JP3546451B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP3546451B2
JP3546451B2 JP32830093A JP32830093A JP3546451B2 JP 3546451 B2 JP3546451 B2 JP 3546451B2 JP 32830093 A JP32830093 A JP 32830093A JP 32830093 A JP32830093 A JP 32830093A JP 3546451 B2 JP3546451 B2 JP 3546451B2
Authority
JP
Japan
Prior art keywords
lead
solid electrolytic
metal wire
electrolytic capacitor
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32830093A
Other languages
Japanese (ja)
Other versions
JPH07183167A (en
Inventor
一美 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP32830093A priority Critical patent/JP3546451B2/en
Publication of JPH07183167A publication Critical patent/JPH07183167A/en
Application granted granted Critical
Publication of JP3546451B2 publication Critical patent/JP3546451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は固体電解コンデンサの製造方法に関する。
【0002】
【従来の技術】
従来のチップ状固体電解コンデンサは、図5及び図6に示すように表面に誘電体酸化皮膜層2を有するアルミニウム、タンタル、ニオブ等の弁作用金属からなる平板状の金属箔1の表面に陽極部となる一部を除いて半導体層3及び導電体層4を順次積層した固体電解コンデンサ素子5(以下コンデンサ素子と称する)を形成し、次いでこのコンデンサ素子5をリードフレーム6に接続するが、リードフレーム6の2ヶ所の凸部6a、6bを間隔をおいて対向させ、それぞれの凸部6a、6bに前記コンデンサ素子5の陽極部7と陰極部8を載置している。
【0003】
そして前者は熔接9などで、後者は銀ペースト等の導電材10でリードフレーム6の凸部6a、6bに電気的、かつ機械的に接続した後、外装樹脂13で封止して、チップ状固体電解コンデンサが構成されている。
そしてこの封口した固体電解コンデンサは、容量等の電気性能を満たすことが要求され、さらに負荷テスト、耐湿テスト等の抜き取り検査が合格したものを製品としている。
【0004】
【発明が解決しようとする課題】
前述したコンデンサ素子は、耐湿テスト時、湿気がリードフレームから進入し、コンデンサ素子の誘電体酸化皮膜層近くまで接近し、作製したコンデンサの容量並びにtanδ値を上昇させるという欠点があった。
このような欠点を防ぐために、コンデンサ素子を耐水性の樹脂で覆うことが考えられているが、作業性が悪く、またコスト上の問題があった。
【0005】
【課題を解決するための手段】
本発明は、前述した問題点を解決するためになされたものであって、その要旨は表面に誘電体酸化皮膜層を有する弁作用金属箔に金属線を接続して陽極部とし、該金属線と金属箔との接続部に絶縁材を塗布し、しかる後、金属箔表面に半導体層および導電体層を順次形成して陰極部とし、次いでリードフレームの陽極リード引出し部と陰極リード引出し部とにそれぞれ前記コンデンサ素子の陽極部と陰極部を接続して外装樹脂で封止成形することを特徴とする固体電解コンデンサの製造方法にある。
【0006】
以下、本発明について詳細に説明する。
本発明において用いられる弁作用金属箔としては、例えばアルミニウム、タンタル、及びこれらを基質とする合金等、弁作用を有する金属の箔が使用できる。又、弁作用金属箔の表面はエッチングによって実表面積が増加されていてもよい。
弁作用金属箔の表面に設けられる誘電体酸化皮膜層は、弁作用金属の表面部分に設けられた弁作用金属自体の酸化物層であってもよく、或は、弁作用金属の表面上に設けられた他の誘電体酸化物の層であってもよいが、特に弁作用金属自体の酸化物からなる層であることが望ましい。
【0007】
次に、このようにして誘電体酸化皮膜層まで形成された弁作用金属箔に、金属線を接続して陽極部とし、金属箔と金属線との接続部に絶縁材を塗布し、しかる後、金属箔表面に半導体層および導電体層を順次形成して陰極部とする方法を説明する。図1は、上述した陰極部8まで形成されたコンデンサ素子5を示す平面図である。
図2は、図1のA−A’部断面図である。
図1及び図2において、弁作用金属箔1の表面に誘電体酸化皮膜層2が形成されており、金属線11が接続していて、金属箔1と金属線11との接続部に絶縁材12が塗布されている。さらに誘電体酸化皮膜層2の上に、半導体層3、導電体層4が順次形成されている。
【0008】
金属線11の材質としてアルミニウム、タンタル、ニオブ、チタン及びこれらを基質とする合金等弁作用を有する金線の線が使用できる。金属線の断面形状は、丸、楕円、四角等の形状である。また金属線の長さおよび径の大きさは、使用する弁作用金属箔の大きさ、作製した固体電解コンデンサの形状によって変化するので、あらかじめ行う予備実験によって決定される。また、金属線には前述した手法であらかじめ導電体酸化皮膜層を形成していてもよい。
弁作用金属箔1と金属線11との接続は、熔接、銀ペースト等の導電ペースト、半田等の1つ以上の手法で接続される。
又、本発明において、弁作用金属箔1と金属線11との接続部には絶縁材12が塗布されるが、接続時に弁作用金属箔1の金属線11との接続面と反対側に応力がかかる場合には、接続面と反対側の面にも絶縁材12を塗布することが望ましい。
【0009】
絶縁材としては、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、アクリル樹脂、アルキッド樹脂、ブタジエンゴム等の炭化水素樹脂、フェノール樹脂、ウレタン樹脂等従来公知の絶縁性樹脂およびアルミナ、シリカ等のセラミックスからなる絶縁性無機物があげられる。
本発明では、弁作用金属箔1に金属線11を接続して陽極部とし、該陽極部の一部を除いて残りの誘電体酸化皮膜層上に半導体層を形成させているが、半導体層の種類には特に制限はなく、従来公知の半導体層が使用できる。
【0010】
この中で、とりわけ本願出願人の出願による二酸化鉛と硫酸鉛からなる半導体層(特開昭62−256423号公報、特開昭63−51621号公報)が、作製した固体電解コンデンサの高周波性能が良好なために好ましい。
また、テトラチオテトラセンとクロラニルの錯体を半導体層として形成させる方法(特開昭62−29123号公報)、複素5員環高分子化合物にドーパントをドープした電導性高分子化合物からなる半導体層(特開昭60−37114号公報)もその一例である。
そしてこのような半導体層上には、例えばカーボンペースト及び/又は銀ペースト等の従来公知の導電ペーストを積層して導電体層を形成して陰極部8を形成している。
【0011】
次に、このように導電体層まで形成されたコンデンサ素子をリードフレームに接続する方法を説明する。図3及び図4はコンデンサ素子5をリードフレーム6に接続した状態を示す平面図および断面図である。
図3及び図4において、コンデンサ素子5の陽極部7(11金属線)と陰極部8(図示せず)とがリードフレーム6の陽極リード引出し部6aと陰極リード引出し部6bとにそれぞれ載置されていて、陽極部は熔接、導電ペースト、半田等で接続し、一方、陰極部は導電ペースト、半田等の導電材10で接続されている。
このようにしてリードフレームに接続されたコンデンサ素子は、リードフレームの一部を残してエポキシ樹脂等の外装樹脂により封止成形され固体電解コンデンサとしている。
【0012】
【作用】
コンデンサ素子の陽極部と、リードフレームとの接続を金属線で行っているので、リードフレームを介して、湿気が誘電体酸化皮膜層に進入することが緩和される。
【0013】
【実施例】
以下、実施例および比較例を示して本発明をさらに詳しく説明する。
実施例1〜6
りん酸とりん酸アンモニウム水溶液中で化成処理して表面に誘電体酸化皮膜層を形成した45μF/cm のアルミニウムエッチング箔(以下、化成箔と称する。)の小片3mm×3.5mmを用意し、表1に示した金属線を化成箔小片の一端中央部に熔接により接続した。この接続部及び接続面と反対の面の接続部に対応する側に表1に併記した絶縁材を塗布後乾燥硬化した。次に金属線と化成箔を再度りん酸とりん酸アンモニウム水溶液中に入れ化成処理を行い表面に誘電体酸化皮膜層を形成した。つづいて化成箔小片3mm×3.5mmの部分を酢酸鉛三水和物2.4モル/l水溶液と過硫酸アンモニウム4.0モル/l水溶液の混合液に浸漬し、60℃で20分放置し、二酸化鉛と硫酸鉛からなる半導体層を形成した。
このような操作を3回行った後、半導体層上にカーボンペースト及び銀ペーストを順に積層して導電体層を形成し、コンデンサ素子を作製した。一方別に用意したリードフレーム(材質42アロイ、半田メッキ、厚み0.1mm)の陽極リード引出し部と陰極引出し部(各引出し部の幅3.0mm、引出し間隔1mm)に陽極部の金属線と陰極部を載置し、前者は熔接で、後者は銀ペーストで接続した。その後、エポキシ樹脂を用いてトランスファー成形して外形寸法7mm×4mm×3mmのチップ状固体電解コンデンサを作製した。
【0014】
比較例1
実施例1で、化成箔の寸法を3mm×5mmにし、3mm×3.5mmの部分に半導体層、導電体層を形成し、残り3mm×1.5mmの部分を陽極部としてリードフレームの陽極リード引出し部に接続した以外は、実施例1と同様にしてチップ状固体電解コンデンサを作製した。
以上のように作製した直後の固体電解コンデンサの状態及び85℃、85%RHの耐湿テストを200時間行った後のコンデンサの性能を表2に示した。なお、各実施例又は比較例は全数値n=50点の平均値である。
【0015】
【表1】

Figure 0003546451
【0016】
【表2】
Figure 0003546451
【0017】
【発明の効果】
本発明の固体電解コンデンサは、コンデンサ素子の陽極部を金属線とし、陽極リード引出し部と接続しているため、耐湿テスト後の容量とtanδ値の上昇がおさえられる。
【図面の簡単な説明】
【図1】本発明の一例を示すコンデンサ素子の平面図である。
【図2】本発明の一例を示すコンデンサ素子の断面図である。
【図3】コンデンサ素子を陽極リード引出しと陰極リード引出しとに接続した状態を示す平面図である。
【図4】(a)コンデンサ素子を陽極リード引出しと陰極リード引出しとに接続した状態を示す断面図である。
(b)コンデンサ素子を陽極リード引出しと陰極リード引出しとに接続した状態を示す他例の断面図である。
【図5】従来のコンデンサ素子をリードフレームに載置した状態を示す平面図である。
【図6】従来のコンデンサ素子をリードフレームに載置した状態を示す断面図である。
【符号の説明】
1 弁作用金属箔
2 誘電体酸化皮膜層
3 半導体層
4 導電体層
5 固体電解コンデンサ素子 6a リードフレームの一方の凸部(陽極リード引出し部) 6b リードフレームの他方の凸部(陰極リード引出し部)
7 陽極部
8 陰極部
9 熔接
10 導電材 11 金属線 12 絶縁材 13 外装樹脂[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a solid electrolytic capacitor.
[0002]
[Prior art]
As shown in FIGS. 5 and 6, a conventional chip-shaped solid electrolytic capacitor has a flat metal foil 1 made of a valve metal such as aluminum, tantalum or niobium having a dielectric oxide film layer 2 on its surface. A solid electrolytic capacitor element 5 (hereinafter referred to as a capacitor element) is formed by sequentially laminating the semiconductor layer 3 and the conductor layer 4 except for a part that becomes a part, and then the capacitor element 5 is connected to a lead frame 6. Two protrusions 6a and 6b of the lead frame 6 are opposed to each other with a space therebetween, and the anode 7 and the cathode 8 of the capacitor element 5 are mounted on the respective protrusions 6a and 6b.
[0003]
The former is welded 9 or the like, and the latter is electrically and mechanically connected to the protrusions 6a and 6b of the lead frame 6 with a conductive material 10 such as a silver paste, and then sealed with an exterior resin 13 to form a chip. A solid electrolytic capacitor is configured.
The sealed solid electrolytic capacitor is required to satisfy electrical performance such as capacity, and a product that has passed a sampling test such as a load test and a moisture resistance test is defined as a product.
[0004]
[Problems to be solved by the invention]
The above-described capacitor element has a drawback that, at the time of the moisture resistance test, moisture enters from the lead frame and approaches the vicinity of the dielectric oxide film layer of the capacitor element, thereby increasing the capacitance and tan δ value of the manufactured capacitor.
In order to prevent such a drawback, it has been considered to cover the capacitor element with a water-resistant resin. However, there is a problem in workability and cost.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and the gist of the present invention is to connect a metal wire to a valve metal foil having a dielectric oxide film layer on its surface to form an anode portion, An insulating material is applied to a connection portion between the metal foil and the metal foil, and then, a semiconductor layer and a conductor layer are sequentially formed on the metal foil surface to form a cathode portion, and then an anode lead extraction portion and a cathode lead extraction portion of a lead frame. And a method of manufacturing a solid electrolytic capacitor, characterized in that an anode part and a cathode part of the capacitor element are connected to each other and sealed with an exterior resin.
[0006]
Hereinafter, the present invention will be described in detail.
As the valve metal foil used in the present invention, for example, a metal foil having a valve action such as aluminum, tantalum, and an alloy using these as a substrate can be used. Further, the surface area of the valve metal foil may be increased in actual surface area by etching.
The dielectric oxide film layer provided on the surface of the valve metal foil may be an oxide layer of the valve metal itself provided on the surface portion of the valve metal, or may be formed on the surface of the valve metal. The layer may be another dielectric oxide layer provided, but is preferably a layer made of an oxide of the valve metal itself.
[0007]
Next, a metal wire is connected to the valve metal foil thus formed up to the dielectric oxide film layer to form an anode portion, and an insulating material is applied to a connection portion between the metal foil and the metal wire. A method of sequentially forming a semiconductor layer and a conductor layer on the surface of a metal foil to form a cathode portion will be described. FIG. 1 is a plan view showing the capacitor element 5 formed up to the cathode section 8 described above.
FIG. 2 is a sectional view taken along the line AA ′ of FIG.
1 and 2, a dielectric oxide film layer 2 is formed on a surface of a valve metal foil 1, a metal wire 11 is connected thereto, and an insulating material is provided at a connection portion between the metal foil 1 and the metal wire 11. 12 are applied. Further, on the dielectric oxide film layer 2, a semiconductor layer 3 and a conductor layer 4 are sequentially formed.
[0008]
As the material of the metal wire 11, a gold wire having a valve action such as aluminum, tantalum, niobium, titanium, and an alloy using these as a substrate can be used. The cross-sectional shape of the metal wire is a shape such as a circle, an ellipse, and a square. The length and diameter of the metal wire vary depending on the size of the valve metal foil used and the shape of the manufactured solid electrolytic capacitor, and thus are determined by preliminary experiments performed in advance. Further, a conductor oxide film layer may be formed on the metal wire in advance by the above-described method.
The connection between the valve metal foil 1 and the metal wire 11 is made by one or more methods such as welding, conductive paste such as silver paste, and solder.
Further, in the present invention, an insulating material 12 is applied to a connection portion between the valve action metal foil 1 and the metal wire 11. In such a case, it is desirable to apply the insulating material 12 to the surface opposite to the connection surface.
[0009]
Examples of the insulating material include insulating resins such as hydrocarbon resins such as silicone resin, fluororesin, epoxy resin, acrylic resin, alkyd resin and butadiene rubber, phenolic resins and urethane resins, and ceramics such as alumina and silica. Inorganic substances.
In the present invention, the metal wire 11 is connected to the valve metal foil 1 to form an anode portion, and a semiconductor layer is formed on the remaining dielectric oxide film layer except for a part of the anode portion. There is no particular limitation on the type of, and a conventionally known semiconductor layer can be used.
[0010]
Among them, the semiconductor layer composed of lead dioxide and lead sulfate (Japanese Patent Application Laid-Open Nos. 62-256423 and 63-51621), which was filed by the applicant of the present invention, has a high frequency performance of the manufactured solid electrolytic capacitor. Preferred for good.
Further, a method of forming a complex of tetrathiotetracene and chloranil as a semiconductor layer (Japanese Patent Application Laid-Open No. Sho 62-29123) discloses a method of forming a semiconductor layer composed of a conductive polymer compound obtained by doping a dopant into a 5-membered heterocyclic polymer compound. Japanese Unexamined Patent Publication No. 60-37114) is one such example.
A cathode layer 8 is formed by laminating a conventionally known conductive paste such as a carbon paste and / or a silver paste on such a semiconductor layer to form a conductive layer.
[0011]
Next, a method for connecting the capacitor element formed up to the conductor layer to a lead frame will be described. 3 and 4 are a plan view and a sectional view showing a state where the capacitor element 5 is connected to the lead frame 6.
3 and 4, the anode part 7 (11 metal wire) and the cathode part 8 (not shown) of the capacitor element 5 are mounted on the anode lead lead part 6a and the cathode lead lead part 6b of the lead frame 6, respectively. The anode part is connected by welding, conductive paste, solder or the like, while the cathode part is connected by conductive material 10 such as conductive paste or solder.
The capacitor element connected to the lead frame in this manner is sealed and molded with an exterior resin such as an epoxy resin while leaving a part of the lead frame to form a solid electrolytic capacitor.
[0012]
[Action]
Since the connection between the anode part of the capacitor element and the lead frame is made by a metal wire, the penetration of moisture into the dielectric oxide film layer through the lead frame is mitigated.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Examples 1 to 6
A small 3 mm × 3.5 mm piece of a 45 μF / cm 2 aluminum etching foil (hereinafter referred to as a chemical conversion foil) having a dielectric oxide film layer formed on the surface by chemical conversion treatment in an aqueous solution of phosphoric acid and ammonium phosphate is prepared. The metal wires shown in Table 1 were welded to the center of one end of the chemical conversion foil piece. The insulating material described in Table 1 was applied on the side corresponding to the connection part and the surface opposite to the connection part and dried and cured. Next, the metal wire and the chemical conversion foil were again placed in an aqueous solution of phosphoric acid and ammonium phosphate and subjected to a chemical conversion treatment to form a dielectric oxide film layer on the surface. Subsequently, a 3 mm × 3.5 mm portion of the formed foil piece was immersed in a mixed solution of a 2.4 mol / l aqueous solution of lead acetate trihydrate and a 4.0 mol / l aqueous solution of ammonium persulfate, and allowed to stand at 60 ° C. for 20 minutes. Then, a semiconductor layer composed of lead dioxide and lead sulfate was formed.
After such an operation was performed three times, a carbon paste and a silver paste were sequentially laminated on the semiconductor layer to form a conductor layer, and a capacitor element was manufactured. On the other hand, a separately prepared lead frame (material 42 alloy, solder plating, thickness 0.1 mm) has an anode lead lead portion and a cathode lead portion (each lead portion having a width of 3.0 mm and a lead interval of 1 mm). The parts were mounted, and the former was connected by welding and the latter by silver paste. Thereafter, transfer molding was performed using an epoxy resin to produce a chip-shaped solid electrolytic capacitor having an outer dimension of 7 mm × 4 mm × 3 mm.
[0014]
Comparative Example 1
In Example 1, the dimension of the chemical conversion foil was set to 3 mm × 5 mm, and a semiconductor layer and a conductor layer were formed on a portion of 3 mm × 3.5 mm, and the remaining 3 mm × 1.5 mm portion was used as an anode portion to form an anode lead of a lead frame. A chip-shaped solid electrolytic capacitor was produced in the same manner as in Example 1 except that the capacitor was connected to the drawer.
Table 2 shows the state of the solid electrolytic capacitor immediately after being manufactured as described above, and the performance of the capacitor after a humidity resistance test at 85 ° C. and 85% RH for 200 hours. Each example or comparative example is an average value of all numerical values n = 50 points.
[0015]
[Table 1]
Figure 0003546451
[0016]
[Table 2]
Figure 0003546451
[0017]
【The invention's effect】
In the solid electrolytic capacitor of the present invention, since the anode part of the capacitor element is made of a metal wire and connected to the lead part of the anode lead, the capacity and the tan δ value after the moisture resistance test are suppressed from increasing.
[Brief description of the drawings]
FIG. 1 is a plan view of a capacitor element showing an example of the present invention.
FIG. 2 is a sectional view of a capacitor element showing an example of the present invention.
FIG. 3 is a plan view showing a state where a capacitor element is connected to an anode lead drawer and a cathode lead drawer.
FIG. 4A is a cross-sectional view showing a state where a capacitor element is connected to an anode lead drawer and a cathode lead drawer.
(B) It is sectional drawing of the other example which shows the state which connected the capacitor element to the anode lead drawer and the cathode lead drawer.
FIG. 5 is a plan view showing a state where a conventional capacitor element is mounted on a lead frame.
FIG. 6 is a cross-sectional view showing a state where a conventional capacitor element is mounted on a lead frame.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve action metal foil 2 Dielectric oxide film layer 3 Semiconductor layer 4 Conductive layer 5 Solid electrolytic capacitor element 6a One convex part of a lead frame (anode lead lead-out part) 6b The other convex part of a lead frame (a cathode lead lead-out part) )
7 Anode part 8 Cathode part 9 Welding 10 Conductive material 11 Metal wire 12 Insulating material 13 Exterior resin

Claims (4)

表面に誘電体酸化皮膜層を有する弁作用金属箔に弁作用を有する金属線を接続して陽極部とし、該金属線と金属箔との接続部に絶縁材を塗布し、しかる後、金属箔表面に半導体層および導電体層を順次形成して陰極部とし、次いでリードフレームの陽極リード引出し部と陰極リード引出し部とにそれぞれ前記コンデンサ素子の金属線による陽極部と陰極部を接続して外装樹脂で封止成形することを特徴とするチップ状固体電解コンデンサの製造方法。A metal wire having a valve action is connected to a valve action metal foil having a dielectric oxide film layer on the surface to form an anode portion, and an insulating material is applied to a connection portion between the metal wire and the metal foil. A semiconductor layer and a conductor layer are sequentially formed on the surface to form a cathode part, and then an anode part and a cathode part are connected to the anode lead lead-out part and the cathode lead lead-out part of the lead frame by connecting the anode part and the cathode part by the metal wire of the capacitor element, respectively. A method for producing a chip-shaped solid electrolytic capacitor, which is molded by sealing with a resin. 該金属線と金属箔との接続部に絶縁材を塗布し、金属線と金属箔を再度化成処理し、しかる後、金属箔表面に半導体層および導電体層を順次形成して陰極部とすることを特徴とする請求項1に記載のチップ状固体電解コンデンサの製造方法。An insulating material is applied to the connection between the metal wire and the metal foil, and the metal wire and the metal foil are again subjected to a chemical conversion treatment. Thereafter, a semiconductor layer and a conductor layer are sequentially formed on the metal foil surface to form a cathode portion. The method for manufacturing a chip-shaped solid electrolytic capacitor according to claim 1, wherein: 弁作用を有する金属線が、アルミニウム、タンタル、ニオブ、チタン及びこれらを基質とする合金のいずれかの金属線であることを特徴とする請求項1または2に記載のチップ状固体電解コンデンサの製造方法。3. The chip-shaped solid electrolytic capacitor according to claim 1, wherein the metal wire having a valve action is any one of aluminum, tantalum, niobium, titanium and an alloy using these as a substrate. Method. 請求項1乃至3のいずれかに記載の製造方法によって得られたチップ状固体電解コンデンサ。A chip-shaped solid electrolytic capacitor obtained by the manufacturing method according to claim 1.
JP32830093A 1993-12-24 1993-12-24 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JP3546451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32830093A JP3546451B2 (en) 1993-12-24 1993-12-24 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32830093A JP3546451B2 (en) 1993-12-24 1993-12-24 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH07183167A JPH07183167A (en) 1995-07-21
JP3546451B2 true JP3546451B2 (en) 2004-07-28

Family

ID=18208693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32830093A Expired - Lifetime JP3546451B2 (en) 1993-12-24 1993-12-24 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3546451B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10304756B4 (en) * 2003-02-05 2005-04-07 W.C. Heraeus Gmbh Oxygenated niobium wire
DE102004032128B4 (en) 2003-10-17 2010-10-14 W.C. Heraeus Gmbh Metallic material, method of manufacture and use

Also Published As

Publication number Publication date
JPH07183167A (en) 1995-07-21

Similar Documents

Publication Publication Date Title
EP1439556A1 (en) Solid-state electrolytic capacitor and its manufacturing method
JP3920670B2 (en) Solid electrolytic capacitor
JP2001267181A (en) Chip type solid electrolytic capacitor
JP3557564B2 (en) Multilayer solid electrolytic capacitors
US7349197B2 (en) Method for manufacturing capacitor element for solid electrolytic capacitor, method for manufacturing solid electrolytic capacitor using such capacitor element and solid electrolytic capacitor using such capacitor element
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
JP3463692B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JP3433478B2 (en) Solid electrolytic capacitors
JP2001035752A (en) Solid electrolytic capacitor
JPH05234829A (en) Solid electrolytic capacitor
JP2001126958A (en) Chip-type solid electrolytic capacitor
JPH05175085A (en) Chip-shaped solid electrolytic capacitor
JP3433490B2 (en) Chip-shaped solid electrolytic capacitors
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JP3208875B2 (en) Chip-shaped solid electrolytic capacitor and its manufacturing method
JPH10335187A (en) Solid electrolytic capacitor and its manufacturing method
JP3441095B2 (en) Solid electrolytic capacitors
JPH0533000Y2 (en)
KR900004257B1 (en) Electrolytic capacitor
JPH04354318A (en) Production of chip-shaped solid-state electrolytic capacitor
JP2596996B2 (en) Method for manufacturing solid electrolytic capacitor
JPH07192973A (en) Chip solid electrolytic capacitor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

EXPY Cancellation because of completion of term