JP3622631B2 - Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same - Google Patents

Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same Download PDF

Info

Publication number
JP3622631B2
JP3622631B2 JP2000113911A JP2000113911A JP3622631B2 JP 3622631 B2 JP3622631 B2 JP 3622631B2 JP 2000113911 A JP2000113911 A JP 2000113911A JP 2000113911 A JP2000113911 A JP 2000113911A JP 3622631 B2 JP3622631 B2 JP 3622631B2
Authority
JP
Japan
Prior art keywords
negative electrode
phase
electrode material
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000113911A
Other languages
Japanese (ja)
Other versions
JP2001297766A (en
Inventor
芳明 新田
治成 島村
基治 小比賀
和孝 阿佐部
幸輝 竹下
教之 禰宜
祐義 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Nippon Steel Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000113911A priority Critical patent/JP3622631B2/en
Publication of JP2001297766A publication Critical patent/JP2001297766A/en
Application granted granted Critical
Publication of JP3622631B2 publication Critical patent/JP3622631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、充電・放電容量が高く、かつサイクル寿命にも優れた非水電解質二次電池用負極材料とその製造方法に関する。
【0002】
なお、本発明でいう非水電解質二次電池は、支持電解質を有機溶媒に溶解した非水電解質および高分子電解質やゲル電解質等の非水電解質を用いた電池を包含する。
【0003】
【従来の技術】
携帯電話やパソコン等の携帯可能な小型電気・電子機器の普及に伴い、高容量の小型二次電池としての非水電解質二次電池、特にリチウムイオン二次電池の生産量は急激に増加しつつある。
【0004】
現在実用化されている非水電解質二次電池では、負極材料として炭素質材料が使用されている。開発当初は金属リチウムを負極材料に使用した非水電解質二次電池が試みられたが、充電時に負極に析出する金属リチウムがデンドライト状となり、セパレータを突き破って短絡を起こし易いため、実用電池としては使用できなかった。そのため、層間にLiイオンを可逆的に吸蔵・放出できる炭素質材料を負極材料とし、Liイオンの炭素質材料への吸蔵・放出により充電・放電を行う、リチウムイオン二次電池と呼ばれる非水電解質二次電池が開発され、実用電池として使用可能になった。リチウムイオン二次電池では、充電・放電反応において金属リチウムの析出が起こらないので、デンドライトに起因する問題を避けることができる。
【0005】
炭素質材料を負極材料とする非水電解質二次電池は、ニッケル−カドミウム電池、ニッケル−水素電池といった他の小型二次電池と比べれば高容量であるが、炭素質材料の理論容量が金属リチウムのそれに比べて非常に低いため、炭素質材料を負極材料とする限り、高容量化には限界がある。
【0006】
そこで、非水電解質二次電池のさらなる高容量化を目指して、炭素質材料以外の負極材料、例えば、金属珪化物といった金属間化合物等を負極材料に用いる研究 (例、特開平7−240201号公報、同9−63651 号公報参照) や、Liと金属間化合物を形成できるAlといった金属、またはこの金属に他元素を添加した金属材料を負極材料に用いる研究、などが行われてきた。
【0007】
【発明が解決しようとする課題】
しかし、いまのところ、これらの負極材料は実用化されていない。その主な原因は、金属間化合物では負極材料のLiの吸蔵量が少なく、高容量を得ることができないこと、また高容量を得ることができるAlといった負極材料にあっては、吸蔵・放出に伴う負極材料の体積変化が大きく、充電・放電サイクルの繰り返しに伴って負極材料が割れて、微粉化し、サイクル寿命が極端に低くなることにあると考えられる。
【0008】
本発明は、炭素質材料より高容量を示し、かつ微粉化が抑えられて、サイクル寿命も炭素質材料と同等かそれ以上となる、非水電解質二次電池用負極材料とその製造方法ならびに該負極材料を負極に用いた非水電解質二次電池を提供することを課題とする。
【0009】
【課題を解決するための手段】
シリコン(Si)は、Liと可逆的に化合・解離することによりLiを吸蔵・放出することができる。Siを非水電解質二次電池の負極材料に用いた場合のSiの充電・放電容量は、理論的には4200 mAh/g (9800 mAh/cc:比重2.33) もの大きさとなる。このSiの理論最大容量は、現在実用化されている炭素材の理論最大容量の372 mAh/g (844mAh/cc:比重2.27として) よりはるかに大きく、金属リチウムの理論最大容量の3900 mAh/g (2100 mAh/cc:比重0.53) と比較しても、電池の小型化という観点から重要な単位体積あたりの放電容量では、Siの方が著しく大きくなる。従って、Siは高容量の負極材料となりうる。
【0010】
しかし、Siからなる負極材料は、Alの場合と同様に、Liの吸蔵・放出に伴う体積変化が大きいため、割れにより微粉化し易く、サイクル寿命が極端に短くなるため、Siを負極材料にする試みはこれまでほとんどなされたことがない。
【0011】
本発明者らは、Siからなる負極材料の持つ、著しく高い理論容量という特性に着目し、そのサイクル寿命を向上させるべく検討を重ねた結果、Liの吸蔵能力を持たないか、吸蔵能力が小さい別の相 (例えば、Siの金属間化合物の相) を、Si相と共存させた合金材料が有効であることを見いだした。このような合金材料は、Liの吸蔵能力が無いか小さい他の相(金属間化合物相)が共存することで、容量はその分だけ低くなるが、他の相がSi相を拘束する結果、Liの吸蔵・放出に伴うSi相の体積変化が抑制され、負極材料の微粉化が進行しにくくなり、サイクル寿命が改善される。その結果、炭素質材料に比べてなお高容量で、サイクル寿命も実用レベルに達した負極材料を得ることが可能となる。
【0012】
Si相をSi金属間化合物といった他の相で拘束して、Si相の体積変化を抑制するには、合金組織が微細である方が有利である。Si相の結晶粒径が大きいと、その周囲に配した他の相による拘束がSi相の内部まで効きにくくなるからである。微細な組織を持つ合金材料は、アトマイズ法やロール急冷法といった急冷・凝固が可能な鋳造方法により製造することができる。特に、ガスアトマイズ法は、球形微粉末を製造することができるので粉砕工程が不要になる点と、得られた球形粉末形態の負極材料は、充填性に優れているので、充填密度の高い負極を作製できる点で有利である。
【0013】
しかし、本発明者等が調査したところ、ガスアトマイズ法を用いて作製した上記合金の粉末を非水電解質二次電池の負極材料に用いても、必ずしもサイクル寿命が長いものになるとは限らなかった。
【0014】
さらなる調査の結果、サイクル寿命が短い合金は、サイクル寿命が長いものに較べて、酸素を多く含有することが判明した。即ち、酸素含有量が少なくすることで、サイクル寿命が長い負極材料を得ることが可能となる。また、この酸素含有量の低減によるサイクル寿命の改善は、Li吸蔵相がSiである場合に限られるものではなく、Liと化合・解離できるSi以外の他のLi吸蔵相の場合にも得られることがわかった。
【0015】
この知見に基づき完成した本発明は、Liと可逆的に化合・解離することができるSi 相と、 Si Ni Co または Ti との金属間化合物の相とを含む合金の粉末からなり、この合金粉末の酸素含有量が1000 mass-ppm 以下であることを特徴とする、非水電解質二次電池用負極材料である。
【0016】
本発明はまた、この負極材料から形成された負極を備えることを特徴とする非水電解質二次電池にも関する。
Liと化合・解離できるLi吸蔵相 (例、Si相) と金属間化合物相とを含む合金からなる本発明の非水電解質二次電池用負極材料において、合金中の酸素がどのようなメカニズムで充電・放電繰り返し中に放電容量を減少させ、サイクル寿命を短くするかについては必ずしも明確になっていないが、現状では次のように考えられる。
【0017】
合金粉末の表面に酸化皮膜が生成すると、これが遮蔽物となって、Liイオンの出入りを阻害すると考えられる。しかし、それ以外にも、合金粉末の表面や内部の酸素とSiとLiとが不働態を形成し、その不動態を形成したSiは、以後の充電・放電容量に寄与しなくなる (不活性になる) ことをも本発明者らは観察している。従って、合金粉末の表面と内部を問わず、粉末全体の酸素含有量を一定以下に制限すると、表面の酸化皮膜による妨害と、前記不働態形成に伴う不活性化の両方を有効に防止することができ、サイクル寿命が改善される。
【0018】
本発明の酸素含有量が低減した合金粉末からなる負極材料をガスアトマイズ法で製造する場合、粉末全体の酸素含有量を制限するには、原料の溶融工程からガスアトマイズ法を用いて粉末に凝固させた後の工程までの各工程の製造条件を考慮する必要がある。これらの工程の少なくともいずれかで酸素含有量が低減するように条件を設定すると、酸素含有量が1000 mass−ppm 以下という本発明の負極材料を製造できる。
【0019】
具体的には、合金原料の溶解工程では、溶融雰囲気中の酸素濃度と溶湯温度を規制することが有効である。これらは何れも、溶湯中の酸素の溶存量に関与する条件である。
【0020】
ガスアトマイズ工程では、ガスアトマイズに用いる噴霧ガス中の酸素量を制限することは、粉末表面の酸化皮膜の形成を抑制するのに有効であるが、通常用いられる純度4N(99.99%) を超える高純度不活性ガスを噴霧ガスとして用いることは非常なコストアップの要因となり、工業的には好ましくない。むしろ、噴霧ガスは現行程度の純度のものを用いて、噴霧ガス中に水素等の還元性ガスを混合して用いることが有効である。
【0021】
さらに、ガスアトマイズ法を用いて粉末を形成した場合、凝固直後の高温の粉末は雰囲気中に含まれる微量の酸素や水蒸気から酸素を捕捉して、表面に酸化皮膜を形成する。これを抑制するには、粉末が高温を保つ時間をなるべく短くすることが有効である。しかし、粉末個々の温度を測定し、規制することは現実には不可能であるので、ガスアトマイズ作業が完了した直後の堆積した合金粉末の温度を規制することが最も簡便に管理できる方法である。
【0022】
本発明によれば、Liと可逆的に化合・解離することができるSi 相と、 Si Ni Co または Ti との金属間化合物の相とを含む合金の粉末からなる非水電解質二次電池用負極材料を、合金原料の溶融物を形成し、この溶融物をガスアトマイズ法により凝固させることにより製造する方法も提供される。この方法は、下記 (1)〜(4) に示す条件の少なくとも1つを満たすことにより、得られた合金粉末の酸素含有量を1000 mass-ppm 以下とすることを特徴とする。
【0023】
(1)合金原料の溶融物を酸素濃度1000 vol−ppm以下の雰囲気中で形成する;
(2)合金原料の溶融物の温度が (該合金の液相線温度+500 ℃) 以下である;
(3)ガスアトマイズ法に用いる噴霧ガスが不活性ガスと1〜10 vol% の水素ガスとを含む;および
(4)凝固した合金粉末の堆積時の温度が500 ℃以下である。
【0024】
【発明の実施の形態】
本発明の非水電解質二次電池負極材料は、Liと可逆的に化合・解離することのできる1種以上の元素の相 (以下、A相とする) とこの元素の少なくとも1種を含む金属間化合物の相 (以下、B相とする) とを含む合金の粉末からなる。
【0025】
Liと化合・解離できるA相が主なLi吸蔵相である。金属間化合物のB相は、A相に比べてLi吸蔵能は著しく小さいか、あるいはLi吸蔵能を持たない。しかし、このB相がA相に接して存在することで、Li吸蔵・放出時にA相が受ける体積変化 (膨張・収縮) がB相で拘束されて抑制され、合金粉末の割れや微粉化が防止されるので、サイクル寿命が著しく改善される。
【0026】
A相を構成する、Liと可逆的に化合・解離することのできる元素の例としては、C、Si、Ge、Sn、Pb、P、Al等が挙げられる。このうち好ましいのは、Li吸蔵量が大きいSi、Al、Snであり、特にSiが好ましい。
【0027】
この元素を含む金属間化合物の相 (B相) の種類は特に制限されない。B相は、原理的にはLiの吸蔵能がないか、非常に小さい相であれば、A相を体積変化に対して拘束することができる。しかし、B相がA相から剥離すると、この拘束の作用が失われる。そこで、凝固中にB相がA相と強固に結合することができるように、B相は、A相を構成する元素を含む金属間化合物の相とする。この金属間化合物は、A相の元素aと、周期表の2族 (IIA族) 元素、遷移元素、13族 (IIIB族) 元素および14族 (IVB族) 元素から選ばれた1以上の元素bとの金属間化合物であることが好ましい。
【0028】
上記金属間化合物(B相)を構成する元素bの例を次に例示する:
2族元素:Be、Mg、Ca、Sr、Ba、Ra;
遷移元素:Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、ランタノイド (La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu) 、Hf、Ta、W、Re、Os、Ir、Pr、Au、Hg、アクチノイド (Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr) ;
13族元素:B、Al、Ga、In、Tl;
14族元素:C、Si、Ge、Sn、Pb。
【0029】
上記元素のうち好ましいのは、2族元素ではMg;遷移元素では、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、および希土類元素 (特にNd等のランタノイド) ;13族元素ではAl;14族元素ではC、Si、Ge、Sn、Pbである。
【0030】
本発明で負極材料として使用する合金粉末は、主要なLi吸蔵相であるA相と、A相の元素の金属間化合物の相であるB相のみからなる組織を持つものが好ましいが、他の相が共存していてもよい。
【0031】
本発明の非水電解質二次電池用負極材料は、上記A相とB相とを含む合金粉末からなり、この合金粉末の酸素含有量が1000 mass−ppm 以下であることを特徴とする。合金粉末の酸素含有量が1000 mass−ppm を超えると、恐らくは合金粉末の酸化皮膜の形成によるLi通過の阻害や、内部の酸素の影響によるSi相の不働態化のために、サイクル寿命が低下する。合金粉末の酸素含有量は好ましくは500 mass−ppm以下である。
【0032】
本発明の非水電解質二次電池用負極材料は、前述したように、微細組織を持つ球形の合金粉末が得られるガスアトマイズ法により製造することが好ましい。即ち、合金原料の溶融物を形成し、この溶融物をガスアトマイズ法により凝固させることにより、本発明の非水電解質二次電池用負極材料を製造することができる。しかし、ガスアトマイズ法による金属粉末の製造に従来より一般的に採用されてきた条件下で合金粉末を製造しても、酸素含有量が1000 mass−ppm 以下という本発明の合金粉末を確実に得ることはできない。
【0033】
そこで、本発明の非水電解質二次電池用負極材料の製造方法では、下記 (1)〜(4) に示す条件の少なくとも1つを満たすことにより、酸素含有量が1000 mass−ppm 以下の合金粉末からなる負極材料を製造する。
【0034】
(1) 合金原料を適当な溶解炉等で溶融して溶融物を形成する時の雰囲気中の酸素濃度を1000 vol−ppm以下にする。酸素濃度が1000 vol−ppmを超える雰囲気中で合金原料を溶融させると、溶融物中の酸素溶存量が増加し、合金粉末の酸素含有量が増加する。この雰囲気の酸素濃度は好ましくは100 vol−ppm 以下である。
【0035】
合金原料の溶融をアルゴン、ヘリウム等の不活性ガス雰囲気中で行うことは一般によく行われているが、その不活性ガス雰囲気の酸素濃度を1000 vol−ppm以下、好ましくは100 vol−ppm 以下に管理すると、負極材料のサイクル寿命が改善されることはこれまで知られていない。酸素濃度を1000 vol−ppm以下に低減させた不活性ガス雰囲気は、13.3 Pa 以下に減圧した後、不活性ガスを導入する操作を繰り返す真空置換法等により得ることができる。
【0036】
(2) ガスアトマイズに供する合金原料の溶融物の温度を (該合金の液相線温度+500 ℃) 以下にする。溶融物の温度がこれより高くなると、溶融物中の酸素溶存量が増加し、合金粉末の酸素含有量が増加する。溶融物の温度は、好ましくは (該合金の液相線温度+300 ℃) 以下である。
【0037】
(3) ガスアトマイズ法に用いる噴霧ガスとして、Ar、He等の不活性ガスと水素ガスを混合して用いる。噴霧ガス中の水素ガスが、アトマイズ中に粉末表面に形成された酸化皮膜を還元するので、粉末の酸素含有量が低減する。噴霧ガス中の水素ガスの割合は1〜10 vol% が適当である。水素ガスの割合が1vol%未満では、粉末表面の酸化皮膜の還元は不十分となる。10 vol% を超えても酸化皮膜還元の効果については問題はないが、10 vol% 程度で効果がほぼ飽和することと、水素ガスを多量に混合して用いることは、火災や爆発の危険性を考慮すると好ましくない。水素ガスの割合は好ましくは1〜5vol%である。
【0038】
噴霧ガスとして超高純度の不活性ガス (純度99.99 %以上) を使用し、噴霧ガスによる酸化の影響を最小限にすることも考えられるが、噴霧ガスは大量に使用するので、コストが非常に高くなる上、酸化皮膜を還元することはできないので、不活性ガスに少量の水素ガスを混入した噴霧ガスを用いる方が安価で効果が大きい。
【0039】
(4) 凝固した合金粉末の堆積時の温度を500 ℃以下とする。ガスアトマイズ法を用いて合金の粉末を作製すると、凝固した粉末はガスアトマイズ室内の底部に堆積する。このアトマイズ室内の雰囲気は、噴霧ガスの構成と同じであるが、前述したように微量の酸素や水分を含んでいる。粉末が高温であると、これらの酸素や水分から酸素を捕捉して酸化反応が起こり、合金粉末の表面に酸化皮膜が形成される。有害な酸化皮膜の形成を防止するには、ガスアトマイズ後の粉末の温度を500 ℃以下に保つ必要がある。この温度管理の目安として、ガスアトマイズ室内で凝固した合金粉末が堆積した時の温度が500 ℃以下であればよく、好ましくは100 ℃以下とする。
【0040】
堆積時の合金粉末の温度を上記のように低下させるのは、▲1▼ガスアトマイズノズルからアトマイズ室の底部までの距離を長くして (アトマイズ室を高くして) 、堆積前の高速で飛散しているうちに粉末の温度を下げる、▲2▼堆積した厚みが薄くなるようにアトマイズ室の内部構造を工夫する、▲3▼アトマイズ室の壁面等を水冷して、壁面や底部からの抜熱量を多くする、▲4▼冷却ガス等 (不活性ガス) を堆積粉末に吹きつける、等の工夫により実現することができる。
【0041】
上記(1) ないし(4) のいずれか1つの条件を満たす製造方法を用いることで、本発明のガスアトマイズ法を用いて作製した非水電解質二次電池負極材料の合金の粉末の酸素含有量を1000 mass−ppm 以下とすることができる。もちろん、上記(1) ないし(4) の条件を2つ以上満たす製造方法を用いれば、さらに良好な結果を得ることができる。
【0042】
ガスアトマイズに供する合金原料は、金属間化合物の相 (B相) に比べて、Li吸蔵相 (A相) の元素が過剰になるように調整する。例えば、Ni−Si二元系では、金属間化合物はNiSiおよびNiSiであるので、NiSiに対応する組成(Si:約49質量%) よりSiリッチとなるように原料の組成を選択する。それにより、凝固中にSi相と金属間化合物相 (NiSi相および/またはNiSi相) が析出する。合金系によっては、金属間化合物相とLi吸蔵相が共晶を形成することもある。Li吸蔵相と金属間化合物相が存在していれば、各相の析出形態は特に制限されない。
【0043】
本発明に従ってガスアトマイズ法により凝固させて得られた合金粉末は、そのままで負極材料として使用することができるが、所望により粉砕および/または熱処理を施してから使用することもできる。
【0044】
非水電解質二次電池の負極は、後述するように、負極材料の粉末を結着剤で結合することにより一般に製造される。粉末の粒径は特に制限されるものではないが、通常は平均粒径で 0.1〜50μmの範囲が好ましく、より好ましくは1〜35μmである。ガスアトマイズ法で得られた合金粉末の粒径が大きすぎる時は、得られた粉末を粉砕してもよい。但し、粉砕中に合金粉末の酸素含有量が1000 mass−ppm を超えることがないように、粉砕雰囲気に注意する。従って、粉砕は酸素含有量が制限された不活性ガス雰囲気中で行うことが好ましい。
【0045】
本発明の方法に従ってガスアトマイズ法により製造された合金粉末は急冷凝固を受けているが、通常は特に熱処理をせずに使用することができる。急冷による格子歪みを除去する目的で熱処理を行うことも可能であるが、その場合には熱処理中に合金粉末の酸素含有量が1000 mass−ppm を超えないように注意する。例えば、高真空中または酸素濃度を制限した高純度の不活性ガス雰囲気中で熱処理を行うことが好ましい。
【0046】
また、熱処理温度が高すぎると、結晶粒の成長が甚だしく、ガスアトマイズ法で得られた微細な組織が失われるので、熱処理する場合には、負極材料の合金組成の固相線温度より10℃以上低い温度、好ましくは100 ℃以上低い温度とするのがよく、熱処理後の粉末酸素含有量の増加を抑止するためには200 ℃以上低い温度とすることがより好ましい。
【0047】
本発明の負極材料から、例えば、次に説明するようにして非水電解質二次電池用負極を製造することができる。まず、負極材料の合金粉末に、適当な結着剤とその溶媒を、必要に応じて導電性向上のために導電粉と一緒に混合する。この混合物を、ホモジナイザー、ガラスビーズ等を適宜用いて充分に攪拌し、スラリー状にする。このスラリーを圧延銅箔、銅電析銅箔などの電極基板 (集電体) に、ドクターブレード等を用いて塗布し、乾燥した後、ロール圧延等で圧密化させ、必要であれば適当な大きさに切断して、負極が製造される。
【0048】
結着剤としては、PVDF(ポリフッ化ビニリデン)、PMMA(ポリメチルメタクリレート)、PTFE(ポリテトラフルオロエチレン)等の非水溶性の樹脂、並びにCMC(カルボキシメチルセルロース) 、PVA(ポリビニルアルコール) などの水溶性樹脂が例示される。溶媒としては、結着剤に応じて、NMP(N−メチルピロリドン) 、DMF(ジメチルホルムアミド) 等の有機溶媒、または水を使用する。
【0049】
導電粉としては、炭素質材料 (例、カーボンブラック、黒鉛) および金属(例、Ni)のいずれも使用できるが、好ましいのは炭素質材料である。炭素質材料は、その層間にLiイオンを吸蔵することができるので、導電性に加えて、負極の容量にも寄与することができ、また保液性にも富んでいる。
【0050】
負極に炭素質材料を配合する場合、本発明の負極材料に対して5質量%以上、80質量%以下の量で炭素材料を使用することが好ましい。この量が5質量%未満では十分な導電性を付与することができず、80質量%を超えると負極の容量が低下する。より好ましい配合量は20質量%以上、50質量%以下である。
【0051】
この負極を用いて、非水電解質二次電池を作製する。非水電解質二次電池の代表例はリチウムイオン二次電池であり、本発明に係る負極材料および負極は、リチウムイオン二次電池の負極材料および負極として好適である。但し、理論的には、他の非水電解質二次電池にも適用できる。
【0052】
非水電解質二次電池は、基本構造として、負極、正極、セパレーター、非水系の電解質を含んでいる。負極は本発明の負極材料から製造したものを使用するが、他の正極、セパレーター、電解質については特に制限されず、従来より公知のもの、或いは今後開発される材料を適当に使用すればよい。非水電解質二次電池の形状も特に制限されず、円筒型、角形、コイン型、シール型等何れの形でもよい。
【0053】
リチウムイオン二次電池とする場合、正極は、Li含有遷移金属化合物を正極活物質とするものが好ましい。Li含有遷移金属化合物の例は、LiM1−XM’ または LiM2yM’ (式中、0≦X, Y≦1、M とM’はそれぞれBa、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Sn、Sc、Yの少なくとも1種) で示される化合物である。但し、遷移金属カルコゲン化物;バナジウム酸化物およびそのLi化合物;ニオブ酸化物およびそのLi化合物;有機導電性物質を用いた共役系ポリマー;シェブレル相化合物;活性炭、活性炭素繊維等といった、他の正極材料を用いることも可能である。
【0054】
リチウムイオン二次電池の電解質は、一般に支持電解質となるリチウム塩を有機溶媒に溶解させた非水電解質である。リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAsF、LiB(C) 、LiCFSO、LiCHSO、Li(CFSON、LiCSO、Li(CFSO、LiCl、LiBr、LiI 等が例示され、1種もしくは2種以上を使用することができる。
【0055】
有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネートなどの炭酸エステル類が好ましい。但し、カルボン酸エステル、エーテルをはじめとする他の各種の有機溶媒も使用可能である。
【0056】
セパレーターは、正極・負極の間に設置した絶縁体としての役割を果たす他、電解質の保持にも大きく寄与する。通常は、ポリプロピレン、ポリエチレン、またはその両者の混合布、ガラスフィルターなどの多孔体が一般に使用される。
【0057】
【実施例】
(実施例1)
表1に示す組成と液相線温度を持つ合金粉末からなる負極材料を、次に述べるようにしてガスアトマイズ法により作製した。なお、表1に示した合金組成では、Li吸蔵相はいずれもSiであり、凝固中に析出する金属間化合物相は、Ni−52SiではNiSi+NiSi、Co−58SiではCoSi、Ti−61SiではTiSiである。
【0058】
所定組成の原料を、酸素濃度を調節したアルゴン雰囲気中で高周波溶解して溶湯を形成し、この溶湯をタンディッシュに注湯後、タンディッシュの底部に設けた細孔を通して溶湯細流を形成し、この溶湯細流に高圧の噴霧ガスを噴霧して、粉末化した。タンディッシュの周囲雰囲気も、溶解炉の雰囲気と同一にした。Arガス雰囲気の酸素濃度は、13.3 Pa 以下に減圧した後、不活性ガスを導入する操作を繰り返す真空置換法により調整した。
【0059】
タンディッシュ内の溶湯温度は熱電対により測定した。噴霧ガスとしては、市販のArガス (酸素濃度約3vol−ppm 以下) のみ、またはこれに水素ガスを混合した混合ガスを用いた。ガスアトマイズ室内で堆積する時の合金粉末の温度は、二次冷却ガス (不活性ガス) の吹きつけにより調節した。この粉末堆積時の温度も熱電対により測定した。室温まで冷却された後に合金粉末を取り出し、合金粉末中の酸素含有量はを活性ガス搬送融解赤外線吸収法により測定した。合金粉末の熱処理は行わなかった。
【0060】
合金粉末の負極性能を評価するため、各合金粉末を63μmの篩で分級して得た、平均粒径30μmの粉末を用いて、次のようにして負極を作製した。比較のために、従来の炭素材 (石油系ピッチをメソフェーズ化、炭化、および黒鉛化して得た、上記と同じ平均粒径の黒鉛粉末) を用いて、同様に負極を作製した。
【0061】
負極を作製するため、負極材料の粉末に結着剤としてポリフッ化ビニリデンを粉末重量の10質量%、溶媒のN−メチルピロリドンを同じく10質量%、導電材としての炭素材 (アセチレンブラック) の粉末を同じく10質量%の量で加え、混練して均一なスラリーとした。このスラリーを30μm厚の電解銅箔に塗布し、乾燥させ、ロール圧延して圧密化させた後、直径13 mm のポンチを用いて打ち抜きして得た円板部材を負極とした。銅箔上の負極材料層の厚みは約100 μmであった。
【0062】
上記負極の単極での性能を、対極、参照極にLi金属を用いた、いわゆる3極式セルを用いて評価した。電解液にはエチレンカーボネートとジメトキシエタンの1:1混合溶媒中に、支持電解質のLiPFを1M 濃度で溶解させた溶液を使用した。測定は25℃で行い、グローブボックスのように不活性雰囲気を維持できる装置を用いて、雰囲気の露点が−70℃程度である条件で充電と放電を実施した。
【0063】
充放電条件:
▲1▼温度25℃
▲2▼充電 1/10Cで0V (vs 参照極) まで
放電 1/10Cで2V (vs 参照極) まで
(充電−放電) を1サイクルとし、計400 サイクル。
【0064】
1サイクル目の放電容量を測定して、その負極材料を用いた負極の放電容量とし、300 サイクル目の放電容量を測定して、次式より容量維持率を算出し、サイクル寿命の目安とした:
容量維持率=(300サイクル目の放電容量) /(1サイクル目の放電容量) ×100(%)
こうして求めた放電容量とサイクル寿命 (容量維持率、%) の結果も表1に一緒に示す。なお、放電容量は合金組成により大きく変動するが、サイクル寿命については80%以上が合格ラインである。
【0065】
【表1】

Figure 0003622631
表1の試験No.1〜8は、1つの条件を満たす(*印が1つの) 製造方法の例である。サイクル寿命が80〜85%で合格ラインを達成し、良好であった;
試験No.9〜15は、2つの条件を満たす(*印が2つの) 製造方法の例である。サイクル寿命は84〜90%でさらに良好となった;
試験No.16 〜22は3つまたは4つ全部条件を満たす(*印が3または4の) 製造方法の例である。サイクル寿命91〜95%でさらに一層良好となった。
【0066】
試験No.23 は噴霧ガス中の水素ガスの割合が15 vol% の例であり、サイクル寿命はNo.10 の同10 vol% のものと同じ86%で、噴霧ガス中の水素ガスの割合が10
vol% を超えても効果の増加はないことを示している。
【0067】
試験No.24 は、本発明で規定する(1) 〜(4) の製造条件の何れも満たしていない製造方法の例であり、75%と合格ラインの80%に達しなかった。
試験No.25 は、従来の炭素質材料からなる負極材料を同様に試験した結果を示し、本発明の負極材料が、炭素質材料に比べて放電容量が高く、サイクル寿命も同等以上であることがわかる。
【0068】
(実施例2)
本発明の負極材料を用いて非水電解質二次電池を作製し、以下に説明する要領で電池試験を行った。なお、従来から使用されている炭素材を負極に用いた電池も同様に作製および試験した。
【0069】
図1に本実施例で作製した円筒型非水電解質二次電池の縦断面図を示す。図1において、1は耐電解液性のステンレス鋼板を加工した電池ケース、2は安全弁を設けた封口板、3は絶縁パッキンを示す。4は極板群であり、正極板5および負極板6がセパレーター7を介して複数回渦巻状に巻回されて電池ケース1内に収納されている。上記正極板5からは正極アルミリード5aが引き出されて封口板2に接続され、負極板6からは負極ニッケルリード6aが引き出されて電池ケース1の底部に接続されている。8は絶縁リングで、極板群4の上下にそれぞれ設けられている。
【0070】
正極板5は次のようにして作製した。
まず、炭酸リチウムと炭酸コバルトを所定の割合で混合し、この混合物を空気雰囲気下において、900 ℃で一定時間焼成して、正極活物質であるLiCoOを得た。このLiCoOの粉末100 質量部に、アセチレンブラック3質量部、フッ素樹脂系結着剤5質量部を混合し、N−メチルピロリドン溶媒に懸濁させてペースト状にした。このペーストを厚さ0.020 mmのアルミ箔の両面に塗着し、乾燥して、厚み0.18 mm 、幅35 mm 、長さ270 mmの正極板5を作製した。また、正極リード5aとしてアルミニウム片を取り付けた。
【0071】
負極板6は、表1のNo. 16、20、21および22に示す組成および製造条件で作製した合金粉末を用いて、次のようにして作製した。
上記の各合金粉末100 質量部に、スチレンブタジエンゴム系結着剤5質量部を混合し、カルボキシメチルセルロース水溶液に懸濁させてペースト状にした。このペーストを、厚さ0.015 mmの銅箔の表面に塗着し、乾燥して、厚さ0.17 mm 、幅37 mm 、長さ300 mmの負極板6を作製した。
【0072】
上記のように作製した正極板と負極板とを、ポリプロピレン製のセパレーターを介して重ね、渦巻き状に巻回し、直径13.8 mm 、高さ50 mm の電池ケースに収容した。電解液には、炭酸エチレンと炭酸エチルメチルとの等容積混合溶媒中にLiPFを1M濃度で溶解した非水溶液を使用し、極板群4に注入した後、電池を封口し、表2に示した試験電池A〜Dを作製した。比較のために、負極材料が炭素材である試験電池Eも同様に作製した。
【0073】
これらの電池を、充放電電流100 mAの定電流で、充電終止電圧4.2 V、放電終止電圧で2.5 Vで充放電サイクル試験を行い、1サイクル目の充放電容量を測定するとともに、500 サイクル後の放電容量を測定し、1サイクル目の放電容量に対する500 サイクル目の放電容量の割合(%) をサイクル寿命として求めた。測定結果を表2に示す。
【0074】
【表2】
Figure 0003622631
本発明に従った負極材料から作製した負極を備えたA〜Dの試験電池は、いずれも従来例である炭素材負極を用いた電池Eより、容量とサイクル寿命のいずれも良好な値を示した。
【0075】
【発明の効果】
本発明により、従来の炭素質材料に比べて放電容量が高く、サイクル寿命も十分に良好な非水電解質二次電池用負極材料を、比較的安価に確実かつ大量に製造することができるので、本発明は非水電解質二次電池の高性能化に寄与する。
【図面の簡単な説明】
【図1】実施例で作製した非水電解質二次電池の構造を示す縦断面図である。
【符号の説明】
1:電池ケース、2:封口板、3:絶縁パッキン、4:極板群、5:正極板、6:負極板、7:セパレータ、8:絶縁リング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery having a high charge / discharge capacity and excellent cycle life, and a method for producing the same.
[0002]
In addition, the nonaqueous electrolyte secondary battery referred to in the present invention includes a battery using a nonaqueous electrolyte in which a supporting electrolyte is dissolved in an organic solvent and a nonaqueous electrolyte such as a polymer electrolyte or a gel electrolyte.
[0003]
[Prior art]
With the spread of portable small-sized electrical and electronic devices such as mobile phones and personal computers, the production volume of non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, as high-capacity small-sized secondary batteries is rapidly increasing. is there.
[0004]
In non-aqueous electrolyte secondary batteries currently in practical use, a carbonaceous material is used as a negative electrode material. At the beginning of development, a non-aqueous electrolyte secondary battery using metallic lithium as a negative electrode material was tried. Could not be used. Therefore, a non-aqueous electrolyte called a lithium ion secondary battery that uses a carbonaceous material capable of reversibly occluding and releasing Li ions between layers as a negative electrode material and charging and discharging by occluding and releasing Li ions into the carbonaceous material. Secondary batteries have been developed and can be used as practical batteries. In lithium ion secondary batteries, metal lithium does not precipitate in the charge / discharge reaction, so problems due to dendrites can be avoided.
[0005]
Nonaqueous electrolyte secondary batteries using a carbonaceous material as a negative electrode material have a higher capacity than other small secondary batteries such as nickel-cadmium batteries and nickel-hydrogen batteries, but the theoretical capacity of carbonaceous materials is metal lithium. Therefore, as long as the carbonaceous material is a negative electrode material, there is a limit to increasing the capacity.
[0006]
Therefore, with the aim of further increasing the capacity of non-aqueous electrolyte secondary batteries, research using negative electrode materials other than carbonaceous materials, for example, intermetallic compounds such as metal silicides, as negative electrode materials (eg, JP-A-7-240201). Research has been conducted using a metal such as Al capable of forming an intermetallic compound with Li, or a metal material obtained by adding other elements to this metal as a negative electrode material.
[0007]
[Problems to be solved by the invention]
However, at present, these negative electrode materials have not been put into practical use. The main reason is that the intermetallic compound has a small amount of occlusion of Li in the negative electrode material, so that a high capacity cannot be obtained, and in the case of a negative electrode material such as Al that can obtain a high capacity, The accompanying volume change of the negative electrode material is large, and it is considered that the negative electrode material is cracked and pulverized as the charge / discharge cycle is repeated, and the cycle life is extremely reduced.
[0008]
The present invention provides a negative electrode material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a method for producing the same, wherein the capacity is higher than that of the carbonaceous material, the pulverization is suppressed, and the cycle life is equal to or longer than that of the carbonaceous material. An object is to provide a non-aqueous electrolyte secondary battery using a negative electrode material for a negative electrode.
[0009]
[Means for Solving the Problems]
Silicon (Si) can occlude and release Li by reversibly combining and dissociating with Li. The charge / discharge capacity of Si when Si is used as a negative electrode material for a nonaqueous electrolyte secondary battery is theoretically as large as 4200 mAh / g (9800 mAh / cc: specific gravity 2.33). The theoretical maximum capacity of Si is much larger than the theoretical maximum capacity of 372 mAh / g (844 mAh / cc: specific gravity 2.27) of the carbon material currently in practical use, and the theoretical maximum capacity of metallic lithium is 3900 mAh. Even when compared with / g (2100 mAh / cc: specific gravity 0.53), Si is significantly larger in discharge capacity per unit volume, which is important from the viewpoint of battery miniaturization. Therefore, Si can be a high capacity negative electrode material.
[0010]
However, the negative electrode material made of Si, like the case of Al, has a large volume change due to insertion and extraction of Li, so it is easy to be pulverized by cracking, and the cycle life is extremely shortened, so Si is used as the negative electrode material. Attempts have never been made before.
[0011]
The inventors of the present invention have paid attention to the characteristic of a remarkably high theoretical capacity possessed by the negative electrode material made of Si, and as a result of repeated studies to improve the cycle life, the present inventors have no Li occlusion ability or little occlusion ability. It has been found that an alloy material in which another phase (for example, a phase of Si intermetallic compound) coexists with the Si phase is effective. In such an alloy material, the capacity is lowered by the presence of another phase (intermetallic compound phase) that has no or a small capacity to absorb Li, but as a result of the other phase constraining the Si phase, The volume change of the Si phase accompanying the insertion / release of Li is suppressed, the pulverization of the negative electrode material is difficult to proceed, and the cycle life is improved. As a result, it is possible to obtain a negative electrode material having a higher capacity than that of the carbonaceous material and a cycle life reaching a practical level.
[0012]
In order to restrain the volume change of the Si phase by restraining the Si phase with another phase such as an Si intermetallic compound, it is advantageous that the alloy structure is fine. This is because if the crystal grain size of the Si phase is large, the restraint due to other phases arranged around the Si phase becomes difficult to reach the inside of the Si phase. An alloy material having a fine structure can be produced by a casting method capable of rapid cooling and solidification, such as an atomizing method or a roll rapid cooling method. In particular, the gas atomization method can produce a spherical fine powder, so that a pulverization step is not necessary, and the obtained negative electrode material in the form of a spherical powder is excellent in filling properties. This is advantageous in that it can be manufactured.
[0013]
However, as a result of investigation by the present inventors, even when the powder of the above alloy produced by using the gas atomizing method is used as the negative electrode material of the non-aqueous electrolyte secondary battery, the cycle life is not always long.
[0014]
Further investigation has shown that alloys with a short cycle life contain more oxygen than those with a long cycle life. That is, by reducing the oxygen content, a negative electrode material having a long cycle life can be obtained. In addition, the improvement of the cycle life due to the reduction of the oxygen content is not limited to the case where the Li storage phase is Si, but can also be obtained in the case of other Li storage phases other than Si that can combine and dissociate with Li. I understood it.
[0015]
The present invention completed based on this finding can reversibly combine and dissociate with Li.Si Phase Si When Ni , Co Or Ti WithA negative electrode material for a non-aqueous electrolyte secondary battery, comprising an alloy powder containing an intermetallic compound phase, wherein the alloy powder has an oxygen content of 1000 mass-ppm or less.
[0016]
The present invention also relates to a non-aqueous electrolyte secondary battery comprising a negative electrode formed from this negative electrode material.
In the negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, which is composed of an alloy containing an Li storage phase (eg, Si phase) capable of combining and dissociating with Li and an intermetallic compound phase, what mechanism is oxygen in the alloy? Whether to reduce the discharge capacity and shorten the cycle life during repeated charging and discharging is not necessarily clear, but at present, it is considered as follows.
[0017]
When an oxide film is formed on the surface of the alloy powder, it is considered that this becomes a shield and inhibits the entry and exit of Li ions. However, other than that, the surface of the alloy powder and the oxygen in the interior and Si and Li form a passive state, and the Si that forms the passive state does not contribute to the subsequent charge / discharge capacity (inactively). The present inventors have also observed that. Therefore, if the oxygen content of the entire powder is limited to a certain level regardless of the surface and the inside of the alloy powder, both the interference by the oxide film on the surface and the inactivation associated with the formation of the passive state can be effectively prevented. And cycle life is improved.
[0018]
In the case of producing a negative electrode material made of an alloy powder having a reduced oxygen content according to the present invention by the gas atomization method, in order to limit the oxygen content of the entire powder, the powder was solidified from the raw material melting step using the gas atomization method. It is necessary to consider the manufacturing conditions of each process up to the subsequent process. When the conditions are set so that the oxygen content is reduced in at least one of these steps, the negative electrode material of the present invention having an oxygen content of 1000 mass-ppm or less can be produced.
[0019]
Specifically, in the melting process of the alloy raw material, it is effective to regulate the oxygen concentration and the molten metal temperature in the molten atmosphere. All of these are conditions relating to the dissolved amount of oxygen in the molten metal.
[0020]
In the gas atomization process, limiting the amount of oxygen in the atomizing gas used for gas atomization is effective in suppressing the formation of an oxide film on the powder surface, but the purity exceeding the commonly used purity of 4N (99.99%) The use of a pure inert gas as the atomizing gas causes a significant increase in cost and is not industrially preferable. Rather, it is effective to use a spray gas having a purity of the present level and to mix a reducing gas such as hydrogen in the spray gas.
[0021]
Further, when the powder is formed using the gas atomization method, the high-temperature powder immediately after solidification captures oxygen from a small amount of oxygen or water vapor contained in the atmosphere, and forms an oxide film on the surface. In order to suppress this, it is effective to shorten the time during which the powder is kept at a high temperature as much as possible. However, since it is impossible in practice to measure and regulate the temperature of each powder, regulating the temperature of the deposited alloy powder immediately after the gas atomization operation is completed is the most easily manageable method.
[0022]
According to the present invention, it can reversibly combine and dissociate with Li.Si Phase Si When Ni , Co Or Ti WithThere is also provided a method for producing a negative electrode material for a nonaqueous electrolyte secondary battery comprising an alloy powder containing an intermetallic compound phase by forming a melt of an alloy raw material and solidifying the melt by a gas atomization method. The This method is characterized in that the oxygen content of the obtained alloy powder is set to 1000 mass-ppm or less by satisfying at least one of the following conditions (1) to (4).
[0023]
(1) forming a molten alloy raw material in an atmosphere having an oxygen concentration of 1000 vol-ppm or less;
(2) The temperature of the melt of the alloy raw material is (liquidus temperature of the alloy + 500 ° C.) or less;
(3) The atomizing gas used in the gas atomization method includes an inert gas and 1 to 10 vol% hydrogen gas; and
(4) The temperature during deposition of the solidified alloy powder is 500 ° C. or less.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is a metal containing at least one of a phase of one or more elements (hereinafter referred to as A phase) that can reversibly combine and dissociate with Li. It consists of a powder of an alloy containing an intermetallic compound phase (hereinafter referred to as B phase).
[0025]
A phase that can be combined and dissociated with Li is the main Li storage phase. The B phase of the intermetallic compound has significantly smaller Li storage capacity than the A phase, or does not have Li storage capacity. However, since the B phase is in contact with the A phase, volume change (expansion / shrinkage) experienced by the A phase during Li occlusion / release is restrained by the B phase, and cracking and pulverization of the alloy powder is prevented. As a result, the cycle life is significantly improved.
[0026]
Examples of elements constituting the A phase that can be reversibly combined and dissociated with Li include C, Si, Ge, Sn, Pb, P, and Al. Among these, Si, Al, and Sn having a large Li storage amount are preferable, and Si is particularly preferable.
[0027]
The type of phase (B phase) of the intermetallic compound containing this element is not particularly limited. If the B phase has no Li storage capacity in principle or is a very small phase, the A phase can be restrained against volume change. However, when the B phase is separated from the A phase, the restraining action is lost. Therefore, the B phase is a phase of an intermetallic compound containing an element constituting the A phase so that the B phase can be firmly bonded to the A phase during solidification. This intermetallic compound includes one or more elements selected from the element a of the A phase, the Group 2 (Group IIA) element, the transition element, the Group 13 (Group IIIB) element, and the Group 14 (Group IVB) element of the periodic table. It is preferably an intermetallic compound with b.
[0028]
Examples of the element b constituting the intermetallic compound (B phase) are exemplified below:
Group 2 elements: Be, Mg, Ca, Sr, Ba, Ra;
Transition elements: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, lanthanoid (La, Ce, Pr, Nd , Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Hf, Ta, W, Re, Os, Ir, Pr, Au, Hg, actinides (Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr);
Group 13 elements: B, Al, Ga, In, Tl;
Group 14 element: C, Si, Ge, Sn, Pb.
[0029]
Among the above elements, Mg is preferable for group 2 elements; Ti, V, Cr, Mn, Fe, Co, Ni, Zn, and rare earth elements (especially lanthanoids such as Nd) for transition elements; Al for group 13 elements ; C, Si, Ge, Sn, and Pb are group 14 elements.
[0030]
The alloy powder used as the negative electrode material in the present invention preferably has a structure consisting of only the A phase which is the main Li storage phase and the B phase which is the phase of the intermetallic compound of the elements of the A phase. The phases may coexist.
[0031]
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention is made of an alloy powder containing the A phase and the B phase, and the oxygen content of the alloy powder is 1000 mass-ppm or less. If the oxygen content of the alloy powder exceeds 1000 mass-ppm, the cycle life will probably decrease due to the inhibition of the passage of Li due to the formation of an oxide film on the alloy powder and the passivation of the Si phase due to the influence of internal oxygen. To do. The oxygen content of the alloy powder is preferably 500 mass-ppm or less.
[0032]
As described above, the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is preferably produced by a gas atomization method that can obtain a spherical alloy powder having a fine structure. That is, the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention can be manufactured by forming a melt of alloy raw material and solidifying the melt by a gas atomizing method. However, even if alloy powder is produced under the conditions generally employed in the production of metal powder by the gas atomization method, the alloy powder of the present invention having an oxygen content of 1000 mass-ppm or less can be reliably obtained. I can't.
[0033]
Therefore, in the method for producing a negative electrode material for a non-aqueous electrolyte secondary battery of the present invention, an alloy having an oxygen content of 1000 mass-ppm or less is satisfied by satisfying at least one of the following conditions (1) to (4). A negative electrode material made of powder is produced.
[0034]
(1) The oxygen concentration in the atmosphere when the alloy raw material is melted in an appropriate melting furnace or the like to form a melt is set to 1000 vol-ppm or less. When the alloy raw material is melted in an atmosphere in which the oxygen concentration exceeds 1000 vol-ppm, the amount of dissolved oxygen in the melt increases and the oxygen content of the alloy powder increases. The oxygen concentration in this atmosphere is preferably 100 vol-ppm or less.
[0035]
It is generally well practiced to melt the alloy raw material in an inert gas atmosphere such as argon or helium, but the oxygen concentration in the inert gas atmosphere is 1000 vol-ppm or less, preferably 100 vol-ppm or less. It has not been known so far that when managed, the cycle life of the negative electrode material is improved. An inert gas atmosphere in which the oxygen concentration is reduced to 1000 vol-ppm or less can be obtained by a vacuum replacement method or the like in which the operation of introducing the inert gas is repeated after the pressure is reduced to 13.3 Pa or less.
[0036]
(2) The temperature of the melt of the alloy raw material used for gas atomization is set to (the liquidus temperature of the alloy + 500 ° C.) or less. If the temperature of the melt is higher than this, the amount of dissolved oxygen in the melt increases and the oxygen content of the alloy powder increases. The temperature of the melt is preferably (liquidus temperature of the alloy + 300 ° C.) or less.
[0037]
(3) As an atomizing gas used in the gas atomizing method, an inert gas such as Ar or He and a hydrogen gas are mixed and used. Since the hydrogen gas in the atomizing gas reduces the oxide film formed on the powder surface during atomization, the oxygen content of the powder is reduced. The proportion of hydrogen gas in the spray gas is suitably 1 to 10 vol%. When the proportion of hydrogen gas is less than 1 vol%, the reduction of the oxide film on the powder surface is insufficient. Even if it exceeds 10 vol%, there is no problem with the effect of reducing the oxide film, but the effect is almost saturated at about 10 vol% and the use of a large amount of hydrogen gas is a risk of fire and explosion. Is not preferable. The proportion of hydrogen gas is preferably 1 to 5 vol%.
[0038]
It is conceivable to use an ultra-high purity inert gas (purity 99.99% or more) as the atomizing gas and minimize the effect of oxidation by the atomizing gas. However, since the atomizing gas is used in large quantities, the cost is low. In addition to being very expensive, the oxide film cannot be reduced, so it is cheaper and more effective to use a spray gas in which a small amount of hydrogen gas is mixed in an inert gas.
[0039]
(4) The temperature during deposition of the solidified alloy powder is set to 500 ° C. or lower. When an alloy powder is produced using the gas atomization method, the solidified powder is deposited on the bottom of the gas atomization chamber. The atmosphere in the atomizing chamber is the same as that of the atomizing gas, but contains a small amount of oxygen and moisture as described above. When the powder is at a high temperature, oxygen is captured from these oxygen and moisture to cause an oxidation reaction, and an oxide film is formed on the surface of the alloy powder. In order to prevent the formation of a harmful oxide film, it is necessary to keep the temperature of the powder after gas atomization at 500 ° C. or lower. As a guide for this temperature control, the temperature when the alloy powder solidified in the gas atomizing chamber is deposited may be 500 ° C. or less, and preferably 100 ° C. or less.
[0040]
The temperature of the alloy powder during deposition is lowered as described above. (1) The distance from the gas atomizing nozzle to the bottom of the atomizing chamber is increased (the atomizing chamber is raised), and it is scattered at high speed before deposition. While lowering the temperature of the powder, (2) devising the internal structure of the atomizing chamber so that the deposited thickness is thin, (3) cooling the wall of the atomizing chamber with water, and the amount of heat removed from the wall and bottom (4) It can be realized by such means as spraying cooling gas or the like (inert gas) onto the deposited powder.
[0041]
By using a production method that satisfies any one of the above conditions (1) to (4), the oxygen content of the alloy powder of the non-aqueous electrolyte secondary battery negative electrode material produced using the gas atomization method of the present invention is reduced. It can be set to 1000 mass-ppm or less. Of course, if a manufacturing method that satisfies two or more of the above conditions (1) to (4) is used, even better results can be obtained.
[0042]
The alloy raw material used for gas atomization is adjusted so that the element of the Li occlusion phase (A phase) becomes excessive as compared with the phase of the intermetallic compound (B phase). For example, in the Ni-Si binary system, the intermetallic compound is NiSi.2And NiSi, NiSi2The composition of the raw material is selected so as to be richer in Si than the composition corresponding to (Si: about 49% by mass). Thereby, during solidification, the Si phase and the intermetallic compound phase (NiSi phase and / or NiSi phase)2Phase). Depending on the alloy system, the intermetallic compound phase and the Li storage phase may form a eutectic. If the Li storage phase and the intermetallic compound phase exist, the precipitation form of each phase is not particularly limited.
[0043]
The alloy powder obtained by solidification by the gas atomization method according to the present invention can be used as it is as the negative electrode material, but can also be used after being pulverized and / or heat-treated as desired.
[0044]
A negative electrode of a nonaqueous electrolyte secondary battery is generally manufactured by binding a powder of a negative electrode material with a binder, as will be described later. The particle size of the powder is not particularly limited, but usually the average particle size is preferably in the range of 0.1 to 50 μm, more preferably 1 to 35 μm. When the particle size of the alloy powder obtained by the gas atomization method is too large, the obtained powder may be pulverized. However, attention should be paid to the grinding atmosphere so that the oxygen content of the alloy powder does not exceed 1000 mass-ppm during grinding. Accordingly, the pulverization is preferably performed in an inert gas atmosphere with a limited oxygen content.
[0045]
Although the alloy powder produced by the gas atomization method according to the method of the present invention has undergone rapid solidification, it can usually be used without any heat treatment. Heat treatment can be performed for the purpose of removing lattice distortion due to rapid cooling, but in that case, care is taken so that the oxygen content of the alloy powder does not exceed 1000 mass-ppm during the heat treatment. For example, it is preferable to perform the heat treatment in a high vacuum or an inert gas atmosphere with a high purity with a limited oxygen concentration.
[0046]
In addition, if the heat treatment temperature is too high, crystal grains grow excessively and the fine structure obtained by the gas atomization method is lost. Therefore, in the case of heat treatment, the solidus temperature of the alloy composition of the negative electrode material is 10 ° C. or higher. The temperature is preferably low, preferably 100 ° C. or more, and more preferably 200 ° C. or more in order to suppress an increase in the powder oxygen content after heat treatment.
[0047]
From the negative electrode material of the present invention, for example, a negative electrode for a nonaqueous electrolyte secondary battery can be produced as described below. First, an appropriate binder and its solvent are mixed with the alloy powder of the negative electrode material together with the conductive powder to improve the conductivity, if necessary. The mixture is sufficiently stirred using a homogenizer, glass beads or the like as appropriate to form a slurry. This slurry is applied to an electrode substrate (current collector) such as a rolled copper foil or copper electrodeposited copper foil using a doctor blade or the like, dried, and then consolidated by roll rolling or the like. The negative electrode is manufactured by cutting into a size.
[0048]
Examples of the binder include water-insoluble resins such as PVDF (polyvinylidene fluoride), PMMA (polymethyl methacrylate), and PTFE (polytetrafluoroethylene), and water-soluble resins such as CMC (carboxymethylcellulose) and PVA (polyvinyl alcohol). An example is a functional resin. As the solvent, an organic solvent such as NMP (N-methylpyrrolidone) or DMF (dimethylformamide) or water is used depending on the binder.
[0049]
As the conductive powder, a carbonaceous material (eg, carbon black, graphite) and a metal (eg, Ni) can be used, but a carbonaceous material is preferred. Since the carbonaceous material can occlude Li ions between the layers, the carbonaceous material can contribute to the capacity of the negative electrode in addition to the conductivity, and is also excellent in liquid retention.
[0050]
When a carbonaceous material is blended in the negative electrode, the carbon material is preferably used in an amount of 5% by mass or more and 80% by mass or less with respect to the negative electrode material of the present invention. If this amount is less than 5% by mass, sufficient conductivity cannot be imparted, and if it exceeds 80% by mass, the capacity of the negative electrode decreases. A more preferable blending amount is 20% by mass or more and 50% by mass or less.
[0051]
A non-aqueous electrolyte secondary battery is produced using this negative electrode. A typical example of the nonaqueous electrolyte secondary battery is a lithium ion secondary battery, and the negative electrode material and the negative electrode according to the present invention are suitable as the negative electrode material and the negative electrode of the lithium ion secondary battery. However, theoretically, it can also be applied to other nonaqueous electrolyte secondary batteries.
[0052]
The nonaqueous electrolyte secondary battery includes a negative electrode, a positive electrode, a separator, and a nonaqueous electrolyte as a basic structure. Although what was manufactured from the negative electrode material of this invention is used for a negative electrode, it does not restrict | limit especially about another positive electrode, a separator, and electrolyte, What is necessary is just to use a conventionally well-known thing or the material developed in the future suitably. The shape of the nonaqueous electrolyte secondary battery is not particularly limited, and may be any shape such as a cylindrical shape, a square shape, a coin shape, or a seal shape.
[0053]
In the case of a lithium ion secondary battery, the positive electrode preferably uses a Li-containing transition metal compound as a positive electrode active material. Examples of Li-containing transition metal compounds are LiM1-XM ’XO2    Or LiM2yM ’yO4  (In the formula, 0 ≦ X, Y ≦ 1, M 1 and M ′ are at least one of Ba, Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, Sc, and Y, respectively) It is a compound shown by these. However, transition metal chalcogenides; vanadium oxide and its Li compound; niobium oxide and its Li compound; conjugated polymer using organic conductive material; chevrel phase compound; activated carbon, activated carbon fiber, etc. It is also possible to use.
[0054]
The electrolyte of a lithium ion secondary battery is generally a non-aqueous electrolyte in which a lithium salt serving as a supporting electrolyte is dissolved in an organic solvent. Examples of the lithium salt include LiClO.4, LiBF4, LiPF6, LiAsF6, LiB (C6H5), LiCF3SO3, LiCH3SO3, Li (CF3SO2)2N, LiC4F9SO3, Li (CF2SO2)2, LiCl, LiBr, LiI and the like are exemplified, and one kind or two or more kinds can be used.
[0055]
As the organic solvent, carbonates such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, and diethyl carbonate are preferable. However, various other organic solvents including carboxylic acid esters and ethers can also be used.
[0056]
The separator not only plays a role as an insulator placed between the positive electrode and the negative electrode, but also greatly contributes to the retention of the electrolyte. Usually, a porous body such as polypropylene, polyethylene, a mixed cloth of both, or a glass filter is generally used.
[0057]
【Example】
Example 1
A negative electrode material made of an alloy powder having the composition and liquidus temperature shown in Table 1 was prepared by the gas atomization method as described below. In the alloy composition shown in Table 1, all the Li storage phases are Si, and the intermetallic compound phase precipitated during solidification is NiSi + NiSi in Ni-52Si.2In Co-58Si, CoSi2In Ti-61Si, TiSi2It is.
[0058]
A raw material of a predetermined composition is melted at a high frequency in an argon atmosphere with a controlled oxygen concentration to form a molten metal, and after pouring the molten metal into the tundish, a molten metal trickle is formed through the pores provided at the bottom of the tundish, The molten metal was sprayed with a high-pressure spray gas to form a powder. The ambient atmosphere of the tundish was also the same as that of the melting furnace. The oxygen concentration in the Ar gas atmosphere was adjusted by a vacuum replacement method in which the operation of introducing an inert gas was repeated after the pressure was reduced to 13.3 Pa or less.
[0059]
The molten metal temperature in the tundish was measured with a thermocouple. As the atomizing gas, only commercially available Ar gas (oxygen concentration of about 3 vol-ppm or less) or a mixed gas in which hydrogen gas was mixed with this was used. The temperature of the alloy powder during deposition in the gas atomizing chamber was adjusted by blowing a secondary cooling gas (inert gas). The temperature at the time of powder deposition was also measured with a thermocouple. After cooling to room temperature, the alloy powder was taken out, and the oxygen content in the alloy powder was measured by the active gas transport melting infrared absorption method. The alloy powder was not heat-treated.
[0060]
In order to evaluate the negative electrode performance of the alloy powder, a negative electrode was produced as follows using a powder having an average particle diameter of 30 μm obtained by classifying each alloy powder with a 63 μm sieve. For comparison, a negative electrode was similarly produced using a conventional carbon material (graphite powder having the same average particle diameter as described above obtained by mesophaseizing, carbonizing, and graphitizing petroleum pitch).
[0061]
In order to produce the negative electrode, the powder of the negative electrode material is polyvinylidene fluoride as a binder, 10% by mass of the powder weight, the solvent N-methylpyrrolidone is also 10% by mass, and the carbon material (acetylene black) as the conductive material powder. Was added in an amount of 10% by mass and kneaded to obtain a uniform slurry. The slurry was applied to an electrolytic copper foil having a thickness of 30 μm, dried, rolled and consolidated, and then a disk member obtained by punching with a punch having a diameter of 13 mm was used as a negative electrode. The thickness of the negative electrode material layer on the copper foil was about 100 μm.
[0062]
The performance of the negative electrode as a single electrode was evaluated using a so-called tripolar cell using Li metal as a counter electrode and a reference electrode. The electrolyte used was LiPF as the supporting electrolyte in a 1: 1 mixed solvent of ethylene carbonate and dimethoxyethane.6Was used at a concentration of 1M. The measurement was performed at 25 ° C., and charging and discharging were performed using an apparatus capable of maintaining an inert atmosphere such as a glove box under conditions where the dew point of the atmosphere was about −70 ° C.
[0063]
Charging / discharging conditions:
▲ 1 ▼ Temperature 25 ℃
(2) Charging 1 / 10C up to 0V (vs reference electrode)
Discharge 1 / 10C up to 2V (vs reference electrode)
(Charge-discharge) is one cycle, and 400 cycles in total.
[0064]
Measure the discharge capacity of the first cycle and use it as the discharge capacity of the negative electrode using the negative electrode material. Measure the discharge capacity of the 300th cycle and calculate the capacity retention rate from the following formula. :
Capacity retention rate = (discharge capacity at 300th cycle) / (discharge capacity at the first cycle) × 100 (%)
Table 1 also shows the results of the discharge capacity and cycle life (capacity maintenance ratio,%) thus obtained. Although the discharge capacity varies greatly depending on the alloy composition, 80% or more of the cycle life is a pass line.
[0065]
[Table 1]
Figure 0003622631
Test No. in Table 1 1 to 8 are examples of manufacturing methods that satisfy one condition (one * mark). A cycle life of 80-85% achieved a passing line and was good;
Test No. 9 to 15 are examples of manufacturing methods that satisfy two conditions (two * marks). The cycle life was even better at 84-90%;
Test No. 16 to 22 are examples of manufacturing methods that satisfy all three or four conditions (* is 3 or 4). The cycle life was 91 to 95%, which was even better.
[0066]
Test No. No. 23 is an example in which the proportion of hydrogen gas in the spray gas is 15 vol%. 86%, the same as 10 vol% of 10 and the proportion of hydrogen gas in the spray gas is 10
Even if it exceeds vol%, it shows that there is no increase in the effect.
[0067]
Test No. No. 24 is an example of a production method that does not satisfy any of the production conditions (1) to (4) defined in the present invention, and did not reach 75% and 80% of the pass line.
Test No. 25 shows the result of the same test of a negative electrode material made of a conventional carbonaceous material, and it can be seen that the negative electrode material of the present invention has a higher discharge capacity and a cycle life equal to or longer than that of the carbonaceous material.
[0068]
(Example 2)
A non-aqueous electrolyte secondary battery was produced using the negative electrode material of the present invention, and a battery test was performed as described below. In addition, the battery using the carbon material conventionally used for the negative electrode was produced and tested similarly.
[0069]
FIG. 1 shows a longitudinal sectional view of a cylindrical nonaqueous electrolyte secondary battery produced in this example. In FIG. 1, 1 is a battery case obtained by processing an electrolytic solution-resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes a group of electrode plates, in which a positive electrode plate 5 and a negative electrode plate 6 are wound in a spiral shape a plurality of times via a separator 7 and stored in the battery case 1. A positive electrode aluminum lead 5 a is drawn from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode nickel lead 6 a is drawn from the negative electrode plate 6 and connected to the bottom of the battery case 1. Insulating rings 8 are provided above and below the electrode plate group 4, respectively.
[0070]
The positive electrode plate 5 was produced as follows.
First, lithium carbonate and cobalt carbonate are mixed at a predetermined ratio, and this mixture is fired at 900 ° C. for a certain period of time in an air atmosphere to obtain LiCoO which is a positive electrode active material.2Got. This LiCoO2100 parts by mass of the above powder was mixed with 3 parts by mass of acetylene black and 5 parts by mass of a fluororesin binder, and suspended in an N-methylpyrrolidone solvent to obtain a paste. This paste was applied to both sides of an aluminum foil having a thickness of 0.020 mm and dried to prepare a positive electrode plate 5 having a thickness of 0.18 mm, a width of 35 mm, and a length of 270 mm. Further, an aluminum piece was attached as the positive electrode lead 5a.
[0071]
The negative electrode plate 6 is No. 1 in Table 1. Using alloy powders produced under the compositions and production conditions shown in 16, 20, 21, and 22, production was performed as follows.
To 100 parts by mass of each of the above alloy powders, 5 parts by mass of a styrene butadiene rubber-based binder was mixed and suspended in a carboxymethyl cellulose aqueous solution to form a paste. This paste was applied to the surface of a copper foil having a thickness of 0.015 mm and dried to prepare a negative electrode plate 6 having a thickness of 0.17 mm, a width of 37 mm, and a length of 300 mm.
[0072]
The positive electrode plate and the negative electrode plate produced as described above were stacked via a polypropylene separator, wound in a spiral shape, and accommodated in a battery case having a diameter of 13.8 mm and a height of 50 mm. The electrolyte solution was LiPF in an equal volume mixed solvent of ethylene carbonate and ethyl methyl carbonate.6A nonaqueous solution in which 1M was dissolved was used and injected into the electrode plate group 4, the battery was sealed, and test batteries A to D shown in Table 2 were produced. For comparison, a test battery E in which the negative electrode material was a carbon material was also produced.
[0073]
While these batteries were subjected to a charge / discharge cycle test at a constant charge current of 100 mA at a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V, the charge / discharge capacity at the first cycle was measured. The discharge capacity after 500 cycles was measured, and the ratio (%) of the discharge capacity at the 500th cycle to the discharge capacity at the 1st cycle was determined as the cycle life. The measurement results are shown in Table 2.
[0074]
[Table 2]
Figure 0003622631
The test batteries A to D equipped with the negative electrode prepared from the negative electrode material according to the present invention show better values for both capacity and cycle life than the battery E using the carbon material negative electrode which is a conventional example. It was.
[0075]
【The invention's effect】
According to the present invention, a negative electrode material for a non-aqueous electrolyte secondary battery that has a high discharge capacity and a sufficiently good cycle life as compared with conventional carbonaceous materials can be produced reliably and in large quantities at a relatively low cost. The present invention contributes to high performance of the nonaqueous electrolyte secondary battery.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a structure of a nonaqueous electrolyte secondary battery produced in an example.
[Explanation of symbols]
1: battery case, 2: sealing plate, 3: insulating packing, 4: electrode plate group, 5: positive electrode plate, 6: negative electrode plate, 7: separator, 8: insulating ring

Claims (3)

Liと可逆的に化合・解離することができるSi 相と、 Si Ni Co または Ti との金属間化合物の相とを含む合金の粉末からなり、この合金粉末の酸素含有量が1000 mass-ppm 以下であることを特徴とする、非水電解質二次電池用負極材料。It consists of an alloy powder containing a Si phase that can reversibly combine and dissociate with Li, and an intermetallic compound phase of Si and Ni , Co, or Ti. The oxygen content of this alloy powder is 1000 mass- A negative electrode material for a non-aqueous electrolyte secondary battery, characterized by having a ppm or less. Liと可逆的に化合・解離することができるSi 相と、 Si Ni Co または Ti との金属間化合物の相とを含む合金の粉末からなる非水電解質二次電池用負極材料を、合金原料の溶融物を形成し、この溶融物をガスアトマイズ法により凝固させることにより製造する方法であって、下記 (1)〜(4) に示す条件の少なくとも1つを満たすことにより、得られた合金粉末の酸素含有量を1000 mass-ppm 以下とすることを特徴とする、非水電解質二次電池用負極材料の製造方法:
(1) 合金原料の溶融物を酸素濃度1000 vol-ppm以下の雰囲気中で形成する;
(2) 合金原料の溶融物の温度が (該合金の液相線温度+500 ℃) 以下である;
(3) ガスアトマイズ法に用いる噴霧ガスが不活性ガスと1〜10 vol% の水素ガスとを含む;および
(4) 凝固した合金粉末の堆積時の温度が500 ℃以下である。
A negative electrode material for a non-aqueous electrolyte secondary battery comprising a powder of an alloy including a Si phase that can reversibly combine with and dissociate from Li and a phase of an intermetallic compound of Si and Ni , Co, or Ti An alloy obtained by forming a raw material melt and solidifying the melt by a gas atomizing method, and satisfying at least one of the following conditions (1) to (4) A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery, characterized in that the oxygen content of the powder is 1000 mass-ppm or less:
(1) forming a molten alloy raw material in an atmosphere with an oxygen concentration of 1000 vol-ppm or less;
(2) The temperature of the melt of the alloy raw material is (the liquidus temperature of the alloy + 500 ° C.) or less;
(3) The atomizing gas used in the gas atomization method includes an inert gas and 1 to 10 vol% hydrogen gas; and
(4) The temperature during deposition of the solidified alloy powder is 500 ° C or less.
請求項1記載の負極材料から形成された負極を備えることを特徴とする非水電解質二次電池。A nonaqueous electrolyte secondary battery comprising a negative electrode formed from the negative electrode material according to claim 1.
JP2000113911A 2000-04-14 2000-04-14 Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same Expired - Fee Related JP3622631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000113911A JP3622631B2 (en) 2000-04-14 2000-04-14 Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000113911A JP3622631B2 (en) 2000-04-14 2000-04-14 Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001297766A JP2001297766A (en) 2001-10-26
JP3622631B2 true JP3622631B2 (en) 2005-02-23

Family

ID=18625805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113911A Expired - Fee Related JP3622631B2 (en) 2000-04-14 2000-04-14 Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3622631B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526806B2 (en) * 2003-12-02 2010-08-18 パナソニック株式会社 Method for producing lithium ion secondary battery
JP5173283B2 (en) * 2007-07-04 2013-04-03 日本冶金工業株式会社 Nickel-based alloy and manufacturing method thereof
JP5652070B2 (en) * 2010-04-28 2015-01-14 日立化成株式会社 Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5668381B2 (en) * 2010-09-10 2015-02-12 日立化成株式会社 Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6291479B2 (en) * 2013-03-25 2018-03-14 山石金属株式会社 Negative electrode active material, negative electrode sheet and power storage device using the same
JP6329888B2 (en) 2013-12-13 2018-05-23 エルジー・ケム・リミテッド Anode material for secondary battery and secondary battery using the same
EP3113259B1 (en) * 2014-02-25 2020-05-27 Nippon Steel Corporation Negative electrode active substance material, negative electrode, and cell
JPWO2016121950A1 (en) 2015-01-30 2017-12-21 株式会社村田製作所 Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, coil component, and motor
WO2016121951A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
WO2016152505A1 (en) * 2015-03-25 2016-09-29 株式会社村田製作所 Lithium ion secondary battery
JP6448799B2 (en) * 2015-07-31 2019-01-09 株式会社村田製作所 Soft magnetic powder
CN113892198A (en) * 2019-04-26 2022-01-04 Ppg工业俄亥俄公司 Electrode with conformal coating deposited onto porous current collector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
KR20160101932A (en) 2013-12-25 2016-08-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US10050272B2 (en) 2013-12-25 2018-08-14 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same

Also Published As

Publication number Publication date
JP2001297766A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
US20210313557A1 (en) Negative electrode active material for lithium secondary battery and method of preparing the same
US6835496B1 (en) Negative electrode material for a non-aqueous electrolyte secondary battery and processes for its manufacture
JP3622631B2 (en) Nonaqueous electrolyte secondary battery, negative electrode material thereof, and method for producing the same
JP3562398B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
JP2001297757A (en) Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP3546798B2 (en) Non-aqueous electrolyte secondary battery, alloy for the battery, and method of manufacturing the same
TW200425569A (en) Electrode material for lithium secondary battery and electrode structure having the electrode material
JP2004362895A (en) Negative electrode material, and battery using it
JP3895932B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
JP2002075351A (en) Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder
JP4144181B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
CN113825725B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP3622629B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP4997706B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
JP3640164B2 (en) Nonaqueous electrolyte secondary battery
JP5318129B2 (en) Electrode material for nonaqueous electrolyte battery and method for producing the same, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP3659177B2 (en) Negative electrode material for non-aqueous secondary battery, method for producing the same, and negative electrode
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102586101B1 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
JP4465756B2 (en) Non-aqueous electrolyte secondary battery, alloy for the battery, and manufacturing method thereof
JP3848187B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4836439B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JP3567843B2 (en) Anode materials for non-aqueous electrolyte secondary batteries
JP2001307723A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees