JP3703013B2 - 干渉計光回路及びその製造方法 - Google Patents

干渉計光回路及びその製造方法 Download PDF

Info

Publication number
JP3703013B2
JP3703013B2 JP2001017943A JP2001017943A JP3703013B2 JP 3703013 B2 JP3703013 B2 JP 3703013B2 JP 2001017943 A JP2001017943 A JP 2001017943A JP 2001017943 A JP2001017943 A JP 2001017943A JP 3703013 B2 JP3703013 B2 JP 3703013B2
Authority
JP
Japan
Prior art keywords
optical
heat treatment
interferometer
difference
treatment region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001017943A
Other languages
English (en)
Other versions
JP2002221630A (ja
Inventor
隆司 郷
淳 阿部
靖之 井上
隆志 才田
将之 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001017943A priority Critical patent/JP3703013B2/ja
Priority to US10/054,618 priority patent/US6823094B2/en
Priority to EP07003547A priority patent/EP1806557A3/en
Priority to EP07021837.5A priority patent/EP1936322B1/en
Priority to EP02250526A priority patent/EP1227297B1/en
Priority to DE60223735T priority patent/DE60223735T2/de
Publication of JP2002221630A publication Critical patent/JP2002221630A/ja
Application granted granted Critical
Publication of JP3703013B2 publication Critical patent/JP3703013B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、干渉計光回路及びその製造方法に関するものであり、光通信分野で用いる平面光波回路型におけるTE偏光とTM偏光に対する光路長(位相)を独立に調整できるように工夫したものである。
【0002】
【従来の技術】
基板上に作製される単一モード導波路を用いた光回路は集積性・量産性に優れると云った特徴を持ち、経済的な光ネットワークノードを構築する上で必要不可欠な部品である。特にSiO2 を主成分とした石英系導波路を用いた光回路は、低損失であり、石英系光ファイバーとの親和性に優れ、また、長期安定性に優れるなどの特徴を持っており、アレイ導波路格子合分波器に代表される数多くの光部品が実用化され、商用システムで使用されるに至っている。
【0003】
これら光部品は、例えば、火炎堆積法(FHD)や化学気相堆積法(CVD)などのガラス膜堆積技術と、反応性イオンエッチング法(RIE)などの微細加工技術を組み合わせて作製される。具体的には、シリコンウェハー等の基板上に下部クラッド層となるガラス膜を堆積し、引き続き、屈折率がクラッド層よりもやや高いコア層を堆積する。そして、光回路となるコアパターンを微細加工技術によりパターン化し、最後に上部クラッド層となるガラス膜を堆積する事で、埋め込み型の光導波路から成る光回路が作製される。
【0004】
通常、FHD法ではガラス膜を透明化するときに熱処理を行い、CVD法でもガラス膜の透明度を上げるために熱処理を行う。この高温プロセスは導波路を構成するガラス膜面内に熱応力を誘起し、結果として導波路の実効屈折率が偏光方向によって異なる導波路複屈折B値を生じさせ、光回路特性に偏光依存性をもたらす。また、この導波路複屈折は作製誤差により、ウェハー面内において微妙に異なっているため、十分な光回路特性を得るためには、光回路個別に且つ回路の局所別に導波路複屈折を調整する必要がある。
【0005】
従来の局所的な導波路複屈折調整技術の例としては、アモルファスシリコン薄膜による応力付与膜を用いる方法などがある(特開平1−77002)。これはアモルファスシリコン薄膜を導波路上に装荷すると導波路に強い引っ張り応力が入り、ガラスの光弾性効果を介して導波路の実効屈折率が変化する現象を利用している。アモルファスシリコン薄膜の形状を変えることで応力分布、すなわち導波路複屈折の制御ができる。また、このアモルファスシリコン薄膜はArレーザー等により除去する事が可能なので、装荷されている長さを光回路特性に合わせて微調整することで、導波路複屈折B値を含めた導波路の実効屈折率を調整することができる。
【0006】
このアモルファスシリコン応力付与膜を使った技術は、更に積極的に利用されて偏光分路素子(PBS)の構成要素にも応用されている(例えば、"Biriefringence control od silica waveguides on Si and its application to a polarization-beam splitter/switch",Journal of Lightwave Technology,Vol.12,No.4,Apr.1994 )。
【0007】
このPBSは、図13に示すように、基板(シリコン基板1)上に作製された石英系導波路からなる2個の3dB光カプラー(50%光結合器)7,7と2本の導波路アームで構成されたマッハツェンダー干渉計(MZI)に、3種類の幅のアモルファスシリコン応力付与薄膜6a,6b,6cを装荷した回路構成となっている。なお、図13において、2a,2bは導波路コア、3はクラッド層、4’は熱光学位相調整用薄膜ヒータ、5は給電配線及び給電パッド、11a,11b,12a,12bは入出力導波路端である。
【0008】
3種類の幅のアモルファスシリコン応力付与薄膜6a,6b,6cのうち、1種類目(6c)は幅50μmであり、主に導波路複屈折を制御するためのものである。残りの2種類(6a,6b)は90μmと100μmであり、主に偏光無依存に導波路の実効屈折率を制御するためのものである。これらアモルファスシリコン応力付与薄膜6a,6b,6cの長さをArレーザー等により除去し調整することで、2本の導波路アームの光路長差をTM偏光に対して0に、TE偏光に対してλ/2(λ:波長)に合わせ込んでいる。従って公知の干渉原理より、入力ポート(11b)に入射された光の内、TM偏光はクロスポート(12a)、TE偏光はバーポート(12b)へ導波し、このMZIはPBSとして機能する。
【0009】
【発明が解決しようとする課題】
しかしながら、このアモルファスシリコン応力付与薄膜を用いた導波路複屈折調整技術はレーザーを用いて最終調整を行っており、数10μmの精度でレーザー照射の位置あわせを行う必要がある。そのため装置が複雑化し高価になると云った問題があった。
【0010】
一方、導波路の実効屈折率を恒久的に調整(トリミング)する方法として局所加熱トリミング法(例えば、特開平3−267902)が実用化されている。この技術は、導波路上にパターン化された薄膜ヒーターを用いて導波路を局所的に比較的高い電力で加熱処理することにより、恒久的に導波路の実効屈折率を変化させ、光回路の光路長(位相)調整を行うものである。薄膜ヒーターはフォトマスクを用いた微細加工技術で形成するため、加熱時に高精度の位置あわせは不要であり単に所定の薄膜ヒーターに通電を行うだけでよい。よって、調整作業は比較的簡易な装置で行うことが出来、また自動化も比較的容易である。しかしながら、この実効屈折率変化の原理や偏光依存性の制御に関しては未解明であったため、導波路複屈折を制御する方法としては不十分であった。
【0011】
【課題を解決するための手段】
研究所の研究員は、鋭意研究の結果、上記局所加熱トリミング法の原理が局所加熱によって主にヒーターとコアの間のクラッド、特にヒーター直下近接のクラッドが変質し(言い換えれば、クラッド表面近傍の膜質が変質する)、その結果、導波路に応力が加わるためであることを見いだした。そして、局所加熱領域の幅wを調整し応力分布を変えることで、この偏光依存性をほぼ制御できることを実験的に明らかにした。具体的には、図2に示すように、局所加熱領域の幅がオーバークラッド表面からコア中心までの距離の約2倍のw0 付近(±30%)の場合には実効屈折率の変化はほぼ偏光無依存となり、局所加熱領域の幅がこれよりも広い場合はTM偏光の方が、これよりも狭い場合はTE偏光の方が、優勢に屈折率変化する。
【0012】
従って、局所加熱領域の幅をオーバークラッド表面からコア中心までの距離の約2倍のw0 よりも広くあるいは狭くすることにより、偏光依存性を持たせて光導波路の恒久的な実効屈折率制御を行うことが出来る。特に2種類以上の幅を用いて局所加熱処理を行うことにより、TE偏光とTM偏光を完全に独立させて恒久的な実効屈折率制御、すなわち複屈折率制御を行うことが可能となる。
【0013】
この実効屈折率の偏光依存性は局所加熱によって誘起される応力分布によって決まることから、基本的には応力分布の異なる2種類以上の局所加熱処理を用いれば、TE偏光とTM偏光を完全に独立して恒久的な実効屈折率制御すなわち複屈折率制御を行うことが可能となる。従って、局所加熱領域の幅以外にも、例えば、局所加熱領域と導波路中心の距離や局所加熱領域の形状などの構造の違いを利用しても良い。更に、局所加熱領域の周辺にクラッドを除去したトレンチ構造を導入し局所加熱による応力形状に変化を与えその位置や深さなどの構造の違いによって、応力形状の変化の違いを出しても良い。
【0014】
また、この局所加熱による光路長調整はあくまで微調整手段であるので、回路設計上の遅延差が必要な場合はあらかじめ固定の遅延光回路を設けておき、特性向上のための最終的な調整に用いることが望ましい。
【0015】
加熱処理の手段は上述したように、薄膜ヒーターによる方法が装置コストを考慮すると好ましいが、これに限るものではなく、クラッドを局所的に加熱する手段で有れば良く、例えば、CO2 レーザーのような局所的加熱手段であっても構わない。
【0016】
以上をまとめると、本発明の特徴は次のようなものである。即ち、コア及びクラッドからなる光導波路において、局所加熱により導波路の屈折率を恒久的に変える事ができるのは、被加熱部分の変成によりコアに応力が加わるためであり、加熱によって変成する領域の幅や、導波路に対する距離や位置を変える事で、TE偏光の屈折率をTM偏光の屈折率に比して大きく変化させたり、その逆にTM偏光の屈折率を大きく変化させたり、または2つの偏光の屈折率を等しく変化させたりすることが可能であるという新しい知見が得られた。
本願発明の干渉計光回路及びその製造方法では、上記知見に基づき、偏光に与える影響の異なる少なくとも2種類の加熱領域によって導波路を加熱して屈折率を、従って光路長を調整することを特徴とする。
例えば、TE偏光の屈折率をTM偏光に比して優勢に変化させる第1の加熱領域と、TE偏光とTM偏光の屈折率を等しく変化させる第2の加熱領域を併用すれば、第1の加熱領域によってTE偏光とTM偏光の光路長差を所望の値(例えば(λ/2)に設定し、その後、両偏光の光路長差を等しくシフトすれば、一つの干渉計において、TEは位相差λ/2、TMは位相差ゼロに併せ込むことが可能となる。
【0017】
かかる知見に基づき案出した本発明の干渉計光回路の構成は、基板上でクラッド層に屈折率の高いコア部が埋設された光導波路を用いて形成される干渉計光回路で、光導波路近傍の局所的な加熱処理により光導波路の実効屈折率が部分的に恒久的に変化する現象を利用して、この干渉計光回路を構成する光導波路の光路長が調整されている干渉計光回路において、
少なくとも2種類以上の構造の前記光導波路近傍の局所的な加熱処理領域を備えており、
しかも局所的な前記加熱処理領域は、前記光導波路上に形成された薄膜ヒーターであり、
前記光導波路近傍の局所的な加熱処理により生じたTE偏光の屈折率変化に対するTM偏光の屈折率変化の割合が少なくとも2つ以上の前記加熱処理領域で異なっていることを特徴とする。
【0018】
また本発明の干渉計光回路の構成は、加熱処理領域の構造の違いが、加熱処理領域の幅、即ち前記光導波路の延在方向に対して直交する方向の長さの違いであったり、
加熱処理領域の幅が、少なくとも一種類の加熱処理領域ではコア部中心からクラッド表面までの距離dの2.6倍以上、或いは少なくとも一種類の加熱処理領域ではコア部中心からクラッド表面までの距離dの1.4倍以下であったり、
加熱処理領域の構造の違いが、光導波路から加熱処理領域までの距離の違いであったり、
加熱処理領域の構造の違いが、加熱処理領域中に光導波路方向に沿ったスリットの有無、或いはそのスリット幅の違いであったり、
加熱処理領域の構造の違いが、光導波路周囲のクラッドを部分的に除去して構成されるトレンチの有無、或いは光導波路からトレンチまでの距離或いはトレンチの深さの違いであったり、
干渉計光回路が、偏光方向に依存する固定の遅延手段を備えていたり、
干渉計光回路が、1つ以上の光カプラーとこれら光カプラーに接続される複数本の光導波路からなっていることを特徴とする。
【0019】
また本発明の干渉計光回路の構成は、干渉計光回路が、2つの2×2光カプラーとこれら光カプラーを接続する2本の光導波路からなり、局所的な加熱処理により、この2本の光導波路の光路長差(遅延差)が、TE偏光についてはλ/2(但しλは波長)の奇数倍であり、TM偏光についてはλ/2の偶数倍、またはTE偏光についてはλ/2の偶数倍であり、TM偏光についてはλ/2の奇数倍であるように調整されていたり、
2つの2×2光カプラーを接続する2本の光導波路のいずれか或いは両方に偏光依存の固定の遅延手段を備えていることを特徴とする。
【0020】
また本発明の干渉計光回路の製造方法は、局所的な加熱処理領域、例えば光導波路上に形成された薄膜ヒーターにより局所的な加熱処理を行うことを特徴とする。
【0021】
【作用】
TE偏光とTM偏光の独立制御性を以下に説明する。具体的に、干渉計光回路の一部分において図1に示すような2種類の幅の局所加熱領域を持った導波路を考える。図1において、1はシリコン基板,2は導波路コア,3はクラッド層,4a,4bは局所加熱処理用の薄膜ヒーター、5は給電電線及び給電パッドである。
【0022】
図1において、幅wの局所加熱による屈折率変化を各偏光毎にδTE、δTMとする。平均的な偏光における屈折率変化をδa(=(δTE+δTM)/2)、屈折率変化の偏光依存差をδp(=δTE−δTM)とすると、屈折率依存差δpは図2より近似的に平均屈折率変化δaに比例するので、δp=C(w)・δaと表すことが出来る。ここで、C(w)は比例係数で、図2からわかるように局所加熱領域の幅に依存し、w=w0 のとき偏光無依存C=0となり、w>w0 のときTM偏光優勢C<0、w<w0 のときTM偏光優勢C>0となる。図1のように2種類の幅w1 ,w2 の局所加熱領域を持った導波路の場合、トータルの平均屈折率変化δAとトータルの偏光依存屈折率差δPは、それぞれ、
δA=δa1+δa2 …(1a)
δP=δp1+δp2=C(w1)・δa1+C(w2)・δa2…(1b)
となる。従って、C(w1 )≠C(w2 )の場合この方程式の行列式≠0であるので、任意のδA,δPを満たすδa1 ,δa2 が必ず一意に存在する。よって、平均屈折率変化δAと偏光依存屈折率差δPは完全に独立して制御することが可能、すなわちTE偏光とTM偏光も完全に独立して制御することが可能となる。
【0023】
局所加熱処理の場合、通常、屈折率変化はプラスの値をとるので、δa1 ,δa2 >0という制限があるが、干渉計光回路の光路長差は相対的なものであるので、マイナスの値を考慮する場合は、他の経路の光路長をプラスすれば良い。
【0024】
以上説明したように、2種類以上の構造を持った局所加熱領域を備えることで、実効屈折率変化の偏光依存性が異なる独立した調整パラメータを2つ以上持つことになり、その結果、TE偏光とTM偏光も完全に独立して制御することが可能となる。
【0025】
【発明の実施の形態】
以下、具体的な実施例を用いて本発明を説明する。尚、以下の実施例では、シリコン基板上に作製された石英系の単一モード光導波路を用いた構成としているが、これは冒頭述べたように、石英系の導波路が極めて低損失で長期安定性に優れ、通信用石英ファイバーとの親和性に優れているためである。しかしながら、本発明は、クラッドの局所加熱による応力制御が可能なすべての材料に適用可能であることは明白であり、例えば、基板材料として石英基板やサファイヤ基板など、また光導波路として多成分ガラスや高分子材料、ニオブ酸リチウムなど、他の材料の組み合わせでも構わないことは勿論である。
また、図1や図13で用いた部材と同一機能をはたす部材には同一符号を付して重複する説明は省略する。
【0026】
[実施例1:PBS1]
図3に第一の実施例である、干渉計光回路として使用する偏光分離素子(PBS)の構成例を示す。なお図3(a)は平面図、図3(b)は図3(a)における線分B−B’に沿った断面図、図3(c)は図3(a)におけるC−C’に沿った断面図である。また図3において、8は応力解放溝(λ/2偏光依存遅延手段)、41a,41bは局所加熱処理用の薄膜ヒーター(w≒wO )、42a,42bは局所加熱処理用の薄膜ヒーター(w>wO )、43a,43bは局所加熱処理用の薄膜ヒーター(w<wO )である。
【0027】
このPBSは、2個の50%光結合器(3dBカプラー)7,7およびこれらカプラーを結ぶ2本の導波路アーム、入出力端とカプラーを結ぶ入出力導波路で構成されたMZI干渉計にTE偏光とTM偏光の偏光方向に依存して約λ/2(λ:波長)の光路長変化を与えるλ/2偏光依存遅延手段8、および両側の導波路アームに3種類の幅の局所加熱手段である薄膜ヒーター41a,41b,42a,42b,43a,43bを用いて備えている。
【0028】
今回のPBSでは、3dBカプラー7,7として、二本の導波路を数μmまで近接して構成される方向性結合器を用いた。これは方向性結合器が他の手段に比べて挿入損失が低いためである。しかしながら、3dBカプラーはこの構成に限定されるものではなく、他の手段、例えばマルチモード導波路を用いたマルチモード干渉計(MMI)カプラーやこれらカプラーを複数個従属接続して構成される波長無依存カプラー(WINC)などであってももちろん良い。
【0029】
また今回のPBSではλ/2偏光依存遅延手段として、応力解放溝8を片方の導波路アームに備える構成を用いた(特開昭63−182608)。これは応力解放溝8による構成が低挿入損失であるためである。しかしながら、このλ/2偏光依存遅延手段はこの構成に限らず、他の構成、例えばλ/2波長板を片方の導波路アームに主軸を0度或いは90度にして挿入する構成などでももちろん構わない。更に今回のPBSでは、λ/2偏光依存遅延差を生じさせるために、応力解放溝8を上側の導波路アーム(導波路コア2a側)に設けたが、遅延差は相対的なものであるから下側の導波路アームに(導波路コア2b側側)に設けても構わないし、両側に設けてその溝の長さ等を上側と下側で差を設けることでλ/2偏光依存遅延差を生じさせてももちろん構わない。
【0030】
また、各導波路アームの光路長は実効屈折率を導波路上で線積分した値で決まるので、λ/2偏光依存遅延手段8や3種類の幅の局所加熱手段41a,41b,42a,42b,43a,43bは導波路アーム上でどの順番で配置されていても良い。
【0031】
この実施例のPBSは、厚さ1mm直径4インチのシリコン基板1上に公知の従来技術を用いて作製した。石英系導波路はSiCl4 やGeCl4 などの原料ガスの加水分解反応を利用した火炎加水分解反応堆積技術による石英系ガラス膜の堆積技術と反応性イオンエッチング技術の組み合わせにより作製し、局所加熱用の薄膜ヒータ41a,41b,42a,42b,43a,43bは真空蒸着法およびエッチングにより作製して、最後に応力解放溝8を反応性イオンエッチングにより形成した。コアの断面寸法は6μm角であり、コア2a,2bは約40μmのクラッド層3に取り囲まれ、クラッド上部表面から15μmの位置にコア中心がある。コア2a,2bとクラッド層3間の比屈折率差は0.75%である。
【0032】
2本の導波路アームのアーム長は約20mmでアーム長差は0とし、アーム間隔は1mmとした。応力解放溝8の導波路方向の長さは約1.9mmであり、幅は50μmである。導波路中心から応力解放溝8までの距離は25μmとした。3種類の薄膜ヒーターは、幅をそれぞれ15μm(<w0 )(43a,43b),30μm(≒w0 )(41a,41b),60μm(>w0 )(42a,42b)とし、長さは5mmとした。ここで、w0 はオーバークラッド表面からコア中心までの距離の約2倍である。
【0033】
このウェハーをダイシングにより切り出してセラミック基板に固定し、入出力導波路端11a,11b,12a,12bにはシングルモードファイバーを接続し、各薄膜ヒータ41a,41b,42a,42b,43a,43bには給電配線パッド5を介して給電リードを接続し、PBSモジュールとした。
【0034】
本行程で作製された光回路は、シリコン基板と石英系ガラスの熱膨張係数差のため面内方向に強い圧縮応力が加わっていることから、元々導波路には4×10-4の複屈折が生じており、TM偏光の方がTE偏光に比べてわずかに高い屈折率となっている。一方、応力解放溝8の部分では応力が解放されているため、複屈折がほぼ0となっている。従って、2本の導波路アームにおける1.9mmの応力解放溝8の有無により、光路長差に約λ/2の偏光依存性が生じる。その結果、今回の回路はTE偏光にとってはほぼ光路長差が0のMZIとなり、TM偏光にとってはほぼλ/2の光路長差を持ったMZIとなり、公知の干渉原理より、入力ポート(11b)に入射された光の内、TE偏光はクロスポート(12a)、TM偏光はバーポート(12b)へ導波する。
【0035】
ここで「ほぼ」と述べたが、作製される光回路は作製誤差をもっており、これら設計光路長差はわずかにずれることが普通であり、十分な消光比特性を得るには、このわずかなずれを正確に合わせ込むことが極めて重要となる。以下にこの合わせ込みの方法、すなわち、今回の発明の中心となる部分について詳しく述べる。
【0036】
図4(a)に、今回作製したPBSの特性を示す。この特性は幅30μmの薄膜ヒーターを熱光学位相シフターとして兼用して測定した。横軸は薄膜ヒーターへ加えた駆動電力である。図中右側は上側の薄膜ヒーター41aに、左側は下側の薄膜ヒーター41bに通電している。この図を見てわかるように、駆動電力が0の状態ではTE偏光はバーポート12bへ漏れ込み、またTM偏光もクロスポート12aへ漏れ込んでおり、十分な消光比が得られていない。また、この駆動特性から、十分な消光比特性を得るには、TE偏光に対しては上側アームの実効屈折率を上げて光路長をやや長くし、TM偏光に対しては下側アームの実効屈折率を上げて光路長をやや長くする必要があることがわかる。
【0037】
図2を見てわかるように、各幅の薄膜ヒーターを用いて局所加熱処理を行うことにより、幅30μmの薄膜ヒーターでは偏光無依存(式1bにおいてC≒0)に、幅15μmの薄膜ヒーターではTE偏光を約25%優勢(式1bにおいてC≒0.25)に、幅60μmの薄膜ヒーターではTM偏光を約25%優勢(式1bにおいてC≒−0.25)に実効屈折率を増加させることが出来る。
【0038】
今回の調整は、(1)導波路アームのTE偏光での光路長差ΔLTE(=上側アーム−下側アーム)とTM偏光での光路長差ΔLTMの差ΔLp (=ΔLTE−ΔLTM)をλ/2に調整する、(2)ΔLTE=0(すなわち、ΔLTM=−λ/2)に調整する、の二段階に分けて行った。
【0039】
図4(a)の回路作製後の状態では、ΔLp =0.8・λ/2程度である。上述のように上側アームの幅15μmの薄膜ヒーター43aまたは下側アームの幅60μmの薄膜ヒーター42bを用いて局所加熱処理を行うことによりΔLp は増加する。各偏光の光路長差ΔLTE,ΔLTMは、何れも、上側アームの薄膜ヒーター43aを用いた場合は増加し、下側アームの薄膜ヒーター42bを用いた場合は減少する。そこで今回は、ΔLp の調整の際にΔLTE,ΔLTMがあまり大きく一方向に大きくずれないようにするため、薄膜ヒーター43aと薄膜ヒーター42bの両方を用いて調整を行った。具体的には、薄膜ヒーター43aに7.5Wの電力を、薄膜ヒーター42bに10Wの電力を数秒間ずつ数回に分けて加え、その都度ΔLTEやΔLTMの変化を見ながら局所加熱処理を行った。その結果、薄膜ヒーター43aに合計20秒間、薄膜ヒーター42bに合計100秒間、局所加熱処理をしたところ、PBSの位相特性は図4(b)に示すようになり、恒久的にΔLp =λ/2となった。
【0040】
ΔLp はλ/2となったものの、ΔLTE=0.07・λ/2である。よって次に、ΔLTEを0に調整するために、下側アームの幅30μmの薄膜ヒーター41bを用いて局所加熱処理を行った。上述のように、幅30μmの薄膜ヒーターを用いて局所加熱処理を行うと、ほぼ偏光無依存に屈折率が増加するのでΔLp =λ/2を維持したまま、ΔLTEの調整を行うことが出来る。具体的には、薄膜ヒーター41bに6Wの電力を10秒間加えて局所加熱処理を行った。その結果、PBSの位相特性は図4(c)に示すようになり、ΔLp =λ/2を維持したまま、ΔLTE=0(すなわち、ΔLTM=−λ/2)となった。
最終的には、駆動電力が0の状態であっても、挿入損失1dB程度、偏光消光比はTE偏光、TM偏光共に30dB程度の十分な値が得られるようになった。
【0041】
今回の調整では正確を期するために加熱時間を分割して局所加熱処理を行い、ΔLTEやΔLTMの変化に合わせて総加熱時間を調節したが、ある程度の誤差を許せば一回の時間にまとめて加熱処理を行っても良い。
【0042】
また、今回の調整では、偏光依存の位相差を調整する段階(1)と、偏光無依存に位相差を調整する段階(2)を完全に分けて調整を行ったが、サンプルによっては(2)の調整後に微妙にΔLp がずれる場合がある。その場合は、適宜、(1)の段階に戻って調整すればよい。
【0043】
また、今回の調整では偏光依存の位相差を調整する段階(1)と、偏光無依存に位相差を調整する段階(2)の両方を行ったが、偏光無依存の位相差は例えば熱光学効果を用いても調整出来るので、(1)のみを行い(2)の段階は省略し熱光学位相シフターで調整しても良い。しかし、この場合は熱光学位相シフターに常に駆動電力を与え続けなければならず、省電力の観点からは(2)の段階も行った方が好ましい。
【0044】
また、今回の調整では、薄膜ヒーター43b,42aは使用しなかった。これは、今回の初期状態における光路長差の偏光依存差ΔLP(0)が最終的に設定する偏光依存差ΔLp(f)(今回はλ/2)に対して小さかったためである。従って、作製誤差の大きさを考慮して、必ずΔLp(0)<ΔLp(f)となるようにλ/2偏光依存遅延手段8を設計しておけば、薄膜ヒーター43b,42aを省くことが出来、回路サイズをより小型にすることが出来る。逆に必ずΔLp(0)>ΔLp(f)となる設計であれば薄膜ヒーター43a,42bを省くことが出来る。
【0045】
また、上側アームの幅15μmの薄膜ヒーター43aまたは下側アームの幅60μmの薄膜ヒーター42bを用いて局所加熱処理を行った場合はΔLP が増加し、各偏光の光路長差ΔLTE,ΔLTMは共に、薄膜ヒーター43aを用いた場合は増加し、薄膜ヒーター42bを用いた場合は減少するので、上側アームでの局所加熱処理量と下側アームでの局所加熱処理量を適当に配分する事により、ΔLp をλ/2に調整すると共にΔLTEを0に調整することも可能である。従って、この場合は更に薄膜ヒーター41a,41bも省略することが出来、回路を小型化することが出来る。これに関しては、実施例2で詳しく述べる。
【0046】
今回のPBSでは導波路アーム間の光路長差はTE偏光に対して0としTM偏光に対してλ/2としたが、基本的にはこの導波路アーム間の光路長差がTE偏光でλ/2の倍数に、TM偏光ではTE偏光の光路長差にλ/2の奇数倍を加減した光路長差であればPBSとして動作する。しかしながらMZIでは光路長差が大きくなると、一般的に波長依存性が大きくなるため十分な消光比が得られる波長帯域が制限されてくる。従って、この光路長差は小さい方が好ましい。
【0047】
[実施例2:PBS2]
図5に第二の実施例である、干渉計光回路として使用する偏光分離素子(PBS)の構成例を示す。図5(a)は平面図、図5(b)は図5(a)における線分B−B’に沿った断面図、図5(c)は図5(a)におけるC−C’に沿った断面図である。構成は第一の実施例のPBSと類似しているが、局所加熱手段としての幅15μm(<w0 )の薄膜ヒーターが43と、幅60μm(>w0 )の薄膜ヒーター42の二種類が各アームにそれぞれ備えられるのみで、数、種類が削減されていることが異なる。また、λ/2偏光依存遅延手段としての応力解放溝8が1.7mmとやや短めに設計されており、導波路アーム間の光路長差の偏光依存差ΔLp が必ずλ/2より小さくなる(すなわちLp(0)<ΔLp(f))ように構成されている点が第一の実施例とは異なる。
【0048】
この実施例の光回路は、第一の実施例と同様な方法で作製されモジュール化されている。
【0049】
薄膜ヒーター43と薄膜ヒーター42を用いて、第一の実施例と同様に特性を想定したところ、ΔLTE(0) =−0.1・λ/2、ΔLTM(0) =−0.8・λ/2であり、ΔLp(0)=0.7・λ/2であった。従って、必要な調整量は各偏光に対してそれぞれδLTE(=ΔLTE(f) −ΔLTE(0) )=0.1・λ/2、δLTM(=ΔLTM(f) −ΔLTM(0) )=−0.2・λ/2であるから、偏光依存差の調整量および偏光無依存の光路長調整量はそれぞれδLp =0.3・λ/2、δLa =−0.05・λ/2となる。
【0050】
さて、薄膜ヒーター43,42の長さは共にl=5mmであるので、各薄膜ヒーター43,42の局所加熱処理による偏光無依存の屈折率変化をそれぞれ、δa1 ,δa2 、屈折率変化の偏光依存差をそれぞれδp1 ,δp2 とすると、局所加熱処理による偏光依存差の変化量δLp および偏光無依存の光路長変化量δLa
δLa=1・(δa1−δa2) …(2a)
δLp=1・(δp1−δp2)=1・(C1・δa1−C2・δa2)…(2b)となる。前述のように、幅15μmの薄膜ヒーター43ではC1 =0.25、幅60μmの薄膜ヒーター42ではC2 =−0.25であることから、これらの連立式を解くと、δa1 =8.9×10-5、δa2 =9.7×10-5となる。
【0051】
この屈折率変化が得られるよう、薄膜ヒーター43に7.5Wの電力を28秒間、薄膜ヒーター42に12Wの電力を67秒間加えて局所加熱処理を行った。その結果、恒久的にLTE=0、ΔLTM=−λ/2となり、駆動電力なしで、挿入損失1dB程度、偏光消光比はTE偏光,TM偏光共に30dB程度の十分な値が得られるようになった。
【0052】
[実施例3:PBS3]
図6に第三の実施例である、干渉計光回路として使用する偏光分離素子(PBS)の構成例を示す。図6(a)は平面図、図6(b)は図6(a)における線分B−B’に沿った断面図である。構成は第二の実施例のPBSと類似しているが、λ/2偏光依存遅延手段が無い点が、更に局所加熱手段としての薄膜ヒーター43a〜43d,42a〜42dが同一構造にて複数個備えられている点が異なる。また、今回のPBSでは後述するように加熱電力量を平準化するために光路長差をλ/2設け、上側の導波路がやや長い構成とした。薄膜ヒーターの合計長すなわち局所加熱処理領域の合計長は、今回の調整量の大きさを勘案して第二の実施例よりも長い20mmとした。また、導波路アーム間隔は250μmとした。
【0053】
この実施例のPBSは、第一の実施例と同様な方法で作製されモジュール化されている。
【0054】
薄膜ヒーター43aと薄膜ヒーター42aを用いて、第一の実施例と同様に特性を測定したところ、ΔLTE(0) =λ/2、ΔLTM(0) =λ/2であり、ΔLp(0)=0であった。今回のPBSは片方の導波路アームに4本の薄膜ヒーターが備えられており、合計l=20mm長の加熱領域がある。従って、第二の実施例と同様に計算すると必要な屈折率変化はδa1 =9.7×10-5、δa2 =5.8×10-5となる。
【0055】
この屈折率変化が得られるよう、幅15μm(<w0 )の薄膜ヒーター43a〜43dに7.5Wの電力をそれぞれ順番に50秒間、幅60μm(>w 0 )の薄膜ヒーター42a〜42dに10Wの電力をそれぞれ順番に100秒間加えて局所加熱処理を行った。その結果、恒久的にLTE=0、ΔLTM=−λ/2となり、駆動電力なしで、挿入損失1dB程度、偏光消光比はTE偏光,TM偏光共に30dB程度の十分な値が得られるようになった。
【0056】
さて、同じ電力での加熱の場合、一般的に幅の狭い局所加熱処理の方が幅の広い局所加熱処理に比べて単位面積あたりの加熱密度が高くなるため、図2を見てわかるように屈折率変化が大きくなる。そこで今回のPBSでは、MZIにλ/2の光路長差を設け、幅60μmの薄膜ヒーター42a〜42dによる屈折率変化δa2 を、幅15μmの薄膜ヒーター43a〜43dによる屈折率変化δa1 に比べて小さくし、加熱電力量を平準化している。
【0057】
今回の局所加熱処理では4つに分割された薄膜ヒーター43a〜43d,42a〜42dに対して別々に処理を行った。もちろん、同時に処理を行っても良いし、また、上側導波路アームの薄膜ヒーター43a〜43dや下側導波路アームの薄膜ヒーター42a〜42dの一方或いは両方の薄膜ヒーターを四分割しないで一つの長さ20mm薄膜ヒーターとして作製し処理を行っても良いが、その場合特に下側の導波路アームの薄膜ヒーターでは処理電力が40Wにもなるので、処理の際に強力な基板冷却系が必要となる。
【0058】
また、今回のPBSでは、合計20mm長の薄膜ヒーターを等分に分割したが、例えば、15mmと5mmに不等分に分割し、15mm長を粗調整用、5mm長を微調整用として用いても良い。
【0059】
[実施例4〜7:その他の干渉計回路への適用例]
図7に各種干渉計への適用例としての実施例を示す。
【0060】
図7(a)はカプラ間の導波路アームに所望の光路長差を設けたマッハツェンダー干渉計フィルター(透過型干渉フィルターの例)である。
【0061】
図7(b)はカプラから分岐された光路に反射終端9を設け、カプラと反射終端9の往復の光路長差に所望の光路長差を設けたマイケルソン干渉計フィルター(反射型干渉フィルターの例)である。
【0062】
図7(c)は導波路に所望の往復光路長(共振光路長)をおいてハーフミラー(反射率99%程度)10を設けたファブリペロー干渉計フィルター(多重反射型フィルターの例)である。なお、11,12は入出力導波路端である。
【0063】
図7(d)は所望の光路長(共振光路長)をリング回路2cとして設定したリング干渉計フィルターである。
【0064】
これら何れのフィルターも光路長差あるいは共振光路長を所望の長さΔL(=実効屈折率×導波路長差)に設定することにより所望の波長(周波数)透過特性を得るものである。しかしながら、実施例1で述べたように導波路の実効屈折率はTM偏光の方がTE偏光に比べてわずかに高い屈折率となっていることから、光路長差や共振光路長はTM偏光の方がTE偏光に比べて長くなる。
【0065】
さて、これら干渉計の波長特性は、注目する波長λの近傍では、ΔL1 =ΔLの光路長差や干渉計でもΔL2 =ΔL+m・λ(mは整数)でもほぼ同じ特性を示すという特徴がある。従って、TM偏光とTE偏光の光路長差をm・λに合わせ込むことが出来れば、見かけ上、波長透過特性の偏光依存性は解消されることになる。そこで、前述の実施例同様の手法を用いて、TM偏光とTE偏光の光路長差をm・λに合わせ込み、且つTE偏光(またはTM偏光)でのΔLの値も所望の値に合わせ込めばよい。また、|m|が大きくなる、各偏光でほぼ同じ特性を示す波長領域が狭くなることから、mは出来るだけ0に近い方が好ましい。
実際に、これら干渉計において合わせ込みを行ったところ、見かけ上、波長透過特性の偏光依存性が解消された所望の特性が得られた。
【0066】
以上に述べた実施例では、本発明をそれほど複雑でない光回路で実施した。しかしながら、本発明は、これに限定されるものではなく、例えば、マッハツェンダー干渉計を多段に接続されているラティス型フィルターや、多光束干渉フィルターであるアレイ導波路格子等にも適用可能であることはもちろんである。
【0067】
また、以上で説明した実施例では、応力分布の異なる2種類以上の局所加熱処理の実現手段として、局所加熱処理領域の幅の違いを用いた。しかしながら、異なる応力部分を誘起させる方法はこれだけではない。
【0068】
例えば、この偏光特性は局所加熱領域の幅wとオーバークラッド表面からコア中心までの距離dの関係で決まることから、図8に示すように、幅wを一定としてオーバークラッド厚をd1 ,d2 というように、部分的に変えることによっても、TE偏光とTM偏光を独立して制御することができる。実際に素子を作製したところ独立制御が可能であった。なお図8において、21はクラッド厚調整用ピットである。
【0069】
また、図9に示すように局所加熱領域の位置を導波路直上からずらした構造(薄膜ヒーター4aを導波路直上に位置させ薄膜ヒーター4bを導波路からSだけずらしてた構造)や、図10に示すように局所加熱領域にスリットを設けそのスリット幅をg1,2 と変えた構造や、図11に示すように局所加熱領域を複数のストライプに分け、その密度等を変えた構造(薄膜ヒーター4aの密度が粗で薄膜ヒーター4aの密度が密の構造)や、図12に示すように局所加熱領域の周辺にクラッドを除去したトレンチ構造(応力分布調整溝22a,22b)を導入し、その位置や深さなどに違いを与えた構造(応力分布調整溝22aの位置CW1 は近く、応力分布調整溝22bの位置CW2 は遠い構造)でも、実効屈折率の変化に偏光依存性が生じ、上記実施例と同様にTE偏光とTM偏光を独立して制御することができた。
【0070】
また今回、局所加熱の手段はクラッド上に作製した薄膜ヒーターを用いたが、CO2 レーザーを局所的に照射しクラッドを加熱する方法でも同様な効果が得られた。
【0071】
【発明の効果】
以上説明したように、クラッドを局所的に加熱し膜質を変化させ、その変化により応力変化を誘起することで、複屈折率調整を行うことが可能となった。更に、干渉計光回路に2種類以上の応力分布誘起構造を持った局所加熱領域を備えることで、恒久的な実効屈折率変化の偏光依存性が異なる独立した調整パラメータを2つ以上持つことになり、その結果、TE偏光とTM偏光も完全に独立して調整すなわち複屈折率調整を行うことが可能となった。
【0072】
これら局所加熱処理において、特に薄膜ヒーターを用いることにより局所加熱時に高精度の照射位置合わせなどは不要となり、単に所定の薄膜ヒーターに通電を行うだけ、すなわち、調整作業は比較的簡易な装置で行うことが出来た。このことは本技術を実用化を図る上で極めて有効である。
【0073】
本発明を偏波分離素子をはじめとする様々な干渉計光回路に応用することにより、干渉光路長を各偏光別に設定通りに調整する事が可能となり、熱光学効果等を用いた位相制御を行うことなく、高い光学特性を得ることが出来るようになった。従って、本発明は干渉計光回路の低消費電力化といった観点からも非常に有益である。
【図面の簡単な説明】
【図1】本発明の基本構成を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図である。
【図2】局所加熱処理による恒久的屈折率変化の様子を示す特性図。
【図3】本発明の第一の実施例としての偏光分離素子(PBS)を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図、(c)は(a)のC−C’断面図である。
【図4】PBSの光路長差の調整状態を示す特性図。
【図5】本発明の第二の実施例としての偏光分離素子(PBS)を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図、(c)は(a)のC−C’断面図である。
【図6】本発明の第三の実施例としての偏光分離素子(PBS)を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図である。
【図7】本発明の第四〜第七の実施例としての偏光分離素子(PBS)を示す構成図であり、(a)は第四の実施例としてのマッハツェンダー型干渉計フィルターを示す平面図、(b)は第五の実施例としてのマイケルソン型干渉計フィルターを示す平面図、(c)は第六の実施例としてのファブリペロー型干渉計フィルターを示す平面図、(d)は第七の実施例としてのリング共振器型干渉計フィルターを示す平面図である。
【図8】本発明の基本構成の変形例を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図、(c)は(a)のC−C’断面図である。。
【図9】本発明の基本構成の変形例を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図である。
【図10】本発明の基本構成の変形例を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図である。
【図11】本発明の基本構成の変形例を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図である。
【図12】本発明の基本構成の変形例を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図、(c)は(a)のC−C’断面図である。。
【図13】従来の偏光分離素子(PBS)を示す構成図であり、(a)は平面図、(b)は(a)のB−B’断面図、(c)は(a)のC−C’断面図である。
【符号の説明】
1 シリコン基板
2,2a,2b,2c 導波路コア
3 クラッド層
4a,4b 局所加熱処理用薄膜ヒーター(局所加熱領域)
4’ 熱光学位相調整用薄膜ヒーター
5 給電配線及び給電パッド
6a,6b,6c アモルファスシリコン応力付与薄膜
7 50%光結合器(3dBカプラー)
8 応力解放溝(λ/2偏光依存遅延手段)
9 反射終端
10 ハーフミラー
11,11a,11b,12,12a,12b 入出力導波路端
21 クラッド厚調整用ピット
22a,22b 応力分布調整溝
41a,41b 局所加熱処理用薄膜ヒーター(w≒w0
42,42a〜42d 局所加熱処理用薄膜ヒーター(w>w0
43,43a〜43d 局所加熱処理用薄膜ヒーター(w<w0

Claims (20)

  1. 基板上でクラッド層に屈折率の高いコア部が埋設された光導波路を用いて形成される干渉計光回路で、光導波路近傍の局所的な加熱処理により光導波路の実効屈折率が部分的に恒久的に変化する現象を利用して、この干渉計光回路を構成する光導波路の光路長が調整されている干渉計光回路において、
    少なくとも2種類以上の構造の前記光導波路近傍の局所的な加熱処理領域を備えており、
    しかも局所的な前記加熱処理領域は、前記光導波路上に形成された薄膜ヒーターであり、
    前記光導波路近傍の局所的な加熱処理により生じたTE偏光の屈折率変化に対するTM偏光の屈折率変化の割合が少なくとも2つ以上の前記加熱処理領域で異なっていることを特徴とする干渉計光回路。
  2. 前記加熱処理領域の構造の違いが、加熱処理領域の幅、即ち前記光導波路の延在方向に対して直交する方向の長さの違いであることを特徴とする請求項1記載の干渉計光回路。
  3. 前記加熱処理領域の幅が、少なくとも一種類の加熱処理領域ではコア部中心からクラッド表面までの距離dの2.6倍以上、或いは少なくとも一種類の加熱処理領域ではコア部中心からクラッド表面までの距離dの1.4倍以下であることを特徴とする請求項2記載の干渉計光回路。
  4. 前記加熱処理領域の構造の違いが、光導波路から加熱処理領域までの距離の違いであることを特徴とする請求項1記載の干渉計光回路。
  5. 前記加熱処理領域の構造の違いが、加熱処理領域中に光導波路方向に沿ったスリットの有無、或いはそのスリット幅の違いであることを特徴とする請求項1記載の干渉計光回路。
  6. 前記加熱処理領域の構造の違いが、光導波路周囲のクラッドを部分的に除去して構成されるトレンチの有無、或いは光導波路からトレンチまでの距離或いはトレンチの深さの違いであることを特徴とする請求項1記載の干渉計光回路。
  7. 前記干渉計光回路が、偏光方向に依存する固定の遅延手段を備えていることを特徴とする請求項1乃至請求項6の何れか一項に記載の干渉計光回路。
  8. 前記干渉計光回路が、1つ以上の光カプラーとこれら光カプラーに接続される複数本の光導波路からなることを特徴とする請求項1乃至請求項7の何れか一項の干渉計光回路。
  9. 前記干渉計光回路が、2つの2×2光カプラーとこれら光カプラーを接続する2本の光導波路からなり、
    局所的な加熱処理により、この2本の光導波路の光路長差(遅延差)が、TE偏光についてはλ/2(但しλは波長)の奇数倍であり、TM偏光についてはλ/2の偶数倍、またはTE偏光についてはλ/2の偶数倍であり、TM偏光についてはλ/2の奇数倍であるように調整されていることを特徴とする請求項8の干渉計光回路。
  10. 前記2つの2×2光カプラーを接続する2本の光導波路のいずれか或いは両方に偏光依存の固定の遅延手段を備えていることを特徴とする請求項9の干渉計光回路。
  11. 基板上でクラッド層に屈折率の高いコア部が埋設された光導波路を用いて形成される干渉計光回路で、光導波路近傍の局所的な加熱処理により光導波路の実効屈折率が部分的に恒久的に変化する現象を利用して、この干渉計光回路を構成する光導波路の光路長が調整されている干渉計光回路の製造方法において、
    少なくとも2種類以上の構造の前記光導波路近傍の局所的な加熱処理領域を備え、
    しかも局所的な前記加熱処理領域は、前記光導波路上に形成された薄膜ヒーターであり、
    前記加熱処理領域により局所的な加熱処理をすることにより、前記光導波路近傍の局所的な加熱処理により生じたTE偏光の屈折率変化に対するTM偏光の屈折率変化の割合を少なくとも2つ以上の前記加熱処理領域で異ならせることを特徴とする干渉計光回路の製造方法。
  12. 前記加熱処理領域の構造の違いが、加熱処理領域の幅、即ち前記光導波路の延在方向に対して直交する方向の長さの違いであることを特徴とする請求項11記載の干渉計光回路の製造方法。
  13. 前記加熱処理領域の幅が、少なくとも一種類の加熱処理領域ではコア部中心からクラッド表面までの距離dの2.6倍以上、或いは少なくとも一種類の加熱処理領域ではコア部中心からクラッド表面までの距離dの1.4倍以下であることを特徴とする請求項12記載の干渉計光回路の製造方法。
  14. 前記加熱処理領域の構造の違いが、光導波路から加熱処理領域までの距離の違いであることを特徴とする請求項11記載の干渉計光回路の製造方法。
  15. 前記加熱処理領域の構造の違いが、加熱処理領域中に光導波路方向に沿ったスリットの有無、或いはそのスリット幅の違いであることを特徴とする請求項11記載の干渉計光回路の製造方法。
  16. 前記加熱処理領域の構造の違いが、光導波路周囲のクラッドを部分的に除去して構成されるトレンチの有無、或いは光導波路からトレンチまでの距離或いはトレンチの深さの違いであることを特徴とする請求項11記載の干渉計光回路の製造方法。
  17. 前記干渉計光回路が、偏光方向に依存する固定の遅延手段を備えていることを特徴とする請求項11乃至請求項16の何れか一項に記載の干渉計光回路の製造方法。
  18. 前記干渉計光回路が、1つ以上の光カプラーとこれら光カプラーに接続される複数本の光導波路からなることを特徴とする請求項11乃至請求項17の何れか一項の干渉計光回路の製造方法。
  19. 前記干渉計光回路が、2つの2×2光カプラーとこれら光カプラーを接続する2本の光導波路からなり、
    局所的な加熱処理により、この2本の光導波路の光路長差(遅延差)が、TE偏光についてはλ/2(但しλは波長)の奇数倍であり、TM偏光についてはλ/2の偶数倍、またはTE偏光についてはλ/2の偶数倍であり、TM偏光についてはλ/2の奇数倍であるように調整することを特徴とする請求項18の干渉計光回路の製造方法。
  20. 前記2つの2×2光カプラーを接続する2本の光導波路のいずれか或いは両方に偏光依存の固定の遅延手段を備えていることを特徴とする請求項19の干渉計光回路の製造方法。
JP2001017943A 2001-01-26 2001-01-26 干渉計光回路及びその製造方法 Expired - Lifetime JP3703013B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001017943A JP3703013B2 (ja) 2001-01-26 2001-01-26 干渉計光回路及びその製造方法
US10/054,618 US6823094B2 (en) 2001-01-26 2002-01-22 Interferometer and its fabrication method
EP07003547A EP1806557A3 (en) 2001-01-26 2002-01-25 Interferometer and its fabrication method
EP07021837.5A EP1936322B1 (en) 2001-01-26 2002-01-25 Interferometer and its fabrication method
EP02250526A EP1227297B1 (en) 2001-01-26 2002-01-25 Interferometer and its fabrication method
DE60223735T DE60223735T2 (de) 2001-01-26 2002-01-25 Interferometer und zugehöriges Herstellungsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001017943A JP3703013B2 (ja) 2001-01-26 2001-01-26 干渉計光回路及びその製造方法

Publications (2)

Publication Number Publication Date
JP2002221630A JP2002221630A (ja) 2002-08-09
JP3703013B2 true JP3703013B2 (ja) 2005-10-05

Family

ID=18884043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017943A Expired - Lifetime JP3703013B2 (ja) 2001-01-26 2001-01-26 干渉計光回路及びその製造方法

Country Status (4)

Country Link
US (1) US6823094B2 (ja)
EP (3) EP1936322B1 (ja)
JP (1) JP3703013B2 (ja)
DE (1) DE60223735T2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028029A1 (ja) 2007-08-24 2009-03-05 Nippon Telegraph And Telephone Corporation 偏波無依存導波型光干渉回路
WO2010140363A1 (ja) 2009-06-02 2010-12-09 日本電信電話株式会社 広帯域干渉計型偏波合成分離器
WO2012128043A1 (ja) * 2011-03-24 2012-09-27 古河電気工業株式会社 光導波回路およびその製造方法ならびに光導波回路装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107890B2 (ja) * 2002-06-27 2008-06-25 富士通株式会社 光導波路デバイス
JP4062024B2 (ja) * 2002-09-10 2008-03-19 住友電気工業株式会社 光部品、光増幅器モジュールおよび光伝送システム。
DE10246547B4 (de) * 2002-09-30 2008-05-15 Finisar Corp., Sunnyvale Brechungsindexgitter und Modenkoppler mit einem Brechungsindexgitter
DE10250980A1 (de) * 2002-10-29 2004-05-19 Infineon Technologies Ag Optisches Bauelement mit einer Mach-Zehnder-Struktur
US7376310B2 (en) * 2002-12-20 2008-05-20 International Business Machines Corporation Optical waveguide element with controlled birefringence
JP4313798B2 (ja) * 2003-03-19 2009-08-12 日本電信電話株式会社 光スイッチ
KR100524580B1 (ko) * 2003-10-13 2005-10-31 한국과학기술연구원 Mmi 구조를 이용한 집적 광 아이솔레이터
US7162108B2 (en) * 2003-12-17 2007-01-09 Jds Uniphase Corporation Planar lightwave circuit variable optical attenuator
US7389033B2 (en) * 2005-01-14 2008-06-17 Nippon Telegraph And Telephone Corporation Planar lightwave circuit type variable optical attenuator
JP2007065645A (ja) * 2005-08-05 2007-03-15 Nippon Telegr & Teleph Corp <Ntt> 導波路型熱光学位相シフタ及びその光回路
JP4976030B2 (ja) * 2006-03-22 2012-07-18 古河電気工業株式会社 導波路型偏波分離・合成器
JP5019632B2 (ja) * 2008-10-02 2012-09-05 古河電気工業株式会社 遅延復調デバイスおよび遅延復調デバイスの位相調整方法
JP5373908B2 (ja) * 2009-07-22 2013-12-18 日本電信電話株式会社 光90度ハイブリッド回路
JP5275951B2 (ja) * 2009-09-14 2013-08-28 日本電信電話株式会社 光導波路
JP5530205B2 (ja) * 2010-02-01 2014-06-25 日本オクラロ株式会社 干渉計、復調器及び光通信モジュール
JP5541981B2 (ja) * 2010-06-24 2014-07-09 日本電信電話株式会社 偏波無依存光導波路デバイス
JP2012215692A (ja) * 2011-03-31 2012-11-08 Furukawa Electric Co Ltd:The 偏波分離素子および光集積素子
JP5727296B2 (ja) * 2011-05-26 2015-06-03 日本電信電話株式会社 半導体基板上の位相シフタ並びにそれを用いた偏波分離器及び偏波合波器
JP5667514B2 (ja) * 2011-05-26 2015-02-12 日本電信電話株式会社 半導体基板上の位相シフタ並びにそれを用いた偏波分離器及び偏波合成器
US9207399B2 (en) 2013-01-28 2015-12-08 Aurrion, Inc. Athermal optical filter with active tuning and simplified control
JP6413296B2 (ja) * 2014-03-27 2018-10-31 日本電気株式会社 光変調用素子および光変調器
CN111273395B (zh) * 2015-07-24 2021-11-16 瞻博网络公司 波导阵列中的相位调谐
JP6714381B2 (ja) * 2016-02-19 2020-06-24 Nttエレクトロニクス株式会社 光導波路型デバイス
US10754221B2 (en) * 2018-01-24 2020-08-25 Lumentum Operations Llc Polarization multiplexer/demultiplexer with reduced polarization rotation
CN108873168A (zh) * 2018-07-19 2018-11-23 湖北捷讯光电有限公司 一种硅基光波导偏振模式分离器
US11536610B2 (en) 2019-10-31 2022-12-27 Keysight Technologies, Inc. Optical wavemeter
US11513375B2 (en) * 2019-12-16 2022-11-29 Cisco Technology, Inc. Silicon thermal-optic phase shifter with improved optical performance
CN112558221A (zh) * 2020-12-08 2021-03-26 北京量子信息科学研究院 一种提高偏振消光比的方法、装置及***

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781424A (en) 1986-07-28 1988-11-01 Nippon Telegraph And Telephone Corporation Single mode channel optical waveguide with a stress-induced birefringence control region
JPH0782132B2 (ja) 1987-01-24 1995-09-06 日本電信電話株式会社 導波形偏光分離素子
JPH0718964B2 (ja) 1987-06-29 1995-03-06 日本電信電話株式会社 集積光デバイスおよびその製造方法
JPH01177002A (ja) 1987-12-29 1989-07-13 Fujitsu Ltd ファイバ融着形光デバイスの製造方法
JPH02130503A (ja) 1988-11-11 1990-05-18 Nippon Telegr & Teleph Corp <Ntt> 集積光デバイス
JPH0367204A (ja) 1989-08-07 1991-03-22 Nippon Telegr & Teleph Corp <Ntt> 集積光デバイスおよびその製造方法
JP2599488B2 (ja) 1990-02-26 1997-04-09 日本電信電話株式会社 光導波回路の特性調整方法およびその方法に使われる光導波回路
JPH04113302A (ja) 1990-09-03 1992-04-14 Nippon Telegr & Teleph Corp <Ntt> 導波型光回路およびその製造方法
US5119447A (en) 1990-11-06 1992-06-02 General Instrument Corporation Apparatus and method for externally modulating an optical carrier
JP2621684B2 (ja) 1991-05-15 1997-06-18 富士通株式会社 光変調器の動作点制御方法
JP2659293B2 (ja) 1991-08-30 1997-09-30 日本電信電話株式会社 導波路型光スイッチ
CA2083219C (en) 1991-11-19 1999-01-05 Hiroshi Nishimoto Optical transmitter having optical modulator
JP3167383B2 (ja) 1991-11-19 2001-05-21 富士通株式会社 光送信機
US5157744A (en) 1991-12-16 1992-10-20 At&T Bell Laboratories Soliton generator
JPH07333446A (ja) 1994-06-06 1995-12-22 Nippon Telegr & Teleph Corp <Ntt> 光合分波器
US5506925A (en) 1995-02-28 1996-04-09 At&T Corp. Radiolytic modification of birefringence in silica planar waveguide structures
US6084050A (en) * 1997-01-09 2000-07-04 Nippon Telegraph And Telephone Corporation Thermo-optic devices
JP3223959B2 (ja) 1997-03-05 2001-10-29 日本電信電話株式会社 導波型光回路における光路長トリミング方法及びその装置
AUPP865599A0 (en) 1999-02-12 1999-03-11 University Of Sydney, The Laser etching of waveguide structures
US6240221B1 (en) * 1999-03-29 2001-05-29 Nortel Networks Limited Integrated optical mach zehnder structures
EP1058136A1 (en) 1999-05-21 2000-12-06 BRITISH TELECOMMUNICATIONS public limited company Planar silica optical waveguide with grooves
US6424755B1 (en) 1999-07-02 2002-07-23 Nortel Networks Limited Slotted monolithic optical waveguides
US6356681B1 (en) * 1999-07-09 2002-03-12 Corning Incorporated Method and apparatus for trimming the optical path length of optical fiber components
JP2001100163A (ja) 1999-09-30 2001-04-13 Sumitomo Osaka Cement Co Ltd 光導波路素子及び光導波路素子の位相制御方法
US6256435B1 (en) 1999-10-20 2001-07-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Polarization insensitive grating in a planar channel optical waveguide and method to achieve the same
US6546161B2 (en) * 2000-01-21 2003-04-08 Nippon Telegraph And Telephone Corporation No polarization dependent waveguide type optical circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028029A1 (ja) 2007-08-24 2009-03-05 Nippon Telegraph And Telephone Corporation 偏波無依存導波型光干渉回路
US8346030B2 (en) 2007-08-24 2013-01-01 Nippon Telegraph And Telephone Corporation Polarization-independent waveguide-type optical interference circuit
WO2010140363A1 (ja) 2009-06-02 2010-12-09 日本電信電話株式会社 広帯域干渉計型偏波合成分離器
WO2012128043A1 (ja) * 2011-03-24 2012-09-27 古河電気工業株式会社 光導波回路およびその製造方法ならびに光導波回路装置

Also Published As

Publication number Publication date
DE60223735T2 (de) 2008-10-30
DE60223735D1 (de) 2008-01-10
US6823094B2 (en) 2004-11-23
US20020126933A1 (en) 2002-09-12
EP1936322A3 (en) 2010-03-31
JP2002221630A (ja) 2002-08-09
EP1806557A2 (en) 2007-07-11
EP1936322A2 (en) 2008-06-25
EP1227297A3 (en) 2003-06-04
EP1227297B1 (en) 2007-11-28
EP1806557A3 (en) 2010-03-31
EP1227297A2 (en) 2002-07-31
EP1806557A8 (en) 2010-06-09
EP1936322B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP3703013B2 (ja) 干渉計光回路及びその製造方法
Kawachi Silica waveguides on silicon and their application to integrated-optic components
US6442311B1 (en) Optical device having modified transmission characteristics by localized thermal treatment
US5117470A (en) Guided-wave optical circuit and method for adjusting a characteristic thereof
US6704487B2 (en) Method and system for reducing dn/dt birefringence in a thermo-optic PLC device
Okuno et al. Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch
JPH0718964B2 (ja) 集積光デバイスおよびその製造方法
JP4675336B2 (ja) 導波路型可変光減衰器
WO2001059495A1 (fr) Interferometre optique a guide d&#39;ondes
JPH11174246A (ja) プレーナ形光導波路
JP2004037769A (ja) 光導波路カプラ回路デバイス
JPH09211240A (ja) 位相調整機能付光導波路及びその作製方法
JP2002098850A (ja) 無複屈折受動光学構成要素
JP3715206B2 (ja) 干渉計光回路製造方法
JP2003029219A (ja) 平面導波路型可変光減衰器
Kasahara et al. Birefringence compensated silica-based waveguide with undercladding ridge
JP4086485B2 (ja) 偏光無依存方向性結合器及びこれを用いた光回路
WO1999021038A1 (en) Phased array wavelength multiplexer
Takato et al. Silica-based single-mode guided-wave devices
JP3961348B2 (ja) 導波路型光回路の調整方法
JP3573332B2 (ja) 干渉型熱光学光部品
JPH0367204A (ja) 集積光デバイスおよびその製造方法
JPH0720336A (ja) 光導波路の構造とその製造方法
JP3691823B2 (ja) 光回路装置および光回路装置の制御方法
JP3223959B2 (ja) 導波型光回路における光路長トリミング方法及びその装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Ref document number: 3703013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term