JP3656694B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP3656694B2
JP3656694B2 JP26185897A JP26185897A JP3656694B2 JP 3656694 B2 JP3656694 B2 JP 3656694B2 JP 26185897 A JP26185897 A JP 26185897A JP 26185897 A JP26185897 A JP 26185897A JP 3656694 B2 JP3656694 B2 JP 3656694B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
series
capacitors
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26185897A
Other languages
English (en)
Other versions
JPH10234185A (ja
Inventor
久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP26185897A priority Critical patent/JP3656694B2/ja
Publication of JPH10234185A publication Critical patent/JPH10234185A/ja
Application granted granted Critical
Publication of JP3656694B2 publication Critical patent/JP3656694B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池や燃料電池等の直流電源が発生する直流電力を交流電力に変換する単相3線出力形の電力変換装置に関する。
【0002】
【従来の技術】
図16、図17は、太陽電池を電源とし、その直流電力を交流電力に変換して系統電源に連系する単相三線出力形電力変換装置の従来技術を示している。
図16において、太陽電池1a,1bの直列回路の両端電圧はダイオード37a,37bを介してコンデンサ6,15の直列回路に加えられ、IGBT等の半導体スイッチ素子31及び逆並列接続されたダイオード32からなるハーフブリッジインバータ3A,3BによってPWM制御され、交流電圧に変換される。
この交流電圧は、リアクトル7a,7b及びコンデンサ8a,8bからなるフィルタによってPWM制御による高周波成分が除去され、単相三線式の系統電源9に連系される。
【0003】
一方、図17において、太陽電池1の直流電圧はダイオード37を介してリアクトル33、半導体スイッチ素子34及びダイオード35からなる昇圧回路により昇圧され、コンデンサ6,15の直列回路に加えられる。
そして、図16と同様にハーフブリッジインバータ3A,3BによってPWM制御され、交流電圧に変換された後、リアクトル7a,7b及びコンデンサ8a,8bからなるフィルタによって高周波成分が除去され、単相三線式の系統電源9に連系される。
これら図16、図17の従来技術は何れも電圧形の電力変換装置であるため、交流出力側を系統電源9と切り離して交流電圧源として自立運転することが可能である。
【0004】
次に、他の従来技術を説明する。図18は、太陽電池を電源とし、その直流電力を交流電力に変換して系統電源に連系する太陽光発電インバータの全体構成を示すものである。
一般に系統連系用の太陽光発電インバータでは、太陽電池1を有効利用するために、インバータINVの出力電力Pを一定周期で変動・調節することにより、図19に示す如く直流電圧Edを太陽電池1が最大電力Pmaxを発生する電圧Etに制御する、いわゆる最大電力追従制御を行っている。
また、図20はピークカット運転等を行うためにインバータINVの直流側に蓄電池101を接続した従来技術である。この場合、蓄電池101の充放電電圧の範囲が決められているため、インバータINVは直流電圧一定制御により直流電圧Edを蓄電池101で決まる電圧値に制御するか、もしくは図19に示した最大電力追従制御により決められた直流電圧Etと蓄電池101の充電電圧との整合をとるために、直流−直流変換器102を別途設置している。
【0005】
次に、更に別の従来技術を説明する。図21は、図17に示した従来技術とほぼ同様の構成であり、直流電圧バランス回路36を有しない例である。
単相3線式の電力系統は中性点が接地されているため、図21の構成では、インバータの直列コンデンサ6,15の接続点も接地されることになる。しかるに、直流回路側は直列コンデンサ6,15の両端に接続されているので、半導体スイッチ素子34とダイオード35との接続点の対接地点電位Vnは、半導体スイッチ素子34のスイッチング周波数によって正負に変動する。
【0006】
【発明が解決しようとする課題】
前述した図16の従来技術では、太陽電池1a,1bを直列接続しているため、接続が複雑である。また、各太陽電池1a,1bの発生電力の誤差や自立運転時の非対称負荷への電力供給等により、入力電圧(コンデンサ6,15の電圧)のアンバランスが生じ、出力電圧の歪みや直流成分の系統への流出原因となる。更に、太陽電池1a,1bが二個直列に接続されるため、太陽電池の動作範囲を考慮した場合、電力変換装置に使用される半導体スイッチ素子31として高耐圧のものが必要になり、スイッチング損失の増加による電力変換効率の低下に繋がる。
【0007】
図17の従来技術では、半導体スイッチ素子34及びダイオード35からなる昇圧回路によって電力変換段数が一段増加するので、変換効率の低下が避けられない。更に、直列接続されたコンデンサ6,15の電圧をバランスさせる直流電圧バランス回路36が新たに必要となり、回路構成が複雑になるという問題があった。
【0008】
そこで請求項1〜請求項3記載の発明は、比較的簡単な回路構成により、入力電圧のアンバランスがなく、しかも高い電力変換効率を保てるようにした電力変換装置を提供しようとするものである。
また、請求項4記載の発明は、特に、スイッチング損失の増加による電力変換効率の低下を防止するようにした電力変換装置を提供しようとするものである。
【0009】
一方、前述した図20の太陽光発電インバータにおいて、インバータINVの直流電圧Edを蓄電池101で決まる電圧値に制御する場合には、太陽電池1の最大電力を取り出すことができないため、システム効率が低くなる。
更に、直流−直流変換器102を別途設置すると変換段数が増加してシステムの複雑化、大型化、高価格化を招くといった問題がある。
【0010】
そこで請求項5記載の発明は、1台のインバータで最大電力追従制御と蓄電池の充放電制御を同時に行うことにより、システム効率の低下を防ぎ、かつ、システムの複雑化、大型化等を防止するようにした電力変換装置を提供しようとするものである。
【0011】
また、図21の従来技術では、前述のごとく半導体スイッチ素子34とダイオード35との接続点の対接地点電位Vnが、半導体スイッチ素子34のスイッチング周波数によって正負に振られる。このため、昇圧回路(昇圧チョッパ)のリアクトルと太陽電池1との接続線が持つリアクトル成分の比率により、直流入力端子に電位変動が発生し、その変化分(dV/dt)がノイズ発生・雑音端子電圧の増加要因となる。
この対策のためには、直流側にノイズフィルタを追加したりそのフィルタ機能を強化することが必要になり、装置の複雑化、大型化、高価格化を招いていた。
【0012】
よって請求項6記載の発明は、上記対接地点電位Vnの変動を抑制し、直流側のノイズフィルタの追加等に起因するシステムのシステムの複雑化、大型化等を防ぐことができる電力変換装置を提供しようとするものである。
【0013】
更に、請求項7記載の発明は、ハーフブリッジインバータの交流出力端子に負荷が接続される場合において、後述するように、負荷急変時に直流分圧回路の制御遅れやリアクトルの残留エネルギーに起因して直流電源が接続されていない方のコンデンサの電圧が過大になり、そのためにコンデンサの容量増加や高耐圧の半導体スイッチ素子の使用を余儀なくされることによる電力変換装置の大型化、コスト上昇を防止すると共に、コンデンサの過電圧検出時に電力変換装置の運転を強制的に停止する不都合を回避しようとするものである。
【0014】
【課題を解決するための手段】
前記課題を解決するため、請求項1記載の発明は、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続して直列スイッチ回路を形成すると共に、この直列スイッチ回路を前記2個のコンデンサの直列回路に並列接続し、かつ、直列スイッチ回路の上下のスイッチアームの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成し、前記2個のコンデンサのうち直流電源が接続されていないコンデンサの電圧が他方のコンデンサの電圧に等しくなるように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御する制御手段を備えたものである。
【0015】
請求項2記載の発明は、前記同様に直流分圧回路を形成し、直列接続された2個のコンデンサのうち直流電源が接続されていないコンデンサの電圧が一定値になるように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御する制御手段を備えたものである。
【0016】
請求項3記載の発明は、請求項2記載の制御手段を動作させることにより前記2個のコンデンサの電圧が等しくなくなったときに、これらのコンデンサの電圧検出値V1,V2、ハーフブリッジインバータの上アームの点弧時間Ton、下アームの点弧時間Toff(=T−Ton)及びキャリア周期Tを用いて、
λ=1−(V1−Vout)/E0
(但し、
out(:出力電圧基準指令値)=(V1×Ton/T)−(V2×Toff/T)
なる式により求めた出力電圧指令値λに基づき、ハーフブリッジインバータの半導体スイッチ素子のオン、オフを制御する制御手段を備えたものである。
【0017】
請求項4記載の発明は、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続して直列スイッチ回路を形成すると共に、この直列スイッチ回路を前記2個のコンデンサの直列回路に並列接続し、かつ、直列スイッチ回路の上下のスイッチアームの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成し、前記2個のコンデンサのうち一方のコンデンサの電圧検出値に基づき他方のコンデンサの電圧指令値を生成し、他方のコンデンサの電圧がこの電圧指令値に一致するように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御することにより、前記2個のコンデンサの電圧の合計値を前記ハーフブリッジインバータの半導体スイッチ素子の耐圧以下に抑制する制御手段を備えたものである。
【0018】
請求項5記載の発明は、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続して直列スイッチ回路を形成すると共に、この直列スイッチ回路を前記2個のコンデンサの直列回路に並列接続し、かつ、直列スイッチ回路の上下のスイッチアームの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成し、前記2個のコンデンサのうち直流電源が接続されていないコンデンサの両端に直流遮断器と蓄電池との直列回路を接続し、直流電源が接続されているコンデンサの電圧がその電圧指令値に一致するように前記ハーフブリッジインバータの半導体スイッチ素子のオン、オフを制御することにより、直流電源の最大電力追従制御を行い、かつ、直流電源が接続されていないコンデンサの電圧がその電圧指令値に一致するように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御すると共に前記直流遮断器の開閉を制御することにより前記蓄電池の充放電制御を行う制御手段を備えたものである。
【0019】
請求項6記載の発明は、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとを直列接続して直列スイッチ回路を形成し、この直列スイッチ回路を構成する半導体スイッチ素子とダイオードとの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成すると共に前記2個のコンデンサの相互接続点を系統電源の中性線に接続し、前記2個のコンデンサのうち直流電源が接続されていないコンデンサの電圧が他方のコンデンサの電圧に等しくなるように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御する制御手段を備えたものである。
【0020】
請求項7記載の発明は、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとを直列接続して直列スイッチ回路を形成し、この直列スイッチ回路を構成する半導体スイッチ素子とダイオードとの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成すると共に前記2個のコンデンサの相互接続点を交流負荷の中性点に接続し、前記2個のコンデンサの電圧合計値に対して抑制電圧レベルと復旧電圧レベルとを設定し、前記電圧合計値が増加して抑制電圧レベルに到達したら前記直流分圧回路の動作を停止させ、前記電圧レベルが減少して復旧電圧レベルに到達したら前記直流分圧回路を再起動させる制御手段を備えたものである。
【0021】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。図1(a)は請求項1に記載した発明の第1実施形態を示す回路図であり、図16、図17と同一の構成要素には同一符号を付してある。
図1(a)において2は直流分圧回路であり、本実施形態は、この直流分圧回路2と、太陽電池1や燃料電池等の直流電源と、ハーフブリッジインバータ3A,3Bと、2個の出力フィルタとから構成される。
ここで、直流分圧回路2は、太陽電池1の直流電圧を電力変換して直列接続された2個のコンデンサ6,15の電圧が等しくなるように動作するものである。
【0022】
以下に、直流分圧回路2の構成を説明する。
図1(a)において、一方のコンデンサ6の両端にはダイオード37を介して太陽電池1が接続されている。また、IGBT等の半導体スイッチ素子4及び逆並列接続されたダイオード5からなるスイッチアームと、同じくスイッチ素子13及び逆並列接続されたダイオード14からなるスイッチアームとを2個直列に接続して直列スイッチ回路38を構成し、その両端をコンデンサ6の正極とコンデンサ15の負極とに接続する。
更に、上記2個のスイッチアームの相互接続点とコンデンサ6,15の相互接続点との間にリアクトル10を接続することにより、直流分圧回路2が構成される。
【0023】
この実施形態の動作を説明すると、太陽電池1が接続されたコンデンサ6の電圧(V1とする)は太陽電池1の電圧にクランプされるため、太陽電池1が接続されていないコンデンサ15の電圧(V2とする)が上記電圧V1と等しくなるように直流分圧回路2を制御する。
この制御の具体的方法としては、各コンデンサ6,15の電圧を検出し、V1,V2の偏差が零になるように直列スイッチ回路38の各アームのスイッチ素子4,13に対する点弧期間を制御する。
【0024】
図2は、直流分圧回路2の動作を示したものである。
図2(a)はコンデンサ6からコンデンサ15にエネルギーを供給する場合であり、スイッチ素子4を点弧することにより実線で示すスイッチ素子4→リアクトル10→コンデンサ6のルートでリアクトル10にエネルギーを蓄積し、このエネルギーを、スイッチ素子4の消弧によって破線のルートで他方のコンデンサ15に供給する。
【0025】
一方、図2(b)はコンデンサ15からコンデンサ6にエネルギーを供給する場合であり、スイッチ素子13を点弧することにより実線で示すスイッチ素子13→コンデンサ15→リアクトル10のルートでリアクトル10にエネルギーを蓄積し、このエネルギーを、スイッチ素子13の消弧によって破線のルートで他方のコンデンサ6に供給する。
従って、各スイッチ素子4,13の点弧期間をコンデンサ電圧に応じて制御することで、電圧V1,V2を制御することが可能になる。
【0026】
図3は、上記制御を行うための制御ブロック図である。図において、16,17はそれぞれコンデンサ6,15の電圧V1(検出値)、V2(指令値)が入力される切替スイッチ、20はこれらのスイッチ16,17の出力信号とコンデンサ15の電圧V2(検出値)が図示の符号で入力される加算器、22は加算器20の出力が零になるように調節動作する調節器、24は調節器22の出力である電圧指令値とキャリア発生回路23の出力信号(キャリア)とを比較するコンパレータ(PWM信号発生回路)であり、このコンパレータ24の出力信号及びその反転信号がスイッチ素子4,13に対する点弧信号となる。
【0027】
図4は、直流分圧回路2の点弧パターンを示している。図3における切替スイッチ16をオンした場合に、V1>V2であればスイッチ素子4のオンデューティは50%以上となり、V1<V2であれば50%以下となる。
【0028】
以上の方法により制御されたコンデンサ電圧V1,V2が、図1(a)における後段のハーフブリッジインバータ3A,3Bの電源となる。
なお、ハーフブリッジインバータ3A,3Bは、従来と同様にIGBT等の半導体スイッチ素子31と逆並列接続されたダイオード32とから構成されており、そのPWM制御によってコンデンサ電圧V1,V2が交流電圧に変換された後、リアクトル7a,7b及びコンデンサ8a,8bからなるフィルタによってPWM制御による高周波成分が除去され、単相三線式の系統電源9に連系される。ここで、フィルタの出力を系統電源9に連系させずにそのまま交流負荷に供給する自立運転を行っても良い。
【0029】
図1(b)は請求項1記載の発明の第2実施形態を示しており、太陽電池1がダイオード37を介して他方のコンデンサ15に接続されている点を除き、上記第1実施形態と構成上、同一である。
この実施形態では、太陽電池1が接続されていないコンデンサ6の電圧V1が他方のコンデンサの15の電圧V2と等しくなるように制御を行う。直流分圧回路2における具体的制御方法は、上記第1実施形態と同様であるため、ここでは説明を省略する。
【0030】
次に、請求項2記載の発明の実施形態を説明する。
請求項1の発明の実施形態では、太陽電池1が接続されていない方のコンデンサの電圧(図1(a)ではV2、図1(b)ではV1)が他方のコンデンサの電圧(図1(a)ではV1、図1(b)ではV2)と等しくなるように制御を行っている。すなわち、図1(a)では図3に示したように直流電圧指令値をV1、図1(b)では電圧指令値をV2としている。
【0031】
請求項2記載の発明の実施形態ではこの直流電圧指令値を一定値とし、図1(a)ではV2、図1(b)ではV1を常時一定に保つように制御する。
ここで、例えば電力変換装置の出力電圧としてVSが要求される場合、直流電圧としては最低で√2倍の電圧が必要になる。例えば、出力が100V(実効値)であれば141Vの電圧が直流電圧として必要になる。
従って、図1(a)の場合、V2の電圧指令値は141Vとなる。実際には、出力変動や変換装置の制御余裕等を考慮して、170V程度に設定するのが一般的である。
【0032】
このように、太陽電池1が接続されていない方のコンデンサの電圧を電力変換装置に要求される出力交流電圧で決まる最低値に制御すると、電力変換装置(ハーフブリッジインバータ3A,3B)に使用される半導体スイッチ素子の耐圧としては太陽電池1の最大電圧Emax+V2(またはV1)を許容できれば良く、図12のように太陽電池を2個直列にした場合に比べて、低耐圧のスイッチ素子を使用することが可能になる。
このような制御を行うためには、図3に示した切替スイッチ17をオンし、電圧指令値V2*をEmaxとして直流分圧回路を制御すればよい。
なお、図1(b)の例では電圧指令値V1*をEmaxとしてV1(検出値)との偏差が零になるように制御すればよい。
【0033】
次いで、請求項3記載の発明の実施形態を説明する。
例えば、請求項2記載の発明によってコンデンサ電圧V2を一定に制御した場合、コンデンサ電圧V1とV2とは等しくならない。
請求項3の発明は、このようにハーフブリッジインバータの各入力電圧が等しくない場合に、ハーフブリッジインバータの出力電圧波形を正負対称にするための出力電圧補正制御方法を提案するものである。
【0034】
まず、出力電圧基準指令値Voutとコンデンサ電圧V1,V2との関係は次の数式1のようになる。但し、数式1において、Ton:ハーフブリッジインバータの上アームの点弧時間、Toff:同じく下アームの点弧時間、T:キャリア周期である。
【0035】
【数1】
out=(V1×Ton/T)−(V2×Toff/T)
【0036】
いま、Ton/T=k1,Toff=k2とおくと、数式2〜数式4が得られる。なお、数式3のλは出力電圧指令値である。
【0037】
【数2】
k1×V1−k2×V2=Vout
【0038】
【数3】
λ=k1−k2
【0039】
【数4】
k1+k2=1
【0040】
これらの数式2〜数式4を展開すると、数式5が得られる。
【0041】
【数5】
λ=1−(V1−Vout)/E0 但し、E0=(V1+V2)/2
【0042】
入力電圧(V1,V2)のアンバランス時の出力電圧補正制御は、上記数式5に従い、V1,V2,Voutからλを算出し、このλとキャリアとを比較してハーフブリッジインバータの上下アームの点弧信号を発生させることにより実現可能である。
図5はこれを実現するための制御ブロック図であり、数式5を実現するべく加算器20a,20b,20c、乗算器25、除算器26及びキャリア発生回路27、コンパレータ28により構成されている。
【0043】
次に、請求項4に記載した発明の実施形態を説明する。図1の実施形態では、前述のごとく、太陽電池1が接続されていない方のコンデンサの電圧が他方のコンデンサの電圧と等しくなるように制御を行っている。
このような制御を行う場合、ハーフブリッジインバータ3A,3Bに使用される半導体スイッチ素子としては、V1またはV2の最大電圧Vmaxの2倍以上の耐圧を持つ必要がある。一般に半導体スイッチ素子の損失は、素子耐圧が高いほど大きいため、太陽電池1や燃料電池といった電圧変動の大きい電源を直流電源とした場合、半導体スイッチ素子の損失は他の同容量の変換装置に比べて大きくなる。
【0044】
このため本実施形態では、半導体スイッチ素子の印加電圧を低く抑えてその発生損失を低減させるために、例えば、コンデンサ6に太陽電池1が接続され、コンデンサ15に太陽電池1が接続されていない場合には、その接続されていない方のコンデンサ15の電圧指令値V2*を数式6のように設定する。
【0045】
【数6】
V2*=Emax−V1
【0046】
なお、数式6において、Emaxは半導体スイッチ素子の耐圧、V1はコンデンサ6の電圧である。
ここで、V2の最低値を電力変換装置に要求される出力交流電圧値で決まる電圧とすると、電力変換装置(ハーフブリッジインバータ3A,3B)に使用されるスイッチ素子の耐圧は太陽電池1の最大電圧(半導体スイッチ素子の耐圧)Emax+V2の最低電圧を許容すれば良く、図1の実施形態のようにV1=V2の制御を行う場合に比べて低耐圧のスイッチ素子を使用することが可能になる。
【0047】
図6は本実施形態の構成を示すものである。いま、コンデンサ6に太陽電池1が接続され、コンデンサ15に太陽電池1が接続されていない場合を例にとって動作を説明する。
まず、コンデンサ6の電圧(太陽電池1の電圧)V1を検出し、図6におけるコンパレータ41により設定値E0と比較する。ここで、設定値E0は次のようにして決められる。V1の最大値をVmax、V2の最小値をVminとすると、スイッチ素子の耐圧Emaxは数式7のようになる。
【0048】
【数7】
max=Vmax+Vmin
【0049】
V1=V2の制御が可能なV2の電圧範囲はEmaxの1/2までであるから、その判断基準となる設定値E0は、数式8となる。
【0050】
【数8】
0=Emax/2
【0051】
こうして決められた設定値E0とV1の検出値との大小関係により、電圧指令値V2*は次の数式9のようになる。
【0052】
【数9】
0>V1→V2*=V1
0≦V1→V2*=Emax−V1
【0053】
すなわち図6の構成において、E0>V1の場合にはコンパレータ41の出力信号が「H」レベルとなり、オン状態のアナログスイッチ42を介してV1の検出値がそのまま指令値V2*として加算器45に入力される。
また、E0≦V1の時にはコンパレータ41の出力信号が「L」レベルとなり、アナログスイッチ44の出力側が「H」レベルになってこのスイッチ44がオンする。これにより、加算器43から出力されるEmax−V1の値が指令値V2*として次段の加算器45に入力される。
加算器45では指令値V2*と検出値V2との偏差が求められ、この偏差が調節器46に入力される。そして、その出力信号とキャリア発生回路47からのキャリアとがコンパレータ(PWM信号発生回路)48により比較され、直列スイッチ回路38のスイッチ素子4,13に対する点弧信号が出力される。
【0054】
この実施形態では、太陽電池1が接続されていない方のコンデンサ15の電圧指令値V2*を設定値E0とV1の検出値との大小関係に応じて設定している。このため、ハーフブリッジインバータ3A,3Bを構成する半導体スイッチ素子の耐圧としては太陽電池1の最大電圧Emax+V2を許容すれば良く、低耐圧でスイッチング損失の小さい素子を使用することが可能になる。
なお、上記実施形態では、太陽電池1が接続されていない方のコンデンサ15の電圧指令値V2*を設定する場合につき説明したが、他方のコンデンサ6に太陽電池1が接続されておらず、その電圧指令値V1*を設定する場合にも、本発明は適用可能である。
【0055】
次いで、請求項5に記載した発明の実施形態を説明する。
図7はこの実施形態の主回路を示しており、図1(a)と同一の構成要素には同一符号を付してある。図7において、49は太陽電池1の出力電流idを検出する変流器、50は直流遮断器、51は蓄電池である。なお、直流遮断器50及び蓄電池51の直列回路は太陽電池1が接続されていないコンデンサ15に対し並列に接続されている。また、直流遮断器50は、蓄電池51の満充電時及び過放電時などに電力変換装置の主回路と蓄電池51とを切り離すために、後述するように遮断器制御信号S1によって遮断されるものである。
【0056】
図8は、この実施形態において最大電力追従制御を行うための制御ブロック図である。
まず、この実施形態では太陽電池1はコンデンサ6に接続されているため、コンデンサ6の電圧V1と太陽電池1の出力電流idとを検出する。そして、電圧指令発生回路52は、太陽電池1の現在の出力電力を検出してこの電力を前回の出力電力と比較し、コンデンサ6の次回の電圧指令値V1*を発生する。
電圧指令値は太陽電池1の特性から判断され、例えば現在の電力指令値を前回の電力指令値よりも大きくした結果、出力電力が増加したならば、図19に示した太陽電池の特性から明らかなようにaの運転領域にあるため、次回の電圧指令値を現在の電圧指令値よりも大きくする。また、出力電力が減少したならば、図19におけるbの領域にあるため、次回の電圧指令値を現在の電圧指令値よりも小さくする。
【0057】
このようにして発生させた電圧指令値V1*と検出値V1との偏差を加算器53により求め、この偏差を調節器54に入力してハーフブリッジインバータ3A,3Bの出力電流指令値i*とする。
上記出力電流指令値i*と検出値iとの偏差を加算器55により求め、この偏差を調節器56に入力してその出力とキャリア発生回路57からのキャリアとをコンパレータ(PWM信号発生回路)58に入力し、ハーフブリッジインバータ3A,3Bのスイッチ素子31に対する点弧信号を得る。
こうして太陽電池1が接続されている方のコンデンサ6の電圧V1を制御することにより、最大電力追従制御を行うものである。
【0058】
次に、図9は蓄電池51の充放電制御を行うための制御ブロック図である。
まず、充放電指令発生回路59は、蓄電池51の状態及び太陽電池1の発電運転状態から蓄電池51の印加電圧指令値を算出する。この印加電圧指令値を太陽電池1が接続されていない方のコンデンサ15の電圧指令値V2*とし、検出値V2との偏差を加算器60により求めてその偏差を調節器54に入力する。
そして調節器54の出力とキャリアとをコンパレータ58に入力し、スイッチ素子4,13に対する点弧信号を得る。
こうして太陽電池1が接続されていない方のコンデンサ15の電圧V2を制御することにより、蓄電池51の充放電制御を行う。
なお、蓄電池51が満充電状態や過充電状態の時、あるいはシステムの運転状態に合わせて、充放電指令発生回路59が遮断器制御信号S1を出力し、蓄電池51に直列接続された直流遮断器50を開放することにより、蓄電池51やコンデンサ15の電圧制御、保護を行う。
【0059】
この実施形態によれば、図20のように直流−直流変換器102を用いることなく、太陽電池1の最大電力追従制御を行いながら蓄電池51の充放電制御を行うことが可能となる。
なお、図示しないが、太陽電池1がコンデンサ15に接続され、コンデンサ6の両端に直流遮断器50と蓄電池51との直列回路が接続されている場合にも本発明は適用可能である。その場合には、コンデンサ15の電圧指令値V2*を生成してこの指令値V2*にV2が一致するように各スイッチ素子31のオン、オフを制御して最大電力追従制御を行い、また、コンデンサ6の電圧指令値V1*を生成してこの指令値V1*にV1が一致するように各スイッチ素子4,13のオン、オフ及び直流遮断器50の開閉を制御して蓄電池51の充放電制御を行う。
【0060】
次いで、請求項6に記載した発明の実施形態を説明する。図10(a)はこの発明の第1実施形態を示す回路図、図10(b)は第2実施形態を示す回路図であり、図1(a),(b)と同一の構成要素には同一符号を付してある。
図10(a)はコンデンサ6に太陽電池1が接続されている場合であり、回路構成上、図1(a)と異なるのは、直流分圧回路201内の直列スイッチ回路381の構成と図1(a)におけるダイオード37が存在しない点である。すなわち、上記直列スイッチ回路381は、半導体スイッチ素子4とダイオード14とを直列接続して構成されている。
同様に図10(b)はコンデンサ15に太陽電池1が接続されている場合であり、回路構成上、図1(b)と異なるのは、直流分圧回路202内の直列スイッチ回路382の構成と図1(b)におけるダイオード37が存在しない点である。すなわち、上記直列スイッチ回路382は、半導体スイッチ素子13とダイオード5とを直列接続して構成されている。
【0061】
次に、図10(a),(b)は動作的には互いに同様であるため、図10(a)の第1実施形態につきその動作を説明する。
直流分圧回路201において、太陽電池1が接続されたコンデンサ6の電圧V1は太陽電池1の電圧にクランプされるため、太陽電池1が接続されていないコンデンサ15の電圧V2がV1と等しくなるように制御を行う。制御は、各コンデンサ6,15の電圧を検出してV1,V2の偏差が零になるように直列スイッチ回路381のスイッチ素子4の点弧期間を制御する。
【0062】
図11(a)は、太陽電池1からコンデンサ15にエネルギーを供給するときの直流分圧回路201の動作を示したものである。スイッチ素子4を点弧することで、実線で示す太陽電池1→スイッチ素子4→リアクトル10のルートでリアクトル10にエネルギーを蓄積し、このエネルギーを、スイッチ素子4の消弧によって破線のルートでコンデンサ15に供給する。
【0063】
なお、図11(b)は、図10(b)の第2実施形態における直流分圧回路202の動作を示すもので、太陽電池1からコンデンサ6にエネルギーを供給するときの動作であり、スイッチ素子13を点弧することで、実線で示す太陽電池1→リアクトル10→スイッチ素子13のルートでリアクトル10にエネルギーを蓄積し、このエネルギーを、スイッチ素子13の消弧によって破線のルートでコンデンサ6に供給する。
【0064】
従って、スイッチ素子4または13の点弧期間をコンデンサ電圧に応じて制御することにより、電圧V1,V2を制御することが可能になり、この電圧V1,V2がハーフブリッジインバータ3A,3Bの直流電源となる。
ここで、上記制御を行うための制御ブロック図は前述した図3と同様であり、図3におけるコンパレータ24から出力される点弧信号がスイッチ素子4または13に加えられることになる。
【0065】
上述した動作により、2つのコンデンサ6,15の電圧が制御され、このとき直流分圧回路201,202のスイッチ素子4とダイオード14との接続点、またはスイッチ素子13とダイオード5との接続点の電圧は図21と同様に正負に振られることになる。
しかるに、図10(a),(b)における直流入力端子間電圧はコンデンサ6,15により太陽電池1の電圧にクランプされ、しかも太陽電池1の正極または負極が系統電源9の中性線(接地線)に接続されているため、対接地電位も変動することなく安定している。
このため、ノイズ発生や雑音端子電圧の増加を抑制することができる。
【0066】
次いで、請求項7に記載した発明の実施形態を説明する。
図12は、先の請求項6に記載した発明の他の実施形態を示す主回路図であり、図10(a)と同一の構成要素には同一の番号を付してある。なお、図において、61はゲート点弧信号、62は変流器、63は遮断器、91は交流負荷である。
この図12の電力変換装置では、図10(a)の実施形態と同様に、直流電源1が接続されていない方のコンデンサ15の電圧V2を直流分圧回路201により制御し、ハーフブリッジインバータ3A,3Bの直流端子間電圧を制御している。そして、図12では図10(a)と異なり、2つの単相交流電圧を交流負荷91に供給している。また、図12では、リアクトル10の電流を変流器62により検出し、この電流の制御をマイナーループとしてコンデンサ15の電圧V2を制御している。
【0067】
いま、図14に示すように、時刻T1において交流負荷91が変動して重負荷から軽負荷になると、図12の回路では、直流分圧回路201の制御系の遅れやリアクトル10の残留エネルギーに起因してリアクトル10の電流i10が減少する。このため、負荷供給に不要な斜線部のエネルギーがコンデンサ15に蓄積され、その結果コンデンサ15の電圧V2が増加する。また、これに伴ってハーフブリッジインバータ3A,3Bの直流端子間電圧(すなわち電圧合計値VT=V1+V2)も増加する。
負荷変動が大きいほどコンデンサ15に蓄積されるエネルギー(図14における斜線部の面積)は多くなり、それによって半導体スイッチ素子を破壊するおそれがある。
【0068】
これを防止するには、コンデンサ容量を増加させたり高耐圧スイッチ素子を使用する等の方法が考えられるが、これらの方法は電力変換装置の大型化、コスト増加に直結する。また、他の方法として、コンデンサの過電圧レベルを設定しておき、過電圧検出時に電力変換装置の運転を強制的に停止することも有効であるが、その場合には定格負荷範囲内での運転停止状態となるため、装置の信頼性を低下させることになる。
請求項7記載の発明は、上記問題点に鑑みてなされたものである。
【0069】
図13(a)は請求項7に記載した発明の実施形態を示す制御ブロック図、図13(b)はその動作説明図である。なお、電力変換装置の主回路は図12と同様である。
図13(a)において、太陽電池1が接続されていない方のコンデンサ15の電圧指令値V2*と検出値V2との偏差を加算器64により求め、この偏差を調節器54に入力してリアクトル10を流れる電流の指令値i10 *とする。
上記電流指令値i10 *と検出値i10との偏差を加算器65により求め、この偏差を調節器56に入力してその出力とキャリア発生回路57からのキャリアとをコンパレータ(PWM信号発生回路)58に入力し、直列スイッチ回路381の半導体スイッチ素子4に対する点弧信号61を得る。
【0070】
さて、本実施形態では、図13(a)の一点鎖線で囲んだブロック70に特徴を有する。すなわち、コンデンサ6の電圧V1及びコンデンサ15の電圧V2との合計値VTを加算器71により求め、コンパレータ74によってレベル設定器72による抑制電圧レベルVLIMと比較する。この抑制電圧レベルVLIMは半導体スイッチ素子の耐圧から決まる最大印加電圧値であり、過電圧保護レベルに基づいて設定される。
TがVLIMに到達したことをコンパレータ74により検出し、この検出信号をフリップフロップ76のリセット端子Rに送って運転信号ZHをオフ(Lowレベル)とし、アンド回路77を介して点弧信号61をオフする。これにより、運転信号ZHが加えられている調節器54,56はゼロホールドされ、直列スイッチ回路381のスイッチ素子4はパルスオフ状態となって直流分圧回路201の運転が停止する。
【0071】
一方、VTが別のレベル設定器73による復旧電圧レベルV(復旧)を下回ったことをコンパレータ75により検出し、この検出信号をフリップフロップ76のセット端子Sに送って運転信号ZHをオン(Highレベル)とし、アンド回路77を介して点弧信号をオンする。すなわち、各調節器54,56を動作させて直流分圧回路201を再起動する。ここで、復旧電圧レベルV(復旧)は直流分圧回路201の正常動作可能なレベルに設定されるものである。
なお、図13(b)は、コンパレータ74,75、フリップフロップ76によって得られる、VT,VLIM,V(復旧)と運転信号ZHとの関係を示している。
【0072】
図15は、本実施形態によるリアクトル10の電流i10、電圧合計値VT及び運転信号ZHの関係を示したものである。
図において、時刻T1における負荷変動によって電流i10が減少していき、これに起因してコンデンサ15の電圧V2は図示する如く上昇していく。そして、時刻T2で電圧合計値VT(=V1+V2)が抑制電圧レベルVLIMに達すると、図13(a)に示したコンパレータ74以降の回路が働き、運転信号ZHをオフして直流分圧回路201を停止させる。この結果、太陽電池1からのエネルギー供給が絶たれ、直流分圧回路停止後の電圧上昇はリアクトル10の残留エネルギーによる上昇分のみとなる。この値は、直流分圧回路201の制御遅れによる電圧上昇に比較して十分に小さい。
直流分圧回路201の停止後は、コンデンサ15から交流負荷91への電力供給が行われるので、コンデンサ15の電圧V2は低下する。時刻T3において、電圧合計値VTが復旧電圧レベルV(復旧)に到達すると、図13(a)に示したコンパレータ75以降の回路が働き、運転信号ZHをオンして直流分圧回路201を再起動する。
【0073】
以上が本実施形態の動作であるが、上記動作は直流分圧回路201のみに限定され、ハーフブリッジインバータ3A,3Bは通常の動作を継続する。従って、本発明の課題である負荷変動に伴うコンデンサ15の過電圧の発生を防止し、コンデンサの容量増加や高耐圧スイッチ素子の使用、ならびに過電圧検出による電力変換装置の強制的な運転停止を回避することができる。
なお、本実施形態では太陽電池1が接続されていない方のコンデンサ15の過電圧を防止する場合につき説明したが、他方のコンデンサ6に太陽電池1が接続されておらず、その過電圧を防止する場合にも、本発明は適用可能である。
【0074】
上記各実施形態では、直流電源として太陽電池1を使用した場合につき説明したが、直流電源の種類はこれに限定されるものではなく、燃料電池や蓄電池であっても良い。
【0075】
【発明の効果】
以上のように請求項1記載の発明によれば、直流分圧回路の動作により、1個の直流電源からハーフブリッジインバータの入力電圧である2つの相等しいコンデンサ電圧を得ることができる。従って、図6の従来技術のように2個の太陽電池による発生電力の誤差や自立運転時の非対称負荷への電力供給によるコンデンサ電圧のアンバランスが解消され、出力電圧の歪み発生や系統への直流成分の流出を阻止することができる。
また、直流電源の数が1個で済むため、配線の接続が複雑になることもない。更に、電力変換段数は2段になるが、直流分圧回路の変換電力は図7に示した昇圧チョッパの変換電力の1/2になるので、電力変換装置の小型化が可能である。
【0076】
請求項2記載の発明によれば、直流電源が接続されていないコンデンサの電圧を電力変換装置に要求される出力交流電圧値で決まる最低電圧に制御することにより、半導体スイッチ素子の耐圧は、(直流電源の最大電圧+上記コンデンサの一定電圧)を許容すれば良くなる。従って、直流電源を2個直列に接続した場合に比べて低耐圧のスイッチ素子を使用することができ、電力変換時のスイッチング損失の低減、変換効率の向上、製造コストの低減が可能になる。
【0077】
請求項3記載の発明によれば、請求項2記載の発明によりハーフブリッジインバータの入力電圧が不均等になった場合における出力波形の補正が可能になり、連系される電力系統に対して安定した電力供給を行うことができる。
【0078】
請求項4記載の発明によれば、直流分圧回路の2個のコンデンサの電圧の合計値をハーフブリッジインバータに使用している半導体スイッチ素子の耐圧以下に抑制する制御手段を設けることにより、太陽電池を2個直列に接続して使用する場合に比べて低耐圧のスイッチ素子を使用することができる。
このため電力変換時のスイッチング損失の低減、変換効率の向上が可能になる。
【0079】
請求項5記載の発明によれば、従来のように直流−直流変換器を用いることなく太陽電池の最大電力追従制御を行いながら蓄電池の充放電制御を並列的に実行でき、システムの小型化、低価格化を図れると共に、最小限の変換段数による高効率化が可能である。
【0080】
請求項6記載の発明によれば、直流入力端子間電圧が直流分圧回路のコンデンサにより直流電源電圧にクランプされ、しかも直流電源の正極または負極が系統電源の中性線(接地線)に接続されているので、対接地点電位が変動することなく安定する。
従って、ノイズ発生や雑音端子電圧の発生を抑制する効果があり、直流側のノイズフィルタの追加や強化に起因するシステムの複雑化、大型化、高価格化を防ぐことができる。
【0081】
請求項7記載の発明によれば、コンデンサの電圧合計値と抑制電圧レベル及び復旧電圧レベルとを比較し、その結果に応じて直流分圧回路の動作停止または再起動を行わせるため、負荷変動に伴ってハーフブリッジインバータに過電圧が印加されるのを未然に防止することができる。これにより、コンデンサ容量の増加や高耐圧スイッチ素子の使用を回避して、装置の大型化、高コスト化を防ぐことができる。また、直流分圧回路の動作停止中でもハーフブリッジインバータは継続して電圧を発生するので、電力変換装置の信頼性向上が可能になる。
【図面の簡単な説明】
【図1】請求項1に記載した発明の実施形態を示す主回路構成図である。
【図2】図1の実施形態における直流分圧回路の動作説明図である。
【図3】請求項1,請求項2に記載した発明の実施形態における直流分圧回路の制御ブロック図である。
【図4】図1の実施形態における直流分圧回路の動作説明図である。
【図5】請求項3に記載した発明の実施形態における制御ブロック図である。
【図6】請求項4に記載した発明の実施形態における制御ブロック図である。
【図7】請求項5に記載した発明の実施形態を示す主回路構成図である。
【図8】図7の実施形態において最大電力追従制御を行うための制御ブロック図である。
【図9】図7の実施形態において蓄電池の充放電制御を行うための制御ブロック図である。
【図10】請求項6に記載した発明の実施形態を示す主回路構成図である。
【図11】図10の実施形態における直流分圧回路の動作説明図である。
【図12】請求項6に記載した発明の他の実施形態及び請求項7に記載した発明の実施形態を示す主回路構成図である。
【図13】請求項7に記載した発明の実施形態を示す制御ブロック図及び動作説明図である。
【図14】図12の実施形態の動作説明図である。
【図15】図13の実施形態の動作説明図である。
【図16】従来技術を示す回路図である。
【図17】従来技術を示す回路図である。
【図18】従来技術を示す概略的な回路図である。
【図19】図14における太陽電池の特性図である。
【図20】従来技術を示す概略的な回路図である。
【図21】従来技術を示す回路図である。
【符号の説明】
1 太陽電池
2,201,202 直流分圧回路
3A,3B ハーフブリッジインバータ
4,13,31 半導体スイッチ素子
5,14,32,37 ダイオード
6,8a,8b,15 コンデンサ
7a,7b,10 リアクトル
9 系統電源
16,17 電圧指令切替スイッチ
20,20a,20b,20c,43,45,53,55,60,64,65,71 加算器
22,46,54,56 調節器
23,27,47,57 キャリア発生回路
24,28,41,48,58,74,75 コンパレータ
25 増幅器
26 除算器
38,381,382 直列スイッチ回路
42,44 アナログスイッチ
50 直流遮断器
51 蓄電池
52 電圧指令発生回路
59 充放電指令発生回路
61 点弧信号
62 変流器
63 遮断器
70 ブロック
72,73 レベル設定器
76 フリップフロップ
77 アンド回路
91 交流負荷

Claims (7)

  1. 半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、
    前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続して直列スイッチ回路を形成すると共に、この直列スイッチ回路を前記2個のコンデンサの直列回路に並列接続し、かつ、直列スイッチ回路の上下のスイッチアームの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成し、
    前記2個のコンデンサのうち直流電源が接続されていないコンデンサの電圧が他方のコンデンサの電圧に等しくなるように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御する制御手段を備えたことを特徴とする電力変換装置。
  2. 半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、
    前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続して直列スイッチ回路を形成すると共に、この直列スイッチ回路を前記2個のコンデンサの直列回路に並列接続し、かつ、直列スイッチ回路の上下のスイッチアームの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成し、
    前記2個のコンデンサのうち直流電源が接続されていないコンデンサの電圧が一定値になるように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御する制御手段を備えたことを特徴とする電力変換装置。
  3. 半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置であって、
    前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続して直列スイッチ回路を形成すると共に、この直列スイッチ回路を前記2個のコンデンサの直列回路に並列接続し、かつ、直列スイッチ回路の上下のスイッチアームの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して形成した直流分圧回路と、
    前記2個のコンデンサのうち直流電源が接続されていないコンデンサの電圧が一定値になるように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御する制御手段と、
    を備えた電力変換装置において、
    前記制御手段を動作させることにより前記2個のコンデンサの電圧が等しくなくなったときに、これらのコンデンサの電圧検出値V1,V2、ハーフブリッジインバータの上アームの点弧時間Ton、下アームの点弧時間Toff(=T−Ton)及びキャリア周期Tを用いて以下の式により求めた出力電圧指令値λに基づき前記ハーフブリッジインバータの半導体スイッチ素子のオン、オフを制御する制御手段を備えたことを特徴とする電力変換装置。
    λ=1−(V1−Vout)/E0
    (但し、
    out(:出力電圧基準指令値)=(V1×Ton/T)−(V2×Toff/T),
    0=(V1+V2)/2))
  4. 半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、
    前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続して直列スイッチ回路を形成すると共に、この直列スイッチ回路を前記2個のコンデンサの直列回路に並列接続し、かつ、直列スイッチ回路の上下のスイッチアームの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成し、
    前記2個のコンデンサのうち一方のコンデンサの電圧検出値に基づき他方のコンデンサの電圧指令値を生成し、他方のコンデンサの電圧がこの電圧指令値に一致するように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御することにより、前記2個のコンデンサの電圧の合計値を前記ハーフブリッジインバータの半導体スイッチ素子の耐圧以下に抑制する制御手段を備えたことを特徴とする電力変換装置。
  5. 半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、
    前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続して直列スイッチ回路を形成すると共に、この直列スイッチ回路を前記2個のコンデンサの直列回路に並列接続し、かつ、直列スイッチ回路の上下のスイッチアームの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成し、
    前記2個のコンデンサのうち直流電源が接続されていないコンデンサの両端に直流遮断器と蓄電池との直列回路を接続し、
    直流電源が接続されているコンデンサの電圧がその電圧指令値に一致するように前記ハーフブリッジインバータの半導体スイッチ素子のオン、オフを制御することにより、直流電源の最大電力追従制御を行い、かつ、
    直流電源が接続されていないコンデンサの電圧がその電圧指令値に一致するように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御すると共に前記直流遮断器の開閉を制御することにより前記蓄電池の充放電制御を行う制御手段を備えたことを特徴とする電力変換装置。
  6. 半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、
    前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとを直列接続して直列スイッチ回路を形成し、この直列スイッチ回路を構成する半導体スイッチ素子とダイオードとの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成すると共に前記2個のコンデンサの相互接続点を系統電源の中性線に接続し、前記2個のコンデンサのうち直流電源が接続されていないコンデンサの電圧が他方のコンデンサの電圧に等しくなるように前記直列スイッチ回路の半導体スイッチ素子のオン、オフを制御する制御手段を備えたことを特徴とする電力変換装置。
  7. 半導体スイッチ素子とダイオードとの逆並列回路からなるスイッチアームを上下に2個直列接続したハーフブリッジインバータを2個並列に接続し、直列接続された2個のコンデンサの電圧を前記ハーフブリッジインバータの入力電圧として前記半導体スイッチ素子をオン、オフさせることにより2つの単相交流電圧を出力させる単相3線出力形の電力変換装置において、
    前記コンデンサのうち一方のコンデンサの両端に直流電源を接続し、半導体スイッチ素子とダイオードとを直列接続して直列スイッチ回路を形成し、この直列スイッチ回路を構成する半導体スイッチ素子とダイオードとの相互接続点と前記2個のコンデンサの相互接続点との間にリアクトルを接続して直流分圧回路を形成すると共に前記2個のコンデンサの相互接続点を交流負荷の中性点に接続し、前記2個のコンデンサの電圧合計値に対して抑制電圧レベルと復旧電圧レベルとを設定し、前記電圧合計値が増加して抑制電圧レベルに到達したら前記直流分圧回路の動作を停止させ、前記電圧レベルが減少して復旧電圧レベルに到達したら前記直流分圧回路を再起動させる制御手段を備えたことを特徴とする電力変換装置。
JP26185897A 1996-10-14 1997-09-26 電力変換装置 Expired - Fee Related JP3656694B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26185897A JP3656694B2 (ja) 1996-10-14 1997-09-26 電力変換装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP27049996 1996-10-14
JP8-270499 1996-12-18
JP8-338533 1996-12-18
JP33853396 1996-12-18
JP26185897A JP3656694B2 (ja) 1996-10-14 1997-09-26 電力変換装置

Publications (2)

Publication Number Publication Date
JPH10234185A JPH10234185A (ja) 1998-09-02
JP3656694B2 true JP3656694B2 (ja) 2005-06-08

Family

ID=27335069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26185897A Expired - Fee Related JP3656694B2 (ja) 1996-10-14 1997-09-26 電力変換装置

Country Status (1)

Country Link
JP (1) JP3656694B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290593A (zh) * 2020-11-02 2021-01-29 浙江艾罗网络能源技术有限公司 用于180度相角裂相电网的并网逆变器防逆流控制方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494562B2 (ja) * 1999-09-28 2010-06-30 株式会社ダイヘン 太陽光発電用電力変換装置
JP4712148B2 (ja) * 2000-01-11 2011-06-29 東芝三菱電機産業システム株式会社 電力変換装置
AT414189B (de) * 2001-07-25 2006-10-15 Poisel Herbert Universeller elektronischer leistungssteller mit variabler zwischenkreisspannung
JP5188854B2 (ja) * 2008-03-26 2013-04-24 住友重機械工業株式会社 ハイブリッド式建設機械
WO2010144473A2 (en) * 2009-06-09 2010-12-16 Andre Poskatcheev Willis Power harvesting circuit and method for serially coupled dc power sources
EP2493062B1 (de) * 2011-02-28 2015-04-15 SEMIKRON Elektronik GmbH & Co. KG DC-DC Wandlerzelle, hieraus aufgebaute rückspeisefähige DC-DC Wandlerschaltung und Verfahren zu deren Betrieb
JP5817225B2 (ja) * 2011-06-07 2015-11-18 株式会社明電舎 電力変換装置
JP6103874B2 (ja) * 2012-10-12 2017-03-29 株式会社日立情報通信エンジニアリング 電源装置とその運転方法
JP6048928B2 (ja) * 2012-10-23 2016-12-21 パナソニックIpマネジメント株式会社 電力変換装置
JP6087238B2 (ja) * 2013-07-26 2017-03-01 株式会社日立情報通信エンジニアリング 電源装置とその運転方法
CN103472274A (zh) * 2013-09-23 2013-12-25 国网安徽省电力公司淮南供电公司 便携式电能计量终端实验电源
JP6156575B2 (ja) * 2014-03-18 2017-07-05 日本電気株式会社 パワーコンディショナおよびその制御方法
WO2015162733A1 (ja) * 2014-04-23 2015-10-29 新電元工業株式会社 電源装置及び制御装置
JPWO2015162732A1 (ja) * 2014-04-23 2017-04-13 新電元工業株式会社 電源装置及び制御装置
JP6696819B6 (ja) * 2015-04-28 2020-06-17 トヨタ自動車株式会社 直列接続された太陽電池又はその他の電源用の動作点制御回路装置
JP2017059094A (ja) * 2015-09-18 2017-03-23 トヨタ自動車株式会社 太陽電池の昇圧機能付き発電動作点制御回路装置
CN106300433B (zh) 2016-11-10 2019-08-13 阳光电源股份有限公司 一种光伏优化器与光伏逆变器的协调控制方法和装置
CN110323955B (zh) 2019-06-14 2020-12-22 华为技术有限公司 一种离网裂相器和逆变器***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290593A (zh) * 2020-11-02 2021-01-29 浙江艾罗网络能源技术有限公司 用于180度相角裂相电网的并网逆变器防逆流控制方法
CN112290593B (zh) * 2020-11-02 2022-03-15 浙江艾罗网络能源技术股份有限公司 用于180度相角裂相电网的并网逆变器防逆流控制方法

Also Published As

Publication number Publication date
JPH10234185A (ja) 1998-09-02

Similar Documents

Publication Publication Date Title
JP3656694B2 (ja) 電力変換装置
JP6706349B2 (ja) 無停電電源システムおよび無停電電源装置
JP2007166783A (ja) 電力変換装置
JPS62154122A (ja) 太陽光発電装置における充電制御方式
MX2011002969A (es) Dispositivo de conversion de energia.
JP2011172485A (ja) 電力変換装置
CN115313861B (zh) 一种基于两级式双向逆变器并联***的控制方法
CN115242092A (zh) 飞跨电容三电平dcdc变换器、光伏***及控制方法
WO2003032466A1 (fr) Alimentation electrique sans coupure et procede de demarrage de celle-ci
Wu et al. Solar power generation system with power smoothing function
JP3428869B2 (ja) 燃料電池出力変動補償方法
JPH0759274A (ja) 無停電電源装置
JPH11215695A (ja) 直並列切換型電源装置
KR101627620B1 (ko) 무정전 전원장치
JP2009247185A (ja) 系統連系インバータ装置およびその自立運転方法
JP2003087976A (ja) 無停電電源装置
JPH07115773A (ja) 無停電電源装置
JPH02269426A (ja) 直流無停電電源装置
JPH06266454A (ja) バッテリ併用型太陽光発電設備
JP2021027749A (ja) 充放電制御装置およびそれを備えたバッテリ並びに直流給電システム
JPH11313449A (ja) シングルコンバージョン方式ups
JPH0336209Y2 (ja)
KR102330697B1 (ko) 계통 연계형 에너지 저장 시스템
US11233403B2 (en) Grid interconnection system
JPH11299129A (ja) 電源並列接続型無停電電源装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees