JP3570362B2 - 電気光学装置の駆動方法、画像処理回路、電気光学装置および電子機器 - Google Patents

電気光学装置の駆動方法、画像処理回路、電気光学装置および電子機器 Download PDF

Info

Publication number
JP3570362B2
JP3570362B2 JP2000263564A JP2000263564A JP3570362B2 JP 3570362 B2 JP3570362 B2 JP 3570362B2 JP 2000263564 A JP2000263564 A JP 2000263564A JP 2000263564 A JP2000263564 A JP 2000263564A JP 3570362 B2 JP3570362 B2 JP 3570362B2
Authority
JP
Japan
Prior art keywords
data
data line
image signal
signal
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000263564A
Other languages
English (en)
Other versions
JP2001343923A (ja
Inventor
青木  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000263564A priority Critical patent/JP3570362B2/ja
Priority to TW089124563A priority patent/TW518550B/zh
Priority to US09/726,055 priority patent/US6563478B2/en
Priority to CNB001352601A priority patent/CN1182507C/zh
Priority to KR10-2000-0075130A priority patent/KR100490765B1/ko
Publication of JP2001343923A publication Critical patent/JP2001343923A/ja
Application granted granted Critical
Publication of JP3570362B2 publication Critical patent/JP3570362B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、液晶表示装置などの電気光学装置に用いて好適な電気光学装置、その駆動方法、その画像処理回路、および、その電気光学装置を表示部に用いた電子機器に関する。
【0002】
【従来の技術】
従来の電気光学装置、例えば、アクティブマトリクス型の液晶表示装置について、図15および図16を参照して説明する。
【0003】
まず、図16に示されるように、従来の液晶表示装置は、液晶表示パネル100と、タイミング回路200と、画像信号処理回路300とから構成される。このうち、タイミング回路200は、各部で使用されるタイミング信号(必要に応じて後述する)を出力するものである。また、画像信号処理回路300内部における相展開回路301は、一系統の画像信号VIDを入力すると、これをN相(図においてはN=6)の画像信号に展開して出力するものである。ここで、画像信号をN相に展開する理由は、後述するサンプリング回路において、TFTに供給される画像信号の印加時間を長くして、TFTパネルのデータ信号のサンプリング時間および充放電時間を十分に確保するためである。
【0004】
一方、増幅・反転回路302は、画像信号を以下の条件で極性反転させて適宜、増幅してから、相展開された画像信号VID1〜VID6として液晶表示パネル100に供給するものである。ここで極性反転とは、画像信号の振幅中心電位を基準電位として、その電圧レベルを交互に反転させることをいう。また、反転するか否かについては、データ信号の印加方式が▲1▼走査線単位の極性反転であるか、▲2▼データ信号線単位の極性反転であるか、▲3▼画素単位の極性反転であるかに応じて定められ、その反転周期は、1水平走査期間またはドットクロック周期に設定される。ただし、この従来例においては説明の便宜上、▲1▼走査線単位の極性反転である場合を例にとって説明する。
【0005】
また、タイミング回路200により生成されるプリチャージ信号NRSは、極性反転した信号であって液晶表示パネル100に供給される。
【0006】
次に、液晶表示パネル100について説明する。この液晶表示パネル100は、素子基板と対向基板とが間隙をもって対向し、この間隙に液晶が封入された構成となっている。ここで、素子基板と対向基板とは、石英基板や、ハードガラス等からなる。
【0007】
このうち、素子基板にあっては、図16においてX方向に沿って平行に複数本の走査線112が配列して形成され、また、これと直交するY方向に沿って平行に複数本のデータ線114が形成されている。ここで、各データ線114は6本を単位としてブロック化されており、これらをブロックB1〜Bmとする。以降説明の便宜上、一般的なデータ線を指摘する場合には、その符号を114として示すが、特定のデータ線を指摘する場合には、その符号を114a〜114fとして示すこととする。
【0008】
そして、これらの走査線112とデータ線114との各交点においては、スイッチング素子として、例えば、各薄膜トランジスタ(Thin Film Transistor:以下、「TFT」と称する)116のゲート電極が走査線112に接続される一方、TFT116のソース電極がデータ線114に接続されるとともに、TFT116のドレイン電極が画素電極118に接続されている。そして、各画素は、画素電極118と、対向基板に形成された共通電極と、これら両電極間に挟持された液晶とによって構成されて、走査線112とデータ線114との各交点において、マトリクス状に配列することとなる。なお、このほかに保持容量(図示省略)が各画素電極118に接続された状態で形成されている。
【0009】
さて、走査線駆動回路120は、素子基板上に形成され、タイミング回路200からのクロック信号CLYや、その反転クロック信号CLYINV、転送開始パルスDY等に基づいて、パルス的な走査信号を各走査線112に対して順次出力するものである。詳細には、走査線駆動回路120は、垂直走査期間の最初に供給される転送開始パルスDYを、クロック信号CLYおよびその反転クロック信号CLYINVにしたがって順次シフトして走査線信号として出力し、これにより各走査線112を順次選択するものである。
【0010】
一方、サンプリング回路130は、サンプリング用のスイッチ131を各データ線114の一端において、各データ線114毎に備えるものである。このスイッチ131は、同じく素子基板上に形成されたnチャンネル型のTFTからなり、このスイッチ131のソース電極には、画像信号VID1〜VID6が入力されている。そして、ブロックB1のデータ線114a〜114fに接続された6個のスイッチ131のゲート電極は、サンプリング信号S1が供給される信号線に接続され、ブロックB2のデータ線114a〜114fに接続された6個のスイッチ131のゲート電極は、サンプリング信号S2が供給される信号線に接続され、以下同様に、ブロックBmのデータ線114a〜114fに接続された6個のスイッチ131のゲート電極は、サンプリング信号Smが供給される信号線に接続されている。ここで、サンプリング信号S1〜Smは、それぞれ水平有効表示期間内に画像信号VID1〜VID6をブロック毎にサンプリングするための信号である。
【0011】
また、シフトレジスタ回路140は、同じく素子基板上に形成され、タイミング回路200からのクロック信号CLXや、その反転クロック信号CLXINV、転送開始パルスDX等に基づいて、サンプリング信号S1〜Smを順次出力するものである。詳細には、シフトレジスタ回路140は、水平走査期間の最初に供給される転送開始パルスDXを、クロック信号CLXおよびその反転クロック信号CLXINVにしたがって順次シフトするとともに、これらシフトした信号のパルス幅を隣接する信号同士で重ならないように狭めて、サンプリング信号S1〜Smとして順次出力するものである。
【0012】
このような構成において、サンプリング信号S1が出力されると、ブロックB1に属する6本のデータ線114a〜114fには、それぞれ画像信号VID1〜VID6がサンプリングされて、これらの画像信号VID1〜VID6が現時点の選択走査線における6個の画素に、当該TFT116によってそれぞれ書き込まれることとなる。
【0013】
この後、サンプリング信号S2が出力されると、今度は、ブロックB2に属する6本のデータ線114a〜114fには、それぞれ画像信号VID1〜VID6がサンプリングされ、これらの画像信号VID1〜VID6がその時点の選択走査線における6個の画素に、当該TFT116によってそれぞれ書き込まれることとなる。
【0014】
以下同様にして、サンプリング信号S3、S4、……、Smが順次出力されると、ブロックB3、B4、……、Bmに属する6本のデータ線114a〜114fには、それぞれ画像信号VID1〜VID6がサンプリングされ、これらの画像信号VID1〜VID6がその時点の選択走査線における6個の画素にそれぞれ書き込まれることとなる。そして、この後、次の走査線が選択されて、ブロックB1〜Bmにおいて同様な書き込みが繰り返し実行されることとなる。
【0015】
この駆動方式では、サンプリング回路130におけるスイッチ131を駆動制御するシフトレジスタ回路140の段数が、各データ線を点順次で駆動する方式と比較して1/6に低減される。さらに、シフトレジスタ回路140に供給すべきクロック信号CLXおよびその反転クロック信号CLXINVの周波数も1/6で済むので、段数の低減化と併せて低消費電力化も図られることとなる。
【0016】
ところで、各データ線114には寄生容量が付随している。この容量は、各データ線114が液晶を介して対向電極と対向しているために生じる。画素の液晶への電圧の印加は、各データ線114にデータ信号を印加し、TFT116をオンさせてデータ線114の電圧を画素に書き込むことにより行われる。しかしながら、上述したように各データ線114には寄生容量が付随しているので、データ信号を各データ線114に印加しても各データ線114の電圧は直ちにデータ信号の電圧と一致するのではなく、その電圧は、寄生容量と配線抵抗等で定まる時定数に従って変化し、データ信号の印加開始から所定時間が経過した後、データ信号の電圧と一致する。また、この例では、走査線単位の極性反転を行うので、水平走査周期で各データ線114の電圧を対向電極の電位を中心して反転させる必要がある。したがって、ある水平走査期間において、データ信号を印加する前のデータ線114の電圧極性は、印加すべきデータ信号の電圧極性と反転したものとなっている。このため、各データ線114の電圧がデータ信号の電圧と一致するまでの時間は、長くなってしまう。
【0017】
これを解消するために、プリチャージ回路160を設けている。このプリチャージ回路160は、スイッチ165を各データ線114の他端において各データ線114毎に備えるものである。このスイッチ165は同じく素子基板上に形成されたTFTからなり、そのドレイン電極(またはソース電極)がデータ線114に接続され、そのソース電極(またはドレイン電極)がプリチャージ信号NRSに接続されている。また、各スイッチ165のゲート電極は、プリチャージ駆動信号NRGが供給される信号線に接続されている。このプリチャージ駆動信号NRGは、サンプリング信号S1〜Smよりも先行するタイミングにおいて、すなわち、ある走査線の選択が終了してから次の走査線が選択されて画像信号がデータ線に印加されるまでの水平帰線期間において、「H」レベルとなるパルス的な信号である。このため、各データ線114は、各スイッチ165を介してプリチャージ信号NRSの電位にプリチャージされた後、各スイッチ131のサンプリングによって画像信号VID1〜VID6の電位に遷移する。したがって、画像信号VID1〜VID6自体によるデータ線114の充放電量は小さくなるので、書き込みに要する時間が短縮化されることとなる。
【0018】
【発明が解決しようとする課題】
しかしながら、複数同時駆動方式や、複数同時駆動方式とプリチャージとを併用すると、各ブロックB1〜Bmの境目において輝度ムラが、特に、中間調レベルで規則的パターンを表示させた場合に発生する、という問題が生じた。そこで、この輝度ムラの発生原理について、ブロックB1およびB2に着目し、規則パターンの一例として簡単な一様なパターンを表示させる場合を例にとって説明する。この場合、ブロックB1に属するデータ線のうちブロックB2に隣接するデータ線114fに供給されるべき画像信号VID6と、ブロックB2に属するデータ線のうちブロックB1に隣接するデータ線114aに供給されるべき画像信号VID1とは、それぞれ図16に示されるように同電圧となる。なお、一般に、画像信号VID1〜VID6は、水平帰線期間において黒色に相当する電圧に振られる。
【0019】
また、図17に示す波形例は、プリチャージ信号NRSの電位が、データ線114に印加される画像信号VID1〜VID6(図16では、VID1、VID6だけを示している)の極性と同一極性に設定され、かつ、走査線毎に極性反転する場合を示している。以下の説明では、画像信号VIDをデータ線114に印加したときの中心電位とプリーチャージ信号NRSをデータ線114に印加したときの電位との差の絶対値をプリチャージ電圧Vpreと称することにする。
【0020】
図17に示す波形例にあっては、プリチャージ電圧Vpreは、電圧変化が大きいところまで一端プリチャージするため、ノーマリホワイトモードであれば黒色に相当する電位(逆に、ノーマリブラックモードであれば白色に相当する電位)に設定されている。
【0021】
さて、図17において、正極側のタイミングt11に至ると、プリチャージ駆動信号NRGが「H」レベルとなる。このため、すべてのスイッチ165がオンとなるため、すべてのデータ線114はスイッチ165を介してプリチャージ電圧Vpreにプリチャージされる。その後、プリチャージ駆動信号NRGが「L」レベルとなるが、すべてのデータ線は、その寄生容量によりプリチャージ電圧Vpreを維持する。
【0022】
次に、タイミングt12に至ると、サンプリング信号S1が「H」レベルに立ち上がる。このため、ブロックB1のデータ線114fにあっては、スイッチ131によって画像信号VID6がサンプリングされるため、データ線114fの電圧は、それまで維持していたプリチャージ信号NRSの電圧Vpreからサンプリングされた画像信号VID6に相当する電圧となり、これが現時点において選択されている走査線のTFT116によって当該画素に書き込まれる。この後、サンプリング信号S1が「L」レベルに立ち下がる。
【0023】
さらに、タイミングt13に至ると、サンプリング信号S2が「H」レベルに立ち上がるため、ブロックB2のデータ線114aにあっては、スイッチ131によって画像信号VID1がサンプリングされる。このため、ブロックB2のデータ線114aの電圧は、それまで維持していたプリチャージ電圧Vpreから、サンプリングされた画像信号VID1の電圧まで遷移する。これが現時点において選択されている走査線のTFT116によって当該画素に書き込まれる。
【0024】
これに対し、ブロックB1に属するデータ線のうち、ブロックB2に隣接するデータ線114fについては、液晶層を介してブロックB2のデータ線114aと容量的に結合しているため、ブロックB2のデータ線114aの電圧がプリチャージ電圧Vpreから画像信号VID1の電圧まで遷移すると、すでに書き込みが終了しているにもかからわず、電圧変化の影響を受けて電圧が変動することになる。
【0025】
したがって、ブロックB1のデータ線114fに接続された画素のうち、現時点において選択された走査線にかかる画素は、本来の書込電圧▲1▼に相当する濃度から、容量結合による変動分だけ変位した電圧▲2▼に相当する濃度に変化することになる。このことは、負極側のタイミングt21、t22、t23についても、さらに、現時点の選択走査線において他のブロックB2〜Bm−1についても、また、他の走査線を選択した場合でも同様である。
【0026】
これに対して、各ブロックにおける他のデータ線114a〜114eについては、隣接するブロックのデータ線114aの電圧遷移による影響を受けない(にくい)ので、これらのデータ線に接続された画素のうち、現時点において選択された走査線にかかる画素は本来の書込電圧に相当する濃度を維持することになる。
【0027】
よって、すべての画素に対して同一濃度の表示をしようとしても、あるブロックのデータ線114fに接続された画素の濃度と、それ以外のデータ線114a〜114eに接続された画素の濃度とに差が生じるので、結局、各ブロックB1〜Bmの境目において輝度ムラが発生することとなる。
【0028】
このような輝度ムラは、プリチャージ信号NRSを正負極毎に絶対値で異なるレベルとなるように設定すれば、例えば、正極側で白色に相当する電圧に、負極側で黒色に相当する電圧にそれぞれ設定すれば、正極側における画像信号のサンプリングでは黒側に、正極側における画像信号のサンプリングでは白側に、それぞれ書き込まれるので、両者の打ち消しによって、ある程度、解消することは可能である。しかし、この方法でも、ビデオ信号のレベルによって輝度ムラを完全に目立たなくする程度にまで解消することができないし、プリチャージ信号NRSを印加してから本来のデータが書き込まれる間の短期間ではあるが、直流成分が印加されることになるので、液晶劣化を引き起こす原因にもなる。
【0029】
本発明は、上述した事情に鑑みてなされたものであり、各ブロックの境目において発生する輝度ムラを目立たなくして、高い品質の表示が可能な電気光学装置の駆動方法、画像処理回路、電気光学装置および電子機器を提供することを目的としている。
【0030】
【課題を解決するための手段】
上記目的を達成するために本発明にあっては、複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線との交差に対応して設けられたトランジスタとトランジスタと、前記トランジスタに接続された画素電極とを有する電気光学装置の駆動方法であって、前記走査線を順次選択し、前記走査線が選択された期間において、前記データ線を複数本毎にまとめたブロック毎に各データ線に対応する画像信号を同時に供給し、これを各ブロックについて順次実行し、選択中のブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する画像信号を、次に選択されるブロックに属し前記第1のデータ線に隣接する第2のデータ線の電圧変化を予測した結果に基づいて、前記第1のデータ線に対応する画像信号を予め補正して前記第1のデータ線に供給することを特徴とする。
【0031】
一般に、複数のデータ線は画素を介して互いに容量的に結合しているが、同一ブロック内に属するデータ線同士においては、同タイミングでサンプリングが実行されるので、あるデータ線の電圧変化が他のデータ線の電圧に影響を及ぼすことはない。しかし、異なるブロックに属するデータ線、特に、ブロックの一端に位置するデータ線の電圧は、隣接ブロックの他端部に位置するデータ線の電圧がサンプリングされた画像信号の電圧まで遷移すると、その電圧変化によって本来の書込電圧から変動する。これがブロック境目における輝度ムラの原因となる。
【0032】
これに対して本発明の駆動方法によれば、次のブロックに属する第2のデータ線の電圧変化を予測し、その予測結果に基づいて、第1のデータ線に対応する画像信号を予め補正して前記第1のデータ線に供給するので、第2のデータ線の電圧変化によって発生するノイズが、結合容量を介して第1のデータ線に混入したとしても、ノイズ成分が画像信号の補正によって相殺されことになる。したがって、ブロックの境界において発生する輝度ムラを大幅に低減することができる。
【0033】
この場合、第2のデータ線の電圧変化は、そこに印加される画像信号の電圧によって左右されるので、第2のデータ線の電圧変化を、第2のデータ線に対応する画像信号に基づいて予測することが望ましい。
【0034】
また、この駆動方法において、電気光学装置は、前記画像信号を順次サンプリングして各データ線に供給するサンプリングトランジスタを備え、前記第2のデータ線の電圧変化を、前記第2のデータ線に対応する画像信号およびサンプリングトランジスタの降下電圧に基づいて予測することが望ましい。サンプリングトランジスタがTFTのような電界効果トランジスタで形成される場合、ソース電極電圧に応じてその降下電圧は変化する。この発明よれば、そのような降下電圧を考慮して第2データ線の電圧変化を予測することができるので、ブロックの境界において発生する輝度ムラをより一層低減することができる。
【0035】
また、本発明に係る電気光学装置の駆動方法は、複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線との交差に対応して設けられたトランジスタと画素電極とを有する電気光学装置を前提とし、前記走査線を順次選択し、前記走査線が選択された期間において、前記データ線を複数本毎にまとめたブロックにプリチャージ電圧を印加した後、選択中のブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する画像信号を、次に選択されるブロックに属し前記第1のデータ線に隣接する第2のデータ線の電圧変化を予測した結果に基づいて、予め補正して前記第1のデータ線に供給することを特徴とする。この場合、前記第2のデータ線の電圧変化を、前記第2のデータ線に対応する画像信号と前記プリチャージ電圧に基づいて予測することが望ましい。
【0036】
この発明によれば、データ線に画像信号を書き込む前にプリチャージを行うことができるので、プリチャージ電圧を適切に設定することによって、画像信号の書き込みに要する時間を低減することができる。また、第2のデータ線の電圧変化は、プリチャージ電圧から画像信号の電圧へと変化することにより生じるので、第2のデータ線に対応する画像信号とプリチャージ電圧に基づいて第2のデータ線の電圧変化を正確に予測することができる。
【0037】
さらに、電気光学装置が、前記画像信号を順次サンプリングして各データ線に供給するサンプリングトランジスタを備えるものであれば、前記第2のデータ線の電圧変化を、前記第2のデータ線に対応する画像信号、サンプリングトランジスタの降下電圧および前記プリチャージ電圧に基づいて予測することが望ましい。この発明によれば、降下電圧を考慮して第2データ線の電圧変化を予測することができるので、ブロックの境界において発生する輝度ムラをより一層低減することができる。
【0038】
また、本発明に係る画像処理回路は、複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線との交差に対応して設けられたトランジスタと画素電極とを有し、各走査線を順次選択し、前記走査線が選択された期間において、前記データ線にプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎に並列化画像信号を印加する電気光学装置に用いられることを前提とし、前記ブロックを構成するデータ線の本数に応じて、入力画像信号を時間軸伸長するとともに並列化して、複数の並列化画像信号を生成する並列化手段と、あるブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する並列化画像信号を、次に選択されるブロックに属し前記第1のデータ線に隣接する第2のデータ線の電圧変化を予測した結果に基づいて、補正を施す補正手段と、補正された並列化画像信号と他の並列化画像信号とをまとめて出力する出力手段とを具備することを特徴とする。
【0039】
この発明によれば、入力画像信号を時間軸伸長するとともに並列化して複数の並列化画像信号を得て、複数の並列化画像信号のうちあるブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する並列化画像信号を特定することになる。そして、次のブロックに属する第2のデータ線の電圧変化を予測し、その予測結果に基づいて、第1のデータ線に対応する画像信号を予め補正して前記第1のデータ線に供給するので、第2のデータ線の電圧変化によって発生するノイズが、結合容量を介して第1のデータ線に混入したとしても、ノイズ成分が画像信号の補正によって相殺されことになる。したがって、ブロックの境界において発生する輝度ムラを大幅に低減することができる。
【0040】
また、この発明において、電気光学装置が、前記走査線が選択された期間において、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎に並列化画像信号を印加するのであれば、前記補正手段は、前記第2のデータ線に対応する並列化画像信号と前記プリチャージ電圧とに基づいて、前記第2のデータ線の電圧変化を予測することをが望ましい。これにより、電圧変化を正確予測できるので、精度のよい補正が可能となり、ブロックの境界において発生する輝度ムラをより一層低減することができる。
【0041】
また、この発明において、電気光学装置が、一方の基板に前記走査線、前記データ線、前記トランジスタおよび画素電極を形成し、これと対向する他方の基板に対向電極とを備え、前記走査線が選択された期間において、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎にサンプリングトランジスタを介して並列化画像信号を印加するものであるならば、前記出力手段は、補正された並列化画像信号と他の並列化画像信号とをまとめるとともに、一定周期の極性反転信号に従ってそれらの極性を前記対向電極の電位を基準として反転して出力し、 前記補正手段は、前記第2のデータ線に対応する並列化画像信号、前記プリチャージ電圧、および前記サンプリングトランジスタの降下電圧に基づいて、前記第2のデータ線の電圧変化を予測することが望ましい。
【0042】
電気光学物質として液晶を用いる場合には、その劣化を防止するために交流電圧を液晶に印加する必要がある。このような場合、出力手段は極性反転信号に従って並列化画像信号の極性を前記対向電極の電位を基準として反転して出力することになる。このため、画像信号の示す階調値が同じであっても、その極性に応じて降下電圧が異なることになる。本発明においては、並列化画像信号、プリチャージ電圧、および降下電圧に基づいて、第2のデータ線の電圧変化を正確に予測するので、ブロックの境界において発生する輝度ムラをより一層低減することができる。
【0043】
また、電気光学装置が、前記走査線が選択された期間において、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎に並列化画像信号を印加するものであり、かつ、入力画像信号がアナログ信号であるのならば、前記補正手段は、前記入力画像信号をブロック周期でサンプルホールドして前記第2のデータ線に対応する並列化画像信号を出力するサンプルホールド回路と、前記サンプルホールド回路から出力される並列化画像信号と、前記プリチャージ電圧とに基づいて補正信号を生成する補正信号生成回路と、前記並列化手段から出力され補正の対象となる並列化画像信号と、前記補正信号を合成して補正した並列化画像信号を出力する合成回路とを備えることが望ましい。
【0044】
この場合、サンプルホールド回路によって第2のデータ線に対応する並列化画像信号、すなわちノイズを発生するデータ線に供給される信号が特定されると、補正信号生成回路は当該並列化画像信号とプリチャージ電圧とに基づいて補正信号を生成する。第1のデータ線に混入するノイズは第2のデータ線の電圧変化によって生じ、この電圧変化はプリチャージ電圧から並列化画像信号電圧への変動によるものであるので、補正信号は第2のデータ線の電圧変化を正確に予測した結果を反映している。したがって、第2のデータ線の電圧変化によって発生するノイズが、結合容量を介して第1のデータ線に混入したとしても、ノイズ成分が並列化画像信号の補正によって相殺されことになる。この結果、ブロックの境界において発生する輝度ムラを大幅に低減することができる。
【0045】
また、本発明において、前記入力画像信号がアナログ信号であるならば、前記補正手段は、前記入力画像信号をブロック周期でサンプルホールドして前記第2のデータ線に対応する並列化画像信号を出力するサンプルホールド回路と、前記サンプルホールド回路から出力される並列化画像信号と、前記極性反転信号に基づいて前記降下電圧を算出する第1算出回路と、前記降下電圧算出回路によって算出された降下電圧と前記前記サンプルホールド回路から出力される並列化画像信号とに基づいて、前記第2のデータ線に供給する書込電圧を算出する第2算出回路と、前記書込電圧と前記プリチャージ電圧とに基づいて補正信号を生成する補正信号生成回路と、前記並列化手段から出力される補正の対象となる並列化画像信号と、前記補正信号とを合成して補正した並列化画像信号を出力する合成回路とを備えることが望ましい。
【0046】
この発明によれば、サンプリングトランジスタの降下電圧を考慮して補正信号を生成することができるので、ブロックの境界において発生する輝度ムラをより一層低減することができる。
【0047】
また、本発明に係る画像処理回路は、複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線との交差に対応して設けられたトランジスタと画素電極とを有し、各走査線を順次選択し、前記走査線が選択された期間において、前記データ線を複数本毎にまとめたブロック毎に並列化画像信号を印加する電気光学装置に用いることを前提とし、入力画像信号の中から、あるブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する画像信号を特定し、次に選択されるブロックに属し前記第1のデータ線に隣接する第2のデータ線の電圧変化を予測した結果に基づいて、当該画像信号に補正を施す補正手段と、前記ブロックを構成するデータ線の本数に応じて、前記補正手段の出力信号を時間軸伸長するとともに並列化して、複数の並列化画像信号を生成する並列化手段とを具備することを特徴とする。
【0048】
この発明によれば、入力画像信号の中から、あるブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する画像信号が特定される。そして、次のブロックに属する第2のデータ線の電圧変化を予測し、その予測結果に基づいて、第1のデータ線に対応する画像信号を予め補正して前記第1のデータ線に供給するので、第2のデータ線の電圧変化によって発生するノイズが、結合容量を介して第1のデータ線に混入したとしても、ノイズ成分が画像信号の補正によって相殺されことになる。したがって、ブロックの境界において発生する輝度ムラを大幅に低減することができる。
【0049】
また、この発明において、入力画像信号がデジタル信号であるならば、前記補正手段は、前記入力画像信号をブロック周期毎に特定の1サンプル期間選択する選択回路と、信号値と補正値とを対応付けて予め記憶しており、前記選択回路の出力信号が供給されると、当該出力信号の値に応じた補正信号を出力する記憶回路と、前記入力画像信号と前記補正信号とを合成する合成回路とを具備することが望ましい。
【0050】
この場合、電気光学装置が、前記走査線が選択された期間において、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎に並列化画像信号を印加するものであれば、前記補正値は、前記プリチャージ電圧と前記信号値とに基づいて、定められることが望ましい。これにより、第2のデータ線の電圧変化は、プリチャージ電圧と信号値に基づいて予測されるので、正確な予測を行うことができる。
【0051】
あるいは、前記記憶回路は、前記第2のデータ線の画像データに対応した補正テーブルを有していることが望ましい。これにより、ブロックの境界において発生する輝度ムラを大幅に低減することができる。
【0052】
また、本発明の画像処理回路は、一方の基板に前記走査線、前記データ線、前記トランジスタおよび画素電極を形成し、これと対向する他方の基板に対向電極とを備え、前記走査線が選択された期間において、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎にサンプリングトランジスタを介して並列化画像信号を印加する電気光学装置に用いられることを前提とし、前記並列化手段から出力される複数の並列化画像信号を一定周期の極性反転信号に従ってそれらの極性を前記対向電極の電位を基準として反転して出力する極性反転手段を備え、前記入力画像信号はデジタル信号形式の入力画像データであり、前記補正手段は、前記入力画像データをブロック周期毎に特定の1サンプル期間選択する選択回路と、画像データ値と補正データ値とを対応付けて正極性用の補正データを記憶する第1記憶回路と、画像データ値と補正データ値とを対応付けて負極性用の補正データを記憶する第2記憶回路と、前記極性反転信号に基づいて前記選択回路の出力データを前記第1記憶回路または前記第2記憶回路に供給して、対応する補正データを読み出す読出手段と、前記入力画像データと前記読出手段によって読み出された補正データを合成する合成回路とを備えることを特徴とする。
【0053】
この発明によれば、正極性用の補正データと負極性用の補正データを第1記憶回路まと第2記憶回路とに記憶しているので、極性反転信号の示す極性に応じて補正データを生成することができる。したがって、サンプリングトランジスタの降下電圧を考慮して補正信号を生成することができるので、ブロックの境界において発生する輝度ムラをより一層低減することができる。
【0054】
また、入力画像信号がデジタル信号であるならば、前記並列化手段は、前記補正手段のデジタル出力信号をD/A変換するD/A変換回路と、前記D/A変換回路のアナログ出力信号を、ブロックを構成するデータ線の本数に応じて、時間軸伸長するとともに並列化して複数のアナログ並列化画像信号を生成する並列化回路と備えるものであってもよい。この場合には、D/A変換回路は1系統のもので足り、アナログ信号の形態で並列化が行われることになる。
【0055】
また、入力画像信号はデジタル信号であるならば、前記並列化手段は、前記補正手段のデジタル出力信号を、ブロックを構成するデータ線の本数に応じて、時間軸伸長するとともに並列化して複数のデジタル並列化画像信号を生成する並列化回路と、前記並列化回路によって得られる複数のデジタル並列化画像信号をD/A変換して複数のアナログ並列化画像信号を出力するD/A変換回路とを備えるものであってよい。この場合には、デジタル信号の形態で並列化を実行することができるので、特性の揃ったデジタル並列化画像信号を生成することができる。
【0056】
また、本発明に係る電気光学装置は、上述した画像処理回路と、前記走査線を順次選択する走査線駆動手段と、前記走査線が選択された期間において、前記データ線を複数本毎にまとめたブロックを順次選択することにより、前記並列化画像信号を選択されたブロックに属するデータ線の各々に供給するブロック駆動手段と、ブロックが選択される前に、当該ブロックのデータ線にプリチャージ電圧を印加するプリチャージ手段とを備えたことを特徴とする。ここで、プリチャージ手段は、前記プリチャージ電圧を黒色または白色の表示に相当する電圧レベルに設定することが好ましい。これにより、ノーマリホワイトモードで黒色、ノーマリブラックモードで白色の表示に相当するプリチャージ電圧をデータ線に印加することによって、大きなコントラストを得ることができる。
【0057】
また、本発明に係る電子機器は、電気光学装置を表示部に用いたことを特徴としており、例えば、ビデオプロジェクタ、ノート型パーソナルコンピュータ、携帯電話機等が該当する。
【0058】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0059】
〔第1実施形態〕
<第1実施形態の構成>
まず、電気光学装置の一例として、第1実施形態にかかるアクティブ・マトリクス型の液晶表示装置について説明する。なお、この例では液晶表示装置に入力される画像信号はアナログ信号であるものとする。
【0060】
図1は、この液晶表示装置の全体構成を示すブロック図である。本実施形態にかかる液晶表示装置は、上記輝度ムラを解消するために、画像処理回路300Aにおいて、第1サンプルホールド回路310、補正回路311、加算回路312、および第2サンプルホールド回路313を備える点で、図10に示す従来例と相違する。
【0061】
まず、第1サンプルホールド回路310は、サンプルホールド信号SH1がHレベルの期間、入力画像信号VIDをサンプルホールドして、画像信号VIDa1を生成する。ここで、サンプルホールド信号SH1は、ブロック周期の信号であり、ブロックの開始直後の1サンプリング期間にHレベルとなる。
【0062】
解決課題でも詳述したように、各ブロックの境界で発生する輝度ムラは、隣接するデータ線114が液晶層を介して容量結合するために生じる。ブロックB1〜Bmを右から左に順次選択するとすれば、影響を受けるのは、各ブロックB2〜Bmの右端部のデータ線114fであり、影響を与えるのはこれに隣接する次のブロックの左端部のデータ線114aである。サンプルホールド信号SH1のHレベルは、影響を与えるブロックの左端部のデータ線114aに供給する画像信号VID1のタイミングと一致するようタイミング発生回路200で生成される。したがって、第1サンプルホールド回路310の出力信号は、ブロックの左端部のデータ線114aに供給する画像信号VIDa1となる。
【0063】
次に、補正回路311は、画像信号VIDa1に基づいてノイズ成分に相当する補正信号VID1’を生成するものである。例えば、画像信号VIDa1とプリチャージ電圧Vpreとの差分電圧を生成する減算回路と、差分電圧から補正信号VID1’を生成するローパスフィルタによって補正回路311を構成することができる。
【0064】
隣接するデータ線が液晶層を介して容量結合をする場合、ローインピーダンスで駆動されているデータ線114a(第2のデータ線:現在のブロックの左端部)から、ハイインピーダンス状態のデータ線114f(第1のデータ線:直前のブロックの右端部)へ、混入するノイズ成分は、ローインピーダンス状態のデータ線114aの電圧の変化分によって定まる。すなわち、差分電圧と伝送特性とを知ることができれば、ノイズ成分を算出することができる。
【0065】
差分電圧がどのような過程で隣接するデータ線に伝送されるかについては、主として、データ線の寄生容量、データ線間の結合容量、およびデータ線駆動回路の出力インピーダンス等に基づいて定まるが、実際の液晶表示装置では、各種の要因が複雑に関係する。このため、ローパスフィルタの形式や次数は、実験結果と一致するように定められる。すなわち、補正回路311は、ノイズの起因となるデータ線114aの電圧変化を予め予測するとともに、データ線114aからデータ線114fへの伝送特性を予め特定しておき、予測結果と予め特定した伝送特性に基づいてノイズ成分に見合う補正信号VID1’を生成している。
【0066】
次に、加算回路312は、相展開回路301と第2サンプルホールド回路313の間に介挿されており、画像信号VID6と補正信号VID1’とを加算するように構成されている。したがって、加算回路312から出力される画像信号VID6’は、VID6’=VID6+VID1’となる。
【0067】
次に、第2サンプルホールド回路313は、各画像信号VID1〜VID5、およびVID6’の時間併せのために設けられたものであり、サンプルホールド信号SH2によって、各画像信号VID1〜VID5、およびVID6’をサンプルホールドする。
【0068】
ここで、画像信号VID6はブロックの右端部のデータ線114fに供給される信号であるから、ノイズ成分の影響を受けるデータ線114fに供給される画像信号VID6に予め補正を施すことができる。このようにして得られた各画像信号VID1〜VID5、およびVID6’は、増幅・反転回路302によって、所定のレベルまで増幅されるともに極性反転信号Zに基づいてプリチャージ電圧Vpreと同期して極性が反転される。
【0069】
したがって、この画像信号VID6’がデータ線114fに供給され、当該データ線114fにノイズ成分VID1’が重畳しても、ノイズ成分VID1’が相殺され、本来、書き込むべき画像信号VID6が書き込まれることになる。
なお、他の構成については、従来の液晶表示装置と同様であるので、別段、説明を要しないであろう。
【0070】
<第1実施形態の動作>
次に、この液晶表示装置における動作について説明する。図2は、画像処理回路300Aの動作を説明するためのタイミングチャートである。なお、この図においてVIDXYと表した場合の添字Xは、1つブロックにおいてブロックの走査方向の順に数えて何番目のデータ線に対応するかを表しており、一方、添字Yは何番目のブロックかを表すものとする。例えば、VID1n+1は、ブロック中の第1番目のデータ線に対応しており、当該ブロックはn+1番目のものであることを表している。
【0071】
まず、タイミング発生回路200は、画像信号VIDの各サンプルに対応したクロックCKを生成する。また、タイミング発生回路200は、このクロックCKに同期するとともに、各ブロック中の第1番目のデータ線114aに供給する画像信号VID1を特定するサンプルホールド信号SH1を生成する。
【0072】
このサンプルホールド信号SH1が、第1サンプルホールド回路310に供給されると、画像信号VIDから、各ブロック中の第1番目のデータ線114aに対応する画像信号VID1がサンプルホールドされ、画像信号VIDa1として出力される。例えば、第n番目のブロックから抽出した画像信号VIDa1は、画像信号VID1nとなる。
【0073】
この後、補正回路311は、画像信号VID1とプリチャージ電圧Vpreに基づいて、補正信号VID1’を生成する。一方、相展開回路301は、シリアル形式の画像信号VIDをブロックを構成するデータ線114の本数に応じて、時間軸伸長するとともに並列化してパラレル形式の画像信号VID1〜VID6を生成する。展開数がNであれば、N倍に時間軸伸長されるとともにN系統の画像信号が得られることになる。なお、この例では、N=6であるから6倍に時間軸伸長されるとともに、6系統の画像信号VID1〜VID6が得られる。これらの画像信号VID1〜VID6は、図に示すように各サンプルの切り替わりタイミングが揃ったものとなる。
【0074】
そして、加算回路312は画像信号VID6と補正信号VID1’とを加算して補正された画像信号VID6’を生成する。このとき、加算回路312の遅延時間ΔTによって、画像信号VID6’は、画像信号VID1〜VID6に対してΔTだけ遅れる。第2サンプルホールド回路312は、この遅延を吸収するために設けられたものであり、サンプルホールド信号SH2によって、各入力信号をサンプルホールドすることによって、位相の揃った画像信号VID1〜VID5、VID6’を出力している。
【0075】
次に、データ線に印加される電圧について説明する。図3は、液晶表示パネル100の動作を説明するためのタイミングチャートであり、従来の技術で説明した図16に対応したものである。図3に示されるように、プリチャージ信号NRSの電圧レベルは、ノーマリホワイトモードでいえば略黒色に相当するレベルである。プリチャージ信号NRSは、タイミング発生回路200によって供給され、その極性は、画像信号VID1〜VID6’(図3では、VID1、VID6’だけを示している)に同期し、画像信号VID1〜VID6’の極性と同一極性に設定され、かつ、走査線毎に極性反転される。
【0076】
さて、図3において 正極側のタイミングt11に至ると、プリチャージ駆動信号NRGが「H」レベルとなる。このため、すべてのスイッチ165がオンとなるため、各ブロックB1〜Bmのデータ線114a〜114fはスイッチ165を介してプリチャージ電圧Vpreにプリチャージされる。その後、プリチャージ駆動信号NRGが「L」レベルとなるが、すべてのデータ線は、その寄生容量によりプリチャージ電圧Vpreを維持する。
【0077】
次に、タイミングt12に至ると、サンプリング信号S1が「H」レベルに立ち上がる。このため、ブロックB1のデータ線114fにあっては、スイッチ131によって画像信号VID61’がサンプリングされるため、データ線114fの電圧は、それまで維持していたプリチャージ電圧Vpreから画像信号VID61’に相当する電圧となり、これが現時点において選択されている走査線のTFT116によって当該画素に書き込まれる。この後、サンプリング信号S1が「L」レベルに立ち下がる。
【0078】
さらに、タイミングt13に至ると、サンプリング信号S2が「H」レベルに立ち上がるため、ブロックB2のデータ線114aにあっては、スイッチ131によって画像信号VID21がサンプリングされる。このため、ブロックB2のデータ線114aの電位は、それまで維持していたプリチャージ電圧Vpreから、サンプリングされた画像信号VID21の電圧まで遷移する。これが現時点において選択されている走査線のTFT116によって当該画素に書き込まれる。
【0079】
ここで、ブロックB1に属するデータ線のうち、右端部に位置する(すなわち、ブロックB2に隣接する)データ線114fについては、液晶層を介してブロックB2のデータ線114aと容量的に結合しているため、ブロックB2のデータ線114aの電圧がプリチャージ電圧Vpreからサンプリングされた画像信号VID1の電圧まで遷移すると、その電圧変化の影響を受けて電圧が変動する。
【0080】
しかし、図3に示すようにタイミングt12からt13までの期間に、ブロックB1のデータ線114fに印加される電圧は、VID61’(=VID61+VID21’)であり、本来、印加されるべき電圧VID61に補正電圧VID21’が重畳したものとなっている。ここで、補正電圧VI21’は、上述したようにノイズ成分を打ち消すように設定されている。
【0081】
したがって、タイミングt13において、ブロックB2のデータ線114aの電圧が遷移することにより、その電圧変化に応じたノイズ成分がブロックB1のデータ線114fに重畳したとしても、補正電圧VID21’によってノイズ成分が相殺される。この結果、タイミングt13に至ると、ブロックB1のデータ線114aの電位は、本来、印加されるべき電位であるVID61に遷移する。
【0082】
負極側のタイミングt21、t22、t23では正極側のタイミングt11、t12、t13と同様な動作が行われるから、負極側でも同様であり、さらに、現時点の選択走査線において他のブロックB2〜Bmについても、また、他の走査線についても同様である。
【0083】
このように、各ブロックB1〜Bmの右端部に位置するデータ線114fは、本来の書込電位を維持するので、各ブロックB1〜Bmの境目における輝度ムラの発生が抑えられることとなる。
【0084】
次に、プリチャージ電圧Vpreについて検討してみる。上述のように、あるブロックの右端部に位置するデータ線114fの電圧は、それに隣接するデータ線114a、換言すれば、隣接ブロックの他端に位置するデータ線114aの電圧変化によって変動するが、その変動量は、第1に、データ線114aとの結合容量と、第2に、データ線114aの電圧変化量とに依存する。このうち、データ線114との結合容量は動作時において一定とみなせる。また、データ線114aの電圧変化量は、プリーチャージ電圧Vpreと画像信号VID21の差電圧である。
【0085】
ここで、仮に、上述した補正動作を行わないとすれば、ブロックの境界における輝度ムラを低減するために、プリーチャージ電圧Vpreと画像信号VID21との差電圧を小さくする必要がある。画像信号VIDのレベルは表示すべき画像の絵柄に応じて変化するが、その平均的なレベルは、画像信号VIDのピークレベルの50%にある。したがって、プリーチャージ電圧Vpreを“0”に設定する必要がある。しかし、このように設定すると、ノーマリホワイトモードでいえば略黒色を表示させる画像信号VIDを容量性の負荷であるデータ線に書き込む場合、大きな電圧変化を伴うので短時間に書き込みを完了することができなくなり、十分なコントラストを得ることが困難となる。
【0086】
これに対して、上述した補正動作を行う場合には、電圧変化量についての考慮が不要となるため、プリチャージ電圧Vpreを、ノーマリホワイトモードでいえば略黒色を表示させるレベルに設定することが可能となる。したがって、この例によれば、輝度ムラの発生を抑圧するとともに、大きなコントラストを得ることができる。
【0087】
〔第2実施形態〕
<第2実施形態の構成>
まず、電気光学装置の一例として、第2実施形態にかかるアクティブ・マトリクス型の液晶表示装置について説明する。なお、この例では液晶表示装置に入力される画像信号はデジタル信号であり、入力画像データDとして供給される。
【0088】
図4は、第2実施形態に係る液晶表示装置の全体構成を示すブロック図である。本実施形態にかかる液晶表示装置は、上記輝度ムラを解消するために、画像処理回路300Bにおいて、第1ラッチ回路320、選択回路321、補正テーブル322、加算回路323、第2ラッチ回路324、およびD/A変換器325を備える点で、図10に示す従来例と相違する。
【0089】
まず、第1ラッチ回路320は、タイミング発生回路200から供給されるクロックCKに基づいて、入力画像データDをラッチする。これにより、入力画像データDに対して1サンプル遅延した画像データDtが得られる。
【0090】
次に、選択回路321は、タイミング発生回路200から供給されるスイッチパルスSWPに基づいて、入力画像データDとデータd0とを選択する。具体的には、スイッチパルスSWPがHレベルのとき、入力画像データDを選択出力する一方、スイッチパルスSWPがLレベルのとき、データd0を選択出力するように構成されている。ここで、スイッチパルスSWPは、ブロック周期の信号であり、ブロックの開始直後の1サンプリング期間にHレベルとなる。
【0091】
したがって、各ブロックのデータ線114a〜114fに対応する画像データをD1〜D6で表すことにすれば、選択回路321の出力データDaは、画像データD1とデータd0から構成される。ここでデータd0の値は、プリチャージ電圧Vpreに対応する値に選ばれている。
【0092】
次に、補正テーブル322は、出力データDaに基づいてノイズ成分に相当する補正データDhを生成するものである。この補正テーブル322は、画像データD1の取り得る値と補正データDhの値とを対応付けて記憶している。ここで、補正データDhは、画像データD1の値とプリチャージ電圧Vpreに対応する値との差分値に応じて、ノイズ成分を相殺できるように予め定められている。プリチャージ電圧Vpreは予め定められているから、補正データDhの値と画像データD1の値とは1対1に対応する。換言すれば、補正テーブル322は、プリチャージ電圧Vpreを考慮して、補正データDhの値と画像データD1の値とを関連付けて記憶している。
【0093】
ところで、画像データD1の値とプリチャージ電圧Vpreに対応する値とが一致する場合には、データ線114aに印加される電圧が、プリチャージ電圧Vpreから画像信号の電圧に切り替わったとしても、電圧変化が発生しないので、ノイズ成分が発生しない。したがって、この場合の補正データDhの値は“0”となるように設定されている。一方、データd0の値は、プリチャージ電圧Vpreに対応する値に選ばれている。このため、データd0が補正テーブル322に供給されると、補正テーブル322は、データ値が“0”となる補正データDhを出力する。
【0094】
次に、加算回路323は、第1ラッチ回路320の出力データDtと補正データDhを加算して、画像データDt’を生成するようにように構成されている。また、第2ラッチ回路325は、画像データDt’をクロックCKによってラッチして画像データDVIDを出力するようになっている。くわえて、D/A変換器325は画像データDVIDをデジタル信号からアナログ信号に変換して、画像信号VIDを生成するように構成されている。
なお、他の構成については、従来の液晶装置と同様であるので、別段、説明を要しないであろう。
【0095】
<第2実施形態の動作>
次に、この液晶表示装置における動作について説明する。図5は、画像処理回路300Bの動作を説明するためのタイミングチャートである。なお、この図においてDXYと表した場合の添字Xは、当該データが1つブロックにおいてブロックの走査方向の順に数えて何番目のデータ線に対応するかを表しており、また、添字Yは何番目のブロックかに該当するものかを表すものとする。例えば、D1n+1は、ブロック中の第1番目のデータ線に対応しており、当該ブロックはn+1番目のものであることを表している。
【0096】
まず、タイミング発生回路200は、画像データDの各サンプルに対応したクロックCKを生成する。また、タイミング発生回路200は、このクロックCKに同期するとともに、各ブロック中の第1番目のデータ線に供給する画像データD1を特定するスイッチパルスSWPを生成する。
【0097】
このスイッチパルスSWPが選択回路320に供給されると、選択回路320はスイッチパルスSWPがHレベルの期間、画像データDを選択することにより、画像データD1を出力する一方、スイッチパルスSWPがLレベルの期間、データd0を選択出力する。これにより、図に示す出力データDaを得ることができる。
【0098】
この出力データDaが補正テーブル322に供給されると、図に示すように画像データD1n、D1n+1、D1n+2、…が供給される期間にあっては、データD1n’、D1n+1’、D1n+2’、…が補正データDhとして出力される一方、データd0が供給される期間にあっては、その値が“0”となる補正データDhが出力される。
【0099】
したがって、加算回路323において、補正データDhと出力データDtとを加算すると、図に示すように、出力データDtにおいて各ブロックのデータ線114fに対応するデータD6n−1、D6n、D6n+1、…を、データD6n−1+D1n’、D6n+D1n+1’、D6n+1+D1n+2’、…に各々置換したデータDt’が得られる。なお、加算回路323の演算によって、遅延時間が生じるため、データDt’はクロックCKに対して若干位相が遅れたものとなる。このため、第2ラッチ回路324において、データDt’をラッチすることによって、図に示す画像データDVIDを生成している。
【0100】
このようにして生成された画像データDVIDにおいて、各ブロックのデータ線114fに対するデータは、隣接するブロックのデータ線114aから混入するノイズ成分を相殺できるように補正されている。したがって、画像データDVIDをD/A変換器325を介して得られる画像信号VIDに基づいて、相展開し、これを増幅・反転した各画像信号VID1〜VID5、VID6’は、第1実施形態のものと一致する。このため、液晶表示パネル100の動作は、図3を用いて第1実施形態で説明したのと同様に、あるブロックのデータ線114aの電位がプリチャージ電圧から遷移することにより、その電位差に応じたノイズ成分が直前のブロックのデータ線114fに重畳したとしても、ノイズ成分が相殺される。この結果、各ブロックB1〜Bmの右端部に位置するデータ線114fは、本来の書込電位を維持するので、各ブロックB1〜Bmの境目における輝度ムラの発生が抑えられることとなる。
【0101】
〔第3実施形態〕
第3実施形態は、第2実施形態と同様に、入力される画像信号が画像データDとして供給される液晶表示装置に関するものである。図6は、第3実施形態の液晶表示装置の全体構成を示すブロック図である。この液晶表示装置は、D/A変換器325を削除するとともに画像データDVIDが相展開回路301’に直接供給される点、相展開回路301’はデジタル回路により構成される点、および相展開回路301’と増幅・反転回路302との間に6入力出力のD/A変換器325’を設けた点において、図4に示す第2実施形態の液晶表示装置と相違する。
【0102】
一般に、アナログ信号の形態で相展開を行う相展開回路では、展開数に応じた複数のサンプルホールド回路が必要となる。各サンプルホールド回路のホールドコンデンサの容量値等がばらつくと、サンプルホールド回路間でゲイン特性に差が生じるため、高精度のホールドコンデンサ等を使用する必要がある。
本実施形態においては、デジタル回路で構成された相展開回路301’を使用するので、相展開を高品質で行うことが可能となる。
【0103】
〔第4〜第6実施形態の概要〕
上述した第1〜第3実施形態にあっては、次のブロックに属するデータ線114aの電圧変化量を、プリチャージ電圧Vpreとデータ線114aに対応する画像信号との差電圧を求め、これに基づいて当該ブロックに属するデータ線114fに対応する画像信号を補正した。
【0104】
ところで、図16に示すサンプリング回路130は、上述したように複数のスイッチ131を備えており、各スイッチ131はnチャンネル型のTFTから構成されている。そして、スイッチ131のソース電極には画像信号が供給される一方、そのドレイン電極にはデータ線114が接続されている。このようなスイッチ131においては、ソース電極の電圧に応じて、ソース−ドレイン間の降下電圧が変化してしまう。より具体的には、ソース電極の電圧が下がるにつれて、ソース−ドレイン間の降下電圧が大きくなるプッシュダウンと呼ばれる現象が起きる。
【0105】
一方、液晶に直流電圧を印加すると、その特性が劣化することから、上述した各実施形態にあっては、極性反転信号Zに基づいて画像信号の極性を対向基板の電位を基準として、例えば、1水平走査周期で反転するようにしていた。このため、極性反転信号Zが正極性を示す場合には、比較的高電圧の画像信号がスイッチ131のソース電極に印加される一方、極性反転信号Zが負極性を示す場合には、比較的低電圧の画像信号がソース電極に印加されることになる。つまり、画像信号の極性が正極性の場合にはソース−ドレイン間の降下電圧が小さく、画像信号の極性が負極性の場合にはソース−ドレイン間の降下電圧が大きい。
【0106】
上述したように、画像信号の補正量は、プリチャージ電圧Vpreと次のブロックに属するデータ線114aに対応する画像信号の電圧によって決まる。ここで、データ線114aに対応する画像信号の電圧は、厳密には極性反転に応じたプッシュダウンの影響を受けることになる。換言すれば、同じ階調値を示す画像信号であっても、極性反転信号Zの示す極性が正極性か負極性かによって、スイッチ131の降下電圧値が相違する。
【0107】
以下に述べる第4〜第6実施形態は、上述した第1〜第3実施形態に各々対応するものであって、極性反転に伴うスイッチ131の降下電圧を考慮にいれてより正確に画像信号を補正して、各ブロックB1〜Bmの境目における輝度ムラをより一層低減させることを目的とするものである。
【0108】
〔第4実施形態〕
第4実施形態にかかるアクティブ・マトリクス型の液晶表示装置について説明する。なお、この例では液晶表示装置に入力される画像信号は、第1実施形態と同様にアナログ信号である。
【0109】
図7は、第4実施形態に係る液晶表示装置の全体構成を示すブロック図である。本実施形態にかかる液晶表示装置は、画像処理回路300Dにおいて、補正回路311の替わりに補正回路311Dを用いる点を除いて、図1に示す第1実施形態の液晶表示装置と同様に構成されている。
【0110】
補正回路311Dは、ノイズの起因となるデータ線114aの電圧変化を予め予測するとともに、データ線114aからデータ線114fへの伝送特性を予め特定しておき、予測結果と予め特定した伝送特性に基づいてノイズ成分に見合う補正信号VID1’を生成する点では、第1実施形態の補正回路311と一致するが、データ線114aの電圧変化を予測する手法が異なる。
【0111】
図8は、補正回路311Dの機能構成を示すブロック図である。この図に示すように補正回路311Dは、降下電圧算出回路3111、書込電圧算出回路3112、および補正信号生成回路3113から構成されている。
【0112】
スイッチ131の降下電圧Vdは、スイッチ131のソース電極電圧が低くなる程大きくなるが、ソース電極電圧は、画像信号VIDa1とその極性によって一意に定まる。降下電圧算出回路3111は、画像信号VIDa1と極性反転信号Zとに基づいて、スイッチ131の降下電圧Vdを算出する。
【0113】
次に、書込電圧算出回路3112は、降下電圧Vdと画像信号VIDa1とに基づいて、データ線114aへの書込電圧VIDa1’を算出し、さらに、補正信号生成回路3113は書込電圧VIDa1’とプリチャージ電圧Vpreに基づいて補正信号VID1’を生成するように構成されている。
【0114】
このように、第4実施形態に係る補正回路311Dにおいては、画像信号VIDa1と極性反転信号Zとに基づいて、スイッチ131の降下電圧Vdを算出し、算出された降下電圧Vdが反映されるように補正信号VID1’を生成したので、極性反転に伴って補正量の変化させることができ、各ブロックB1〜Bmの境目における輝度ムラをより一層低減させ表示画像の品質をより一層向上させることができる。
【0115】
〔第5実施形態〕
第5実施形態にかかるアクティブ・マトリクス型の液晶表示装置について説明する。なお、この例では液晶表示装置に入力される画像信号は、第2実施形態と同様にデジタル信号である。
【0116】
図9は、第5実施形態に係る液晶表示装置の全体構成を示すブロック図である。本実施形態にかかる液晶表示装置は、画像処理回路300Eにおいて、補正テーブル322の替わりに補正テーブル回路322Eを用いる点を除いて、図4に示す第2実施形態の液晶表示装置と同様に構成されている。
【0117】
図に示すように補正テーブル回路322Eは、第1選択回路3221、正極性用補正テーブル3222、負極性用補正テーブル3223、および第2選択回路3224を備えている。
【0118】
まず、第1選択回路3221は、極性反転信号Zの示す極性が正極性のとき出力データDaを正極性用補正テーブル3222に供給する一方、その極性が負極性のとき出力データDaを負極性用補正テーブル3223に供給する。
【0119】
次に、正極性用補正テーブル3222と負極性用補正テーブル3223には、画像データD1の取り得る値と補正データDhの値とを対応付けて記憶している。ここで、補正データDhは、画像データD1の値とプリチャージ電圧Vpreに対応する値との差分値に応じて、ノイズ成分を相殺できるように予め定められている。より具体的には、ソース電極電圧に応じて変化するスイッチ131の降下電圧Vdを考慮した補正データDhが、各テーブル3222,3223に各々格納されている。
【0120】
次に、第2選択回路3224は、極性反転信号Zの示す極性が正極性のとき正極性用補正テーブル3222の出力データを選択する一方、負極性のとき負極性用補正テーブル3223の出力データを選択して、これを補正データDhとして加算回路323に供給する。
なお、補正テーブル回路322E以外の構成部分は、第2実施形態の液晶表示装置と同様であるので、別段説明を要しないであろう。
【0121】
このように、第5実施形態に係る補正テーブル回路322Eにおいては、予め降下電圧Vdを考慮した正極性用補正テーブル3222と負極性用補正テーブル3224とを別々に用意しておき、極性反転信号Zに基づいてこれを選択するようにしたので、降下電圧Vdを反映させた補正データDhに基づいて補正を行うことができるので、極性反転に伴って補正量の変化させることができ、各ブロックB1〜Bmの境目における輝度ムラをより一層低減させ表示画像の品質をより一層向上させることができる。
【0122】
〔第6実施形態〕
第6実施形態は、第3実施形態と同様に、入力される画像信号が画像データDとして供給される液晶表示装置に関するものである。図10は、第6実施形態の液晶表示装置の全体構成を示すブロック図である。この液晶表示装置は、画像処理回路300Fにおいて、補正テーブル322の替わりに補正テーブル回路322Eを用いる点を除いて、図6に示す第3実施形態の液晶表示装置と同様に構成されている。
【0123】
すなわち、図10に示す液晶表示装置は、図6に示す液晶表示装置に上述した第5実施形態の補正テーブル回路322Eを適用したものである。このため、第5実施形態と同様に、本実施形態の液晶表示装置は、予め降下電圧Vdを考慮した正極性用補正テーブル3222と負極性用補正テーブル3224とを別々に用意しておき、極性反転信号Zに基づいてこれを選択するから、降下電圧Vdを反映させた補正データDhに基づいて補正を行うことができる。この結果、極性反転に伴って補正量の変化させることができ、各ブロックB1〜Bmの境目における輝度ムラをより一層低減させ表示画像の品質をより一層向上させることができる。
くわえて、本実施形態においては、デジタル回路で構成された相展開回路301’を使用するので、相展開を高品質で行うことが可能となる。
【0124】
〔第7実施形態〕
第7実施形態は、第2実施形態における、補正データを画像データの値とプリチャージ電圧に対応する値との差分値に応じて予め定めるものに対して、補正データを画像データの値に応じて予め定めるものである。
【0125】
したがって、第2実施形態と同一の機能を備えるものに対しては同一の符号を付し、詳細は省略する。
【0126】
まず、電気光学装置の一例として、第7実施形態にかかるアクティブ・マトリクス型の液晶表示装置について説明する。なお、この例では液晶表示装置に入力される画像信号はデジタル信号であり、入力画像データDとして供給される。
【0127】
図11は、第7実施形態に係る液晶表示装置の全体構成を示すブロック図である。本実施形態にかかる液晶表示装置は、輝度ムラを解消するために、画像処理回路300Bにおいて、第1ラッチ回路320、選択回路321、補正テーブル322、加算回路323、第2ラッチ回路324、およびD/A変換器325を備える。
【0128】
まず、第1ラッチ回路320は、タイミング発生回路200から供給されるクロックCKに基づいて、入力画像データDをラッチする。これにより、入力画像データDに対して1サンプル遅延した画像データDtが得られる。
【0129】
次に、選択回路321は、タイミング発生回路200から供給されるスイッチパルスSWPに基づいて、入力画像データDを選択する。具体的には、スイッチパルスSWPがHレベルのとき、入力画像データDを選択出力するように構成されている。ここで、スイッチパルスSWPは、ブロック周期の信号であり、ブロックの開始直後の1サンプリング期間にHレベルとなる。
【0130】
したがって、各ブロックのデータ線114a〜114fに対応する画像データをD1〜D6で表すことにすれば、選択回路321の出力データDaは、画像データD1から構成される。
【0131】
次に、補正テーブル322は、出力データDaに基づいてノイズ成分に相当する補正データDhを生成するものである。この補正テーブル322は、画像データD2の取り得る値と補正データDhの値とを対応付けて記憶している。ここで、補正データDhは、画像データD2の値に基づいて格納されている。
【0132】
次に、加算回路323は、第1ラッチ回路320の出力データDtと補正データDhを加算して、画像データDt’を生成するようにように構成されている。また、第2ラッチ回路325は、画像データDt’をクロックCKによってラッチして画像データDVIDを出力するようになっている。くわえて、D/A変換器325は画像データDVIDをデジタル信号からアナログ信号に変換して、画像信号VIDを生成するように構成されている。
【0133】
なお、他の構成については、従来の液晶装置と同様であるので、別段、説明を要しないであろう。
【0134】
このように、第7実施形態に係る補正テーブル322においては、画像データD2の値と、補正データDhの値とを関連付けて記憶されることで、各ブロックの境目における輝度ムラの発生を抑えることができる。
【0135】
〔応用例〕
(1)後述するように、液晶表示装置はビデオプロジェクタの画像形成に用いられる場合がある。ビデオプロジェクタでは、床面に装置を据え置いて使用する場合と、装置の底面を天井に向けて天井からつり下げて使用する場合がある。このように使用態様を変更すると、スクリーンに対する液晶パネルの位置関係が上下左右逆転してしまう。このため、液晶パネルにおける走査方向を上下方向、左右方向ともに逆転させる必要がある。
【0136】
上述した第1乃至第6実施形態にあっては、図12(a)に示すようにブロックの選択方向が左から右であったため、各ブロックB1〜Bmの右端部に位置するデータ線114fがノイズの影響を受けるデータ線であり、これに隣接するデータ線114aがノイズを発生するデータ線であった。しかし、データ線の走査方向を逆転させる場合には、図12(b)に示すようにブロックの選択方向が右から左となる。この場合には、各ブロックB1〜Bmの左端部に位置するデータ線114aがノイズの影響を受けるデータ線であり、これに隣接するデータ線114fがノイズを発生するデータ線となる。これは、既に書き込みが終了してハイインピーダンス状態となったデータ線に、結合容量を介して隣接するデータ線の電圧変化がノイズとして重畳するからである。
【0137】
このようにブロックの選択方向を切り換える場合には、液晶表示装置の前段に1フィールドの画像データを格納できる画像メモリを2個設け、一方の画像メモリに画像データを書き込んでいる間に、他方の画像メモリから画像データを読み出して、この画像データを液晶表示装置に供給する。そして、画像データを画像メモリから読み出す際に画像データの書き込み順序とは逆に、後に書き込んだ画像データを先に読み出す。このため、ノイズ成分の影響を受けるデータ線114aに対応する画像データが、ノイズを発生するデータ線に対応した画像データより先に供給される。換言すれば、ノイズの観点からみた画像データの供給順序は、ブロックの選択方向を反転させても変わらないことになる。
【0138】
したがって、ブロックの選択方向の正転・反転に対応するためには、上述した第1乃至第6実施形態で説明した液晶表示装置において、相展開回路301、301’に転送方向を指示する制御信号を供給し、制御信号に基づいて、相展開回路301、301’で生成する画像信号VID1〜VID6’と出力端子との関係を逆転させればよい。具体的には、制御信号が正転を指示する場合に第1番目の出力端子から画像信号VID1、第2番目の出力端子から画像信号VID1、…、第6番目の出力端子から画像信号VID6’を各々出力するとすれば、制御信号が逆転を指示する場合に第1番目の出力端子から画像信号VID6’、第2番目の出力端子から画像信号VID5、…、第6番目の出力端子から画像信号VID1を各々出力するようにすればよい。
【0139】
(2)また、上述した各実施形態では、各ブロックB1〜Bmを順次選択するとともに、選択された1つのブロックに属する6本のデータ線114に対し、6相展開された画像信号VID1〜VID6を同時にサンプリングして供給する構成したが、この相展開の数および同時に供給するデータ線の数(すなわち、1つのブロックを構成するデータ線の数)は、「6」に限られるものではない。相展開の数および同時に印加するデータ線の数としては、カラーの画像信号が3つの原色に係る信号からなることとの関係から、3の倍数であることが制御や回路を簡易化する上で好ましい。このため、1つのブロックを構成するデータ線数を、3本や、12本、24本、……、等として、データ線に対して3相展開や、12相展開、24相展開等されて並列供給された画像信号を同時に供給するように構成しても良い。
【0140】
(3)上述した各実施形態においては、加算回路312、323を用いて画像信号VID6または画像データDtの補正を行った。しかし、補正を加算で行うか減算で行うかは、プリチャージ電圧とノイズを発生するデータ線に印加される階調に対応する電圧に依存する。要はノイズ成分を相殺できるように予め画像信号または画像データに補正信号または補正データを含ませておけば良い。したがって、加算回路は、画像信号と補正信号を合成する合成回路または、画像データと補正データとを合成する合成回路であってもよい。
【0141】
(4)また、上述した各実施形態では、ブロックの選択を行う前にプリチャージを行うことを前提として説明したが、本発明は、ブロックの選択に伴ってノイズが発生するデータ線を特定し、当該データ線の電圧変化に基づいて、ノイズが混入するデータ線に供給する画像信号に予めノイズを相殺できるように補正を施すことにより、ブロックの境界で発生する輝度ムラを抑圧するものであるから、プリチャージを行わないものであってもよいことは勿論である。要は、選択中のブロックに属するのデータ線のうち直前に選択されたブロックに隣接する第1のデータ線には、直前に選択されたブロックに属し第1のデータ線に隣接する第2のデータ線に供給する画像信号に基づいて、第1のデータ線に対応する画像信号を、ノイズが相殺できるように補正して、供給すればよい。
【0142】
〔電子機器〕
次に、上述した液晶表示装置を電子機器に用いた例のいくつかについて説明する。
【0143】
<プロジェクタ>
まず、この液晶表示装置をライトバルブとして用いたプロジェクタについて説明する。図13は、このプロジェクタの構成例を示す平面図である。
【0144】
この図に示すように、プロジェクタ1100内部には、ハロゲンランプ等の白色光源からなるランプユニット1102が設けられている。このランプユニット1102から射出された投射光は、ライトガイド1104内に配置された4枚のミラー1106および2枚のダイクロイックミラー1108によってRGBの3原色に分離され、各原色に対応するライトバルブとしての液晶パネル1110R、1110Bおよび1110Gに入射される。
【0145】
液晶パネル1110R、1110Bおよび1110Gの構成は、上述した液晶表示パネル100と同等であり、図示しない画像信号処理回路から供給されるR、G、Bの原色信号でそれぞれ駆動される。さて、これらの液晶パネルによって変調された光は、ダイクロイックプリズム1112に3方向から入射される。このダイクロイックプリズム1112においては、RおよびBの光が90度に屈折する一方、Gの光が直進する。したがって、各色の画像が合成される結果、投射レンズ1114を介して、スクリーン等にカラー画像が投写されることとなる。
【0146】
ここで、各液晶パネル1110R、1110Bおよび1110Gによる表示像について着目すると、液晶パネル1110Gによる表示像は、液晶パネル1110R、1110Bによる表示像に対して左右反転することが必要となる。すなわち、液晶パネル1110Gにおけるブロック選択方向は、液晶パネル1110R、1110Bにおけるブロック選択方向とは逆になるため、液晶パネル1110Gに供給されるプリチャージ信号NRS1、NRS2と、液晶パネル1110Gに供給されるプリチャージ信号NRS1、NRS2との大小関係は互いに逆の関係にある。
【0147】
なお、液晶パネル1110R、1110Bおよび1110Gには、ダイクロイックミラー1108によって、R、G、Bの各原色に対応する光が入射するので、対向基板にカラーフィルタを設ける必要はない。
【0148】
<モバイル型コンピュータ>
次に、この液晶表示装置を、モバイル型のコンピュータに適用した例について説明する。図14は、このコンピュータの構成を示す正面図である。図において、コンピュータ1200は、キーボード1202を備えた本体部1204と、液晶ディスプレイ1206とから構成されている。この液晶ディスプレイ1206は、先に述べた液晶表示パネル100の背面にバックライトを付加することにより構成されている。
【0149】
なお、図13および図14を参照して説明した電子機器の他にも、液晶テレビや、ビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、携帯電話、テレビ電話、POS端末、タッチパネルを備えた装置等などが挙げられる。そして、本発明にかかるこれらの各種電子機器に適用可能なのは言うまでもない。
【0150】
さらに、本発明は、アクティブマトリクス型液晶表示装置としてTFTを用いたもの例にとって説明したが、これに限られず、スイッチング素子としてTFD(Thin Film Diode:薄膜ダイオード)を用いたものや、STN液晶を用いたパッシブ型液晶などにも適用可能であり、さらに、液晶表示装置に限られず、エレクトロ・ルミネッセンス素子など、各種の電気光学効果を用いて表示を行う表示装置にも適用可能である。
【0151】
【発明の効果】
以上説明したように本発明によれば、ノイズの影響を受けるブロックの境目のデータ線に対応する画像信号に予め補正を施すようにしたので、補正された画像信号を当該データ線に供給してもノイズが相殺されるので、ブロックの境目において発生する輝度ムラを目立たなくすることが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態にかかる液晶表示装置の全体構成を示すブロック図である。
【図2】同液晶表示装置における画像表示回路の動作を示すタイミングチャートである。
【図3】同液晶表示パネルの動作を示すタイミングチャートである。
【図4】本発明の第2実施形態にかかる液晶表示装置の全体構成を示すブロック図である。
【図5】同液晶表示装置における画像表示回路の動作を示すタイミングチャートである。
【図6】本発明の第3実施形態にかかる液晶表示装置の全体構成を示すブロック図である。
【図7】本発明の第4実施形態にかかる液晶表示装置の全体構成を示すブロック図である。
【図8】同実施形態に用いられる補正回路の構成を示すブロック図である。
【図9】本発明の第5実施形態にかかる液晶表示装置の全体構成を示すブロック図である。
【図10】本発明の第6実施形態にかかる液晶表示装置の全体構成を示すブロック図である。
【図11】本発明の第7実施形態にかかる液晶表示装置の全体構成を示すブロック図である。
【図12】(a)はブロックの選択方向が左から右である場合においてノイズの影響を受けるデータ線を示したものであり、(b)はブロックの選択方向が右から左である場合においてノイズの影響を受けるデータ線を示した図である。
【図13】第1〜第7実施形態の液晶表示装置を適用した電子機器の一例たる液晶プロジェクタの構成を示す断面図である。
【図14】同液晶表示装置を適用した電子機器の一例たるパーソナルコンピュータの構成を示す正面図である。
【図15】従来の液晶表示装置の全体構成を示すブロック図である。
【図16】従来の液晶表示装置における液晶表示パネルの電気的構成を示すブロック図である。
【図17】従来の液晶表示装置の動作を示すタイミングチャートである。
【符号の説明】
100……液晶表示パネル
112……走査線
114a〜114f……データ線
116……TFT
118……画素電極
300A、300B、300C、300D、300E、300F……画像処理回路
301、301’……相展開回路(並列化手段)
310……第1サンプルホールド回路(補正手段)
311、311D……補正回路(補正手段)
312、323……加算回路(補正手段、合成回路)
321……選択回路(補正手段)
322……補正テーブル(補正手段、記憶回路)
322D……補正テーブル回路(補正手段)
3111……降下電圧算出回路(第1算出回路)
3112……書込電圧算出回路(第2算出回路)
3222……正極性用補正テーブル(第1記憶回路)
3223……負極性用補正テーブル(第2記憶回路)

Claims (21)

  1. 複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線との交差に対応して設けられたトランジスタと画素電極とを有する電気光学装置の駆動方法であって、
    前記走査線を順次選択し、
    前記走査線が選択された期間において、
    前記データ線を複数本毎にまとめた複数のブロックを順次選択し、選択中のブロックの各データ線に対応する画像信号を同時に供給し、
    前記選択中のブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する画像信号を、次に選択されるブロックに属し前記第1のデータ線に隣接する第2のデータ線の電圧変化を予測した結果に基づいて、前記第1のデータ線に対応する画像信号を予め補正して前記第1のデータ線に供給することを特徴とする電気光学装置の駆動方法。
  2. 前記第2のデータ線の電圧変化を、前記第2のデータ線に対応する画像信号に基づいて予測することを特徴とする請求項1に記載の電気光学装置の駆動方法。
  3. 前記電気光学装置は、前記画像信号を順次サンプリングして前記各データ線に供給するサンプリングトランジスタを備え、
    前記第2のデータ線の電圧変化を、前記第2のデータ線に対応する画像信号およびサンプリングトランジスタの降下電圧に基づいて予測することを特徴とする請求項1に記載の電気光学装置の駆動方法。
  4. 複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線との交差に対応して設けられたトランジスタと画素電極とを有し、前記データ線を複数本毎にまとめたブロックを順次選択して駆動する電気光学装置の駆動方法であって、
    前記複数のデータ線にプリチャージ電圧を印加した後、
    選択中の前記ブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する画像信号を、次に選択されるブロックに属し前記第1のデータ線に隣接する第2のデータ線の電圧変化を予測した結果に基づいて、予め補正して前記第1のデータ線に供給することを特徴とする電気光学装置の駆動方法。
  5. 前記第2のデータ線の電圧変化を、前記第2のデータ線に対応する画像信号と前記プリチャージ電圧に基づいて予測することを特徴とする請求項4に記載の電気光学装置の駆動方法。
  6. 前記電気光学装置は、前記画像信号を順次サンプリングして各データ線に供給するサンプリングトランジスタを備え、
    前記第2のデータ線の電圧変化を、前記第2のデータ線に対応する画像信号、サンプリングトランジスタの降下電圧および前記プリチャージ電圧に基づいて予測することを特徴とする請求項4に記載の電気光学装置の駆動方法。
  7. 複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線との交差に対応して設けられたトランジスタと画素電極とを有し、各走査線を順次選択し、前記データ線を複数本毎にまとめたブロック毎に並列化画像信号を印加する電気光学装置の画像処理回路であって、
    前記ブロックを構成するデータ線の本数に応じて、入力画像信号を時間軸伸長するとともに並列化して、複数の並列化画像信号を生成する並列化手段と、
    あるブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する並列化画像信号を、次に選択されるブロックに属し前記第1のデータ線に隣接する第2のデータ線の電圧変化を予測した結果に基づいて、補正を施す補正手段と、
    補正された並列化画像信号と他の並列化画像信号とまとめて出力する出力手段と
    を具備することを特徴とする電気光学装置の画像処理回路。
  8. 前記電気光学装置は、前記走査線が選択された期間において、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎に前記並列化画像信号を印加するものであって、
    前記補正手段は、前記第2のデータ線に対応する並列化画像信号と前記プリチャージ電圧とに基づいて、前記第2のデータ線の電圧変化を予測することを特徴とする請求項7に記載の電気光学装置の画像処理回路。
  9. 前記電気光学装置は、一方の基板に前記走査線、前記データ線、前記トランジスタおよび画素電極を形成し、これと対向する他方の基板に対向電極とを備え、前記走査線が選択された期間において、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎にサンプリングトランジスタを介して並列化画像信号を印加するものであって、
    前記出力手段は、補正された並列化画像信号と他の並列化画像信号とをまとめるとともに、一定周期の極性反転信号に従ってそれらの極性を前記対向電極の電位を基準として反転して出力し、
    前記補正手段は、前記第2のデータ線に対応する並列化画像信号、前記プリチャージ電圧、および前記サンプリングトランジスタの降下電圧に基づいて、前記第2のデータ線の電圧変化を予測することを特徴とする請求項7に記載の電気光学装置の画像処理回路。
  10. 前記電気光学装置は、前記走査線が選択された期間において、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎に並列化画像信号を印加するものであって、
    前記入力画像信号はアナログ信号であり、
    前記補正手段は、前記入力画像信号をブロック周期でサンプルホールドして前記第2のデータ線に対応する並列化画像信号を出力するサンプルホールド回路と、
    前記サンプルホールド回路から出力される並列化画像信号と、前記プリチャージ電圧とに基づいて補正信号を生成する補正信号生成回路と、
    前記並列化手段から出力される補正の対象となる並列化画像信号と、前記補正信号を合成して補正した並列化画像信号を出力する合成回路と
    を備えることを特徴とする請求項7に記載の電気光学装置の画像処理回路。
  11. 前記入力画像信号はアナログ信号であり、
    前記補正手段は、前記入力画像信号をブロック周期でサンプルホールドして前記第2のデータ線に対応する並列化画像信号を出力するサンプルホールド回路と、
    前記サンプルホールド回路から出力される並列化画像信号と、前記極性反転信号に基づいて前記降下電圧を算出する第1算出回路と、
    前記降下電圧算出回路によって算出された降下電圧と前記サンプルホールド回路から出力される並列化画像信号とに基づいて、前記第2のデータ線に供給する書込電圧を算出する第2算出回路と、
    前記書込電圧と前記プリチャージ電圧とに基づいて補正信号を生成する補正信号生成回路と、
    前記並列化手段から出力される補正の対象となる並列化画像信号と、前記補正信号とを合成して補正した並列化画像信号を出力する合成回路と
    を備えることを特徴とする請求項9に記載の電気光学装置の画像処理回路。
  12. 複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線との交差に対応して設けられたトランジスタと画素電極とを有し、各走査線を順次選択し、前記データ線を複数本毎にまとめたブロック毎に並列化画像信号を印加する電気光学装置の画像処理回路であって、
    入力画像信号の中から、あるブロックに属するデータ線のうち次に選択されるブロックに隣接する第1のデータ線に対応する画像信号を特定し、次に選択されるブロックに属し前記第1のデータ線に隣接する第2のデータ線の電圧変化を予測した結果に基づいて、当該画像信号に補正を施す補正手段と、
    前記ブロックを構成するデータ線の本数に応じて、前記補正手段の出力信号を時間軸伸長するとともに並列化して、複数の並列化画像信号を生成する並列化手段と
    を具備することを特徴とする電気光学装置の画像処理回路。
  13. 前記入力画像信号はデジタル信号であり、前記補正手段は、
    前記入力画像信号をブロック周期毎に特定の1サンプル期間選択する選択回路と、
    信号値と補正値とを対応付けて予め記憶しており、前記選択回路の出力信号が供給されると、当該出力信号の値に応じた補正信号を出力する記憶回路と、
    前記入力画像信号と前記補正信号とを合成する合成回路と
    を具備することを特徴とする請求項12に記載の電気光学装置の画像処理回路。
  14. 前記電気光学装置は、前記走査線が選択された期間において、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎に並列化画像信号を印加するものであって、
    前記補正値は、前記プリチャージ電圧と前記信号値とに基づいて、定められていることを特徴とする請求項13に記載の電気光学装置の画像処理回路。
  15. 前記記憶回路は、前記第2のデータ線の画像データに対応した補正テーブルを有していることを特徴とする請求項13に記載の電気光学装置の画像処理回路。
  16. 前記電気光学装置は、一方の基板に前記走査線、前記データ線、前記トランジスタおよび画素電極を形成し、これと対向する他方の基板に対向電極とを備え、前記データ線に予め定められたプリチャージ電圧を印加した後、前記データ線を複数本毎にまとめたブロック毎にサンプリングトランジスタを介して並列化画像信号を印加するものであって、
    前記並列化手段から出力される複数の並列化画像信号を一定周期の極性反転信号に従ってそれらの極性を前記対向電極の電位を基準として反転して出力する極性反転手段を備え、
    前記入力画像信号はデジタル信号形式の入力画像データであり、前記補正手段は、
    前記入力画像データをブロック周期毎に特定の1サンプル期間選択する選択回路と、
    画像データ値と補正データ値とを対応付けて正極性用の補正データを記憶する第1記憶回路と、
    画像データ値と補正データ値とを対応付けて負極性用の補正データを記憶する第2記憶回路と、
    前記極性反転信号に基づいて前記選択回路の出力データを前記第1記憶回路または前記第2記憶回路に供給して、対応する補正データを読み出す読出手段と、
    前記入力画像データと前記読出手段によって読み出された補正データを合成する合成回路と
    を備えることを特徴とする請求項12に記載の電気光学装置の画像処理回路。
  17. 前記入力画像信号はデジタル信号であり、前記並列化手段は、
    前記補正手段のデジタル出力信号をD/A変換するD/A変換回路と、
    前記D/A変換回路のアナログ出力信号を、ブロックを構成するデータ線の本数に応じて、時間軸伸長するとともに並列化して複数のアナログ並列化画像信号を生成する並列化回路と
    を具備することを特徴とする請求項12または16に記載の電気光学装置の画像処理回路。
  18. 前記入力画像信号はデジタル信号であり、前記並列化手段は、
    前記補正手段のデジタル出力信号を、ブロックを構成するデータ線の本数に応じて、時間軸伸長するとともに並列化して複数のデジタル並列化画像信号を生成する並列化回路と、
    前記並列化回路によって得られる複数のデジタル並列化画像信号をD/A変換して複数のアナログ並列化画像信号を出力するD/A変換回路と
    を備えることを特徴とする請求項12または16に記載の電気光学装置の画像処理回路。
  19. 請求項7または12に記載の画像処理回路と、
    前記走査線を順次選択する走査線駆動手段と、
    前記走査線が選択された期間において、前記データ線を複数本毎にまとめたブロックを順次選択することにより、前記並列化画像信号を選択されたブロックに属するデータ線の各々に供給するブロック駆動手段と、
    ブロックが選択される前に、当該ブロックのデータ線にプリチャージ電圧を印加するプリチャージ手段と
    を備えたことを特徴とする電気光学装置。
  20. 前記プリチャージ手段は、前記プリチャージ電圧を黒色または白色の表示に相当する電圧レベルに設定することを特徴とする請求項19に記載の電気光学装置。
  21. 請求項19記載の電気光学装置を表示部に用いたことを特徴とする電子機器。
JP2000263564A 1999-12-10 2000-08-31 電気光学装置の駆動方法、画像処理回路、電気光学装置および電子機器 Expired - Fee Related JP3570362B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000263564A JP3570362B2 (ja) 1999-12-10 2000-08-31 電気光学装置の駆動方法、画像処理回路、電気光学装置および電子機器
TW089124563A TW518550B (en) 1999-12-10 2000-11-20 Driving method for electro-optical device, image processing circuit, electro-optical device, and electronic machine
US09/726,055 US6563478B2 (en) 1999-12-10 2000-11-30 Driving method for electro-optical device, image processing circuit, electro-optical device, and electronic equipment
CNB001352601A CN1182507C (zh) 1999-12-10 2000-12-11 电光学装置及其驱动方法、图像处理电路及电子机器
KR10-2000-0075130A KR100490765B1 (ko) 1999-12-10 2000-12-11 전기 광학 장치의 구동 방법, 화상 처리 회로, 전기 광학장치 및 전자기기

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP11-351963 1999-12-10
JP35196399 1999-12-10
JP2000-87144 2000-03-27
JP2000087144 2000-03-27
JP2000263564A JP3570362B2 (ja) 1999-12-10 2000-08-31 電気光学装置の駆動方法、画像処理回路、電気光学装置および電子機器

Publications (2)

Publication Number Publication Date
JP2001343923A JP2001343923A (ja) 2001-12-14
JP3570362B2 true JP3570362B2 (ja) 2004-09-29

Family

ID=27341401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263564A Expired - Fee Related JP3570362B2 (ja) 1999-12-10 2000-08-31 電気光学装置の駆動方法、画像処理回路、電気光学装置および電子機器

Country Status (5)

Country Link
US (1) US6563478B2 (ja)
JP (1) JP3570362B2 (ja)
KR (1) KR100490765B1 (ja)
CN (1) CN1182507C (ja)
TW (1) TW518550B (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW526464B (en) * 2000-03-10 2003-04-01 Sharp Kk Data transfer method, image display device and signal line driving circuit, active-matrix substrate
JP4543531B2 (ja) * 2000-09-28 2010-09-15 ソニー株式会社 デジタル信号処理回路およびその処理方法、並びに表示装置、液晶表示装置および液晶プロジェクタ
KR100771516B1 (ko) * 2001-01-20 2007-10-30 삼성전자주식회사 박막트랜지스터 액정표시장치
JP4185678B2 (ja) * 2001-06-08 2008-11-26 株式会社日立製作所 液晶表示装置
US7079161B2 (en) * 2001-06-14 2006-07-18 Canon Kabushiki Kaisha Image display apparatus
TWI224300B (en) * 2003-03-07 2004-11-21 Au Optronics Corp Data driver and related method used in a display device for saving space
US7362290B2 (en) * 2003-10-29 2008-04-22 Seiko Epson Corporation Image signal correcting circuit, image processing method, electro-optical device and electronic apparatus
JP4385730B2 (ja) * 2003-11-13 2009-12-16 セイコーエプソン株式会社 電気光学装置の駆動方法、電気光学装置および電子機器
CN100419534C (zh) * 2003-12-08 2008-09-17 索尼株式会社 液晶显示设备和背光调节方法
JP4103886B2 (ja) * 2003-12-10 2008-06-18 セイコーエプソン株式会社 画像信号の補正方法、補正回路、電気光学装置および電子機器
JP2005202159A (ja) * 2004-01-15 2005-07-28 Seiko Epson Corp 電気光学装置、その駆動回路、その駆動方法および電子機器
JP4037370B2 (ja) * 2004-02-25 2008-01-23 シャープ株式会社 表示装置
JP4285314B2 (ja) * 2004-04-22 2009-06-24 セイコーエプソン株式会社 電気光学装置
CN100386796C (zh) * 2004-07-09 2008-05-07 精工爱普生株式会社 电光装置及其信号处理电路、处理方法及电子设备
JP4142028B2 (ja) 2004-07-09 2008-08-27 セイコーエプソン株式会社 電気光学装置、電気光学装置の信号処理回路、処理方法および電子機器
KR100826684B1 (ko) * 2004-08-30 2008-05-02 엘지전자 주식회사 유기 전계발광 표시장치 및 그 구동방법
JP4111521B2 (ja) * 2004-10-26 2008-07-02 インターナショナル・ビジネス・マシーンズ・コーポレーション 電気光学装置
KR101137885B1 (ko) * 2005-06-15 2012-04-25 엘지디스플레이 주식회사 액정표시장치와 그 검사방법
US20070171165A1 (en) * 2006-01-25 2007-07-26 Ching-Yun Chuang Devices and methods for controlling timing sequences for displays of such devices
JP4961790B2 (ja) * 2006-03-24 2012-06-27 セイコーエプソン株式会社 電気光学装置、及びこれを備えた電子機器
TWI349489B (en) * 2006-09-07 2011-09-21 Realtek Semiconductor Corp Image processing device and method
JP4501952B2 (ja) * 2007-03-28 2010-07-14 セイコーエプソン株式会社 電気光学装置、その駆動方法および電子機器
JP2009192877A (ja) * 2008-02-15 2009-08-27 Seiko Epson Corp 処理回路及び処理方法、並びに電気光学装置及び電子機器
US9927924B2 (en) * 2008-09-26 2018-03-27 Apple Inc. Differential sensing for a touch panel
US8614690B2 (en) * 2008-09-26 2013-12-24 Apple Inc. Touch sensor panel using dummy ground conductors
KR101499498B1 (ko) * 2008-10-08 2015-03-06 삼성전자주식회사 초고해상도 비디오 처리 장치 및 방법
JP5463656B2 (ja) * 2008-11-25 2014-04-09 セイコーエプソン株式会社 電気光学装置の駆動装置及び方法、並びに電気光学装置及び電子機器
KR101479992B1 (ko) 2008-12-12 2015-01-08 삼성디스플레이 주식회사 전압 강하 보상 방법 및 그 시스템과 이를 포함한 표시 장치
CN101957697B (zh) * 2009-07-16 2013-05-22 上海天马微电子有限公司 互电容触摸屏及其驱动方法
FR2955964A1 (fr) * 2010-02-02 2011-08-05 Commissariat Energie Atomique Procede d'ecriture d'image dans un afficheur a cristal liquide
US8506897B2 (en) 2010-05-07 2013-08-13 Greenzapr, Inc. Mobile UV sterilization unit for fields and method thereof
US8747770B2 (en) 2010-05-07 2014-06-10 Greenzapr, Inc. Mobile UV sterilization unit for fields and method thereof
US9164620B2 (en) 2010-06-07 2015-10-20 Apple Inc. Touch sensing error compensation
JP5414725B2 (ja) * 2011-03-30 2014-02-12 株式会社ジャパンディスプレイ データセレクタ回路を備えた表示装置
US9052528B2 (en) * 2013-02-28 2015-06-09 Johnson & Johnson Vision Care, Inc. Electronic ophthalmic lens with multi-input voting scheme
US9940865B2 (en) * 2015-06-18 2018-04-10 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device
US11386828B2 (en) * 2019-10-10 2022-07-12 Samsung Display Co., Ltd. Display device
CN111583852B (zh) * 2020-06-30 2022-09-09 上海天马微电子有限公司 发光面板、发光面板的控制方法以及显示装置
CN112530369B (zh) * 2020-12-25 2022-03-25 京东方科技集团股份有限公司 一种显示面板、显示装置以及驱动方法
CN113421523A (zh) * 2021-06-18 2021-09-21 京东方科技集团股份有限公司 显示模组和显示装置
JP2023144269A (ja) * 2022-03-28 2023-10-11 セイコーエプソン株式会社 ドライバー、電気光学装置及び電子機器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2848139B2 (ja) * 1992-07-16 1999-01-20 日本電気株式会社 アクティブマトリクス型液晶表示装置とその駆動方法
JP2759589B2 (ja) * 1992-12-28 1998-05-28 キヤノン株式会社 強誘電性液晶表示素子
JP3102666B2 (ja) * 1993-06-28 2000-10-23 シャープ株式会社 画像表示装置
US5796378A (en) * 1994-03-29 1998-08-18 Casio Computer Co., Ltd. Birifringence control type liquid crystal display device and apparatus and method of driving the same
FR2743658B1 (fr) * 1996-01-11 1998-02-13 Thomson Lcd Procede d'adressage d'un ecran plat utilisant une precharge des pixels circuit de commande permettant la mise en oeuvre du procede et son application aux ecrans de grandes dimensions
JPH09258169A (ja) * 1996-03-26 1997-10-03 Toshiba Corp アクティブマトリクス型液晶表示装置
JPH09269754A (ja) * 1996-03-29 1997-10-14 Seiko Epson Corp 液晶表示装置の信号処理回路
US6040812A (en) * 1996-06-19 2000-03-21 Xerox Corporation Active matrix display with integrated drive circuitry
EP0852372B1 (en) * 1996-06-20 2004-09-08 Seiko Epson Corporation Image display apparatus
KR100205385B1 (ko) * 1996-07-27 1999-07-01 구자홍 액정표시장치의 데이타 드라이버
JP3202613B2 (ja) * 1996-09-06 2001-08-27 エヌイーシービューテクノロジー株式会社 色むら補正装置
KR100508030B1 (ko) * 1997-09-09 2005-10-26 삼성전자주식회사 액정표시장치
JP3719317B2 (ja) * 1997-09-30 2005-11-24 ソニー株式会社 補間方法、補間回路、画像表示装置
JP3713922B2 (ja) * 1997-10-30 2005-11-09 セイコーエプソン株式会社 液晶表示装置の駆動装置、液晶表示装置、電子機器、及び液晶表示装置の駆動方法
JPH11202827A (ja) * 1998-01-14 1999-07-30 Sanyo Electric Co Ltd 映像表示装置

Also Published As

Publication number Publication date
TW518550B (en) 2003-01-21
US20010015711A1 (en) 2001-08-23
JP2001343923A (ja) 2001-12-14
US6563478B2 (en) 2003-05-13
CN1182507C (zh) 2004-12-29
CN1300047A (zh) 2001-06-20
KR20010070293A (ko) 2001-07-25
KR100490765B1 (ko) 2005-05-19

Similar Documents

Publication Publication Date Title
JP3570362B2 (ja) 電気光学装置の駆動方法、画像処理回路、電気光学装置および電子機器
JP3832125B2 (ja) 電気光学装置及び電子機器
US8102343B2 (en) Liquid crystal device, driving circuit for liquid crystal device, method of driving liquid crystal device, and electronic apparatus
JP3494126B2 (ja) 画像処理回路および画像データ処理方法、電気光学装置、ならびに電子機器
WO2001024155A1 (fr) Technique de commande de dispositif electro-optique, circuit de commande, dispositif electro-optique et appareil electronique
JP2009009018A (ja) ソースドライバ、電気光学装置、投写型表示装置及び電子機器
JP2002149136A (ja) 画像処理回路および画像データ処理方法、電気光学装置、ならびに電子機器
JP3904394B2 (ja) 画像処理回路、画像処理方法、電気光学装置、および電子機器
TWI564872B (zh) 顯示裝置及其驅動方法
JP3613942B2 (ja) 画像表示装置、画像表示方法及びそれを用いた電子機器並びに投写型表示装置
JP3755323B2 (ja) 電気光学装置の駆動回路、電気光学装置および電子機器
JP2005266578A (ja) 電気光学装置および電子機器
JP2001100707A (ja) 電気光学装置の駆動方法、駆動回路および電気光学装置ならびに電子機器
JP2001159883A (ja) 電気光学装置の駆動方法、駆動回路および電気光学装置ならびに電子機器
JP2001343953A (ja) 電気光学装置の駆動方法、画像処理回路、電気光学装置および電子機器
JP2000098982A (ja) 電気光学装置の駆動回路及び電気光学装置並びに電気光学装置の駆動方法
JP3800214B2 (ja) 画像処理回路、電気光学装置及び電子機器
JP4258501B2 (ja) 電気光学装置及び電子機器並びに電気光学装置の駆動方法
JP3891070B2 (ja) タイミング調整回路、駆動回路、電気光学装置および電子機器
JP2004233808A (ja) 液晶装置及びその駆動方法並びに電子機器
US20050156841A1 (en) Image signal correction method, correction circuit, electro-optical device, and electronic apparatus
JP2002215106A (ja) 電気光学装置および電子機器並びに投射型表示装置
JP4353203B2 (ja) 電気光学装置及び電子機器並びに電気光学装置の駆動方法
JP2002169520A (ja) 電気光学装置、パターン発生回路および電子機器
JP2002062857A (ja) 電気光学装置の駆動方法、駆動回路及び電気光学装置並びに電子機器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees