JP3433478B2 - Solid electrolytic capacitors - Google Patents

Solid electrolytic capacitors

Info

Publication number
JP3433478B2
JP3433478B2 JP24331793A JP24331793A JP3433478B2 JP 3433478 B2 JP3433478 B2 JP 3433478B2 JP 24331793 A JP24331793 A JP 24331793A JP 24331793 A JP24331793 A JP 24331793A JP 3433478 B2 JP3433478 B2 JP 3433478B2
Authority
JP
Japan
Prior art keywords
anode
cathode
lead
capacitor element
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24331793A
Other languages
Japanese (ja)
Other versions
JPH07106204A (en
Inventor
一美 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24331793A priority Critical patent/JP3433478B2/en
Publication of JPH07106204A publication Critical patent/JPH07106204A/en
Application granted granted Critical
Publication of JP3433478B2 publication Critical patent/JP3433478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、耐熱特性の良好な固体
電解コンデンサに関する。 【0002】 【従来の技術】従来の固体電解コンデンサは、表面に誘
電体酸化皮膜層を有するアルミニウム、タンタル、ニオ
ブ等の弁作用金属の一部を陽極部とし、残部に半導体
層、及び導電体層を順次形成して陰極部とし、陽極部と
陰極部との界面に絶縁樹脂層部を形成してコンデンサ素
子とし、次いでこのコンデンサ素子とリードフレームを
図3、図4のように接続している。図3はコンデンサ素
子2とリードフレーム1の接続関係を示した平面図であ
り、図4はその断面図である。リードフレームの互いに
向き合った凸部1a、1bに各々、前記コンデンサ素子
2の陽極部3と陰極部4を載置し、前者は熔接等で後者
は銀ペースト等で、リードフレーム1の凸部に電気的、
機械的に接続した後、外装樹脂で封止成形を行って製作
されている。一方、作製した固体電解コンデンサは、半
田耐熱性テスト等の種々の信頼性テストを行い合格した
ものを製品としている。 【0003】 【発明が解決しようとする課題】しかしながら、従来の
リードフレームを陰極端子及び陽極端子に用いて外装樹
脂で封止成形した固体電解コンデンサを半田耐熱性テス
トすると、半田温度が高温の場合、LC値の上昇を招い
ていた。このような性能の劣化は、熱応力によるコンデ
ンサ素子の破壊が原因と考えられ、これを防ぐために
は、コンデンサ素子を弾性樹脂等で覆うことにより応力
緩和させることが考えられていた。ところが弾性樹脂等
の硬化時の硬化収縮が大きくなるため、コンデンサ素子
に又別の応力がかかり、結果としてtanδ値が上昇す
るという欠点があった。特に、固体電解コンデンサの高
周波でのtanδ値の上昇が大きく、前述した耐熱性と
tanδ値の両方の性能を向上させることは困難だっ
た。本発明は、これら課題を解決し耐熱性能の良い、固
体電解コンデンサの製造方法を提供することを目的とす
る。 【0004】 【課題を解決するための手段】本発明者等は前述した課
題を解決するために鋭意研究した結果、半田耐熱テスト
時の熱応力によるコンデンサ素子の破壊の原因が、リー
ドフレームの陰極引出し部の先端部がコンデンサ素子の
陰極部に及ぼす応力であることを見出し、本発明を完成
するに至った。 【0005】即ち、本発明の要旨は、弁作用を有し表面
に誘電体酸化皮膜層が形成された陽極基体の一部を陽極
部とし、残部に半導体層、その上に導電体層を順次形成
して陰極部とし、陽極部と陰極部との界面に絶縁樹脂層
部を形成してコンデンサ素子とし、次いでリードフレー
ムの陰極リード引出し部と陽極リード引出し部とにそれ
ぞれコンデンサ素子の陰極部と陽極部を接続して、外装
樹脂で封止成形した固体電解コンデンサにおいて、前記
陰極リード引出し部の先端部が前記絶縁樹脂層部に位置
することを特徴とする固体電解コンデンサである。 【0006】本発明において固体電解コンデンサの陽極
として用いられる弁作用を有する陽極基体としては、例
えばアルミニウム、タンタル、及びこれらを基質とする
合金等、弁作用を有する金属がいずれも使用できる。そ
して、陽極基体の形状としては、アルミニウムの箔や、
板状または棒状のタンタル燒結体等が挙げられる。陽極
基体の表面に設ける誘電体酸化皮膜層は、弁作用金属の
表面部に設けられた弁作用金属自体の酸化物層であって
も良く、あるいは弁作用金属の表面上に設けられた他の
誘電体酸化物の層であっても良いが、特に弁作用金属自
体の酸化物からなる層であることが望ましい。いずれの
場合にも、酸化物層を設ける方法としては、電解液を用
いた陽極化成法など従来公知の方法を用いることができ
る。 【0007】誘電体酸化皮膜層上には陽極部を形成する
部分を選択的に露出させておき、該陽極部に接して絶縁
樹脂層部を形成する。絶縁樹脂層部に使用される絶縁樹
脂の種類として、例えばフッ素樹脂、アクリル樹脂、ア
ルキッド樹脂、セルロース樹脂、フェノール樹脂、シリ
コン樹脂、ブタジエン樹脂、エポキシ樹脂等、従来公知
の樹脂があげられる。 【0008】絶縁樹脂層部の大きさは、通常0.1乃至
5mmの幅であり、陽極基体に鉢巻状に形成することに
よって、前述した陽極部と後述する陰極部を分離する。
尚図1〜図4においては、理解を容易にするため絶縁樹
脂層部5を大きめに示してある。陰極部には、半導体
層、その上に導電体層が順次形成される。半導体層の種
類には特に制限はなく、従来公知の半導体層が使用でき
るが、とりわけ、本願出願人の出願による二酸化鉛、ま
たは二酸化鉛と硫酸鉛とからなる半導体層(特開昭62
−256423号公報、特開昭63−51621号公
報)は作製した固体電解コンデンサの高周波性能が良好
なため好ましい。また、酸化剤と有機酸を用いて気相重
合によって、ポリアニリン、ポリピロール等の電導性高
分子化合物を形成した半導体層(特開昭62−4710
9号公報)やタリウムイオン及び過硫酸イオンを含んだ
反応母液から化学的に酸化第2タリウムを析出させた半
導体層(特開昭62−38715号公報)もその一例で
ある。この半導体層には、例えばカーボンペースト及び
/または銀ペースト等の従来公知の導電ペーストを積層
して導電体層を形成して陰極部が設けられる。 【0009】上述のコンデンサ素子を接続するリードフ
レームは、図1、図2で示したようにリードフレーム1
の陰極引出し部1bの先端が、コンデンサ素子2の絶縁
樹脂層部5にあることが肝要である。図1は、前述した
コンデンサ素子2の陰極部4及び陽極部3を各々リード
フレーム1の陰極引出し部1b及び陽極引出し部1aに
載置した平面図であり、図2はその断面図である。前述
したコンデンサ素子2の陰極部4とリードフレーム1の
陰極引出し部1bとの接合は導電ペーストまたは半田等
で、コンデンサ素子2の陽極部3とリードフレーム1の
陽極引出し部1aとの接合は熔接等で接続する。 【0010】本発明において使用されるリードフレーム
の材質は、例えば、青銅、銅、鉄ニッケル合金等、通常
公知のリードフレーム用金属が使用される。リードフレ
ームの表面に、数μmの半田メッキ、または錫メッキを
施しておいても良い。このようにしてリードフレームに
接続された固体電解コンデンサ素子は、エポキシ樹脂等
の外装樹脂によってトランスファー成形等で封止成形を
行った後、リードフレームの凸部を外装樹脂の近辺で切
断して陽極リードと陰極リードを形成し、固体電解コン
デンサとなる。 【0011】 【作用】リードフレームの陰極引出し部の先端部をコン
デンサ素子の絶縁樹脂層部に設けることにより、半田耐
熱テスト時の熱応力によるコンデンサの劣化を減少させ
ることができるものと考えられる。 【0012】 【実施例】以下、実施例及び比較例を示して本発明を更
に詳しく説明する。 実施例1〜5 りん酸とりん酸アンモニウム水溶液中で化成処理した表
面に誘電体酸化皮膜層を形成した45μF/cm2 のア
ルミニウムエッチング箔(以下、化成箔と称する)の小
片5mm×3mmを用意し、端から1mm×3mm部を
陽極部とし、この陽極部に接した1mm×3mmの部分
に表1に示した絶縁樹脂で絶縁樹脂層部を形成した。小
片の残り3mm×3mm部分を酢酸鉛三水和物2.4モ
ル/lの水溶液と過硫酸アンモニウム4.0モル/l水
溶液の混合液に浸漬させ60℃で20分放置し、二酸化
鉛と硫酸鉛からなる半導体層を形成した。このような操
作を3回繰り返した後、半導体層上にカーボンペースト
及び銀ペーストを順に積層して陰極部を形成し、コンデ
ンサ素子を作製した。一方、幅3.2mmの凸部が対向
して2ケ所あり、凸部間隔が0.5mmである材質が鉄
Ni合金で厚みが0.1mmのリードフレームを用意
し、凸部の一方の先端をコンデンサ素子の絶縁樹脂層部
の中心に他方の先端をコンデンサ素子の陽極部の内端に
配置し、コンデンサ素子の陰極部との接続を銀ペースト
で、またコンデンサ素子の陽極部との接続を熔接で接続
した後、エポキシ樹脂でトランスファー成形により外装
して固体電解コンデンサを作成した。 【0013】比較例1〜2 実施例1及び2で、凸部間隔が1.5mmであるリード
フレームを用意し、凸部の一方の先端をコンデンサ素子
の陰極部に他方の先端をコンデンサ素子の陽極部の内端
に載置した以外は、実施例1及び2と同様にして固体電
解コンデンサを作成した。以上のように作製した、実施
例1〜5及び比較例1〜2の固体電解コンデンサの性能
及び240℃の半田浴に30秒間浸漬した耐熱テスト後
のtanδ値およびLC値を表2にまとめて示した。な
お、全数値は、n=30点の平均値である。 【0014】 【表1】 【0015】 【表2】 【0016】 【発明の効果】本発明の固体電解コンデンサは、リード
フレームの陰極リード引出し部の先端部がコンデンサ素
子の絶縁樹脂層部に位置しているので耐熱性が極めて良
好である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor having good heat resistance. 2. Description of the Related Art A conventional solid electrolytic capacitor has, as an anode, a portion of a valve metal such as aluminum, tantalum or niobium having a dielectric oxide film layer on the surface, and a semiconductor layer and a conductor as the remainder. The layers are sequentially formed to form a cathode portion, and an insulating resin layer portion is formed at the interface between the anode portion and the cathode portion to form a capacitor element. Then, this capacitor element and a lead frame are connected as shown in FIGS. I have. FIG. 3 is a plan view showing a connection relationship between the capacitor element 2 and the lead frame 1, and FIG. 4 is a sectional view thereof. The anode section 3 and the cathode section 4 of the capacitor element 2 are mounted on the facing projections 1a and 1b of the lead frame, respectively. The former is welded or the like and the latter is made of silver paste or the like. Electrical,
After mechanical connection, it is manufactured by performing encapsulation with an exterior resin. On the other hand, the manufactured solid electrolytic capacitor is a product that has passed various reliability tests such as a solder heat resistance test and passed. [0005] However, when a solid electrolytic capacitor sealed and molded with an exterior resin using a conventional lead frame for a cathode terminal and an anode terminal is subjected to a solder heat resistance test, it is found that the solder temperature is high. , The LC value increased. Such deterioration in performance is considered to be caused by destruction of the capacitor element due to thermal stress. To prevent this, it has been considered that the stress is relaxed by covering the capacitor element with an elastic resin or the like. However, since the curing shrinkage during curing of the elastic resin or the like becomes large, another stress is applied to the capacitor element, and as a result, the tan δ value increases. In particular, the rise of the tan δ value at high frequencies of the solid electrolytic capacitor is large, and it has been difficult to improve both the heat resistance and the tan δ value described above. An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor which solves these problems and has good heat resistance performance. The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, the cause of the destruction of the capacitor element due to thermal stress during the soldering heat test is that the lead frame cathode is The present inventors have found that the tip of the lead portion exerts a stress on the cathode portion of the capacitor element, and have completed the present invention. [0005] That is, the gist of the present invention is that a part of an anode substrate having a valve action and having a dielectric oxide film layer formed on its surface is used as an anode part, a semiconductor layer is formed on the remaining part, and a conductor layer is formed thereon. Formed as a cathode part, an insulating resin layer part is formed at the interface between the anode part and the cathode part to form a capacitor element, and then the cathode part of the lead element and the anode lead part of the lead frame are respectively connected to the cathode part of the capacitor element. A solid electrolytic capacitor in which an anode portion is connected and sealed with an exterior resin, wherein a tip of the cathode lead lead-out portion is located in the insulating resin layer portion. As the anode substrate having a valve action used as the anode of the solid electrolytic capacitor in the present invention, any metal having a valve action such as aluminum, tantalum, and alloys using these as a substrate can be used. And as the shape of the anode substrate, aluminum foil,
A plate-like or rod-like sintered tantalum body is exemplified. The dielectric oxide film layer provided on the surface of the anode substrate may be an oxide layer of the valve metal itself provided on the surface portion of the valve metal, or may be another oxide layer provided on the surface of the valve metal. It may be a dielectric oxide layer, but is preferably a layer made of an oxide of the valve metal itself. In any case, as a method for providing the oxide layer, a conventionally known method such as an anodizing method using an electrolytic solution can be used. A portion for forming an anode portion is selectively exposed on the dielectric oxide film layer, and an insulating resin layer portion is formed in contact with the anode portion. Examples of the type of insulating resin used for the insulating resin layer include conventionally known resins such as a fluororesin, an acrylic resin, an alkyd resin, a cellulose resin, a phenol resin, a silicone resin, a butadiene resin, and an epoxy resin. The size of the insulating resin layer portion is usually 0.1 to 5 mm in width, and the above-mentioned anode portion and the later-described cathode portion are separated by forming a headband shape on the anode substrate.
In FIGS. 1 to 4, the insulating resin layer portion 5 is shown larger in order to facilitate understanding. In the cathode portion, a semiconductor layer and a conductor layer thereon are sequentially formed. The type of the semiconductor layer is not particularly limited, and a conventionally known semiconductor layer can be used. In particular, a semiconductor layer composed of lead dioxide or lead dioxide and lead sulfate (Japanese Patent Application Laid-Open No.
JP-A-256423 and JP-A-63-51621) are preferable because the high frequency performance of the manufactured solid electrolytic capacitor is good. Further, a semiconductor layer in which a conductive polymer compound such as polyaniline or polypyrrole is formed by gas phase polymerization using an oxidizing agent and an organic acid (Japanese Patent Application Laid-Open No. 62-4710)
No. 9) and a semiconductor layer in which thallium oxide is chemically precipitated from a reaction mother liquor containing thallium ions and persulfate ions (JP-A-62-38715) are also examples. This semiconductor layer is provided with a cathode portion by laminating a conventionally known conductive paste such as a carbon paste and / or a silver paste to form a conductor layer. As shown in FIGS. 1 and 2, the lead frame for connecting the above-described capacitor element
It is important that the tip of the cathode lead-out portion 1b is located in the insulating resin layer portion 5 of the capacitor element 2. FIG. 1 is a plan view in which the cathode part 4 and the anode part 3 of the above-described capacitor element 2 are mounted on the cathode lead part 1b and the anode lead part 1a of the lead frame 1, respectively, and FIG. 2 is a sectional view thereof. The connection between the cathode portion 4 of the capacitor element 2 and the cathode lead portion 1b of the lead frame 1 is made of a conductive paste or solder, and the connection between the anode portion 3 of the capacitor element 2 and the anode lead portion 1a of the lead frame 1 is welding. And so on. As the material of the lead frame used in the present invention, for example, a commonly known lead frame metal such as bronze, copper, iron-nickel alloy and the like is used. The surface of the lead frame may be subjected to solder plating or tin plating of several μm. The solid electrolytic capacitor element connected to the lead frame in this way is sealed with transfer molding or the like using an exterior resin such as an epoxy resin, and then the convex portion of the lead frame is cut near the exterior resin to form an anode. A lead and a cathode lead are formed to form a solid electrolytic capacitor. It is considered that the deterioration of the capacitor due to the thermal stress at the time of the soldering heat test can be reduced by providing the tip of the cathode lead portion of the lead frame on the insulating resin layer portion of the capacitor element. The present invention will be described below in more detail with reference to examples and comparative examples. Examples 1 to 5 A small 5 mm × 3 mm piece of a 45 μF / cm 2 aluminum etching foil (hereinafter referred to as a chemical conversion foil) having a dielectric oxide film layer formed on a surface subjected to a chemical conversion treatment in an aqueous solution of phosphoric acid and ammonium phosphate was prepared. A 1 mm × 3 mm portion from the end was used as an anode portion, and an insulating resin layer portion was formed with an insulating resin shown in Table 1 on a 1 mm × 3 mm portion in contact with the anode portion. The remaining 3 mm × 3 mm portion of the small piece was immersed in a mixed solution of an aqueous solution of lead acetate trihydrate 2.4 mol / l and an aqueous solution of ammonium persulfate 4.0 mol / l, and allowed to stand at 60 ° C. for 20 minutes. A semiconductor layer made of lead was formed. After such an operation was repeated three times, a carbon paste and a silver paste were sequentially laminated on the semiconductor layer to form a cathode portion, thereby producing a capacitor element. On the other hand, a lead frame having a width of 3.2 mm opposed to two places, and a material having an interval of 0.5 mm between the projections of 0.5 mm, made of an iron-Ni alloy and having a thickness of 0.1 mm, is prepared. Is placed at the center of the insulating resin layer part of the capacitor element, the other end is placed at the inner end of the anode part of the capacitor element, the connection with the cathode part of the capacitor element is made of silver paste, and the connection with the anode part of the capacitor element is made. After being connected by welding, the package was formed by transfer molding with an epoxy resin to form a solid electrolytic capacitor. Comparative Examples 1 and 2 In Examples 1 and 2, a lead frame having a protrusion interval of 1.5 mm was prepared. One end of the protrusion was the cathode of the capacitor element and the other end was the capacitor element. A solid electrolytic capacitor was prepared in the same manner as in Examples 1 and 2, except that the capacitor was mounted on the inner end of the anode. Table 2 summarizes the performance of the solid electrolytic capacitors of Examples 1 to 5 and Comparative Examples 1 and 2 and the tan δ value and LC value after the heat resistance test immersed in a 240 ° C. solder bath for 30 seconds. Indicated. Note that all numerical values are average values of n = 30 points. [Table 1] [Table 2] The solid electrolytic capacitor of the present invention has very good heat resistance since the tip of the cathode lead lead-out portion of the lead frame is located in the insulating resin layer portion of the capacitor element.

【図面の簡単な説明】 【図1】リードフレームにコンデンサ素子を載置した状
態を示す平面図である。 【図2】リードフレームにコンデンサ素子を載置した状
態を示す断面図である。 【図3】従来のコンデンサ素子をリードフレームの接続
した状態を示す平面図である。 【図4】従来のコンデンサ素子をリードフレームに接続
した状態を示す断面図である。 【符号の説明】 1 リードフレーム 1a リードフレームの凸部 1b リードフレームの凸部 2 コンデンサ素子 3 陽極部 4 陰極部 5 絶縁性樹脂層部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing a state where a capacitor element is mounted on a lead frame. FIG. 2 is a cross-sectional view showing a state where a capacitor element is mounted on a lead frame. FIG. 3 is a plan view showing a state where a conventional capacitor element is connected to a lead frame. FIG. 4 is a cross-sectional view showing a state where a conventional capacitor element is connected to a lead frame. [Description of Signs] 1 Lead frame 1a Projection 1b of lead frame Projection 2 of lead frame 2 Capacitor element 3 Anode 4 Cathode 5 Insulating resin layer

Claims (1)

(57)【特許請求の範囲】 【請求項1】 弁作用を有し表面に誘電体酸化皮膜層が
形成された陽極基体の一部を陽極部とし、残部に半導体
層、その上に導電体層を順次形成して陰極部とし、陽極
部と陰極部との界面に絶縁樹脂層部を形成してコンデン
サ素子とし、次いでリードフレームの陰極リード引出し
部と陽極リード引出し部とにそれぞれ前記コンデンサ素
子の陰極部と陽極部を接続して、外装樹脂で封止成形し
た固体電解コンデンサにおいて、前記陰極リード引出し
部の先端部が前記絶縁樹脂層部に位置することを特徴と
する固体電解コンデンサ。
(57) [Claims 1] A part of an anode substrate having a valve action and having a dielectric oxide film layer formed on a surface is used as an anode part, the remainder is a semiconductor layer, and a conductor is provided thereon. The layers are sequentially formed to form a cathode portion, an insulating resin layer portion is formed at the interface between the anode portion and the cathode portion to form a capacitor element, and then the capacitor elements are formed on a cathode lead extraction portion and an anode lead extraction portion of a lead frame, respectively. A solid electrolytic capacitor obtained by connecting a cathode part and an anode part and sealingly molding with an exterior resin, wherein a tip end of the cathode lead lead-out part is located in the insulating resin layer part.
JP24331793A 1993-09-29 1993-09-29 Solid electrolytic capacitors Expired - Lifetime JP3433478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24331793A JP3433478B2 (en) 1993-09-29 1993-09-29 Solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24331793A JP3433478B2 (en) 1993-09-29 1993-09-29 Solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH07106204A JPH07106204A (en) 1995-04-21
JP3433478B2 true JP3433478B2 (en) 2003-08-04

Family

ID=17102042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24331793A Expired - Lifetime JP3433478B2 (en) 1993-09-29 1993-09-29 Solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3433478B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870727B2 (en) 2002-10-07 2005-03-22 Avx Corporation Electrolytic capacitor with improved volumetric efficiency
US8199462B2 (en) 2008-09-08 2012-06-12 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
US8075640B2 (en) 2009-01-22 2011-12-13 Avx Corporation Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
US8139344B2 (en) 2009-09-10 2012-03-20 Avx Corporation Electrolytic capacitor assembly and method with recessed leadframe channel

Also Published As

Publication number Publication date
JPH07106204A (en) 1995-04-21

Similar Documents

Publication Publication Date Title
US6865070B2 (en) Solid electrolytic capacitor
JP3433478B2 (en) Solid electrolytic capacitors
JP3314480B2 (en) Solid electrolytic capacitors
JP3441088B2 (en) Method for manufacturing solid electrolytic capacitor
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001126958A (en) Chip-type solid electrolytic capacitor
JP3123232B2 (en) Multilayer solid electrolytic capacitors
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
JP3168584B2 (en) Solid electrolytic capacitors
JP3932191B2 (en) Solid electrolytic capacitor
JP3976055B2 (en) Solid electrolytic capacitor
JP3294361B2 (en) Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JPH04284617A (en) Manufacture of solid electrolytic capacitor
JP3433490B2 (en) Chip-shaped solid electrolytic capacitors
JP3208875B2 (en) Chip-shaped solid electrolytic capacitor and its manufacturing method
JPH04360508A (en) Manufacture of solid-state electrolytic capacitor
JP3424269B2 (en) Chip-shaped solid electrolytic capacitors
JPH04354318A (en) Production of chip-shaped solid-state electrolytic capacitor
JPH08153650A (en) Manufacture of solid-state electrolytic capacitor
JPH06349689A (en) Solid electrolytic capacitor
JPH10125558A (en) Solid-state capacitor using conductive functional high polymer film as solid electrolyte
JP3185275B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JPH08316103A (en) Aluminum solid capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 11

EXPY Cancellation because of completion of term