JP3676056B2 - Control device for parallel multiple power converter - Google Patents

Control device for parallel multiple power converter Download PDF

Info

Publication number
JP3676056B2
JP3676056B2 JP31924197A JP31924197A JP3676056B2 JP 3676056 B2 JP3676056 B2 JP 3676056B2 JP 31924197 A JP31924197 A JP 31924197A JP 31924197 A JP31924197 A JP 31924197A JP 3676056 B2 JP3676056 B2 JP 3676056B2
Authority
JP
Japan
Prior art keywords
current
zero
phase
inverter
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31924197A
Other languages
Japanese (ja)
Other versions
JPH11150986A (en
Inventor
博 大沢
深志 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP31924197A priority Critical patent/JP3676056B2/en
Publication of JPH11150986A publication Critical patent/JPH11150986A/en
Application granted granted Critical
Publication of JP3676056B2 publication Critical patent/JP3676056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、複数の電力変換器(例えばインバータ)により、3相交流電動機などの多相交流負荷を駆動するための制御装置に関する。
【0002】
【従来の技術】
多重インバータを構成する方法として、複数の電圧形インバータを並列に接続し、これら各インバータの同相出力間に相間リアクトルを接続するものが知られている。図4は3相出力の2多重インバータを、また、図5は3相出力の3多重インバータの構成例をそれぞれ示す(例えば特開昭60−98875号参照)。ここで、図4の相間リアクトル9と、図5の相間リアクトル91〜93は、複数のインバータ間を流れる循環電流(ik )の高調波成分を抑制する作用を有している。
【0003】
相間リアクトルは循環電流の高調波成分を抑制できるが、制御誤差などの原因で生じる直流成分や低周波成分の循環電流は抑制できない。このため、低周波の循環電流が過大になる場合があり、この現象によりインバータが過電流で故障することがある。これを解決するため、例えば特開平3−253293号に記載された方法では、一方のインバータでそのインバータの出力電流を制御し、他方のインバータで2組のインバータの出力電流の平均値を制御し、結果として循環電流を零とするようにしている。
【0004】
【発明が解決しようとする課題】
多重インバータを構成する場合、複数のインバータおよび制御装置を単に組み合わせて多重化できれば、開発費や設計費を低減できるだけでなく、製品の低コスト化が達成できるので好ましい。しかるに、上記特開平3−253293号に記載の方法では、2組の電流の平均値を演算する機能が付加されるので、ただ単に2組のインバータを組み合わせて多重化するわけには行かない。また、3多重化の場合には、2多重化の場合と異なる機能が必要になることが考えられる。このように、2多重用の制御装置,3多重用の制御装置など、多重数に応じた制御装置の開発と設計が必要となり、コストアップの要因となる。
したがって、この発明の課題は、多重数に応じた特別な開発や設計を要することなく、複数のインバータを組み合わせて多重インバータを構成できる低コストの制御装置を提供することにある。
【0005】
【課題を解決するための手段】
例えば、多相交流機の制御では、多相交流電流を電動機の磁束の方向に平行する磁化電流成分と、それに直交するトルク電流成分に分解して制御するベクトル制御が良く知られている。この制御では磁化電流をフィードバックする磁化電流制御系と、トルク電流をフィードバックするトルク電流制御系が用いられる。
一方、従来の並列多重インバータの制御では、複数のインバータの出力電流を平均化するという発想のもとに制御系を構成するのが一般的であった。
【0006】
この発明は、上記の磁化電流とトルク電流の制御に加え、インバータの出力電流に含まれる零相電流を検出し、この零相電流が零となるように制御すれば、自ずと複数のインバータの出力電流が平均化されることに着目したもので、零相電流の制御を比例増幅器を用いて安定に行なうようにしている。
すなわち、零相電流が零となるよう比例増幅器によりフィードバック制御することにより、各インバータ間を還流する循環電流を零に、しかも安定に制御することができる。また、多重数が任意のインバータでも、各インバータの制御は同じとなり、多重数を増やしてもそのための開発や設計が不要になる。
【0007】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図で、3相誘導電動機をベクトル制御にて駆動する2多重インバータの制御ブロック図を示す。
同図において、11は磁化電流調節器、12はトルク電流調節器、13は零相電流調節器、21〜23は座標変換器、3はPWM(パルス幅変調)制御装置、41,42はインバータ、5は誘導電動機(誘導機,IM)、6は積分器、7はすべり演算器である。すなわち、インバータ41に対して磁化電流調節器11、トルク電流調節器12、零相電流調節器13、座標変換器21〜23、PWM制御装置3、積分器6、すべり演算器7等からなる制御手段を設けたもので、インバータ42についても同様の機能が付与される。
【0008】
図1のiM * は磁化電流の指令値、iT * はトルク電流の指令値であり、3相電流の検出値は座標変換器21で下記数1を用いて、直交座標系における2相交流iα,iβと零相電流i0に変換される。なお、零相電流の定義として、数1の比例係数(1/3)1/2 の代わりに1/3を用いる場合もあるが、各相の電流の和に比例する電流が検出できれば、いずれを用いても良い。
【0009】
〔数1〕
iα=(2/3)1/2 (ia−ib/2−ic/2)
iβ=(2/3)1/2 (31/2 ib/2−31/2 ic/2)
i0=(1/3)1/2 (ia+ib+ic)
【0010】
iα,iβはさらに、座標変換器22により次の数2で回転磁束上の電流に座標変換され、iM とiT が求まる。ここで、θはすべり演算器と積分器から求まる誘導機の固定子軸(α軸)と磁束軸(M)軸との交角を示す。
〔数2〕
M =iαcosθ+iβsinθ
T =−iαsinθ+iβcosθ
【0011】
座標変換されたiM ,iT とiα,iβの関係を図2に示す。
α−β軸とM−T軸の交角θは、以下のように求める。すなわち、iM ,iT からすべり演算器7で、まず誘導電動機5のすべり角速度を求め、これに速度検出器から求めた速度を加算すると、誘導電動機5の2次磁束の角速度が求まり、これを積分器6で積分することで、α−β軸に対する2次磁束軸、つまりM−T軸の角度が求められることになる。
【0012】
M とiT の両検出値は、それぞれの指令値iM * ,iT * に一致するよう、磁化電流調節器11とトルク電流調節器12でフィードバック制御される。両調節器の出力は、それぞれM軸電圧指令値vM * とT軸電圧指令値vT * である。また、零相電流の指令値は零であり、零相電流が零となるようフィードバック制御される。零相電流調節器13の出力は零相電圧v0* である。
【0013】
M * ,vT * およびv0* から、下記数3,数4を用いて座標変換器23で3相の電圧指令va* ,vb* およびvc* が求められる。
〔数3〕
vα* =vM * cosθ−vT * sinθ
vβ* =vM * sinθ+vT * cosθ
〔数4〕
va* =(2/3)1/2 (vα* −v0* /21/2
vb* =(2/3)1/2 (−vα* /2+31/2 vβ* /2+v0* /21/2
vc* =(2/3)1/2 (−vα* /2−31/2 vβ* /2+v0* /21/2
【0014】
さらに、上記3相の電圧指令をパルス幅変調(PWM)して、インバータの制御が行なわれる。もう一方のインバータに関しても制御は全く同じなので、説明は省略する。
以上の構成によれば、iM ,iT および零相電流i0が制御されるので、等価的に3相電流が制御でき、インバータ間に循環電流が流れることもない。さらに上記構成では各インバータの制御は同じなので、3多重以上と多重数が増えてもインバータの制御を変更する必要がない。また、誘導電動機の駆動について説明したが、同期電動機の制御についても同様である。
【0015】
はこの発明の第2の実施の形態を示す構成図で、負荷5Aが抵抗やインダクタンスの場合の例である。
すなわち、2相発振器8は周波数指令ω*からθ=ω*t(t:時間)で与えられる位相θを出力する。電流の大きさIは、第1の電流指令i1 *と第2の電流指令i2 *に対し次の数5で与えられるので、例えばi1 *は電流Iの大きさに等しくし、i2 *は零に設定すれば良い。その他は図1と同様なので、説明は省略する。
〔数5〕
I=(i1 *2+i2 *21/2
以 上
【0016】
ところで、図1,図3の電流調節器11,12は、定常偏差を零にするため、一般には比例要素と積分要素からなる比例積分調節器(PI調節器)とされることが多い。これに対し、零相電流調節器13は比例調節器(P調節器)とすることが望ましい。その理由は以下のとおりである。
図1,図3の例では、電流の独立変数の数は5である。このことは、例えば図1の第1のインバータ41のiM ,iT ,i0と、第2のインバータ42のiM ,iT が制御されれば、第2のインバータ42のi0は一義的に決定されることを示している。したがって、第1のインバータ41のiM ,iT ,i0と、第2のインバータ42のiM ,iT ,i0とを互いに独立にPI調節器でフィードバック制御すると、制御誤差が原因で制御不能となる場合が生じるおそれがある。そこで、零相電流調節器をP調節器とすれば、定常偏差が生じて上記の問題を回避することができる。なお、この定常偏差はP調節器のゲインを高めれば非常に小さくできるので、実用上の問題はない。
【0017】
【発明の効果】
この発明によれば、零相電流のフィードバック制御を行なうようにしたので、多重インバータを構成する各インバータの制御を同じにすることができ、多重数を増やしてもインバータの制御を変更する必要がない。つまり、インバータの多重数によって新たな開発や設計を行なう必要がないため、製品の低コスト化が達成できるという利点が得られる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す構成図である。
【図2】図1の各電流と座標軸の関係を説明する説明図である。
【図3】この発明の第2の実施の形態を示す構成図である。
【図4】並列2多重インバータの従来例を示す構成図である。
【図5】並列3多重インバータの従来例を示す構成図である。
【符号の説明】
11…磁化電流調節器、12…トルク電流調節器、13…零相電流調節器、21〜23…座標変換器、3…PWM制御装置、41,42…インバータ、5…誘導電動機(誘導機,IM)、5A…負荷、6…積分器、7…すべり演算器、8…発振器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for driving a multiphase AC load such as a three-phase AC motor by a plurality of power converters (for example, inverters).
[0002]
[Prior art]
As a method of constructing a multiple inverter, there is known a method in which a plurality of voltage source inverters are connected in parallel and an interphase reactor is connected between the in-phase outputs of these inverters. FIG. 4 shows a configuration example of a three-phase output two-multiplexer inverter, and FIG. 5 shows a configuration example of a three-phase output three-multiplexer inverter (see, for example, JP-A-60-98875). Here, the interphase reactor 9 in FIG. 4 and the interphase reactors 91 to 93 in FIG. 5 have an effect of suppressing harmonic components of the circulating current (i k ) flowing between the plurality of inverters.
[0003]
The interphase reactor can suppress the harmonic component of the circulating current, but it cannot suppress the DC component or the low-frequency circulating current caused by a control error or the like. For this reason, the low-frequency circulating current may become excessive, and this phenomenon may cause the inverter to fail due to the overcurrent. In order to solve this problem, for example, in the method described in JP-A-3-253293, one inverter controls the output current of the inverter, and the other inverter controls the average value of the output currents of the two sets of inverters. As a result, the circulating current is made zero.
[0004]
[Problems to be solved by the invention]
When configuring a multiple inverter, it is preferable that a plurality of inverters and control devices can be combined in a simple manner because not only development costs and design costs can be reduced, but also product costs can be reduced. However, in the method described in Japanese Patent Laid-Open No. 3-253293, a function for calculating the average value of two sets of currents is added. Therefore, it is not possible to simply combine and multiplex two sets of inverters. Further, in the case of three multiplexing, a function different from that in the case of two multiplexing may be required. As described above, it is necessary to develop and design a control device according to the number of multiplexing, such as a control device for 2-multiplexing or a control device for 3-multiplexing, which causes an increase in cost.
Accordingly, an object of the present invention is to provide a low-cost control device that can configure a multiple inverter by combining a plurality of inverters without requiring special development or design according to the number of multiplexing.
[0005]
[Means for Solving the Problems]
For example, in the control of a multiphase AC machine, vector control is well known in which a multiphase AC current is decomposed and controlled into a magnetizing current component parallel to the direction of the magnetic flux of the motor and a torque current component orthogonal thereto. In this control, a magnetizing current control system that feeds back the magnetizing current and a torque current control system that feeds back the torque current are used.
On the other hand, in the control of a conventional parallel multiple inverter, the control system is generally configured based on the idea of averaging the output currents of a plurality of inverters.
[0006]
According to the present invention, in addition to the control of the magnetizing current and the torque current, if the zero-phase current included in the output current of the inverter is detected and controlled so that the zero-phase current becomes zero, the outputs of the plurality of inverters are naturally generated. Focusing on the fact that the current is averaged, the zero-phase current is controlled stably using a proportional amplifier.
That is, by performing feedback control with a proportional amplifier so that the zero-phase current becomes zero, the circulating current circulating between the inverters can be controlled to zero and stably. Moreover, even if the number of multiplexing is arbitrary, the control of each inverter is the same, and even if the number of multiplexing is increased, development and design for that purpose are not required.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a first embodiment of the present invention, and shows a control block diagram of a double multiplex inverter for driving a three-phase induction motor by vector control.
In the figure, 11 is a magnetizing current regulator, 12 is a torque current regulator, 13 is a zero-phase current regulator, 21 to 23 are coordinate converters, 3 is a PWM (pulse width modulation) controller, and 41 and 42 are inverters. 5 is an induction motor (induction machine, IM), 6 is an integrator, and 7 is a slip calculator. That is, the inverter 41 is controlled by a magnetizing current regulator 11, a torque current regulator 12, a zero-phase current regulator 13, coordinate converters 21 to 23, a PWM controller 3, an integrator 6, a slip calculator 7, and the like. Means are provided, and the inverter 42 is given the same function.
[0008]
In FIG. 1, i M * is a command value for magnetizing current, i T * is a command value for torque current, and a detected value for three-phase current is calculated by the coordinate converter 21 using the following equation (1). It is converted into alternating current iα, iβ and zero-phase current i0. In addition, as a definition of the zero-phase current, 1/3 may be used instead of the proportionality coefficient (1/3) 1/2 in Equation 1, but if a current proportional to the sum of the currents of each phase can be detected, May be used.
[0009]
[Equation 1]
iα = (2/3) 1/2 (ia−ib / 2−ic / 2)
iβ = (2/3) 1/2 (3 1/2 ib / 2-3 1/2 ic / 2)
i0 = (1/3) 1/2 (ia + ib + ic)
[0010]
Further, iα and iβ are coordinate-converted into a current on the rotating magnetic flux by the following equation 2 by the coordinate converter 22 to obtain i M and i T. Here, θ represents an intersection angle between the stator axis (α axis) and the magnetic flux axis (M) axis of the induction machine obtained from the slip calculator and the integrator.
[Equation 2]
i M = iαcos θ + iβsin θ
i T = −iα sin θ + iβ cos θ
[0011]
FIG. 2 shows the relationship between the coordinate-converted i M and i T and iα and iβ.
The intersection angle θ between the α-β axis and the MT axis is obtained as follows. That is, the slip calculator 7 first calculates the slip angular velocity of the induction motor 5 from i M and i T , and adds the speed obtained from the speed detector to this, then the angular velocity of the secondary magnetic flux of the induction motor 5 is determined. Is integrated by the integrator 6, the angle of the secondary magnetic flux axis with respect to the α-β axis, that is, the angle of the MT axis is obtained.
[0012]
Both the detected values of i M and i T are feedback-controlled by the magnetizing current regulator 11 and the torque current regulator 12 so as to coincide with the command values i M * and i T * , respectively. The outputs of both regulators are an M-axis voltage command value v M * and a T-axis voltage command value v T * , respectively. Further, the command value of the zero phase current is zero, and feedback control is performed so that the zero phase current becomes zero. The output of the zero-phase current regulator 13 is a zero-phase voltage v0 * .
[0013]
From v M * , v T * and v0 * , the coordinate converter 23 obtains three-phase voltage commands va * , vb * and vc * using the following equations (3) and (4).
[Equation 3]
* = v M * cos θ−v T * sin θ
* = v M * sin θ + v T * cos θ
[Equation 4]
va * = (2/3) 1/2 ( vα * -v0 * / 2 1/2)
vb * = (2/3) 1/2 (−vα * / 2 + 3 1/2* / 2 + v0 * / 2 1/2 )
vc * = (2/3) 1/2 (−vα * / 2-3 1/2* / 2 + v0 * / 2 1/2 )
[0014]
Further, the inverter is controlled by pulse width modulation (PWM) of the three-phase voltage command. Since the control is the same for the other inverter, the description thereof is omitted.
According to the above configuration, i M , i T and zero phase current i0 are controlled, so that a three-phase current can be controlled equivalently, and no circulating current flows between the inverters. Furthermore, since the control of each inverter is the same in the above configuration, it is not necessary to change the control of the inverter even if the number of multiplexing is increased to 3 or more. Moreover, although the drive of the induction motor has been described, the same applies to the control of the synchronous motor.
[0015]
FIG. 3 is a block diagram showing a second embodiment of the present invention, and shows an example in which the load 5A is a resistor or an inductance.
That is, the two-phase oscillator 8 outputs a phase θ given by θ = ω * t (t: time) from the frequency command ω * . Since the magnitude I of the current is given by the following equation 5 for the first current command i 1 * and the second current command i 2 * , for example, i 1 * is equal to the magnitude of the current I, and i 2 * should be set to zero. Others are the same as in FIG.
[Equation 5]
I = (i 1 * 2 + i 2 * 2 ) 1/2
[0016]
By the way, the current regulators 11 and 12 in FIGS. 1 and 3 are generally proportional integral regulators (PI regulators) composed of a proportional element and an integral element in order to make the steady deviation zero. On the other hand, the zero-phase current regulator 13 is preferably a proportional regulator (P regulator). The reason is as follows.
In the example of FIGS. 1 and 3, the number of independent variables of current is five. This may be achieved, for example i M of the first inverter 41 in FIG. 1, a i T, i0, i M of the second inverter 42, if i T is controlled, i0 is uniquely of the second inverter 42 It is shown to be determined. Thus, the i M, i T, i0 of the first inverter 41, i M of the second inverter 42, when the feedback control is i T, i0 and the PI controller independently of one another, uncontrollable control error due May occur. Therefore, if the zero-phase current regulator is a P regulator, a steady-state deviation occurs and the above problem can be avoided. Since this steady-state deviation can be made very small by increasing the gain of the P regulator, there is no practical problem.
[0017]
【The invention's effect】
According to the present invention, since the feedback control of the zero phase current is performed, the control of each inverter constituting the multiple inverter can be made the same, and it is necessary to change the control of the inverter even if the number of multiples is increased. Absent. In other words, there is no need to perform new development or design depending on the number of inverters, so that it is possible to achieve the cost reduction of the product.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of the present invention;
FIG. 2 is an explanatory diagram for explaining the relationship between each current and the coordinate axis in FIG. 1;
FIG. 3 is a block diagram showing a second embodiment of the present invention.
FIG. 4 is a block diagram showing a conventional example of a parallel two-multiplex inverter.
FIG. 5 is a block diagram showing a conventional example of a parallel three-multiplex inverter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Magnetizing current regulator, 12 ... Torque current regulator, 13 ... Zero phase current regulator, 21-23 ... Coordinate converter, 3 ... PWM controller, 41, 42 ... Inverter, 5 ... Induction motor (induction machine, IM), 5A ... load, 6 ... integrator, 7 ... slip calculator, 8 ... oscillator.

Claims (3)

並列接続された複数の電力変換器を用いて、3相交流電動機を駆動する場合の並列多重電力変換器の制御装置において、
前記複数の電力変換器のそれぞれに対し、その出力電流を電動機の磁束または磁極に平行な第1の電流と、これと直交する第2の電流と、零相成分である第3の電流とに分解し、それぞれの電流成分を独立してフィードバック制御し、かつ前記零相電流を零に制御する制御手段を設けたことを特徴とする並列多重電力変換器の制御装置。
In a control device for a parallel multiple power converter when driving a three-phase AC motor using a plurality of power converters connected in parallel,
For each of the plurality of power converters, the output current is converted into a first current parallel to the magnetic flux or magnetic pole of the motor, a second current orthogonal thereto, and a third current that is a zero-phase component. A control apparatus for a parallel multiple power converter, comprising: a control means for disassembling, performing feedback control of each current component independently, and controlling the zero-phase current to zero.
並列接続された複数の電力変換器を用いて、3相交流負荷に給電する場合の並列多重電力変換器の制御装置において、
複数の電力変換器のそれぞれに対し、その出力電流を定常状態では直流電流となる2組の回転座標系の第1,第2の電流と、零相成分である第3の電流とに分解し、それぞれの電流成分を独立してフィードバック制御し、かつ前記零相電流を零に制御する制御手段を設けたことを特徴とする並列多重電力変換器の制御装置。
In a control device for a parallel multiple power converter when supplying power to a three-phase AC load using a plurality of power converters connected in parallel,
For each of the plurality of power converters, the output current is decomposed into two sets of first and second currents in a rotating coordinate system that are DC currents in a steady state and a third current that is a zero-phase component. A control device for a parallel multiple power converter, characterized in that control means for independently controlling each current component and controlling the zero-phase current to zero is provided.
前記零相電流の制御手段として比例調節器を用いることを特徴とする請求項1または2のいずれかに記載の並列多重電力変換器の制御装置。3. The control device for a parallel multiple power converter according to claim 1, wherein a proportional regulator is used as the zero-phase current control means.
JP31924197A 1997-11-20 1997-11-20 Control device for parallel multiple power converter Expired - Fee Related JP3676056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31924197A JP3676056B2 (en) 1997-11-20 1997-11-20 Control device for parallel multiple power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31924197A JP3676056B2 (en) 1997-11-20 1997-11-20 Control device for parallel multiple power converter

Publications (2)

Publication Number Publication Date
JPH11150986A JPH11150986A (en) 1999-06-02
JP3676056B2 true JP3676056B2 (en) 2005-07-27

Family

ID=18107998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31924197A Expired - Fee Related JP3676056B2 (en) 1997-11-20 1997-11-20 Control device for parallel multiple power converter

Country Status (1)

Country Link
JP (1) JP3676056B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888247B2 (en) * 2002-07-15 2007-02-28 松下電器産業株式会社 Motor drive device
JP4844180B2 (en) * 2006-03-08 2011-12-28 株式会社日立製作所 Power converter and control method thereof
CN102035463A (en) * 2010-12-13 2011-04-27 天津电气传动设计研究所 6 kV medium voltage frequency converter based on neutral-point-clamped three-level technology
JP2012226458A (en) * 2011-04-18 2012-11-15 Toyota Motor Corp Multimotor control device and movable body
JP6435665B2 (en) * 2014-06-30 2018-12-12 富士電機株式会社 Electric motor drive
JP6674765B2 (en) * 2015-11-25 2020-04-01 日立オートモティブシステムズ株式会社 Electric motor control device and electric vehicle using the same

Also Published As

Publication number Publication date
JPH11150986A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
EP0629038B1 (en) AC motor control
US6731095B2 (en) Controller for multiplex winding motor
US5390102A (en) Parallel running control apparatus for PWM inverters
US6580247B2 (en) Motor control device
EP0202603B1 (en) Cross coupled current regulator
JPS5820234B2 (en) Device that stabilizes AC motors
JPH0348749B2 (en)
JP2846203B2 (en) Parallel multiple inverter device
JP3676056B2 (en) Control device for parallel multiple power converter
JP6113651B2 (en) Multi-phase motor drive
JP7092257B2 (en) Rotating electric machine control system
JP2001086794A (en) Ac motor control apparatus
JPS58141699A (en) Motor controller
JP2001204196A (en) Variable speed driving system of ac motor
JP2005110335A (en) Power converter
JPH09140187A (en) Power converter
JP3489259B2 (en) Permanent magnet type motor control method and control device
JPH10108500A (en) Controller for ac three-phase motor
JP3407492B2 (en) Inverter control device
JPH08191600A (en) Device for controlling inverter current
JP2005269818A (en) Control unit of polyphase ac current
JP2856765B2 (en) Induction motor control device
JP2523504B2 (en) Power converter controller
JP2635646B2 (en) Power converter
JP2000341984A (en) Inverter equipment

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees