JP3682165B2 - 油圧駆動装置 - Google Patents

油圧駆動装置 Download PDF

Info

Publication number
JP3682165B2
JP3682165B2 JP22163698A JP22163698A JP3682165B2 JP 3682165 B2 JP3682165 B2 JP 3682165B2 JP 22163698 A JP22163698 A JP 22163698A JP 22163698 A JP22163698 A JP 22163698A JP 3682165 B2 JP3682165 B2 JP 3682165B2
Authority
JP
Japan
Prior art keywords
pilot
hydraulic
control valve
pressure
control valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22163698A
Other languages
English (en)
Other versions
JP2000055005A (ja
Inventor
俊弘 大野
健太郎 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP22163698A priority Critical patent/JP3682165B2/ja
Publication of JP2000055005A publication Critical patent/JP2000055005A/ja
Application granted granted Critical
Publication of JP3682165B2 publication Critical patent/JP3682165B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば建設機械に好適な油圧駆動装置に係わり、特に、電気レバー方式の操作レバー装置を備えた油圧駆動装置に関するものである。
【0002】
【従来の技術】
建設機械の一例として、従来の油圧ショベルの一例を図2に示す。図2において、この油圧ショベルは、いわゆるローダタイプのものであり、多関節型のフロント装置1を構成する上下方向に回動可能なブーム1a、アーム1b、及びバケット1cと、下部走行体2及び上部旋回体3とを有している。
ブーム1a、アーム1b、及びバケット1cは垂直方向にそれぞれ回動可能であり、またブーム1aの基端は、上部旋回体3の前部に支持されている。
下部走行体2は、履帯2Aを左・右に備えており、上部旋回体3は、オペレータが搭乗する運転室3Aと、この運転室3Aの後方に位置し原動機(図示せず、後述の図3参照)、油圧ポンプ(同)、コントロールバルブグループ(同)等の各種の機器を内蔵した機械室3Bとを備え、下部走行体2の上部に旋回可能に搭載されている。
ブーム1a、アーム1b、及びバケット1cは、それぞれブーム用の油圧シリンダ4、アーム用の油圧シリンダ5、及びバケット用の油圧シリンダ6により駆動される。またバケット1cは、開閉シリンダ(図示せず)によって駆動され、開閉動作する。また、下部走行体2は、左・右走行用油圧モータ(図示せず)により駆動されて走行し、上部旋回体3は旋回用油圧モータ(図示せず、後述の図3参照)により駆動されて下部走行体2に対し旋回するようになっている。
運転室3A内には操作レバー装置(図示せず、後述の図3参照)や操作ペダル(図示せず)等の操作手段が設けられており、この運転室3Aに搭乗したオペレータは、これら各操作手段を適宜操作することにより、前述した油圧モータ及び油圧シリンダ等の油圧アクチュエータを駆動し、油圧ショベルを走行させたり、所要の作業を行ったりすることができるようになっている。
【0003】
ここで、フロント装置1の先端には、バケット1c以外のアタッチメントを設けることもできるが、上記のようにバケット1cを用いる場合には、土砂の掘削等の作業を行うことができる。ここで、鉱山における露天掘り等の大規模掘削作業を行う場合においては、作業の効率化を図る等のために、バケット1cとして例えば積載容量が70トン〜300トンを超えるような大型バケットを備えたいわゆる超大型油圧ショベルが用いられる。このような油圧ショベルでは、バケット1cを駆動するバケット用の油圧シリンダ6やブーム1aを駆動するブーム用の油圧シリンダ4は極めて大きな駆動力が必要となり、それらには大流量の圧油を供給しなければならない。そのため、それらのシリンダ径を大きくしたり、あるいはそれぞれを複数本の油圧シリンダで構成したりすることが多い。
このような超大型油圧ショベルの場合には、各油圧アクチュエータを備えた油圧駆動装置としては、従来の考え方に基づけば、例えば図3に示したような構成とすることが考えられる。なお、図3では、図示の煩雑防止と説明の便宜のために、一部の油圧アクチュエータ、例えば左・右走行用油圧モータ等に関する回路構成部分は省略している。
【0004】
図3において、原動機(例えばエンジン、あるいは電動モータでもよい)7aによって駆動される第1油圧ポンプ8a及び第2油圧ポンプ8bと、原動機7bによって駆動される第3油圧ポンプ9a及び第4油圧ポンプ9bと、第1〜第4油圧ポンプ8a,8b,9a,9bからの吐出油により駆動される上記ブーム用の油圧シリンダ4及び上記バケット用の油圧シリンダ6と、第1及び第3油圧ポンプ8a,9aからの吐出油により駆動される上記アーム用の油圧シリンダ5と、第2及び第4油圧ポンプ8b,9bからの吐出油により駆動される旋回用の油圧モータ10とを備えている。なお上述したように、大流量圧油を供給可能とするために、ブーム用油圧シリンダ4は、2つの油圧シリンダ4a,4bから構成されている。
【0005】
第1油圧ポンプ8aは、第1ブーム用コントロールバルブ11a、第1アーム用コントロールバルブ11b、及び第1バケット用コントロールバルブ11cを介してそれぞれブーム用油圧シリンダ4a,4b、アーム用油圧シリンダ5、及びバケット用油圧シリンダ6に接続されている。これらコントロールバルブ11a〜11cは、第1コントロールバルブグループ11を構成している。
第2油圧ポンプ8bは、第2ブーム用コントロールバルブ12a、第2バケット用コントロールバルブ12b、及び第1旋回用コントロールバルブ12cを介してそれぞれブーム用油圧シリンダ4a,4b、バケット用油圧シリンダ6、及び旋回用油圧モータ10に接続されている。これらコントロールバルブ12a〜12cは、第2コントロールバルブグループ12を構成している。
第3油圧ポンプ9aは、第3ブーム用コントロールバルブ13a、第2アーム用コントロールバルブ13b、及び第3バケット用コントロールバルブ13cを介してそれぞれブーム用油圧シリンダ4a,4b、アーム用油圧シリンダ5、及びバケット用油圧シリンダ6に接続されている。これらコントロールバルブ13a〜13cは、第3コントロールバルブグループ13を構成している。
第4油圧ポンプ9bは、第4ブーム用コントロールバルブ14a、第4バケット用コントロールバルブ14b、及び第2旋回用コントロールバルブ14cを介してそれぞれブーム用油圧シリンダ4a,4b、バケット用油圧シリンダ6、及び旋回用油圧モータ10に接続されている。これらコントロールバルブ14a〜14cは、第4コントロールバルブグループ14を構成している。
なお、上記コントロールバルブグループ11,12,13,14は、対応する油圧アクチュエータの数や種類、また作用する荷重等に応じて、必要な数のコントロールバルブをユニット化したものである。但し、上記図3に示した油圧回路では、駆動される油圧アクチュエータとして、ブーム1aを駆動するブーム用の油圧シリンダ4a,4bと、アーム1bを駆動するアーム用の油圧シリンダ5と、バケット1cを駆動するバケット用の油圧シリンダ6と、上部旋回体3を駆動する旋回モータ10とを例にとって説明したため、各コントロールバルブグループ11〜14は、それぞれ3個のコントロールバルブで1つのユニットを構成している。しかし、実際上は、それらのほかにも左・右走行用油圧モータ等が設けられる関係から、各コントロールバルブグループを構成する方向切換弁の数はさらに多くなる(後述の図4、図5参照)。
【0006】
上記のような接続構造により、アーム用の油圧シリンダ5には、第1コントロールバルブグループ11の第1アーム用コントロールバルブ11bを介した第1油圧ポンプ8aからの圧油と、第3コントロールバルブグループ13の第2アーム用コントロールバルブ13bを介した第3油圧ポンプ9aからの圧油とが合流されて供給されるようになっている。また、旋回モータ10には、第2コントロールバルブグループ12の第1旋回用コントロールバルブ12cを介した第2油圧ポンプ8bからの圧油と、第4コントロールバルブグループ14の第2旋回用コントロールバルブ14cを介した第4油圧ポンプ9bからの圧油とが合流されて供給されるようになっている。
また、ブーム用の油圧シリンダ4a,4bと、バケット用の油圧シリンダ6には、4つの油圧ポンプ8a,8b,9a,9bからの圧油が合流されて供給されるようになっている。すなわち、ブーム用の油圧シリンダ4a,4bについては、第1コントロールバルブグループ11の第1ブーム用コントロールバルブ11aと第2コントロールバルブグループ12の第2ブーム用コントロールバルブ12aを介した圧油を合流させると共に、第3コントロールバルブグループ13の第3ブーム用コントロールバルブ13aと第4コントロールバルブグループ14の第4ブーム用コントロールバルブ14aを介した圧油を合流させ、さらにこれら2つを合流させて、ブーム用の油圧シリンダ4a,4bに供給する。また、バケット用の油圧シリンダ6についても、第1コントロールバルブグループ11の第1バケット用コントロールバルブ11cと第2コントロールバルブグループ12の第2バケット用コントロールバルブ12bを介した圧油を合流させると共に、第3コントロールバルブグループ13の第3バケット用コントロールバルブ13cと第4コントロールバルブグループ14の第4バケット用コントロールバルブ14bを介した圧油を合流させ、さらにこれら2つを合流させて、バケット用の油圧シリンダ6に供給するようになっている。
【0007】
上記のようにブーム用の油圧シリンダ4a,4b及びバケットシリンダ6を駆動するために4個の油圧ポンプ8a,8b,9a,9bからの圧油を合流させているのは、ブーム1a及びバケット1cには大きな負荷が作用するためこれらを駆動する油圧アクチュエータは大流量の圧油を必要とするからである。但し、以上の油圧アクチュエータとコントロールバルブとの接続関係は、一例を示したものであり、既に説明したように、前述以外の油圧アクチュエータが接続されることもある。また例えばバケット1cの容量の大きさによっては、バケット用の油圧シリンダ6に圧油の合流を行わない場合もある等、油圧ショベルの寸法、仕様等に応じて、適宜の回路構成が採用される。さらに、上記のように2つの原動機7a,7bで駆動される4個の油圧ポンプ8a,8b,9a,9bを用いるのではなく、単一の駆動源で駆動される3個の油圧ポンプを用いた油圧駆動装置を備えた油圧ショベルもあり、この場合には、ブーム用の油圧シリンダ、バケット用の油圧シリンダを含めた各油圧アクチュエータは、1つの油圧ポンプからの圧油が供給されるか、または2個や3個の油圧ポンプからの圧油を合流させて供給するように構成される。
【0008】
ところで、図3に示した4個の油圧ポンプ8a,8b,9a,9bからの圧油を合流させて油圧アクチュエータに供給する場合に、この油圧アクチュエータに対する圧油の給排御御を行うために、4つのコントロールバルブグループ11,12,13,14からそれぞれ1個のコントロールバルブが選択されることになる。従って、1つの油圧アクチュエータを駆動するのに、4個のコントロールバルブの切り換え操作が必要となる。そこで、4個の油圧ポンプからの圧油を合流させて油圧アクチュエータに供給するものとして、例えばバケット用の油圧シリンダ6の駆動用の油圧回路の構成の一例を図4に示す。なお、図4の油圧回路図においては、各コントロールバルブグループ11,12,13,14がそれぞれ4個のコントロールバルブ11a〜d,12a〜d,13a〜d,14a〜dで構成される場合を例にとって説明している。
図4において、バケットシリンダ6に圧油を供給するために選択されるコントロールバルブは、第1〜第4コントロールバルブグループ11,12,13,14のコントロールバルブ11a,12b,13c,14dである。そして、これらコントロールバルブ11a,12b,13c,14dを含みコントロールバルブグループ11〜14を構成する全てのコントロールバルブは、それぞれ、操作レバー装置15からの駆動信号とパイロットポンプ16からパイロットライン17a,17bを介した1次パイロット圧とが入力され前記駆動信号に応じた2次パイロット圧を出力する電気油圧変換手段例えば電磁比例弁S1,S2と、これら電磁比例弁S1,S2からの2次パイロット圧が与えられるパイロット操作部P1,P2とを両端に備えており、このパイロット操作部P1,P2に与えられる2次パイロット圧により駆動されるようになっている。すなわち、パイロットポンプ16からのパイロットライン17は途中で分岐して2本のパイロットライン17a,17bとなり、各パイロットライン17a及び17bはさらに4本のパイロットライン17a1,17a2,17a3,17a4及び17b1,17b2,17b3,17b4に分岐して4つのコントロールバルブ11a,12b,13c,14dのパイロット操作部P1又はP2にそれぞれ接続されている。
【0009】
コントロールバルブ11a,12b,13c,14dの切り換え制御は、上記操作レバー装置15によって行われる。操作レバー装置15は、いわゆる電気レバー方式であり、中立位置を挾んだ図4中A方向及びB方向のいずれにも操作可能な操作レバー15Aと、この操作レバー15Aの操作量に応じた電気信号を発生する出力手段、例えばポテンショメータ15Bとを備えている。通常は、操作レバー装置15の操作レバー15aは図4に示すような中立位置にあり各コントロールバルブ11a,12b,13c,14dは中立位置に保持されているが、この状態から操作レバー15Aを図4中A方向(又はB方向、以下、かっこ内が対応する)に操作すると、ポテンショメータ15Bからその操作量に応じた電気信号が出力され、各コントロールバルブ11a,12b,13c,14dの電磁比例弁S1(又はS2)に入力される。電磁比例弁S1(又はS2)はこの電気信号に応じた開度でパイロットライン17a1〜a4(又は17b1〜b4)とパイロット操作部P1(又はP2)とを連通させる。このとき、パイロットライン17a1〜a4,17b1〜b4には、リリーフ弁18で最高圧が規定されたパイロットポンプ16からの1次パイロット圧がパイロットライン17及び17a,17bを介し供給されているので、電気信号に応じた2次パイロット圧が電磁比例弁S1(又はS2)からパイロット操作部P1(又はP2)に与えられることとなる。一方このとき、反対側の電磁切換弁S2(又はS1)には電気信号が入力されず閉じ状態に維持され、パイロットライン17b1〜b4(又は17a1〜a4)とパイロット操作部P2(又はP1)とを遮断する。そのため、パイロット操作部P2(又はP1)には2次パイロット圧は供給されない。この結果、各コントロールバルブ11a,12b,13c,14dは図4中左側位置(又は右側位置)に一斉に切り換えられ、バケット用油圧シリンダ6のボトム側6A(又はロッド側6B)に第1〜第4油圧ポンプ8a,8b,9a,9bから吐出される圧油が供給され、バケット用油圧シリンダ6は操作レバー15AのA方向(又はB方向)への操作量に相応した速度で伸び動作(又は縮み動作)する。すなわち、操作レバー15Aを最大の角度傾けると、大きな流量が油圧シリンダ6に供給され、油圧シリンダ6は高速で変位する。これに対して、操作レバー15Aの操作角度を小さくすると、その分だけ油圧シリンダ6に供給される流量が少なくなり、油圧シリンダ6の動きの速度も遅くなる。なお、上記リリーフ弁18に加えて、油圧パイロット信号の最高圧を規定する低圧リリーフ弁を回路に設けることも可能である。
【0010】
一方、バケット用の油圧シリンダ6の駆動用の油圧回路の構成のもう1つの例を図5に示す。図4と共通の部分には同一の符号を付し、適宜説明を省略する。図5では、コントロールバルブ11a,12b,13c,14dを含みコントロールバルブグループ11〜14を構成する全てのコントロールバルブは油圧パイロット方式のバルブであり、パイロットポンプ16からパイロットライン17,17a及び17b,17a1〜a4及び17b1〜b4を介し導かれたパイロット圧が入力されるパイロット操作部P1,P2のみを両端に備えており、このパイロット操作部P1,P2に与えられるパイロット圧により駆動されるようになっている。そして、パイロットライン17a,17bには、操作レバー装置15からの電気信号に応じた開度でパイロットライン17a,17bを連通させる電磁比例弁S1′,S2′が設けられている。
通常は、操作レバー15Aは図5に示す中立位置にあり各コントロールバルブ11a,12b,13c,14dは中立位置に保持されているが、この状態から操作レバー15Aを図5中A方向(又はB方向、以下、かっこ内が対応する)に操作すると、ポテンショメータ15Bからその操作量に応じた電気信号が出力され、電磁比例弁S1′(又はS2′)に入力される。電磁比例弁S1′(又はS2′)はこの電気信号に応じた開度でパイロットライン17a(又は17b)を連通させる。パイロットライン17a(又は17b)の電磁比例弁S1′,S2′上流側には1次パイロット圧が供給されているので、電気信号に応じた2次パイロット圧が電磁比例弁S1′(又はS2′)からパイロットライン17a1〜a4(又は17b1〜b4)を介し各コントロールバルブ11a,12b,13c,14dのパイロット操作部P1(又はP2)に与えられる。またこのとき、もう一方の電磁切換弁S2′(又はS1′)には電気信号が入力されずばねの付勢力で閉じ状態に維持され、パイロットライン17b(又は17a)を遮断しタンク19に連通させる。これにより、パイロット操作部P2(又はP1)の圧力はタンク圧となる。この結果、各コントロールバルブ11a,12b,13c,14dは図5中左側位置(又は右側位置)に一斉に切り換えられ、バケット用油圧シリンダ6のボトム側6A(又はロッド側6B)に第1〜第4油圧ポンプ8a,8b,9a,9bから吐出される圧油が供給され、バケット用油圧シリンダ6は操作レバー15AのA方向(又はB方向)への操作量に相応した速度で伸び動作(又は縮み動作)する。
【0011】
【発明が解決しようとする課題】
しかしながら、上記従来技術には、それぞれ以下の課題が存在する。
図4の従来技術では、各コントロールバルブグループ11,12,13,14に4つずつ合計16個のコントロールバルブのそれぞれに2つの電磁比例弁S1,S2が設けられるため、総数で32個の電磁比例弁が必要となる。電磁比例弁は非常に高価なものであるため、このような多数の電磁比例弁を用いるとその分だけコストが大幅に上昇するという問題がある。
【0012】
一方、図5の従来技術では、1つの油圧アクチュエータあたり2つの電磁比例弁S1′,S2′のみで足りるため、上記のような大幅なコスト高を招くことはない。しかしながら、一般に、電磁比例弁は、その構造上容量が比較的小さく、制御可能な圧油流量が小さい。図5の構造においては、各電磁比例弁S1′,S2′の下流側でパイロットライン17a,17bがそれぞれ4つに分岐しパイロットライン17a1〜a4,17b1〜b4となってコントロールバルブ11a,12b,13c,14dのパイロット操作部P1,P2に接続される。そのため、パイロット操作部P1,P2には、電磁比例弁S1′,S2′からの小流量圧油がさらに1/4ずつになって導かれることとなるため、油圧パイロット信号の伝達に時間がかかり、操作レバー15Aを操作してからコントロールバルブが切り換わるまでの応答性が悪くなる。
【0013】
本発明は以上の点に鑑みなされたものであり、その目的は、複数の油圧ポンプからの圧油を複数のコントロールバルブを介し複数の油圧アクチュエータへ導く油圧駆動装置において、大幅なコスト高を招くことなく、良好な応答性を確保できる構成を提供することにある。
【0014】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明は、複数の主油圧ポンプと、これら複数の主油圧ポンプから供給される圧油により駆動される複数の油圧アクチュエータと、パイロット操作部を備え前記複数の主油圧ポンプから前記複数の油圧アクチェエータヘの圧油の給排を制御する油圧パイロット方式の複数のコントロールバルブと、これら複数のコントロールバルブを切り換えるための電気制御信号をそれぞれ出力する電気レバー方式の複数の操作レバー装置と、油圧パイロット信号を生成するパイロット油圧ポンプとを有し、前記電気レバー装置の電気制御信号をパイロット圧信号に変換し、前記パイロット油圧ポンプで生成したパイロット圧を前記操作レバー装置の操作量に応じて前記コントロールバルブのパイロット操作部へ供給する操作信号油圧変換供給手段を備えた油圧駆動装置において、前記複数のアクチュエータの少なくとも1つは3つ以上の主油圧ポンプからの圧油を各主油圧ポンプに接続された3つ以上のコントロールバルブを介して供給される大流量駆動のアクチュエータであり、前記大流量駆動のアクチュエータに係わる前記操作信号油圧変換供給手段は、前記パイロットポンプの圧油を前記電気レバー装置の電気信号に比例したパイロット圧信号に変換して出力する電磁比例弁と、前記電磁比例弁から出力されたパイロット圧信号に比例して圧油容量を増幅した油圧操作信号を前記 3 つ以上のコントロールバルブのパイロット操作部に供給する圧力制御弁とを備え、前記圧力制御弁を前記パイロット油圧ポンプと前記3つ以上のコントロールバルブのパイロット操作部との間を接続する第1パイロット配管の途中に設け、前記電磁比例弁を前記パイロット油圧ポンプと前記圧力制御弁のパイロット操作部とを接続する第2パイロット配管の途中に設ける。
複数の主油圧ポンプからの圧油を複数のコントロールバルブを介し複数の油圧アクチュエータへ導く場合、コントロールバルブは、各主油圧ポンプに接続される複数のコントロールバルブごとにユニット化されたコントロールバルブグループとして構成することが多い。このような構成では、あるアクチュエータを駆動させるときには、すべてのコントロールバルブグループ(又はそのうちのいくつかのコントロールバルブグループ)からそれぞれ所望のコントローバルブを選択選択してそれらを一斉に切り換えて、それら複数のコントロールバルブを介して導かれた圧油を合流させた後、対応する油圧アクチュエータに供給する。
このような場合に対応すべく、本発明においては、まず、電気レバー方式の操作レバー装置から出力される電気制御信号で電磁比例弁を制御することにより、電磁比例弁を開き状態にし、パイロットポンプからの油圧パイロット信号を第2パイロット配管を介し圧力制御弁のパイロット操作部に導くことができる。これによって、油圧パイロット方式の圧力制御弁を開き状態にして、パイロットポンプからの油圧パイロット信号を第1パイロット配管を介しコントロールバルブのパイロット操作部に導き、コントロールバルブを切り換えることができる。
このような構成とすることで、例えば各コントロールバルブの一方側と他方側に設けられるパイロット操作部に対応して各コントロールバルブあたり2つずつの第1パイロット配管を接続し、これらを一方側への第1パイロット配管と他方側への第1パイロット配管との2つに集約し、集約した位置にそれぞれの側の第1パイロット配管内の油圧パイロット信号を制御する圧力制御弁を設ければ、あるアクチュエータに対応する複数のコントロールバルブの切り換えを2つの圧力制御弁で制御することができる。このとき、これら2つの圧力制御弁はパイロット方式の弁であることにより、電磁比例弁と異なり、容量を比較的大きなものとすることができる。したがって、前記のように各コントロールバルブからの第1パイロット配管を集約して圧力制御弁を設け各圧力制御弁を介した圧油が各コントロールバルブのパイロット操作部へ分流していく場合でも、圧力制御弁の容量を十分に大きくとることで、第1パイロット配管内を伝達する油圧パイロット信号の伝達速度を十分に早くすることができる。
以上のように、操作レバー装置からの電気制御信号で電磁比例弁を素早く切り換え、この電磁比例弁の切り換えによって第2パイロット配管内の油圧パイロット信号を介し圧力制御弁を素早く切り換え、この圧力制御弁の切り換えによって第1パイロット配管内の油圧パイロット信号を介しコントロールバルブを素早く切り換えることができる。したがって、パイロットポンプからコントロールバルブのパイロット操作部までのパイロットラインに、操作レバー装置からの信号で開閉する電磁比例弁を直接配置した従来構造より応答性を向上し、高い応答性を確保することができる。
【0015】
(2)好ましくは、上記(1)において、前記3つ以上の主油圧ポンプのそれぞれに、前記コントロールバルブを複数個連接したコントロールバルブグループを接続し、これらコントロールバルブグループのうち3つ以上のコントロールバルブグループから駆動する前記大流量駆動の油圧アクチュエータに対応した3つ以上のコントロールバルブを選択し、前記圧力制御弁の下流側の前記第1パイロット配管を分岐させて前記選択された3つ以上のコントロールバルブのパイロット操作部にそれぞれ接続する。
【0016】
【発明の実施の形態】
以下、本発明の一実施形態を、図面を参照しつつ説明する。前述した従来技術で説明したものと同一または均等な構成部材については、それらと同一の符号を付し、説明は適宜省略する。
【0017】
図1は、本実施形態による油圧駆動装置のうち、バケット用の油圧シリンダ6の駆動用の油圧回路の構成を示す回路図であり、従来技術を説明した図4や図5に相当する図である。この図1において、前述した図5と異なるのは、パイロットポンプ16のパイロットライン17から分岐して設けた2本のパイロットライン17a,17bの途中に、電磁比例弁S1′,S2′の代わりに、パイロット操作部20aA,20bAを備えた油圧パイロット方式の圧力御御弁20a,20bを設け、パイロットポンプ16とパイロット操作部20aA,20bAとの間を、パイロットライン17から分岐して設けたパイロットライン21及びそれがさらに分岐したパイロットライン21a,21bによってそれぞれ接続し、さらにそれらパイロット配管21a,21bの途中に電磁比例弁22a,22bを設け、操作レバー装置15からの電気信号でそれら電磁比例弁22a,22bの駆動を制御するようにしたことである。
【0018】
なお、上記において、パイロットライン17、パイロットライン17a,17b、及びパイロットライン17a1〜a4,17b1〜b4が、パイロット油圧ポンプとコントロールバルブのパイロット操作部との間を接続し、このパイロット操作部に油圧パイロット信号を導く第1パイロット配管を構成し、パイロットライン17、パイロットライン21、及びパイロットライン21a,21bが、パイロットポンプと圧力制御弁のパイロット操作部との間を接続し、このパイロット操作部に油圧パイロット信号を導く第2パイロット配管を構成する。
【0019】
上記構成において、通常は、操作レバー15Aは図1に示す中立位置にあり各コントロールバルブ11a,12b,13c,14dは中立位置に保持されている。この状態から操作レバー15Aを図1中A方向(又はB方向、以下、かっこ内が対応する)に操作すると、ポテンショメータ15Bからその操作量に応じた電気信号が出力され、電磁比例弁22a(又は22b)に入力される。電磁比例弁22a(又は22b)はこの電気信号に応じた開度でパイロットライン21a(又は21b)を連通させる。パイロットライン21a(又は21b)の電磁比例弁22a(又は22b)上流側にはパイロットライン17,21を介し油圧パイロット信号が供給されているので、電気信号に応じた油圧パイロット信号が電磁比例弁22a(又は22b)から圧力制御弁20a(又は20b)のパイロット操作部20aA(又は20bA)に与えられる。この結果、圧力制御弁20a(又は20b)は図1中上側位置に切り換えられる。このとき、一般に電磁比例弁は比較的容量が小さく制御可能な圧油流量が小さいが、電磁比例弁22a(又は22b)はパイロットライン21a(又は21b)を介し1つの圧力制御弁20a(又は20b)を切り換えるのみであるため、少ない圧油流量でも、パイロットライン21a(又は21b)を伝達する油圧パイロット信号の伝達速度を十分に早くすることができる。
また、もう一方の電磁切換弁22b(又は22a)には電気信号が入力されずばねの付勢力で図1中左側位置に維持され、パイロットライン21b(又は21a)を遮断しタンク19に連通させる。これにより、パイロット操作部20bA(又は20aA)の圧力はタンク圧となる。この結果、圧力制御弁20b(又は20a)はばねの付勢力で図1中下側位置に維持される。
【0020】
このような圧力制御弁20a,20bの状態に対して、このとき、パイロットライン17a(又は17b)の圧力制御弁20a(又は20b)上流側にはパイロットライン17,17aを介しパイロットポンプ16からの油圧パイロット信号が供給されている。したがって、パイロットライン21a(又は21b)を介した電磁比例弁22a(又は22b)からの油圧パイロット信号に応じた油圧パイロット信号が圧力制御弁20a(又は20b)からパイロットライン17a及び17a1〜a4(又は17b及び17b1〜b4)を介し各コントロールバルブ11a,12b,13c,14dのパイロット操作部P1(又はP2)に与えられる。ここで、この圧力制御弁20a(又は20b)はパイロット方式の弁であることにより、電磁比例弁と異なり、容量を比較的大きなものとすることができる。したがって、圧力制御弁20a(又は20b)を介した圧油がパイロットライン17a(又は17b)から4つに分かれパイロットライン17a1〜a4(又は17b1〜b4)を介し各コントロールバルブ11a,12b,13c,14dのパイロット操作部P1(又はP2)へと伝達されるときにも、圧力制御弁20a(又は20b)の容量を十分に大きくとることで、各パイロット操作部P1(又はP2)へと分流し伝達していく油圧パイロット信号の伝達速度を十分に早くすることができる。
ここで、もう一方の圧力制御弁20b(又は20a)は図1中下側位置に維持されるため、パイロットライン17b(又は17a)を遮断しタンク19に連通させる。これにより、各コントロールバルブ11a,12b,13c,14dのパイロット操作部P2(又はP1)の圧力はタンク圧となる。
この結果、各コントロールバルブ11a,12b,13c,14dは図1中左側位置(又は右側位置)に切り換えられる。これにより、バケット用油圧シリンダ6のボトム側6A(又はロッド側6B)に第1〜第4油圧ポンプ8a,8b,9a,9bから吐出される圧油が供給され、バケット用油圧シリンダ6は操作レバー15AのA方向(又はB方向)への操作量に相応した速度で伸び動作(又は縮み動作)する。
【0021】
以上のように、操作レバー装置15からの電気信号で電磁比例弁22a(又は22b)を素早く切り換え、この電磁比例弁22a(又は22b)の切り換えによってパイロットライン21a(又は21b)内の油圧パイロット信号を介し圧力制御弁20a(又は20b)を素早く切り換え、この圧力制御弁20a(又は20b)の切り換えによってパイロットライン17a及び17a1〜a4(又は17b及び17b1〜b4)内の油圧パイロット信号を介しコントロールバルブ11,12,13,14を図1中左側位置(又は右側位置)に素早く切り換えることができる。したがって、パイロットポンプからコントロールバルブのパイロット操作部までのパイロットラインに、操作レバー装置からの信号で開閉する電磁比例弁を直接配置した従来構造よりも応答性を向上し、高い応答性を確保することができる。
また、電磁比例弁としては、上記したように、コントロールバルブグループの数に関係なく、1つの油圧アクチュエータに対し2つずつ(図1の例ではバケット用油圧シリンダ6に対して電磁比例弁22a,22b)設ければ足りるので、各コントロールバルブのパイロット操作部ごとに電磁比例弁が必要であった従来構造のように著しいコスト増を招くのを防止できる。
【0022】
なお、以上の説明においては、油圧ショベルにおける被駆動部材をそれぞれ油圧アクチュエータで駆動するにあたって、これら油圧アクチュエータの駆動制御を行うために設けられるコントロールバルブを、コントロールバルブグループとして構成した。これは、コントロールバルブグループを構成する各コントロールバルブは同じ構造のものとするのが、その製造上好ましく、またコントロールバルブグループの量産性の観点からは、複数の油圧ポンプからの圧油の方向を制御するために油圧ポンプと同数設けられるコントロールバルブグループを、同一の構成とするのがさらに好ましいからである。
これに対して、それぞれの油圧アクチュエータに必要な流量は各被駆動部材の負荷等に応じて異なってくるため、コントロールバルブを介して流れる圧油の流量はそれぞれの油圧アクチュエータに応じて変える必要がある。すなわち、大流量が必要な場合には、要求される流量に応じた数のコントロールバルブを介した圧油を合流させることによって、油圧ショベルに設置されるコントロールバルブは全て同じ構成のものであっても、各油圧アクチュエータに対して必要な流量の供給が可能となる。その上で、本発明においては、圧油の合流を行わせるために選択されるコントロールバルブの数が多い場合であっても、それらを運転室に設けた操作レバー装置により切り換え制御するにあたって、低コストで、操作レバー装置の操作に対する応答性をより良くなるようにしたものである。従って、図1に示した油圧回路に限定されるものではなく、例えば設けられる油圧ポンプ及びコントロールバルブグループの数は任意であり、またどの油圧アクチュエータにどのコントロールバルブからの圧油を合流させるか、そのための配管をどのように構成するか、等については、様々な回路設計が可能である。
【0023】
【発明の効果】
以上説明したように、本発明によれば、複数の油圧ポンプからの圧油を複数のコントロールバルブを介し複数の油圧アクチュエータへ導く油圧駆動装置において、大幅なコスト高を招くことなく、良好な応答性を確保できる。
【図面の簡単な説明】
【図1】本発明の一実施形態による油圧駆動装置の油圧回路図である。
【図2】建設機械の一例としての油圧ショベルの外観図である。
【図3】従来技術による油圧駆動装置の油圧回路図である。
【図4】図3の油圧回路図のうち、バケット用の油圧シリンダを駆動するための回路部分を抽出して示す油圧回路構成図である。
【図5】他の従来技術による油圧駆動装置の油圧回路図のうち、バケット用の油圧シリンダを駆動するための回路部分を抽出して示す油圧回路構成図である。
【符号の説明】
4 ブーム用油圧シリンダ(油圧アクチュエータ)
5 アーム用油圧シリンダ(油圧アクチュエータ)
6 バケット用油圧シリンダ(油圧アクチュエータ)
8a 第1油圧ポンプ(主油圧ポンプ)
8b 第2油圧ポンプ(主油圧ポンプ)
9a 第3油圧ポンプ(主油圧ポンプ)
9b 第4油圧ポンプ(主油圧ポンプ)
10 旋回用油圧モータ(油圧アクチュエータ)
11 第1コントロールバルブグループ
12 第2コントロールバルブグループ
13 第3コントロールバルブグループ
14 第4コントロールバルブグループ
15 操作レバー装置
16 パイロットポンプ(パイロット油圧ポンプ)
17 パイロットライン(第1パイロット配管、第2パイロット配管)
17a,b パイロットライン(第1パイロット配管)
17a1〜a4 パイロットライン(第1パイロット配管)
17b1〜b4 パイロットライン(第1パイロット配管)
20a,b 圧力制御弁
20aA,bA パイロット操作部
21 パイロットライン(第2パイロット配管)
21a,b パイロットライン(第2パイロット配管)
22a,b 電磁比例弁
P1,P2 コントロールバルブのパイロット操作部

Claims (2)

  1. 複数の主油圧ポンプと、これら複数の主油圧ポンプから供給される圧油により駆動される複数の油圧アクチュエータと、パイロット操作部を備え前記複数の主油圧ポンプから前記複数の油圧アクチェエータヘの圧油の給排を制御する油圧パイロット方式の複数のコントロールバルブと、これら複数のコントロールバルブを切り換えるための電気制御信号をそれぞれ出力する電気レバー方式の複数の操作レバー装置と、油圧パイロット信号を生成するパイロット油圧ポンプとを有し、前記電気レバー装置の電気制御信号をパイロット圧信号に変換し、前記パイロット油圧ポンプで生成したパイロット圧を前記操作レバー装置の操作量に応じて前記コントロールバルブのパイロット操作部へ供給する操作信号油圧変換供給手段を備えた油圧駆動装置において、
    前記複数のアクチュエータの少なくとも1つは3つ以上の主油圧ポンプからの圧油を各主油圧ポンプに接続された3つ以上のコントロールバルブを介して供給される大流量駆動のアクチュエータであり、
    前記大流量駆動のアクチュエータに係わる前記操作信号油圧変換供給手段は、
    前記パイロットポンプの圧油を前記電気レバー装置の電気信号に比例したパイロット圧信号に変換して出力する電磁比例弁と、
    前記電磁比例弁から出力されたパイロット圧信号に比例して圧油容量を増幅した油圧操作信号を前記 3 つ以上のコントロールバルブのパイロット操作部に供給する圧力制御弁とを備え、
    前記圧力制御弁を前記パイロット油圧ポンプと前記3つ以上のコントロールバルブのパイロット操作部との間を接続する第1パイロット配管の途中に設け、
    前記電磁比例弁を前記パイロット油圧ポンプと前記圧力制御弁のパイロット操作部とを接続する第2パイロット配管の途中に設けることを特徴とする油圧駆動装置。
  2. 請求項1記載の油圧駆動装置において、前記3つ以上の主油圧ポンプのそれぞれに、前記コントロールバルブを複数個連接したコントロールバルブグループを接続し、これらコントロールバルブグループのうち3つ以上のコントロールバルブグループから駆動する前記大流量駆動の油圧アクチュエータに対応した3つ以上のコントロールバルブを選択し、前記圧力制御弁の下流側の前記第1パイロット配管を分岐させて前記選択された3つ以上のコントロールバルブのパイロット操作部にそれぞれ接続したことを特徴とする油圧駆動装置。
JP22163698A 1998-08-05 1998-08-05 油圧駆動装置 Expired - Lifetime JP3682165B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22163698A JP3682165B2 (ja) 1998-08-05 1998-08-05 油圧駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22163698A JP3682165B2 (ja) 1998-08-05 1998-08-05 油圧駆動装置

Publications (2)

Publication Number Publication Date
JP2000055005A JP2000055005A (ja) 2000-02-22
JP3682165B2 true JP3682165B2 (ja) 2005-08-10

Family

ID=16769886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22163698A Expired - Lifetime JP3682165B2 (ja) 1998-08-05 1998-08-05 油圧駆動装置

Country Status (1)

Country Link
JP (1) JP3682165B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074972A (ja) * 2009-09-29 2011-04-14 Kyb Co Ltd 油圧回路装置
JP2011075024A (ja) * 2009-09-30 2011-04-14 Kyb Co Ltd 油圧回路装置
JP2011075023A (ja) * 2009-09-30 2011-04-14 Kyb Co Ltd 油圧回路の馬力制御装置
CN109505811B (zh) * 2018-12-19 2023-12-29 中冶南方工程技术有限公司 一种节能型rh液压顶升比例阀控***
CN113309158A (zh) * 2021-06-22 2021-08-27 山东临工工程机械有限公司 电动挖掘机定量***变量化控制***及其控制方法

Also Published As

Publication number Publication date
JP2000055005A (ja) 2000-02-22

Similar Documents

Publication Publication Date Title
US7500360B2 (en) Hydraulic driving system of construction machinery
US5852934A (en) Fluid joining device for power construction vehicles
JP3497947B2 (ja) 油圧駆動装置
EP1847654A2 (en) Straight traveling hydraulic circuit
JPH076530B2 (ja) 油圧ショベルの油圧回路
JP4410512B2 (ja) 油圧駆動装置
WO2005019656A1 (ja) 油圧駆動制御装置
WO2021039286A1 (ja) 建設機械の油圧システム
JP2008115990A (ja) 建設機械の油圧駆動装置
JP6964052B2 (ja) 建設機械の油圧回路
JP3682165B2 (ja) 油圧駆動装置
CN113700689A (zh) 挖掘机及其液压控制***
JP2003184815A (ja) 建設機械の油圧制御装置及び油圧ショベルの油圧制御装置
JP3607529B2 (ja) 建設機械の油圧制御装置
JPS61142235A (ja) 油圧ショベル等の建設機械の油圧回路
JP4819510B2 (ja) 作業機械の油圧制御装置
JP4606004B2 (ja) 建設機械の油圧駆動装置
JP3142640B2 (ja) 油圧作業機の油圧回路
JP4926627B2 (ja) 電油システム
JP3604094B2 (ja) 油圧ショベルの油圧回路
JP2716607B2 (ja) 建設機械の油圧回路
KR20200135275A (ko) 작업 차량의 유압 회로
JPH10299027A (ja) 建設機械の油圧駆動装置
JP3061529B2 (ja) ローダフロント付き油圧ショベルの油圧駆動装置
JP3337939B2 (ja) 建設機械の油圧駆動装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

EXPY Cancellation because of completion of term