域3は存在しない。その他の構成は第1実施例と同じであるので重複する説明は省略する。n型ソース領域4とp型埋め込み電圧制御ゲート半導体領域5の間に活性領域3が存在すると熱雑音が発生するが、本実施例では前記のように両者間に活性領域3がないので熱雑音は発生せず、さらに低ノイズ化が実現できた。また、n型ソース領域4の体積が大きいので、ソース抵抗も小さくなり、更にオン抵抗が減少した。本実施例の接合型電界効果トランジスタの耐圧は約5.3kVである。オン抵抗は、ゲート電圧を2.5Vとしたとき約65mΩcm2であり、低い値であった。ノイズも4×10-102/Hz以下と極めて低い値であった。
【0026】
《第3実施例》
図8は、本発明の第3実施例のSiC接合型電界効果トランジスタのセグメントの断面図である。本実施例では、図7に示す第2実施例の接合型電界効果トランジスタの隣り合う両p型埋め込み電圧制御ゲート半導体領域5の間に、p型の第2埋め込み電圧制御ゲート半導体領域8を設けている。この領域は複数あってもよい。図8の(a)の断面図(b)に示すように、第2埋め込み電圧制御ゲート半導体領域8は図のようにp型埋め込みゲート半導体領域5とp型領域8Aで部分的に接続されている。その他の構成は第2実施例のものと同じであるので重複する説明は省略する。オフの時には、第2埋め込み電圧制御ゲート半導体領域8とn型ドリフト層2との接合部から、p型埋め込み電圧制御ゲート半導体領域5及びドレイン領域1の方向に空乏層が広がる。それによりSiC接合型電界効果トランジスタの高耐圧化が図れる。オンの時には、第2埋め込み電圧制御ゲート半導体領域8とp型埋め込み電圧制御ゲート半導体領域5との間に電流の通路となる複数のチャネルがあるため、オン抵抗が減少する。本実施例のものでは、耐圧は6.2kVであり、オン抵抗は78mΩcm2であった。
【0027】
《第4実施例》
図9は、本発明の第4実施例のSiC静電誘導型トランジスタのセグメントの断面図である。本実施例では、第2実施例の図7に示す接合型電界効果トランジスタのp型表面電圧制御ゲート半導体領域7とp型埋め込み電圧制御ゲート半導体領域5に挟まれた活性領域3の幅を減少する。上記活性領域3の幅の減少にともなって、セグメントの図の左右方向の幅も減少する。また対向する両埋め込み電圧制御ゲート半導体領域5の間隔も狭くすることにより、耐圧を向上できる。あるいは低いゲート電圧でも電流を遮断できる。活性領域3の幅を減らすことにより、活性領域3の抵抗が減少する。
【0028】
接合型電界効果トランジスタでは、オン時に活性領域3を電流が流れると、活性領域3の中央部の電位が、その領域の抵抗に比例して高くなる。流れる電流が大きくなると、さらにその電位が高くなり、p型表面電圧制御ゲート半導体領域7及びp型埋め電圧制御ゲート半導体領域5と逆バイアスになり、それらの接合から空乏層が広がり、電流通路であるチャネルが狭くなり電流が飽和する。しかし、本実施例のようにp型表面電圧制御ゲート半導体領域7とp型埋め込み電圧制御ゲート半導体領域5に挟まれた活性領域3の幅を狭くし抵抗を減らすと、活性領域3の中央部の電位上昇が抑えられ、空乏層がチャネルに広がらないため、オン電流の飽和が起きない静電誘導型トランジスタとなる。本実施例の構造では、チャネル抵抗が小さいので、ソースSとドレインD間の抵抗全体に占めるソース抵抗の割合が大きくなる。そこでn型ソース領域4の底面をp型埋め込み電圧制御ゲート半導体領域5に接するように形成することにより、ソース抵抗を小さくできる。例えばオン抵抗を57mΩcm2程度に低くすることができる。また、隣り合うp型埋め込み電圧制御ゲート半導体領域5の間隔を更に狭くすることにより、オフ時にp型埋め込み電圧制御ゲート半導体領域5とn型ドリフト層2との接合部から空乏層がドレイン領域1の方に広がる。この空乏層が電圧を分担するので耐圧が向上する。本実施例の場合、耐圧は6.2kVで、オン抵抗は48mΩcm2であった。
【0029】
《第5実施例》
図10は、本発明の第5実施例のSiC静電誘導型トランジスタのセグメントの断面図である。本実施例では、第4実施例の図9における活性領域3の中央部にp型領域9を設けている。その他の構成は第4実施例のものと同じであるので、重複する説明は省略する。このように構成することにより、p型埋め込み電圧制御ゲート半導体領域5及びp型表面電圧制御ゲート半導体領域7とn型活性領域3の接合から活性領域3内に空乏層が広がる。さらにp型領域9とn型活性領域3との接合部からも空乏層が広がるため、ゲート電圧が零又は低い場合でもn型活性領域3をピンチオフにすることができ、SiC静電誘導型トランジスタの高耐圧化が図れる。本実施例の場合、耐圧は5.9kVで、オン抵抗は43mΩcm2であった。
【0030】
《第6実施例》
図11は、本発明の第6実施例のSiC接合型電界効果サイリスタのセグメントの断面図である。図において、アノード領域11として機能する1018から1020atm/cm3の高不純物濃度のp型SiCの基板に、1013から1016atm/cm3の低不純物濃度のn型ドリフト層2を気相成長法等により形成する。ドリフト層2の上に、前記第2実施例の場合と同様に、p型の埋め込み電圧制御ゲート半導体領域5を形成する。同様にしてn型活性領域3、p型ゲートコンタクト半導体領域6、p型表面電圧制御ゲート半導体領域7、16及びn型のカソード領域14を順次形成する。n型のカソード領域14の底部は電圧制御ゲート半導体領域5に接している。カソード領域14にカソード電極25、p型表面電圧制御ゲート半導体領域7、及びp型ゲートコンタクト領域16にゲート電極23を設ける。最後に、アノード領域11にアノード電極24を設ける。
【0031】
ゲートG及びカソードKを0Vとし、アノードAに正の電圧を印加すると、p型埋め込み電圧制御ゲート半導体領域5及びp型表面電圧制御ゲート半導体領域7との間のn型活性領域3にビルトイン電圧に基づく空乏層が広がり、n型活性領域3をピンチオフ状態にする。これにより、順方向電圧に対する耐電圧性が生じる。ゲートG及びカソードKを0Vとし、アノードAに負の電圧を印加すると、p型アノード領域11とドリフト層2との接合部から空乏層が広がり、逆方向電圧に対する耐電圧性が生じる。したがって、本実施例のSiCサイリスタは順方向及び逆方向ともに高耐圧を実現できる。
【0032】
アノードAにビルトイン電圧以上の正の電圧を印加し、ゲートGにカソードKを基準にしてビルトイン電圧以下の正の電圧を印加すると、p型埋め込み電圧制御ゲート半導体領域5とp型表面電圧制御ゲート半導体領域7との間のn型活性領域3内の空乏層の領域が狭くなり、アノードAから、隣り合う両p型埋め込み電圧制御ゲート半導体領域5の間を通り、n型活性領域3、n型カソード領域14を経て、カソードKに至る電流が流れる。この時、p型アノード領域11からn型ドリフト層2内及びn型活性領域3に少数キャリアである正孔が注入されるため、伝導度変調が生じオン抵抗が大幅に低減する。また、n型カソード領域14をp型埋め込み電圧制御ゲート半導体領域5に接触させているため、カソードKとドリフト層2との間のカソード抵抗を小さくでき、大きな電流密度においてもカソード損失を小さくすることができる。カソード抵抗が小さいのでノイズも少ない。耐電圧5.3kVのサイリスタの場合では、電流立ち上がり後のオン抵抗を6mΩcm2以下にすることができた。
【0033】
《第7実施例》
図12は、本発明の第7実施例の、SiCを用いた静電誘導型サイリスタのセグメントの断面図である。本実施例のサイリスタは、第6実施例の図11に示すサイリスタの極性を反転しており、チャネルはp型である。n型表面電圧制御ゲート半導体領域38とn型埋め込み電圧制御ゲート35に挟まれた活性領域33の幅を縮小し、両p型アノード領域31の間の距離を縮めることにより、チャネル抵抗を小さくして、オン電流の飽和を起こさない静電誘導現象が生じるようにしている。本構造では、チャネル抵抗が小さいので、p型アノード領域31の抵抗であるアノード抵抗の、アノードAとカソードK間の抵抗に占める割合が大きくなる。本実施例ではp型アノード領域31の底面がn型埋め込み電圧制御ゲート半導体領域35に接しているので、アノード抵抗を小さくすることができる。本実施例のサイリスタの場合n型カソード領域34からp型ドリフト層32に少数キャリアの電子が注入されるので、p型ドリフト層32やp型活性領域33の抵抗が大幅に低減される。従って相対的にアノード抵抗の比率が大きくなるが、前記のようにアノード抵抗を小さくすることがカソードKとアノードA間の抵抗の低減に寄与する。また、隣り合うn型埋め込み電圧制御ゲート半導体領域35の間隔を狭くすることにより、オフ時にn型埋め込み電圧制御ゲート半導体領域35とp型ドリフト層32との接合部から空乏層がカソードKの方に広がって電圧を分担するので、耐圧が高くなる。
【0034】
本実施例では、p型ドリフト層32とp型活性領域33の不純物濃度を5×1014atm/cm3、厚さをそれぞれ150μmと1.2μmにしている。本実施例のサイリスタの耐圧はゲートGの電圧が0Vのとき、順方向及び逆方向とも15000V以上である。また立ち上がり後のオン抵抗は、ゲート電圧が2.5Vのとき32mΩcm2と非常に小さな値にすることができた。本実施例では、p型基板はその抵抗を低くできないという、現状のSiC技術の問題点にかんがみ、抵抗の低いn型基板を用いている。その結果オン時において、オン電圧を低くくできるという効果が得られる。オン電圧はたとえば、100A/cm2 の電流密度で4.4Vであり極めて低い値になった。
【0035】
《第8実施例》
図13は、本発明の第8実施例の、SiCを用いた接合型電界効果トランジスタのセグメントの断面図である。本実施例のトランジスタは、図1の第1実施例の接合型電界効果トランジスタと同じ構成において、p型表面電圧制御ゲート半導体領域7及びn型ソース領域4の上にソース電極40を設けている。ゲート電極23は、p型の表面電圧制御ゲート半導体領域16の上に形成している。その他の構成は第1実施例のものと同じである。本実施例では、ソース電極40の面積を大きくすることができるので、ソース電極40の抵抗を大幅に低減することができるという特徴がある。
【0036】
《第9実施例》
図14は、本発明の第9実施例の、SiCを用いた静電誘導型トランジスタのセグメントの断面図である。本実施例のトランジスタは、図9の第4実施例の静電誘導型トランジスタの中央部に、p型の第3埋め込み電圧制御ゲート半導体領域10、n型ソース領域44及びソース電極42を設けている。n型ソース領域44の両側には、n型活性領域43が設けられ、その上にそれぞれのゲート電極46が設けられている。各p型埋め込み電圧制御ゲート半導体領域5と、p型第3埋め込み電圧制御ゲート半導体領域10の間隔は約2μmである。この構造にすることにより、全領域に対する、n型活性領域43とソース領域44からなる領域の割合を大きくでき、低損失化が実現できる。本実施例では、耐電圧5.3kVで、オン抵抗が69mΩcm2のトランジスタが得られた。
【0037】
《第10実施例》
図15は、本発明の各実施例を適用したSiC静電誘導型トランジスタと、SiCダイオードを用いて、電力用インバータ装置を構成した例を示す回路図である。6個の静電誘導型トランジスタSW11、SW12、SW21、SW22、SW31、SW32およびダイオードD11、D12、D21、D22、D31、D32により直流を三相交流に変換する。本インバータ装置は、一対の直流入力端子51及び52、並びに三相交流の相数に等しい3個の交流出力端子61、62及び63を備えている。直流入力端子51、52に直流電源を接続し、静電誘導型トランジスタSW11、SW12、SW21、SW22、SW31、SW32をスイッチング動作させることにより、直流電力を交流電力に変換して交流出力端子61、62、63に出力する。直流入力端子51、52間には、直列接続された静電誘導型トランジスタSW11とSW12、SW21とSW22、SW31とSW32の各両端子が接続される。各静電誘導型トランジスタSW11とSW12、SW21とSW22、SW31とSW32の組における2個の静電誘導型トランジスタの接続点から交流出力端子61、62、63がそれぞれ取り出される。
高耐圧インバータ装置に本発明による半導体装置を適用することにより半導体装置を高耐圧化できるので、直流電力が高くても半導体装置の直列数が少なくてすむ。さらに半導体装置は、高耐圧でも低損失である。したがって、高耐圧インバータ装置のコンパクト化、低損失化、低ノイズ化を達成できる。したがって、インバータ装置を用いたシステムの低コスト、高効率化が実現できる。本発明は、インバータ装置以外にも、スイッチング電源、整流器などの電力変換装置に適用できるものである。
【0038】
本発明はさらに多くの適用範囲あるいは派生構造をカバーするものである。
前記各実施例では、SiCを用いた素子の場合のみを例に挙げて述べたが、本発明は、特に、ダイヤモンド、ガリウムナイトライドなどのワイドギャップ半導体材料を用いた半導体素子に有効に適用できる。
前記第1ないし第8実施例では、ドリフト層2がn型の素子の場合について述べたが、ドリフト層2がp型の素子の場合には、他の要素のn型領域をp型領域に、p型領域をn型領域に置き変えることにより、本発明の構成を適用できる。
【0039】
【発明の効果】
以上各実施例について詳細に説明したところから明らかなように、本発明の電圧制御型半導体装置では、薄い活性領域の上面に表面電圧制御ゲート半導体領域を設け、活性領域の下面の中央部に電流通路を有する埋め込み電圧制御ゲート半導体領域を設けている。薄い活性領域の両端部に、表面電圧制御ゲート半導体領域よりもその表面と底面がそれぞれ低位置でかつ端部が同位置になるソース領域を形成することにより、高耐圧、低オン抵抗・低ノイズの電圧制御型半導体装置を実現できる。
また、表面電圧制御ゲート半導体領域を先に形成することにより、セルフアラインによりソース領域を形成でき、量産性がよくなる。
【図面の簡単な説明】
【図1】本発明の第1実施例の接合型電界効果トランジスタの断面図
【図2】図1のII−II断面図
【図3】図2のIII−III断面図
【図4】第1実施例の他の例の接合型電界効果トランジスタの断面図
【図5】本発明の第1実施例の接合型電界効果トランジスタの製造方法の前半の工程を示す断面図
【図6】本発明の第1実施例の接合型電界効果トランジスタの製造方法の後半の工程を示す断面図
【図7】本発明の第2実施例の接合型電界効果トランジスタの断面図
【図8】(a)は本発明の第3実施例の接合型電界効果トランジスタの断面図
(b)は(a)のb−b断面図
【図9】本発明の第4実施例の静電誘導型トランジスタの断面図
【図10】本発明の第5実施例の静電誘導型トランジスタの断面図
【図11】本発明の第6実施例の接合型電界効果サイリスタの断面図
【図12】本発明の第7実施例の静電誘導型サイリスタの断面図
【図13】本発明の第8実施例の接合型電界効果トランジスタの断面図
【図14】本発明の第9実施例の静電誘導型トランジスタの断面図
【図15】本発明の半導体装置を用いた第10実施例の電力用インバータの回路図
【図16】従来の蓄積型電界効果トランジスタACCUFETの断面図
【図17】従来の静電誘導型トランジスタの断面図
【符号の説明】
1 ドレイン領域
2 ドリフト層
3 活性領域
4 ソース領域
5 埋め込み電圧制御ゲート半導体領域
6、16 ゲートコンタクト半導体領域
7 表面電圧制御ゲート半導体領域
8 第2埋め込み電圧制御ゲート半導体領域
9 p型領域
10 第3埋め込み電圧制御ゲート半導体領域
11 アノード領域
14 カソード領域
21 ドレイン電極
22 ソース電極
23 ゲート電極
24 アノード電極
25 カソード電極
31 アノード領域
32 ドリフト層
33 活性領域
34 カソード領域
35 埋め込み電圧制御ゲート半導体領域
36、38 ゲートコンタクト半導体領域
37 表面電圧制御ゲート半導体領域
42 ソース電極
43 n型活性領域
44 ソース領域
46 ゲート電極
51、52 直流入力端子
61、62、63 交流出力端子
SW11、SW12、SW21、SW22、SW31、SW32 静電誘導型トランジスタ
D11、D12、D21、D22、D31、D32 ダイオード
101:ドレイン領域
102:ドリフト層
103:チャネル層
104: ゲート絶縁膜
105: ゲート電極
106: ドレイン電極
107: ソース電極
108: 埋め込み領域
109、110:ゲート領域
112:n型領域
112A:チャネル
A: アノード
D: ドレイン
G: ゲート
K: カソード
S: ソース
[0001]
[Industrial application fields]
The present invention relates to a power semiconductor device that controls a large current, and more particularly to a voltage-controlled semiconductor device having a high withstand voltage.
[0002]
[Prior art]
As a conventional semiconductor device for controlling a large current, a power semiconductor device made of Si (silicon) is used. However, it is difficult to significantly improve the performance due to the limit of the electrical and physical characteristics of Si. ing. Therefore, development of power semiconductor devices using a wide gap semiconductor material, which has superior electrical and physical characteristics compared to Si, has been underway. A typical example of the wide gap semiconductor material is SiC (silicon carbide) having an energy gap of 2.9 to 3.2 eV. A conventional example of a semiconductor device using this SiC is shown in FIGS. FIG. 16 is a cross-sectional view of an SiC storage field effect transistor (ACCUFET), which is disclosed in, for example, the document IEEE Electron Device Letters, Vol. 18, No. 12, December 1997. FIG. 17 is a cross-sectional view of a SiC static induction transistor, which is disclosed in the document Proceedings of IEEE International Symposium on Power Semiconductor Devices and ICs, p.149, 1997.
[0003]
[Problems to be solved by the invention]
The SiC storage type field effect transistor shown in FIG. 16 has an excellent function of being able to turn off the source S and the drain D even when the gate G voltage is zero. However, because of the MOS gate structure, a large amount of leakage current is generated when the gate insulating film 104 is broken with high electric field strength. For this reason, there is a problem that it is impossible to realize a high breakdown voltage utilizing the high dielectric breakdown electric field inherent to SiC, which is a wide gap semiconductor, and the conventional breakdown voltage is only about 1 kV or less.
[0004]
The SiC static induction transistor shown in FIG. 17 cannot be turned off unless a high reverse voltage is applied to the gate G. That is, there is a problem that a high off breakdown voltage cannot be realized with a low reverse voltage. In the example shown in FIG. 17, it is necessary to apply a reverse voltage of 80 V or more to the gate G in order to realize an off breakdown voltage of 5 kV. For this reason, even when the SiC electrostatic induction transistor is not driven, a high voltage for the gate G of about 100 V must be generated, resulting in a problem that the power consumption of the gate circuit increases.
[0005]
Regarding the on-resistance, since the SiC storage field effect transistor shown in FIG. 16 has a MOS gate structure, an incomplete crystal structure exists at the interface between the gate insulating film 104 and the SiCn channel region 103. Therefore, there is a problem that the channel mobility of the channel region 103 serving as a current path cannot be increased and the on-resistance is high. In the SiC static induction transistor shown in FIG. 17, since the channel 112A between the gate regions 109 and 110 serving as a current path exists in the bulk crystal of the n-type drift region 112, the voltage of the gate G is lowered and increased. In order to achieve the withstand voltage, the channel 112A has to be made extremely narrow, resulting in a problem that the on-resistance becomes extremely high.
[0006]
Furthermore, regarding noise, since the SiC storage field effect transistor of FIG. 16 has a MOS gate structure, an incomplete crystal structure exists at the interface between the gate insulating film 104 and the SiCn channel region 103. For this reason, there is a problem that noise is generated due to scattering of electrons at the interface.
In addition, a device constituted by using these transistors has a problem that efficiency is low because the power consumption of the transistors is large, and a cooling facility such as water cooling or air cooling is increased in size.
[0007]
An object of the present invention is to provide a voltage control semiconductor device having a high breakdown voltage, a low on-resistance and a low noise. In particular, it is an object to provide a semiconductor device that can achieve a high breakdown voltage with a gate voltage of zero (normally-off type) or a low voltage, targeting a wide gap semiconductor device. It is another object of the present invention to provide a manufacturing method of a semiconductor device with high mass productivity and a small and highly efficient application device using the semiconductor device.
[0008]
[Means for Solving the Problems]
[0009]
As described above, the surface voltage control gate semiconductor region and the buried voltage control gate semiconductor region above and below the thin active layer are composed of semiconductor regions having the opposite polarity to the active region, and the surface of the source region is the surface voltage. A high breakdown voltage can be realized by configuring the control gate at a position lower than the control gate. In particular, by forming the surface voltage control gate semiconductor region with a wide gap semiconductor material, a high breakdown voltage corresponding to a high breakdown electric field can be realized. By forming the surface of the source region at a position lower than the surface voltage control gate semiconductor region, the contact portion between the source region and the semiconductor region constituting the surface voltage control gate semiconductor region is reduced, and the electric field is reduced. Is alleviated, so that a higher breakdown voltage can be obtained.
[0010]
According to another aspect of the present invention, there is provided a voltage-controlled semiconductor device having a first conductivity type high impurity concentration semiconductor substrate, a low impurity concentration first conductivity type drift layer formed on the semiconductor substrate, Drift layer In both end regions, the drift layer surface Internal area including A buried voltage control gate semiconductor region of the second conductivity type formed in Both Buried voltage control gate semiconductor region Each Including a portion of the top surface of the drift layer Central area The first conductivity type formed on the surface; Thickness from the drift layer Thin active area, said active area On the buried voltage control gate semiconductor region adjacent to both ends of the A source region of the first conductivity type formed; Adjacent to the source region opposite the active region A second conductivity type gate contact semiconductor region formed on the buried voltage control gate semiconductor region, a source electrode formed on the source region, and a second conductivity type surface voltage formed on the surface of the active region. A control gate semiconductor region, the surface voltage control gate semiconductor region, and Said A gate electrode formed in a gate contact semiconductor region; and a drain electrode formed on a surface of the semiconductor substrate opposite to the surface having the drift layer, the source region Is that surface But, Position lower than the surface of the surface voltage control gate semiconductor region And both ends are in the same position. It is characterized by being.
[0011]
Further, the source region at both ends of the thin active region is embedded in the buried voltage control gate semiconductor so that the bottom surface is at a position lower than the bottom surface of the surface voltage control gate semiconductor region and the end portion is at the same position. A low on-resistance can be realized by forming on the region. If a semiconductor region having an impurity concentration similar to that of the active region exists between the source region and the buried voltage control gate semiconductor region or between the end of the source region and the end of the surface voltage control gate semiconductor region Source resistance increases. If the distance between the sources is shortened so that the electrostatic induction phenomenon becomes dominant, the ratio of the source resistance to the resistance of the entire semiconductor device increases, so this effect is great. Further, in a semiconductor device such as a voltage controlled thyristor in which minority carriers are injected, the resistance of the drift region and the active region is greatly reduced by conductivity modulation, so that the ratio of the source resistance to the total resistance of the semiconductor device is large. growing. Therefore, the effect of reducing the semiconductor region by making the bottom surface of the source region low and the end of the source region being the same as the end of the surface voltage control gate is great.
[0012]
According to another aspect of the present invention, there is provided a voltage-controlled semiconductor device including a second conductivity type high impurity concentration semiconductor substrate, a low impurity concentration first conductivity type drift layer formed on the semiconductor substrate, In both end regions of the drift layer In the inner region including the surface of the drift layer A buried voltage control gate semiconductor region of the second conductivity type formed, Both Buried voltage control gate semiconductor region Each A first conductivity type formed on a surface of a central region of the drift layer including a portion of the upper surface; , Thickness is from the drift layer Thin active area, adjacent to both ends of the active area On the buried voltage control gate semiconductor region The formed first conductivity type cathode region and the buried voltage control gate semiconductor region Each A second conductivity type gate contact semiconductor region formed in the vicinity of the end of the cathode region, a cathode electrode formed in contact with the cathode region, and a surface of the active region; A surface voltage control gate semiconductor region of conductivity type 2, a gate electrode formed in the surface voltage control gate semiconductor region, and an anode electrode formed on a surface of the semiconductor substrate opposite to the surface having the drift layer, region Is that surface But, Position lower than the surface of the surface voltage control gate semiconductor region And both ends are in the same position. It is characterized by being.
With this configuration, a low ON resistance and a high breakdown voltage can be obtained.
[0013]
Further, the surface voltage control gate semiconductor region is formed of a semiconductor region having a polarity opposite to that of the active region, and the bottom surface of the cathode region is lower than the bottom surface of the surface voltage control gate semiconductor region and the end portion is at the same position. By doing so, low noise can be realized. In particular, in this configuration, since the junction is formed inside the active region by diffusion during the formation of the surface voltage control gate semiconductor region, the crystal structure becomes uniform and noise can be reduced. In addition, a semiconductor region existing between the cathode region and the buried voltage control gate semiconductor region or between the edge of the surface voltage control gate semiconductor region generates thermal noise, but the bottom surface of the cathode region has a surface voltage control gate. By reducing the semiconductor region by lowering the semiconductor region so that the end is at the same position as the bottom surface of the semiconductor region, a reduction in noise can be realized.
[0014]
According to another aspect of the present invention, there is provided a voltage controlled semiconductor device having a first conductivity type high impurity concentration semiconductor substrate, a low impurity concentration second conductivity type drift layer formed on the semiconductor substrate, Drift layer surface In the internal area containing An embedded voltage control gate semiconductor region of a first conductivity type formed at a central portion with a predetermined interval; Both Buried voltage control gate semiconductor region Each A second conductivity type formed on the surface of the central region of the drift layer including a portion of the upper surface; Thickness from the drift layer A thin active region, an anode region of a second conductivity type formed adjacent to both ends of the active region, and the buried voltage control gate semiconductor region Each A second conductivity type gate contact semiconductor region formed in contact with the anode region, an anode electrode formed in contact with the anode region, and a first electrode formed on the surface of the active region in an end region of the upper surface; A surface voltage control gate semiconductor region of the conductivity type, a gate electrode formed in contact with the surface voltage control gate semiconductor region, and a cathode electrode formed on an opposite surface of the semiconductor substrate having the drift layer, Anode region Is that surface But, Position lower than the surface of the surface voltage control gate semiconductor region And both ends are in the same position. It is characterized by being.
With this configuration, a low ON resistance and a high breakdown voltage can be obtained.
A voltage-controlled semiconductor device according to another aspect of the present invention includes: The surface of the drift layer in the first conductivity type semiconductor substrate of the first conductivity type, the first impurity type drift layer of low impurity concentration formed on the semiconductor substrate, and both end regions of the drift layer A second conductivity type embedded voltage control gate semiconductor region formed in the inner region including the first embedded region and a portion of the upper surface of each of the embedded voltage control gate semiconductor regions. An active region having a thickness less than that of the drift layer, a source region of the first conductivity type formed on the buried voltage control gate semiconductor region adjacent to both ends of the active region, A gate contact semiconductor region of a second conductivity type formed on the buried voltage control gate semiconductor region adjacent to the side opposite to the active region, the source region Source electrode formed, surface voltage control gate semiconductor region of second conductivity type formed on the surface of the active region, gate electrode formed in the surface voltage control gate semiconductor region and the gate contact semiconductor region, respectively, and the semiconductor A drain electrode formed on a surface of the substrate opposite to the surface having the drift layer, and the source region has a surface lower than the surface of the surface voltage control gate semiconductor region, and ends of both Are configured to be in the same position, An active region is interposed between the second-conductivity-type gate contact semiconductor region and the first-conductivity-type source region.
[0015]
The method of manufacturing a voltage controlled semiconductor device according to the present invention includes the step of forming a first impurity type drift layer having a low impurity concentration on a semiconductor substrate having a high impurity concentration of the first conductivity type, In both end regions, the drift layer surface Including inside Forming a buried voltage control gate semiconductor region of a second conductivity type in the region, Both Buried voltage control gate semiconductor region Each A first conductivity type on the surface of the central region of the drift layer. , Thickness is from the drift layer Forming a thin active region, of the active region Interior including surface region Near the edge of Of the first conductivity type Two Forming a source region; Forming a gate contact semiconductor region of a second conductivity type in the vicinity of the outer end portion of the source region in the end region on the upper surface of each of the embedded voltage control gate semiconductor regions; Forming a source electrode in contact with the source region; forming a second conductivity type surface voltage control gate semiconductor region on a surface of the active region; forming a gate electrode in contact with the surface voltage control gate semiconductor region Forming a drain electrode on a surface of the semiconductor substrate opposite to the surface having the drift layer, the source region comprising: Is that surface But, In a position lower than the surface of the surface voltage control gate semiconductor region And so that both ends are in the same position It is characterized by being configured.
Since this manufacturing method uses a semiconductor formation technique, it is excellent in mass productivity, and a semiconductor device can be manufactured at low cost.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS.
[0017]
<< First Example >>
FIG. 1 is a sectional view of a segment of a SiC junction field effect transistor having a withstand voltage of 5 kV according to the first embodiment of the present invention. This segment has a long stripe shape in a direction perpendicular to the paper surface of FIG. By connecting a plurality of these segments in the left-right direction in FIG. 1, the configuration for connecting a plurality of segments constituting a large capacity SiC junction field effect transistor is the same in the second to ninth embodiments. It is. In FIG. 1, a low impurity concentration n-type SiC drift layer 2 having a thickness of about 50 μm is formed on a drain region 1 of high impurity concentration n-type SiC having a thickness of about 350 μm. As shown in FIG. 2, which is a cross-sectional view taken along the line II-II of FIG. The optimum value of the thickness is 0.7 μm, but it may be in the range of 0.3 μm to 3.0 μm. An n-type active region 3 is formed on the upper surface of the buried voltage control gate semiconductor region 5 and on the exposed portion of the drift layer 2, and the optimum thickness is about 0.7 μm. The thickness of the active region 3 may be in the range of 0.2 μm to 3.0 μm. At both ends of the surface region of the active region 3, n-type SiC source regions 4 connected to the source electrode 22 are formed, and the thickness thereof is 0.2 μm. It may be about 5 μm. A p-type surface voltage control gate semiconductor region 7 is formed on the n-type active region 3. Its thickness is about 0.3 μm.
[0018]
The junction surface between the n-type source region 4 and the n-type active region 3 is located closer to the drain region 1, which is lower than the junction surface between the p-type surface voltage control gate semiconductor region 7 and the n-type active region 3. The p-type buried voltage control gate semiconductor region 5 desirably protrudes from the n-type source region 4 to the center by about 1 μm, but it only needs to protrude 0.5 μm or more. The distance between the p-type buried voltage control gate semiconductor regions 5 on both sides is optimally 2 μm, but may be 1 μm to 5 μm. A p-type gate contact semiconductor region 6 is formed in an end region on the p-type buried voltage control gate semiconductor region 5, and the buried voltage control gate semiconductor region 5 and the p-type surface voltage control formed thereon. The gate semiconductor region 16 is connected. Gate contact semiconductor The region 6 may be separated from the source region 4 by a predetermined distance as shown in FIG. 3, or may be in contact with the source region 4 as shown in FIG. Further, one side may be in contact and the other side may be separated. The buried voltage control gate semiconductor region 5 and the gate contact semiconductor The region 6 may have a belt shape that is continuous in the direction perpendicular to the drawing sheet. A gate electrode 23 is provided in the surface voltage control gate semiconductor region 16. A gate electrode 23 is provided in the p-type surface voltage control gate semiconductor region 7 formed on the n-type active region 3 excluding the n-type source region 4. It is desirable to provide a protective layer 70 on the surface. In the present embodiment, the shape of the SiC junction field effect transistor is a stripe shape that is long in the direction perpendicular to the paper surface, but the shape may be, for example, a circle or a rectangle.
[0019]
An example of a method for manufacturing the junction field effect transistor of this example will be described with reference to the cross-sectional views of FIGS.
As shown in FIG. 5A, first, an n-type drift layer 2 having a thickness of about 50 μm is formed on an n-type SiC substrate having a thickness of about 350 μm functioning as the n-type drain region 1 by an epitaxial growth method or the like. Form. Next, as shown in FIG. 5B, the p-type buried voltage control gate semiconductor region 5 is formed by ion implantation of aluminum or the like except for the central portion of the drift layer 2. Further, as shown in FIG. 5C, a thin n-type active region 3 is formed on the central portion of the drift layer 2 and the buried voltage control gate semiconductor region 5. Then, as shown in FIG. 5D, the p-type gate contact semiconductor region 6 reaching the p-type buried voltage control gate semiconductor region 5 is formed at both ends by an aluminum ion implantation method or the like. A thin p-type surface voltage control gate semiconductor region 7 is formed thereon by a thin film formation method such as an epitaxial growth method.
[0020]
Next, a mask is formed on the p-type surface voltage control gate semiconductor region 7 and etched by the photolithography technique, so that the surface voltage control gate semiconductor regions 7 and 16 having a predetermined shape are formed as shown in FIG. Get. By self-alignment using the surface voltage control gate semiconductor regions 7 and 16 as a mask, as shown in FIG. 6B, the n-type source region 4 is formed by an ion implantation method such as nitrogen or a diffusion method. The n-type source region 4 is not necessarily in contact with the p-type gate contact semiconductor region 6. Finally, as shown in FIG. 6C, the gate electrode 23 is formed on the p-type surface voltage control gate semiconductor regions 7 and 16. A source electrode 22 is formed on the n-type source region 4. Further, the drain electrode 21 is formed in the n-type drain region 1 to complete.
[0021]
In the SiC junction field effect transistor of the present embodiment, when the potential of the drain D is higher than the potential of the source S and the potential between the gate G and the source S is 0 V, the p-type buried voltage control gate semiconductor region 5 and the p A depletion layer corresponding to a built-in voltage spreads from the junction between the n-type surface voltage control gate semiconductor region 7 and the n-type active region 3 in contact with these regions, so that the n-type active region 3 can be pinched off. As a result, the current between the source S and the drain D can be cut off and normally off. Since the surface of the n-type source region 4 is formed at a position lower than the surface of the p-type surface voltage control gate semiconductor region 7, the contact portion between the n-type source region 4 and the p-type surface voltage control gate semiconductor region 7 is Less. This connection portion is a portion having a high electric field, but by reducing this, the high electric field portion can be reduced, and a high-breakdown-voltage SiC junction field effect transistor can be realized.
[0022]
The potential of the drain D is made higher than the potential of the source S, and a voltage equal to or lower than the built-in voltage with respect to the source S is applied to the gate G. As a result, the depletion layer in the n-type active region 3 between the p-type buried voltage control gate semiconductor region 5 and the p-type surface voltage control gate semiconductor region 7 becomes narrow. A current flows from the drain between both the p-type buried voltage control gate semiconductor regions 5, flows into the source S through the n-type active region 3. In this embodiment, since the n-type source region 4 is formed in the n-type active region 3 by self-alignment, the end portion of the p-type surface voltage control gate semiconductor region 7 and the end portion of the n-type source region 4 indicated by an arrow J Is different, and there is no n-type semiconductor region between both ends. Thereby, the resistance of the vertical wall surface portion in contact with the n-type active region 3 in the n-type source region 4 is reduced, and the on-resistance is lowered. If the n-type semiconductor region exists, the inventor has found that it becomes a noise source. By eliminating the n-type semiconductor region, the noise can be reduced. Further, the bottom surface of the n-type source region 4 in contact with the n-type active region 3 is positioned lower than the bottom surface of the p-type surface voltage control gate semiconductor region 7. Mold The semiconductor region is thinned, and the on-resistance can be further reduced and noise can be reduced.
[0023]
The breakdown voltage of the junction field effect transistor of this embodiment is about 5.5 kV. The on-resistance is about 75 mΩcm when the gate voltage is 2.5V. 2 And very low value. 10 noise -9 V 2 It was a very low value of / Hz or less. Further, since the gate voltage of the gate G is set to a value equal to or lower than the built-in voltage (about 2.5 V in SiC), only the current due to the capacity of the depletion layer flows through the gate G, and the driving power can be kept low. Even if the transistor is not normally off due to the thickness or impurity concentration of the n-type active region 3, the p-type buried voltage control gate semiconductor region 5, the p-type surface voltage control gate semiconductor region 7, and the n-type active region 3 with a small gate voltage. The depletion layer spreads from the junction. As a result, the n-type active region 3 is pinched off, and a high breakdown voltage can be realized while driving power is kept low.
[0024]
In this embodiment, by forming the n-type source region 4 by self-alignment, there is no n-type semiconductor region between the end of the p-type surface voltage control gate semiconductor region 7 and the end of the n-type source region 4. As a result, low on-resistance and low noise can be achieved simultaneously, and high mass productivity can be obtained. Further, the processes of FIG. 5C and FIG. 5D may be reversed. The manufacturing method can be variously modified without impairing the essence of the present invention.
[0025]
<< Second Embodiment >>
FIG. 7 is a sectional view of a segment of a junction field effect transistor according to the second embodiment of the present invention. In FIG. 7, the junction field effect transistor of the second embodiment is configured such that the n-type source region 4 penetrates the n-type active region 3 and its bottom surface is in contact with the p-type buried voltage control gate semiconductor region 5. ing. Therefore, the n-type active region 3 does not exist between the n-type source region 4 and the p-type buried voltage control gate semiconductor region 5. Since the other configuration is the same as that of the first embodiment, a duplicate description is omitted. If the active region 3 is present between the n-type source region 4 and the p-type buried voltage control gate semiconductor region 5, thermal noise is generated. In this embodiment, however, there is no active region 3 between the two as described above. No noise was generated and further noise reduction was achieved. Further, since the volume of the n-type source region 4 is large, the source resistance is also reduced, and the on-resistance is further reduced. The breakdown voltage of the junction field effect transistor of this example is about 5.3 kV. The on-resistance is about 65 mΩcm when the gate voltage is 2.5V. 2 It was a low value. Noise is also 4 × 10 -Ten V 2 It was an extremely low value of / Hz or less.
[0026]
<< Third embodiment >>
FIG. 8 is a sectional view of a segment of the SiC junction field effect transistor according to the third embodiment of the present invention. In this embodiment, a p-type second buried voltage control gate semiconductor region 8 is provided between both adjacent p-type buried voltage control gate semiconductor regions 5 of the junction field effect transistor of the second embodiment shown in FIG. ing. There may be a plurality of such areas. As shown in the sectional view (b) of FIG. 8A, the second buried voltage control gate semiconductor region 8 is partially connected by the p-type buried gate semiconductor region 5 and the p-type region 8A as shown in the figure. Yes. The other configuration is the same as that of the second embodiment, and thus a duplicate description is omitted. When turned off, a depletion layer extends from the junction between the second buried voltage control gate semiconductor region 8 and the n-type drift layer 2 in the direction of the p-type buried voltage control gate semiconductor region 5 and the drain region 1. Thereby, the breakdown voltage of the SiC junction field effect transistor can be increased. When on, there are a plurality of channels serving as current paths between the second buried voltage control gate semiconductor region 8 and the p-type buried voltage control gate semiconductor region 5, so that the on-resistance decreases. In this embodiment, the breakdown voltage is 6.2 kV and the on-resistance is 78 mΩcm. 2 Met.
[0027]
<< 4th Example >>
FIG. 9 is a sectional view of a segment of a SiC static induction transistor according to the fourth embodiment of the present invention. In this embodiment, the width of the active region 3 sandwiched between the p-type surface voltage control gate semiconductor region 7 and the p-type buried voltage control gate semiconductor region 5 of the junction field effect transistor shown in FIG. 7 of the second embodiment is reduced. To do. As the width of the active region 3 decreases, the width of the segment in the horizontal direction also decreases. Further, the withstand voltage can be improved by narrowing the interval between the two buried voltage control gate semiconductor regions 5 facing each other. Alternatively, the current can be cut off even with a low gate voltage. By reducing the width of the active region 3, the resistance of the active region 3 is reduced.
[0028]
In the junction field effect transistor, when a current flows through the active region 3 when it is turned on, the potential at the center of the active region 3 increases in proportion to the resistance of the region. When the flowing current increases, the potential further increases, and the p-type surface voltage control gate semiconductor region 7 and the p-type buried voltage control gate semiconductor region 5 are reverse-biased. A channel is narrowed and current is saturated. However, if the width of the active region 3 sandwiched between the p-type surface voltage control gate semiconductor region 7 and the p-type buried voltage control gate semiconductor region 5 is reduced and the resistance is reduced as in this embodiment, the central portion of the active region 3 is reduced. Therefore, the depletion layer does not spread to the channel, so that an on-state current saturation does not occur. In the structure of this embodiment, since the channel resistance is small, the ratio of the source resistance to the entire resistance between the source S and the drain D increases. Therefore, by forming the bottom surface of the n-type source region 4 so as to be in contact with the p-type buried voltage control gate semiconductor region 5, the source resistance can be reduced. For example, ON resistance is 57mΩcm 2 Can be as low as possible. Further, by further narrowing the interval between adjacent p-type buried voltage control gate semiconductor regions 5, a depletion layer is formed in the drain region 1 from the junction between the p-type buried voltage control gate semiconductor region 5 and the n-type drift layer 2 when turned off. Spread towards. Since the depletion layer shares the voltage, the breakdown voltage is improved. In this example, the breakdown voltage is 6.2 kV and the on-resistance is 48 mΩcm. 2 Met.
[0029]
<< 5th Example >>
FIG. 10 is a sectional view of a segment of a SiC static induction transistor according to a fifth embodiment of the present invention. In the present embodiment, the p-type region 9 is provided in the central portion of the active region 3 in FIG. 9 of the fourth embodiment. The other configuration is the same as that of the fourth embodiment, and a duplicate description is omitted. With this configuration, a depletion layer spreads in the active region 3 from the junction of the p-type buried voltage control gate semiconductor region 5 and the p-type surface voltage control gate semiconductor region 7 and the n-type active region 3. Further, since the depletion layer also spreads from the junction between the p-type region 9 and the n-type active region 3, the n-type active region 3 can be pinched off even when the gate voltage is zero or low. High breakdown voltage can be achieved. In this example, the breakdown voltage is 5.9 kV and the on-resistance is 43 mΩcm. 2 Met.
[0030]
<< Sixth embodiment >>
FIG. 11 is a sectional view of a segment of a SiC junction field effect thyristor according to a sixth embodiment of the present invention. In the figure, 10 functions as the anode region 11. 18 To 10 20 atm / cm Three 10 p of high impurity concentration p-type SiC substrate 13 To 10 16 An n-type drift layer 2 having a low impurity concentration of atm / cm 3 is formed by a vapor phase growth method or the like. A p-type buried voltage control gate semiconductor region 5 is formed on the drift layer 2 in the same manner as in the second embodiment. Similarly, the n-type active region 3, the p-type gate contact semiconductor region 6, the p-type surface voltage control gate semiconductor regions 7 and 16, and the n-type cathode region 14 are sequentially formed. The bottom of the n-type cathode region 14 is in contact with the voltage control gate semiconductor region 5. The cathode electrode 25 is provided in the cathode region 14, the p-type surface voltage control gate semiconductor region 7, and the gate electrode 23 is provided in the p-type gate contact region 16. Finally, an anode electrode 24 is provided in the anode region 11.
[0031]
When the gate G and the cathode K are set to 0 V and a positive voltage is applied to the anode A, the built-in voltage is applied to the n-type active region 3 between the p-type buried voltage control gate semiconductor region 5 and the p-type surface voltage control gate semiconductor region 7. The depletion layer based on swells and the n-type active region 3 is pinched off. Thereby, the withstand voltage property with respect to the forward voltage occurs. When the gate G and the cathode K are set to 0 V and a negative voltage is applied to the anode A, a depletion layer spreads from the junction between the p-type anode region 11 and the drift layer 2 and voltage resistance against a reverse voltage is generated. Therefore, the SiC thyristor of the present embodiment can achieve a high breakdown voltage in both the forward direction and the reverse direction.
[0032]
When a positive voltage higher than the built-in voltage is applied to the anode A and a positive voltage lower than the built-in voltage is applied to the gate G with reference to the cathode K, the p-type embedded voltage control gate semiconductor region 5 and the p-type surface voltage control gate The region of the depletion layer in the n-type active region 3 between the semiconductor region 7 becomes narrower, passes from the anode A between both adjacent p-type buried voltage control gate semiconductor regions 5, and passes through the n-type active region 3, n A current that reaches the cathode K flows through the mold cathode region 14. At this time, since holes, which are minority carriers, are injected from the p-type anode region 11 into the n-type drift layer 2 and the n-type active region 3, conductivity modulation occurs and the on-resistance is greatly reduced. Further, since the n-type cathode region 14 is in contact with the p-type buried voltage control gate semiconductor region 5, the cathode resistance between the cathode K and the drift layer 2 can be reduced, and the cathode loss is reduced even at a large current density. be able to. Low noise due to low cathode resistance. In the case of a thyristor with a withstand voltage of 5.3 kV, the on-resistance after the current rise is 6 mΩcm. 2 I was able to:
[0033]
<< Seventh embodiment >>
FIG. 12 is a sectional view of a segment of an electrostatic induction thyristor using SiC according to the seventh embodiment of the present invention. The thyristor of this embodiment has the polarity of the thyristor shown in FIG. 11 of the sixth embodiment reversed, and the channel is p-type. By reducing the width of the active region 33 sandwiched between the n-type surface voltage control gate semiconductor region 38 and the n-type buried voltage control gate 35 and reducing the distance between the two p-type anode regions 31, the channel resistance is reduced. Thus, an electrostatic induction phenomenon that does not cause saturation of the on-current occurs. In this structure, since the channel resistance is small, the ratio of the anode resistance, which is the resistance of the p-type anode region 31, to the resistance between the anode A and the cathode K increases. In this embodiment, since the bottom surface of the p-type anode region 31 is in contact with the n-type buried voltage control gate semiconductor region 35, the anode resistance can be reduced. In the case of the thyristor of this embodiment, since minority carrier electrons are injected from the n-type cathode region 34 into the p-type drift layer 32, the resistance of the p-type drift layer 32 and the p-type active region 33 is greatly reduced. Therefore, the ratio of the anode resistance is relatively increased, but reducing the anode resistance as described above contributes to reducing the resistance between the cathode K and the anode A. Further, by reducing the interval between the adjacent n-type buried voltage control gate semiconductor regions 35, the depletion layer is located closer to the cathode K from the junction between the n-type buried voltage control gate semiconductor region 35 and the p-type drift layer 32 when turned off. Since the voltage is spread and shared, the withstand voltage is increased.
[0034]
In the present embodiment, the impurity concentration of the p-type drift layer 32 and the p-type active region 33 is 5 × 10 5. 14 atm / cm Three The thicknesses are 150 μm and 1.2 μm, respectively. The withstand voltage of the thyristor of this embodiment is 15000 V or more in both the forward and reverse directions when the voltage of the gate G is 0 V. The on-resistance after the rise is 32 mΩcm when the gate voltage is 2.5V. 2 And could be very small value. In this embodiment, an n-type substrate having a low resistance is used in view of the problem of the current SiC technology that the resistance of the p-type substrate cannot be lowered. As a result, there is an effect that the on-voltage can be lowered at the on-time. ON voltage is, for example, 100 A / cm 2 The current density was 4.4 V, which was a very low value.
[0035]
<< Eighth embodiment >>
FIG. 13 is a sectional view of a segment of a junction field effect transistor using SiC according to the eighth embodiment of the present invention. In the transistor of this embodiment, the source electrode 40 is provided on the p-type surface voltage control gate semiconductor region 7 and the n-type source region 4 in the same configuration as the junction field effect transistor of the first embodiment of FIG. . The gate electrode 23 is formed on the p-type surface voltage control gate semiconductor region 16. Other configurations are the same as those of the first embodiment. In this embodiment, since the area of the source electrode 40 can be increased, the resistance of the source electrode 40 can be greatly reduced.
[0036]
<< Ninth embodiment >>
FIG. 14 is a cross-sectional view of a segment of a static induction transistor using SiC according to the ninth embodiment of the present invention. In the transistor of this embodiment, a p-type third embedded voltage control gate semiconductor region 10, an n-type source region 44, and a source electrode 42 are provided in the central portion of the electrostatic induction transistor of the fourth embodiment of FIG. Yes. On both sides of the n-type source region 44, n-type active regions 43 are provided, and respective gate electrodes 46 are provided thereon. The distance between each p-type buried voltage control gate semiconductor region 5 and the p-type third buried voltage control gate semiconductor region 10 is about 2 μm. By adopting this structure, the ratio of the region composed of the n-type active region 43 and the source region 44 to the entire region can be increased, and a reduction in loss can be realized. In this example, the withstand voltage is 5.3 kV and the on-resistance is 69 mΩcm. 2 A transistor was obtained.
[0037]
<< Tenth embodiment >>
FIG. 15 is a circuit diagram showing an example in which a power inverter device is configured using SiC static induction transistors and SiC diodes to which the embodiments of the present invention are applied. Six electrostatic induction transistors SW11, SW12, SW21, SW22, SW31, SW32 and diodes D11, D12, D21, D22, D31, D32 convert direct current into three-phase alternating current. This inverter device includes a pair of DC input terminals 51 and 52 and three AC output terminals 61, 62 and 63 equal to the number of three-phase AC phases. A direct current power source is connected to the direct current input terminals 51 and 52, and the electrostatic induction type transistors SW11, SW12, SW21, SW22, SW31, and SW32 are switched to convert the direct current power into alternating current power and the alternating current output terminal 61, 62 and 63. Between the DC input terminals 51 and 52, both terminals of the electrostatic induction transistors SW11 and SW12, SW21 and SW22, and SW31 and SW32 connected in series are connected. AC output terminals 61, 62, and 63 are taken out from the connection points of the two electrostatic induction transistors in each of the electrostatic induction transistors SW11 and SW12, SW21 and SW22, and SW31 and SW32.
By applying the semiconductor device according to the present invention to the high withstand voltage inverter device, the semiconductor device can have a high withstand voltage, so that the number of semiconductor devices in series can be reduced even if the DC power is high. Further, the semiconductor device has a low loss even at a high breakdown voltage. Therefore, the high voltage inverter device can be made compact, low loss, and low noise. Therefore, low cost and high efficiency of the system using the inverter device can be realized. The present invention can be applied to power conversion devices such as switching power supplies and rectifiers in addition to inverter devices.
[0038]
The present invention covers more applications or derivative structures.
In each of the above-described embodiments, only the case of an element using SiC has been described as an example. However, the present invention can be effectively applied to a semiconductor element using a wide gap semiconductor material such as diamond or gallium nitride. .
In the first to eighth embodiments, the case where the drift layer 2 is an n-type element has been described. However, when the drift layer 2 is a p-type element, the n-type region of another element is changed to a p-type region. The configuration of the present invention can be applied by replacing the p-type region with the n-type region.
[0039]
【The invention's effect】
As is clear from the detailed description of each of the embodiments described above, in the voltage control type semiconductor device of the present invention, the surface voltage control gate semiconductor region is provided on the upper surface of the thin active region, and the current is applied to the central portion of the lower surface of the active region. A buried voltage control gate semiconductor region having a passage is provided. By forming source regions at both ends of the thin active region, the surface and bottom surfaces of which are lower than the surface voltage control gate semiconductor region and the ends are at the same position, high withstand voltage, low on-resistance and low noise The voltage controlled semiconductor device can be realized.
Further, by forming the surface voltage control gate semiconductor region first, the source region can be formed by self-alignment, and mass productivity is improved.
[Brief description of the drawings]
FIG. 1 is a sectional view of a junction field effect transistor according to a first embodiment of the present invention.
2 is a sectional view taken along line II-II in FIG.
3 is a sectional view taken along line III-III in FIG.
FIG. 4 is a cross-sectional view of another example of a junction field effect transistor according to the first embodiment.
FIG. 5 is a cross-sectional view showing the first half of the method of manufacturing the junction field effect transistor according to the first embodiment of the present invention.
FIG. 6 is a cross-sectional view showing the latter half of the method of manufacturing the junction field effect transistor according to the first embodiment of the present invention.
FIG. 7 is a sectional view of a junction field effect transistor according to a second embodiment of the present invention.
FIG. 8A is a sectional view of a junction field effect transistor according to a third embodiment of the present invention.
(B) is bb sectional drawing of (a).
FIG. 9 is a sectional view of a static induction transistor according to a fourth embodiment of the present invention.
FIG. 10 is a sectional view of a static induction transistor according to a fifth embodiment of the present invention.
FIG. 11 is a sectional view of a junction field effect thyristor according to a sixth embodiment of the present invention.
FIG. 12 is a sectional view of an electrostatic induction thyristor according to a seventh embodiment of the present invention.
FIG. 13 is a sectional view of a junction field effect transistor according to an eighth embodiment of the present invention.
FIG. 14 is a sectional view of an electrostatic induction transistor according to a ninth embodiment of the present invention.
FIG. 15 is a circuit diagram of a power inverter according to a tenth embodiment using a semiconductor device of the present invention.
FIG. 16 is a cross-sectional view of a conventional storage-type field effect transistor ACCUFET
FIG. 17 is a sectional view of a conventional electrostatic induction transistor.
[Explanation of symbols]
1 Drain region
2 Drift layer
3 Active region
4 Source area
5 Embedded voltage control gate semiconductor region
6, 16 Gate contact semiconductor region
7 Surface voltage control gate semiconductor region
8 Second embedded voltage control gate semiconductor region
9 p-type region
10 Third buried voltage control gate semiconductor region
11 Anode region
14 Cathode region
21 Drain electrode
22 Source electrode
23 Gate electrode
24 Anode electrode
25 Cathode electrode
31 Anode region
32 Drift layer
33 Active region
34 Cathode region
35 Embedded voltage control gate semiconductor region
36, 38 Gate contact semiconductor region
37 Surface voltage control gate semiconductor region
42 Source electrode
43 n-type active region
44 Source area
46 Gate electrode
51, 52 DC input terminal
61, 62, 63 AC output terminal
SW11, SW12, SW21, SW22, SW31, SW32 Static induction transistor
D11, D12, D21, D22, D31, D32 Diode
101: Drain region
102: Drift layer
103: Channel layer
104: Gate insulating film
105: Gate electrode
106: Drain electrode
107: Source electrode
108: Embedded area
109, 110: Gate region
112: n-type region
112A: Channel
A: Anode
D: Drain
G: Gate
K: Cathode
S: Source

Claims (10)

第1の導電型の高不純物濃度の半導体基板、
前記半導体基板の上に形成した、低不純物濃度の第1の導電型のドリフト層、
前記ドリフト層の両端部領域において、前記ドリフト層の表面を含む内部領域に形成した、第2の導電型の埋め込み電圧制御ゲート半導体領域、
前記両埋め込み電圧制御ゲート半導体領域の各々の上面の一部分を含み、前記ドリフト層の中央領域の表面に形成した第1の導電型の、厚みが前記ドリフト層より薄い活性領域、
前記活性領域の両端部に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した第1の導電型のソース領域、
前記ソース領域の、前記活性領域とは反対の側に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した、第2の導電型のゲートコンタクト半導体領域、
前記ソース領域に形成したソース電極、
前記活性領域の表面に形成した、第2の導電型の表面電圧制御ゲート半導体領域、
前記表面電圧制御ゲート半導体領域および前記ゲートコンタクト半導体領域にそれぞれ形成したゲート電極、
及び
前記半導体基板の、前記ドリフト層を有する面の反対面に形成したドレイン電極 を備え、
前記ソース領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるように構成されていることを特徴とする電圧制御型半導体装置。
A semiconductor substrate having a high impurity concentration of the first conductivity type;
A drift layer of a first conductivity type having a low impurity concentration formed on the semiconductor substrate;
A buried voltage control gate semiconductor region of a second conductivity type formed in an inner region including the surface of the drift layer in both end regions of the drift layer ;
An active region of a first conductivity type that is formed on a surface of a central region of the drift layer and includes a portion of an upper surface of each of the buried voltage control gate semiconductor regions, the thickness of the active region being thinner than the drift layer ;
A source region of a first conductivity type formed on the buried voltage control gate semiconductor region adjacent to both ends of the active region;
A gate contact semiconductor region of a second conductivity type formed on the buried voltage control gate semiconductor region adjacent to the side of the source region opposite to the active region;
A source electrode formed in the source region;
A surface voltage control gate semiconductor region of a second conductivity type formed on the surface of the active region;
The surface voltage controlled gate semiconductor region and a gate electrode formed respectively on the gate contact semiconductor region,
And a drain electrode formed on the surface of the semiconductor substrate opposite to the surface having the drift layer,
The source region is configured such that the surface thereof is positioned lower than the surface of the surface voltage control gate semiconductor region , and the end portions of both are at the same position. apparatus.
前記活性領域の中央部に少なくとも1つの第2の導電型の半導体領域を設けたことを特徴とする請求項記載の電圧制御型半導体装置。At least one of the second conductivity type voltage-controlled semiconductor device according to claim 1, wherein the provided semiconductor region of the central portion of the active region. 第2の導電型の高不純物濃度の半導体基板、
前記半導体基板の上に形成した、低不純物濃度の第1の導電型のドリフト層、
前記ドリフト層の両端部領域において、前記ドリフト層の表面を含む内部領域に形成した、第2の導電型の埋め込み電圧制御ゲート半導体領域、
前記埋め込み電圧制御ゲート半導体領域の各々の上面の一部分を含み、前記ドリフト層の中央領域の表面に形成した第1の導電型の、厚みが前記ドリフト層より薄い活性領域、
前記活性領域の両端部に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した第1の導電型のカソード領域、
前記埋め込み電圧制御ゲート半導体領域の各々の上面の端部領域において、前記カソード領域の端部近傍に形成した、第2の導電型のゲートコンタクト半導体領域、
前記カソード領域に接して形成したカソード電極、
前記活性領域の表面に形成した、第2の導電型の表面電圧制御ゲート半導体領域、
前記表面電圧制御ゲート半導体領域に形成したゲート電極、及び
前記半導体基板の、前記ドリフト層を有する面の反対面に形成したアノード電極
を備え、
前記カソード領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるよう構成されていることを特徴とする電圧制御型半導体装置。
A semiconductor substrate having a high impurity concentration of the second conductivity type;
A drift layer of a first conductivity type having a low impurity concentration formed on the semiconductor substrate;
Oite in the area of both end portions of the drift layer was formed on the inner region including a surface of said drift layer, a second conductivity type buried voltage controlled gate semiconductor region,
Wherein wherein a portion of each of the upper surface of both buried voltage controlled gate semiconductor region, a first conductivity type, a thin active region than the thickness said drift layer formed on the surface of the central region of the drift layer,
A cathode region of a first conductivity type formed on the buried voltage control gate semiconductor region adjacent to both ends of the active region;
A gate contact semiconductor region of a second conductivity type formed in the vicinity of the end of the cathode region in the end region of the upper surface of each of the embedded voltage control gate semiconductor regions;
A cathode electrode formed in contact with the cathode region;
A surface voltage control gate semiconductor region of a second conductivity type formed on the surface of the active region;
A gate electrode formed in the surface voltage control gate semiconductor region, and an anode electrode formed on an opposite surface of the semiconductor substrate having the drift layer,
The cathode region is configured such that the surface thereof is at a position lower than the surface of the surface voltage control gate semiconductor region , and the end portions of both are at the same position. .
第1の導電型の高不純物濃度の半導体基板、
前記半導体基板の上に形成した、低不純物濃度の第2の導電型のドリフト層、
前記ドリフト層の表面を含む内部領域において、中央部に所定の間隔を設けて形成した、第1の導電型の埋め込み電圧制御ゲート半導体領域、
埋め込み電圧制御ゲート半導体領域の各々の上面の一部分を含み前記ドリフト層の中央領域の表面に形成した第2の導電型の、厚みが前記ドリフト層より薄い活性領域、
前記活性領域の両端部に隣接して形成した第2の導電型のアノード領域、
前記埋め込み電圧制御ゲート半導体領域の各々の上面の端部領域において、前記アノード領域に接するように形成した、第2の導電型のゲートコンタクト半導体領域、
前記アノード領域に接して形成したアノード電極、
前記活性領域の表面に形成した、第1の導電型の表面電圧制御ゲート半導体領域、
前記表面電圧制御ゲート半導体領域に接して形成したゲート電極、及び
前記半導体基板の、前記ドリフト層を有する面の反対面に形成したカソード電極
を備え、
前記アノード領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるように構成されていることを特徴とする電圧制御型半導体装置。
A semiconductor substrate having a high impurity concentration of the first conductivity type;
A drift layer of a second conductivity type having a low impurity concentration formed on the semiconductor substrate;
In the internal region including the surface of the drift layer, a buried voltage control gate semiconductor region of a first conductivity type formed at a central portion with a predetermined interval;
Both buried voltage controlled gate semiconductor region a second conductivity type, thin active region than the thickness said drift layer comprises a portion of the top surface of each is formed on the surface of the central region of the drift layer,
An anode region of a second conductivity type formed adjacent to both ends of the active region;
A gate contact semiconductor region of a second conductivity type formed so as to be in contact with the anode region in an end region on the upper surface of each of the embedded voltage control gate semiconductor regions;
An anode electrode formed in contact with the anode region;
A surface voltage control gate semiconductor region of a first conductivity type formed on a surface of the active region;
A gate electrode formed in contact with the surface voltage control gate semiconductor region, and a cathode electrode formed on the surface of the semiconductor substrate opposite to the surface having the drift layer,
The anode region is configured such that the surface thereof is positioned lower than the surface of the surface voltage control gate semiconductor region , and the end portions of both are at the same position. apparatus.
第1の導電型の高不純物濃度の半導体基板、
前記半導体基板の上に形成した、低不純物濃度の第1の導電型のドリフト層、
前記ドリフト層の両端部領域において、前記ドリフト層の表面を含む内部領域に形成した、第2の導電型の埋め込み電圧制御ゲート半導体領域、
前記両埋め込み電圧制御ゲート半導体領域の各々の上面の一部分を含み、前記ドリフト層の中央領域の表面に形成した第1の導電型の、厚みが前記ドリフト層より薄い活性領域、
前記活性領域の両端部に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した第1の導電型のソース領域、
前記ソース領域の、前記活性領域とは反対の側に隣接して前記埋め込み電圧制御ゲート半導体領域の上に形成した、第2の導電型のゲートコンタクト半導体領域、
前記ソース領域に形成したソース電極、
前記活性領域の表面に形成した、第2の導電型の表面電圧制御ゲート半導体領域、
前記表面電圧制御ゲート半導体領域および前記ゲートコンタクト半導体領域にそれぞれ形成したゲート電極、
及び
前記半導体基板の、前記ドリフト層を有する面の反対面に形成したドレイン電極
を備え、
前記ソース領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるように構成されており、
前記第2の導電型のゲートコンタクト半導体領域と第1の導電型のソース領域との間に、活性領域が介在することを特徴とする電圧制御型半導体装置。
A semiconductor substrate having a high impurity concentration of the first conductivity type;
A drift layer of a first conductivity type having a low impurity concentration formed on the semiconductor substrate;
A buried voltage control gate semiconductor region of a second conductivity type formed in an inner region including the surface of the drift layer in both end regions of the drift layer;
An active region of a first conductivity type that is formed on a surface of a central region of the drift layer and includes a portion of an upper surface of each of the buried voltage control gate semiconductor regions, the thickness of the active region being thinner than the drift layer;
A source region of a first conductivity type formed on the buried voltage control gate semiconductor region adjacent to both ends of the active region;
A gate contact semiconductor region of a second conductivity type formed on the buried voltage control gate semiconductor region adjacent to the side of the source region opposite to the active region;
A source electrode formed in the source region;
A surface voltage control gate semiconductor region of a second conductivity type formed on the surface of the active region;
A gate electrode formed in each of the surface voltage control gate semiconductor region and the gate contact semiconductor region;
as well as
A drain electrode formed on the surface of the semiconductor substrate opposite to the surface having the drift layer
With
The source region is configured such that the surface thereof is at a position lower than the surface of the surface voltage control gate semiconductor region, and both ends thereof are at the same position,
An active region is interposed between the second-conductivity-type gate contact semiconductor region and the first-conductivity-type source region.
前記ドリフト層の表面を含む内部領域において島状に形成した第2の導電型の埋め込み電圧制御ゲート半導体領域、及び前記埋め込み電圧制御ゲート半導体領域の上の前記活性領域内に形成されたゲートコンタクト半導体領域を有する請求項からのいずれかに記載の電圧制御型半導体装置。In the internal region including the surface of the drift layer, a second conductivity type buried voltage controlled gate semiconductor region, and the active gate contact formed in the region above the buried voltage controlled gate semiconductor region formed in an island shape voltage-controlled semiconductor device according to claim 1 having a semiconductor region 4. 前記ゲートコンタクト半導体領域を、前記ソース領域に接するように形成した請求項2に記載の電圧制御型半導体装置。  The voltage controlled semiconductor device according to claim 2, wherein the gate contact semiconductor region is formed so as to be in contact with the source region. 前記ゲートコンタクト半導体領域を、前記ソース領域から所定距離離して形成した請求項からのいずれかに記載の電圧制御型半導体装置。Wherein the gate contact semiconductor region, a voltage-controlled semiconductor device according to any one of the four claims 1 formed apart a predetermined distance from said source region. 第1の導電型の高不純物濃度の半導体基板の上に低不純物濃度の第1の導電型のドリフト層を形成するステップ、
前記ドリフト層の両端部領域において、前記ドリフト層の表面を含む内部領域に第2の導電型の埋め込み電圧制御ゲート半導体領域を形成するステップ、
前記埋め込み電圧制御ゲート半導体領域の各々の上面を含み、前記ドリフト層の中央領域の表面に第1の導電型の、厚みが前記ドリフト層より薄い活性領域を形成するステップ、
前記活性領域の表面を含む内部領域の端部近傍に第1の導電型の2つのソース領域を形成するステップ、
前記埋め込み電圧制御ゲート半導体領域の各々の上面の端部領域において、前記ソース領域の外側の端部近傍に第2の導電型のゲートコンタクト半導体領域を形成するステップ、
前記ソース領域に接してソース電極を形成するステップ、
前記活性領域の表面に、第2の導電型の表面電圧制御ゲート半導体領域を形成するステップ、
前記表面電圧制御ゲート半導体領域に接してゲート電極を形成するステップ、及び
前記半導体基板の、前記ドリフト層を有する面の反対面にドレイン電極を形成するステップ、
を備え、
前記ソース領域は、その表面が、前記表面電圧制御ゲート半導体領域の表面よりも低い位置になり、かつ両者の端部が同位置になるように構成されることを特徴とする電圧制御型半導体装置の製造方法。
Forming a low impurity concentration first conductivity type drift layer on a first conductivity type high impurity concentration semiconductor substrate;
Forming an embedded voltage control gate semiconductor region of a second conductivity type in an inner region including a surface of the drift layer in both end regions of the drift layer ;
Wherein each include a top surface of the two embedded voltage controlled gate semiconductor region, a first conductivity type, the step thickness to form a thin active region from the drift layer on the surface of the central region of the drift layer,
Forming two source regions of the first conductivity type in the vicinity of the end of the inner region including the surface of the active region;
Forming a gate contact semiconductor region of a second conductivity type in the vicinity of the outer end portion of the source region in the end region on the upper surface of each of the embedded voltage control gate semiconductor regions;
Forming a source electrode in contact with the source region;
Forming a surface voltage control gate semiconductor region of a second conductivity type on the surface of the active region;
Forming a gate electrode in contact with the surface voltage control gate semiconductor region; and forming a drain electrode on a surface of the semiconductor substrate opposite to the surface having the drift layer;
With
The voltage controlled semiconductor device , wherein the source region is configured such that the surface thereof is at a position lower than the surface of the surface voltage control gate semiconductor region , and the end portions of both are at the same position. Manufacturing method.
直流電源の両極間に、2個の半導体装置を直列に接続し、かつ各半導体装置に逆並列にダイオードを接続した直列接続体を、少なくとも3個接続した電力変換装置であって、
前記半導体装置に、請求項1から8のいずれかに記載の電圧制御型半導体装置を用いたことを特徴とする電力変換装置。
A power conversion device in which two semiconductor devices are connected in series between both poles of a DC power source, and at least three series connection bodies in which diodes are connected in antiparallel to each semiconductor device,
Wherein the semiconductor device, power conversion device characterized by using a voltage-controlled semiconductor device according to any one of claims 1 to 8.
JP05627299A 1999-03-03 1999-03-03 Voltage-controlled semiconductor device, manufacturing method thereof, and power conversion device using the same Expired - Fee Related JP3706267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05627299A JP3706267B2 (en) 1999-03-03 1999-03-03 Voltage-controlled semiconductor device, manufacturing method thereof, and power conversion device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05627299A JP3706267B2 (en) 1999-03-03 1999-03-03 Voltage-controlled semiconductor device, manufacturing method thereof, and power conversion device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005114018A Division JP4339813B2 (en) 2005-04-11 2005-04-11 Voltage-controlled semiconductor device

Publications (2)

Publication Number Publication Date
JP2000252475A JP2000252475A (en) 2000-09-14
JP3706267B2 true JP3706267B2 (en) 2005-10-12

Family

ID=13022464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05627299A Expired - Fee Related JP3706267B2 (en) 1999-03-03 1999-03-03 Voltage-controlled semiconductor device, manufacturing method thereof, and power conversion device using the same

Country Status (1)

Country Link
JP (1) JP3706267B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848591B2 (en) * 2001-03-30 2011-12-28 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
JP4797274B2 (en) * 2001-04-18 2011-10-19 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
JP4934903B2 (en) * 2001-04-26 2012-05-23 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
JP4848595B2 (en) * 2001-05-16 2011-12-28 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
DE10213534B4 (en) * 2002-03-26 2007-06-21 Siced Electronics Development Gmbh & Co. Kg Semiconductor structure with switching element and edge element
JP4045893B2 (en) * 2002-08-12 2008-02-13 住友電気工業株式会社 Vertical junction field effect transistor
JP4122880B2 (en) 2002-07-24 2008-07-23 住友電気工業株式会社 Vertical junction field effect transistor
JP3971316B2 (en) * 2003-01-31 2007-09-05 関西電力株式会社 Instantaneous large power supply device
JP4265234B2 (en) 2003-02-13 2009-05-20 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
JP4974454B2 (en) * 2004-11-15 2012-07-11 株式会社豊田中央研究所 Semiconductor device
JP2007115861A (en) * 2005-10-20 2007-05-10 Toyota Motor Corp Hetero junction transistor
JP4571957B2 (en) * 2007-03-29 2010-10-27 関西電力株式会社 Power converter
JP2013201190A (en) * 2012-03-23 2013-10-03 Toshiba Corp Junction field-effect transistor and method of manufacturing the same
JP6093601B2 (en) * 2013-03-08 2017-03-08 日本碍子株式会社 Semiconductor device
US9653618B1 (en) 2015-10-21 2017-05-16 United Silicon Carbide, Inc. Planar triple-implanted JFET
US10446695B2 (en) 2015-10-21 2019-10-15 United Silicone Carbide, Inc. Planar multi-implanted JFET
CN107785367B (en) * 2016-08-31 2021-10-15 无锡华润上华科技有限公司 Device integrated with depletion type junction field effect transistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000252475A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
JP6964950B2 (en) Semiconductor devices and power converters
US6380569B1 (en) High power unipolar FET switch
JP3706267B2 (en) Voltage-controlled semiconductor device, manufacturing method thereof, and power conversion device using the same
JP6678810B2 (en) Silicon carbide semiconductor device and power converter
US7719080B2 (en) Semiconductor device with a conduction enhancement layer
US6157049A (en) Electronic device, in particular for switching electric currents, for high reverse voltages and with low on-state losses
US7126169B2 (en) Semiconductor element
US6566726B1 (en) Semiconductor device and power converter using the same
WO2006036236A1 (en) High voltage fet with conductivity modulation
JP4488935B2 (en) High voltage semiconductor device
WO2019124378A1 (en) Silicon carbide semiconductor device and power converter
US11355629B2 (en) Semiconductor device and power converter
GB2572442A (en) Power semiconductor device with a double gate structure
US7470960B1 (en) High-voltage power semiconductor device with body regions of alternating conductivity and decreasing thickness
JP3284120B2 (en) Static induction transistor
EP1115159A1 (en) Static induction transistor and its manufacturing method, and power converter
US6906356B1 (en) High voltage switch
JP4339813B2 (en) Voltage-controlled semiconductor device
JP3616263B2 (en) Static induction transistor
JP3825987B2 (en) Semiconductor device
JP2000114518A (en) Semiconductor device
JP2006279064A (en) Method of manufacturing semiconductor device
JP2000200791A (en) Voltage driven bipolar semiconductor device
JP3812379B2 (en) MOS type semiconductor device
CN115050806A (en) Silicon carbide-metal oxide semiconductor field effect transistor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees