JP3665202B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP3665202B2
JP3665202B2 JP9482098A JP9482098A JP3665202B2 JP 3665202 B2 JP3665202 B2 JP 3665202B2 JP 9482098 A JP9482098 A JP 9482098A JP 9482098 A JP9482098 A JP 9482098A JP 3665202 B2 JP3665202 B2 JP 3665202B2
Authority
JP
Japan
Prior art keywords
semiconductor region
insulating film
semiconductor
region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9482098A
Other languages
English (en)
Other versions
JPH11297995A (ja
Inventor
貴之 岩崎
俊之 大野
勉 八尾
良孝 菅原
勝則 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP9482098A priority Critical patent/JP3665202B2/ja
Publication of JPH11297995A publication Critical patent/JPH11297995A/ja
Application granted granted Critical
Publication of JP3665202B2 publication Critical patent/JP3665202B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置に係わり、特に、ターミネーション領域を改良して、半導体装置の長期間の使用に基づく耐圧特性の低下をなくし、半導体装置の使用期間を大幅に拡大させることを可能にした半導体装置に関する。
【0002】
【従来の技術】
一般に、半導体材料として、シリコン(Si)やシリコンカーバイド(SiC)を用いた半導体装置においては、半導体装置の耐圧を向上させるために、ターミネーション領域にフィールドプレートと呼ばれる構造を設けることが知られている。
【0003】
ここで、図5及び図6は、既知の半導体装置におけるフィールドプレートの一例を示す構成図であって、図5はフィールドプレートを含む半導体装置の上面図、図6は図5の上面図におけるフィールドプレートのA−A’線部分の断面図であり、半導体装置がIGBT(絶縁ゲートバイポーラトランジスタ)チップである例を示すものである。
【0004】
図5及び図6において、51はn型低不純物濃度(n−)の第1半導体領域、52はp型高不純物濃度(p+)の第2半導体領域、53はp型高不純物濃度(p+)の第3半導体領域、54は絶縁膜、55はエミッタ電極、56はコレクタ電極、57は第1半導体領域51と第2半導体領域52との接合部分である。
【0005】
そして、第1半導体領域51は、その一面の端縁部から若干内側に入った部分に第2半導体領域52が形成配置され、その他面の端縁部に到る部分まで第3半導体領域53が接合配置されている。絶縁膜54は、第2半導体領域52上から第1半導体領域51と第2半導体領域52との接合部分57を経て第1半導体領域51上に到る領域に配置される。エミッタ電極55は、第2半導体領域52上から絶縁膜54上に到る領域に形成配置され、コレクタ電極56は、第3半導体領域53の他面に形成配置されている。この場合、第1半導体領域51と第2半導体領域52との接合部分57から外側の領域は、ターミネーション領域であって、ここにフィールドプレートが構成されている。
【0006】
前記構成によるIGBTチップにおいては、エミッタ電極55とコレクタ電極56との間に逆電圧、即ち、エミッタ電極55に加わる電圧に比べてコレクタ電極56に加わる電圧が正になるような電圧が印加されたとき、フィールドプレートで得られる電界により、フィールドプレートにおける第1半導体領域51に空乏層が形成され、その結果、第1半導体領域51と第2半導体領域52との接合部分57の電界集中の度合いが緩和され、フィールドプレートを設けていない場合に比べてIGBTチップの耐圧特性が向上する。
【0007】
【発明が解決しようとする課題】
ところで、前記既知のフィールドプレートを有するIGBTチップの中で、半導体材料にシリコンカーバイド(SiC)を用いたIGBTチップにおいては、絶縁膜54を一般の絶縁材料である酸化シリコン(SiO2 )で構成すると、エミッタ電極55とコレクタ電極56との間に繰り返し逆電圧が印加されたとき、以下に述べる理由によって、IGBTチップの耐圧が経時的に低下することが判明した。
【0008】
即ち、シリコンカーバイド(SiC)で構成されたIGBTチップ(以下、これをSiC型IGBTチップという)は、同じ耐圧のシリコン(Si)で構成されたIGBTチップ(以下、これをSi型IGBTチップという)と比べた場合に、SiC型IGBTチップの第1半導体領域51のn型不純物濃度は、Si型IGBTチップの第1半導体領域51のn型不純物濃度よりも約2桁程度高くなっている。このとき、SiC型IGBTチップの絶縁膜54の膜厚を、Si型IGBTチップの絶縁膜54の膜厚と等しくなるように選んだとすれば、SiC型IGBTチップの第1半導体領域51と第2半導体領域52との接合部分57に形成される空乏層は、Si型IGBTチップの第1半導体領域51と第2半導体領域52との接合部分57に形成される空乏層よりもフィールドプレート方向(横方向)に延び難いものとなっている。そこで、SiC型IGBTチップの空乏層の延びの程度を、Si型IGBTチップの空乏層の延びの程度に等しくするためには、SiC型IGBTチップの絶縁膜54の膜厚を薄くすればよいが、絶縁膜54の膜厚を薄くすると、SiC型IGBTチップに前記逆電圧が印加されたとき、絶縁膜54がその逆電圧に耐えられずに劣化し、SiC型IGBTチップは長時間の使用とともに動作信頼性が損なわれるようになる。
【0009】
ここで、図7は、フィールドプレートを有するSiC型IGBTチップにおける絶縁膜54の膜厚と繰り返し逆電圧を印加した後の不良発生率との関係を示す特性図である。
【0010】
図7において、縦軸は、(%)で表したSiC型IGBTチップの不良発生率であり、横軸は、(μm)で表した絶縁膜54の膜厚である。なお、ここでいう不良発生率とは、SiC型IGBTチップの耐圧がその初期耐圧に比べて10%以上低下したものの発生比率である。
【0011】
図7に示されるように、SiC型IGBTチップの絶縁膜54の膜厚を薄くしていった場合、その膜厚が2μm以下になると、急激に不良発生率が増大することが判る。その理由は、絶縁膜64が、度重なる逆電圧の印加によって劣化を生じ、遂に絶縁破壊されるためで、絶縁膜54の膜厚を薄くする程、絶縁破壊の生じる割合は高くなる。
【0012】
このように、前記既知のフィールドプレートを有するIGBTチップにおいては、第1半導体領域51と第2半導体領域52との接合部分57に形成される空乏層をフィールドプレート方向(横方向)へ延び易くするために、絶縁膜54の膜厚を薄くすると、エミッタ電極55とコレクタ電極56との間に繰り返し印加される逆電圧によって絶縁膜54が劣化し、IGBTチップの長期信頼性が損なわれるという問題がある。
【0013】
本発明は、前記問題点を解決するもので、その目的は、逆電圧が繰り返し印加されても、フィールドプレートに設けられた絶縁膜の劣化を防いで、長期信頼性の確保を可能にした半導体装置を提供することにある。
【0014】
【課題を解決するための手段】
前記目的を達成するために、本発明による半導体装置は、第1半導体領域と、第1半導体領域の一面に部分的に設けられた第2半導体領域と、第1半導体領域の他面に設けられた第3半導体領域とを備え、ターミネーション領域が、第2半導体領域上と第1半導体領域上との間に配置された絶縁膜と、第2半導体領域上及び絶縁膜上に配置された第1主電極と、第3半導体領域上に配置された第2主電極とを有する半導体装置において前記絶縁膜が、前記第2半導体領域内から第2半導体領域の全周縁上を経て前記ターミネーション領域の第1半導体領域上に延在しており、該絶縁膜上に配置した前記第1主電極がフィールドプレートとして前記ターミネション領域まで延在し、前記第1半導体領域、前記第2半導体領域、及び前記第3半導体領域は、その半導体材料として、シリコンカーバイド、ガリウムナイトライド、ダイアモンドの中の少なくとも1種のものを用い、絶縁膜は、膜厚が2μm以上であり、その比誘電率とμmで表された膜厚との比が10以上になるように選択された手段を具備する。
【0015】
前記手段によれば、ターミネーション領域において、フィールドプレートの絶縁膜に、膜厚が2μm以上のものであって、その比誘電率とμmで表された膜厚との比が10以上になるようなものを用いているので、絶縁膜の膜厚を薄くしなくても、第1半導体領域と第2半導体領域との接合部分に形成される空乏層がフィールドプレート方向に延び易くなって、半導体装置の初期耐圧を高くすることができ、また、絶縁膜の膜厚が薄くないことから、半導体装置に繰り返し逆電圧が印加されたとしても、絶縁膜が劣化を生じることはなく、半導体装置の耐圧が長期間の間に低下することはない。
【0016】
【発明の実施の形態】
本発明の実施の形態において、半導体装置は、第1導電型の第1半導体領域と、前記第1半導体領域の一面の一部に形成された第2導電型の第2半導体領域と、前記第1半導体領域の他面に接合された第2導電型の第3半導体領域とを備え、ターミネーション領域に、前記第2半導体領域の全周縁上から前記第1半導体領域上に達するように形成された絶縁膜と、一部が前記第2半導体領域に低抵抗接触するとともに残部が前記絶縁膜上に配置した第1主電極と、前記第3半導体領域に低抵抗接触するように配置した第2主電極とを有する半導体装置において、前記絶縁膜が、前記第2半導体領域内から第2半導体領域の全周縁上を経て前記ターミネーション領域の第1半導体領域上に延在しており、該絶縁膜上に配置した前記第1主電極がフィールドプレートとして前記ターミネション領域まで延在し、前記第1半導体領域、前記第2半導体領域、及び前記第3半導体領域は、その半導体材料として、シリコンカーバイド、ガリウムナイトライド、ダイアモンドの中の少なくとも1種のものを用い、前記絶縁膜は、膜厚が2μm以上であり、その比誘電率とμmで表された膜厚との比が10以上になるように選択されているものである。
【0017】
本発明の実施の形態の1つの具体例において、半導体装置は、絶縁膜の材料として、タンタルオキサイド、BST、PZTの中の少なくとも1種のものが用いられるものである。
【0019】
これらの本発明の実施の形態において、ターミネーション領域に設けられたフィールドプレートは、第1主電極、絶縁膜、第1半導体領域が重なり合った部分にコンデンサが形成される。このコンデンサの容量は、シリコンカーバイド(SiC)で構成した半導体装置(以下、これをSiC型半導体装置という)において必要な容量と、シリコン(Si)で構成した半導体装置(以下、これをSi型半導体装置という)において必要な容量とを比べたとき、SiC型半導体装置において必要なコンデンサの容量は、Si型半導体装置において必要なコンデンサの容量の約100倍になる。
【0020】
このとき、コンデンサの単位面積当たりの容量をC、絶縁膜の比誘電率をε、絶縁膜の膜厚をLとしたとき、容量はC=ε/Lで表わされることから、コンデンサの容量Cを100倍にするには、絶縁膜として同じ絶縁材料を用いた場合にその比誘電率εが一定であるから、絶縁膜の膜厚Lを1/100倍に選択する他ない。ところが、絶縁膜の膜厚Lを薄くすると、絶縁膜の劣化が生じることから、本発明においては、絶縁膜の膜厚Lを薄くせずに、比誘電率εの大きい絶縁材料を用いて絶縁膜を構成し、大きな容量Cを得ているものである。
【0021】
ここで、図3は、絶縁膜として比誘電率εが異なる絶縁材料を用いた際の半導体装置の耐圧の変化を示す特性図である。
【0022】
図3において、縦軸は、(V)で表した半導体装置の耐圧であり、横軸は、絶縁膜の比誘電率εである。
【0023】
また、図4は、本発明の半導体装置における絶縁膜の膜厚と絶縁膜の比誘電率εとの関係を示す特性図である。
【0024】
図4において、縦軸は、絶縁膜の比誘電率εであり、横軸は、(μm)で表した絶縁膜の膜厚であって、塗りつぶされた領域は、本発明の半導体装置の絶縁膜として適した領域である。
【0025】
半導体装置のフィールドプレートを構成する絶縁膜は、劣化を生じることがなく、半導体装置の長期信頼性を確保できるようにする上から、膜厚が2μmまたはそれ以上のものが必要となる。このとき、図4の特性図に示された塗りつぶし領域から、絶縁膜の膜厚が2μmであれば、その比誘電率εが20またはそれ以上の絶縁材料を用い、絶縁膜の膜厚が3μmであれば、その比誘電率εが30またはそれ以上の絶縁材料を用いるようにする。
【0026】
そして、絶縁膜に比誘電率εが20以上の絶縁材料を用いたとき、図4の特性図に示された特性曲線から、絶縁膜の比誘電率εが20を超えると、半導体装置の耐圧が急激に増大するようになる。
【0027】
このように、これらの本発明の実施の形態によれば、半導体装置のフィールドプレートに設けられる絶縁膜として、膜厚を2μm以上のものとし、しかも、その比誘電率とμmで表された膜厚との比が10以上になるようなものとしているので、絶縁膜の膜厚を薄膜化しなくても、第1主電極、絶縁膜、第1半導体領域とからなるコンデンサの容量を大きくすることが可能になり、第1半導体領域と第2半導体領域との接合部分に形成される空乏層がフィールドプレート方向に延び易くなって、半導体装置の初期耐圧を高くすることができる。
【0028】
また、これらの本発明の実施の形態によれば、半導体装置のフィールドプレートに設けられる絶縁膜について、その膜厚を薄膜化していないので、半導体装置の主電極間に繰り返し逆電圧が印加されたときでも、絶縁膜が劣化することはなく、その結果、半導体装置の耐圧が長期間に低下することはなくなり、長期間にわたって半導体装置の信頼性を確保することができる。
【0029】
【実施例】
以下、本発明の実施例を図面を参照して説明する。
【0030】
図1は、本発明による半導体装置の一実施例の構成図で、半導体装置におけるターミネーション領域の断面図であって、半導体装置がシリコンカーバイト(SiC)からなるIGBT(絶縁ゲートバイポーラトランジスタ)チップ(SiC型IGBTチップ)である例を示すものである。
【0031】
なお、図1は、図6に示された既知のこの種の半導体装置(IGBTチップ)におけるターミネーション領域の断面図に対応するものである。
【0032】
図1において、1はn型低不純物濃度(n−)からなる第1半導体領域、2はp型高不純物濃度(p+)からなる第2半導体領域、3はp型高不純物濃度(p+)からなる第3半導体領域、4は絶縁膜、5はエミッタ電極(第1主電極)、6はコレクタ電極(第2主電極)、7は第1半導体領域1と第2半導体領域2との接合領域である。
【0033】
そして、第1半導体領域1の一方の主表面には、周縁部から若干内側に入った領域に第2半導体領域2が形成配置され、第1半導体領域1の他方の主表面には、周縁部に到る部分にまで第3半導体領域3が接合配置されている。絶縁膜4は、第1半導体領域1の一方の主表面側の、一部の第2半導体領域2上から第1半導体領域1と第2半導体領域2との接合部分7を経て第1半導体領域1上の周縁部から少し内側に入った部分に到る領域に形成配置される。エミッタ電極5は、第2半導体領域2の露出表面から絶縁膜4上に到る領域に形成配置され、第2半導体領域2の露出表面に低抵抗接触している。コレクタ電極6は、第3半導体領域3の他方の主表面に形成配置され、第3半導体領域3の他方の主表面に低抵抗接触している。この場合、第1半導体領域1と第2半導体領域2との接合部分7から外側の部分は、ターミネーション領域で、ここにフィールドプレートが構成されている。
【0034】
この場合、絶縁膜4は、構成材料として、比誘電率が30以上のタンタルオキサイドを用いており、その膜厚が3μmになるようにしている。
【0035】
前記構成による本実施例のSiC型IGBTチップは、次のように動作する。
【0036】
エミッタ電極5とコレクタ電極6との間に逆電圧、即ち、エミッタ電極5に加わる電圧に比べてコレクタ電極6に加わる電圧が正になるような電圧が印加されたとき、フィールドプレートにその逆電圧に対応した電界が形成される。このとき、フィールドプレートに設けられた絶縁膜4として、比誘電率が30以上のタンタルオキサイドを用いていることにより、フィールドプレートにおいては、第1半導体領域1に誘起される電荷量が増大し、第1半導体領域1内のn型低不純物濃度が実質的に低下するので、絶縁膜4に接する部分の第1半導体領域1内に形成される空乏層が延び易くなる、即ち、空乏層がフィールドプレート方向(横方向)に延び易くなる。このとき、フィールドプレートに形成される電界の最大強度の箇所は、第1半導体領域1と第2半導体領域2との接合部分7からフィールドプレートにおける第1半導体領域1内に移るので、第1半導体領域1と第2半導体領域2との接合部分7における電界が緩和され、SiC型IGBTチップは初期耐圧特性が向上する。
【0037】
このように、本実施例のSiC型IGBTチップは、フィールドプレートの絶縁膜4として、膜厚を3μmのものとし、その比誘電率を30以上になるような絶縁材料を用いているので、エミッタ電極5、絶縁膜4、第1半導体領域1からなるコンデンサの容量を大きくすることが可能になり、第1半導体領域1と第2半導体領域2との接合部分7に形成される空乏層がフィールドプレート方向に延び易くなって、半導体装置の初期耐圧を高くすることができる。
【0038】
また、本発明の実施例のSiC型IGBTチップは、フィールドプレートの絶縁膜4として、膜厚を3μmのものとしているので、IGBTチップエミッタ電極5とコレクタ電極6との間に繰り返し逆電圧が印加されたときでも、絶縁膜4が劣化することはなく、その結果、IGBTチップの耐圧が長期間に低下することはなく、長期間にわたってIGBTチップの信頼性を確保することができる。
【0039】
次いで、図2(a)乃至(d)は、図1に図示されたSiC型IGBTチップを製造する際の製造工程の一例を示す要部断面図である。
【0040】
図2(a)乃至(d)において、4’は絶縁層、5’はアルミニウム層であり、その他、図1に図示された構成要素と同じ構成要素については同じ符号を付けている。
【0041】
図2(a)乃至(d)を用いてSiC型IGBTチップを製造する際の製造工程について説明すると、次の通りである。
【0042】
まず、図2(a)に示されるように、n型低不純物濃度(n−)からなる第1半導体領域1の一方の主表面の所要の箇所に、p型不純物を打ち込んでp型高不純物濃度(p+)からなる第2半導体領域2を形成し、第1半導体領域1の一方の主表面の露出部分の上及び第2半導体領域2の露出表面の上の全域に酸化タンタルをCVD法によって堆積し、絶縁層4’を形成する。
【0043】
次に、図2(b)に示されるように、ドライエッチングを用いて絶縁層4’の不必要な部分を除去し、絶縁膜4を形成する。
【0044】
次いで、図2(c)に示されるように、第1半導体領域1の一方の主表面の露出部分の上、第2半導体領域2の露出表面の上及び絶縁膜4の上の全域にアルミニウムを蒸着し、アルミニウム層5’を形成する。
【0045】
続いて、図2(d)に示されるように、ドライエッチングを用いて不必要な部分を除去し、エミッタ電極5を形成する。
【0046】
その後、図示されてないが、コレクタ電極6及び保護膜を形成し、SiC型IGBTチップが完成する。
【0047】
前記実施例によるSiC型IGBTチップにおいては、絶縁膜4として比誘電率が30以上のタンタルオキサイドを用いた例を挙げて説明したが、本発明による絶縁膜4は前述のものに限られず、膜厚が2μm以上であって、比誘電率とμmで表された膜厚との比が10以上のものであれば、どのような絶縁材料を用いてもよい。
【0048】
例えば、絶縁膜4を構成する絶縁材料としては、タンタルオキサイドの代わりに、BST{(Ba、Sr)TiO3 }やPZT{Pb(Ti、Zr)O3 }を用いてもよく、タンタルオキサイド、BST、PZTの中の2つまたはそれ以上を用いてもよく、絶縁膜4の膜厚も、比誘電率が大きいものであれば、比誘電率の大きさに対応して厚くするようにすることもできる。
【0049】
また、前記実施例によるSiC型IGBTチップにおいては、半導体材料としてシリコンカーバイド(SiC)を用いた例を挙げて説明したが、本発明による半導体材料はシリコンカーバイド(SiC)を用いたものに限られず、他の同種の半導体材料、例えば、ダイアモンド、ガリウムナイトライド等のワイドギャップ半導体材料を用いてもよい。
【0050】
さらに、前記実施例においては、半導体装置がSiC型IGBTチップである例を挙げて説明したが、本発明による半導体装置はSiC型IGBTチップであるものに限られず、他の半導体装置、例えば、GTOチップ、SIサイリスタチップ、ダイオードチップ、サイリスタチップであってもよい。
【0051】
【発明の効果】
以上のように、本発明によれば、半導体装置のフィールドプレートに設けられる絶縁膜として、膜厚を2μm以上のものとし、その比誘電率とμmで表された膜厚との比が10以上になるようなものを用いているので、絶縁膜の膜厚を薄膜化しなくても、第1主電極、絶縁膜、第1半導体領域とからなるコンデンサの容量を大きくすることが可能になり、第1半導体領域と第2半導体領域との接合部分に形成される空乏層がフィールドプレート方向に延び易くなり、半導体装置の初期耐圧を高くすることができるという効果がある。
【0052】
また、本発明によれば、半導体装置のフィールドプレートに設けられる絶縁膜の膜厚を薄膜化していないので、半導体装置の主電極間に繰り返し逆電圧が印加されたときでも、絶縁膜が劣化して半導体装置の耐圧が長期間に低下することはなくなり、長期間にわたって半導体装置の信頼性を確保することができるという効果がある。
【図面の簡単な説明】
【図1】本発明による半導体装置の一実施例の構成を示す断面図である。
【図2】図1に図示された半導体装置を製造する際の製造工程の一例を示す要部断面図である。
【図3】絶縁膜として比誘電率が異なる絶縁材料を用いた際の半導体装置の耐圧の変化を示す特性図である。
【図4】本発明の半導体装置における絶縁膜の膜厚と絶縁膜の比誘電率との関係を示す特性図である。
【図5】既知の半導体装置におけるフィールドプレートの一例を示す上面図である。
【図6】図5に図示の半導体装置のフィールドプレートにおけるA−A’線部分の断面図である。
【図7】フィールドプレートを有するSiC型IGBTチップにおける絶縁膜の膜厚と繰り返し逆電圧を印加した後の不良発生率との関係を示す特性図である。
【符号の説明】
1 第1半導体領域
2 第2半導体領域
3 第3半導体領域
4 絶縁膜
5 エミッタ電極(第1主電極)
6 コレクタ電極(第2主電極)
7 接合領域

Claims (2)

  1. 第1導電型の第1半導体領域と、前記第1半導体領域の一面の一部に形成された第2導電型の第2半導体領域と、前記第1半導体領域の他面に接合された第2導電型の第3半導体領域とを備え、ターミネーション領域に、前記第2半導体領域の全周縁上から前記第1半導体領域上に達するように形成された絶縁膜と、一部が前記第2半導体領域に低抵抗接触するとともに残部が前記絶縁膜上に配置した第1主電極と、前記第3半導体領域に低抵抗接触するように配置した第2主電極とを有する半導体装置において、
    前記絶縁膜が、前記第2半導体領域内から第2半導体領域の全周縁上を経て前記ターミネーション領域の第1半導体領域上に延在しており、
    該絶縁膜上に配置した前記第1主電極がフィールドプレートとして前記ターミネション領域まで延在し、
    前記第1半導体領域、前記第2半導体領域、及び前記第3半導体領域は、その半導体材料として、シリコンカーバイド、ガリウムナイトライド、ダイアモンドの中の少なくとも1種のものを用い、前記絶縁膜は、膜厚が2μm以上であり、その比誘電率とμmで表された膜厚との比が10以上になるように選択されていることを特徴とする半導体装置。
  2. 前記絶縁膜は、絶縁材料として、タンタルオキサイド、BST、PZTの中の少なくとも1種のものを用いていることを特徴とする請求項1に記載の半導体装置。
JP9482098A 1998-04-07 1998-04-07 半導体装置 Expired - Fee Related JP3665202B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9482098A JP3665202B2 (ja) 1998-04-07 1998-04-07 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9482098A JP3665202B2 (ja) 1998-04-07 1998-04-07 半導体装置

Publications (2)

Publication Number Publication Date
JPH11297995A JPH11297995A (ja) 1999-10-29
JP3665202B2 true JP3665202B2 (ja) 2005-06-29

Family

ID=14120705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9482098A Expired - Fee Related JP3665202B2 (ja) 1998-04-07 1998-04-07 半導体装置

Country Status (1)

Country Link
JP (1) JP3665202B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217070B (zh) 2009-09-03 2013-09-25 松下电器产业株式会社 半导体装置及其制造方法
JP5858934B2 (ja) * 2011-02-02 2016-02-10 ローム株式会社 半導体パワーデバイスおよびその製造方法

Also Published As

Publication number Publication date
JPH11297995A (ja) 1999-10-29

Similar Documents

Publication Publication Date Title
JP3167457B2 (ja) 半導体装置
KR101966148B1 (ko) 개선된 종단 구조를 구비한 고전압 트렌치 dmos 소자
US7391093B2 (en) Semiconductor device with a guard-ring structure and a field plate formed of polycrystalline silicon film embedded in an insulating film
US7910990B2 (en) Insulated gate type semiconductor device and method for fabricating the same
JP2812093B2 (ja) プレーナ接合を有する半導体装置
US8294206B2 (en) Integrated circuit device and method for its production
JPH0458700B2 (ja)
JPH1098188A (ja) 絶縁ゲート半導体装置
EP3092659B1 (en) Trench mos device having a termination structure with multiple field-relaxation trenches for high voltage applications and corresponding manufacturing method
US6800509B1 (en) Process for enhancement of voltage endurance and reduction of parasitic capacitance for a trench power MOSFET
JP5601863B2 (ja) 電力半導体装置
US7897471B2 (en) Method and apparatus to improve the reliability of the breakdown voltage in high voltage devices
US10504891B2 (en) Semiconductor device and a manufacturing method therefor
JPH04251983A (ja) 半導体装置
CN109755296A (zh) 集成肖特基二极管的含有p-SiC的超结MOSFET
JP3665202B2 (ja) 半導体装置
CA2102079C (en) A dielectric isolated high voltage semiconductor device
JPH07231088A (ja) Mis形電界効果トランジスタ
JPH11511594A (ja) pn接合部と該pn接合部の絶縁破壊の危険性を低減させる手段とを有する装置
JP7486571B2 (ja) 炭化珪素トランジスタデバイス
JP2808871B2 (ja) Mos型半導体素子の製造方法
US11201236B2 (en) Semiconductor device
KR100485131B1 (ko) 반도체 소자의 접합 마감 구조
JPS63166273A (ja) 縦形半導体装置
JPS5923115B2 (ja) メサ型半導体装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees