JP3475055B2 - Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode - Google Patents

Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode

Info

Publication number
JP3475055B2
JP3475055B2 JP26395997A JP26395997A JP3475055B2 JP 3475055 B2 JP3475055 B2 JP 3475055B2 JP 26395997 A JP26395997 A JP 26395997A JP 26395997 A JP26395997 A JP 26395997A JP 3475055 B2 JP3475055 B2 JP 3475055B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
copper powder
hydrogen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26395997A
Other languages
Japanese (ja)
Other versions
JPH11102706A (en
Inventor
洋平 廣田
信幸 東山
菊子 加藤
輝彦 井本
衛 木本
伸 藤谷
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26395997A priority Critical patent/JP3475055B2/en
Publication of JPH11102706A publication Critical patent/JPH11102706A/en
Application granted granted Critical
Publication of JP3475055B2 publication Critical patent/JP3475055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ニッケル・水素
蓄電池等のアルカリ二次電池において、その負極に使用
される水素吸蔵合金電極に混入させる水素吸蔵合金電極
用導電剤及びこのような導電剤を混入させた水素吸蔵合
金電極に関するものであり、特に、水素吸蔵合金に混入
させる導電剤を改良し、水素吸蔵合金電極における導電
性を高めて、このような水素吸蔵合金電極を用いたアル
カリ二次電池における放電特性、特に高密度電流で放電
特性を向上させる点に特徴を有するものである。
TECHNICAL FIELD The present invention relates to a conductive agent for a hydrogen storage alloy electrode to be mixed with a hydrogen storage alloy electrode used for the negative electrode of an alkaline secondary battery such as a nickel-hydrogen storage battery, and such a conductive agent. The present invention relates to a mixed hydrogen-absorbing alloy electrode, in particular, by improving a conductive agent mixed in the hydrogen-absorbing alloy to enhance conductivity in the hydrogen-absorbing alloy electrode, an alkaline secondary using such a hydrogen-absorbing alloy electrode. It is characterized by improving discharge characteristics in a battery, particularly discharge characteristics at high density current.

【0002】[0002]

【従来の技術】従来より、アルカリ二次電池の一つとし
て、ニッケル・水素蓄電池が知られており、このニッケ
ル・水素蓄電池においては、一般にその負極に水素吸蔵
合金を用いた水素吸蔵合金電極が使用されていた。
2. Description of the Related Art Conventionally, a nickel-hydrogen storage battery has been known as one of alkaline secondary batteries. In this nickel-hydrogen storage battery, a hydrogen storage alloy electrode using a hydrogen storage alloy for its negative electrode is generally used. Had been used.

【0003】ここで、このような水素吸蔵合金電極を用
いたアルカリ二次電池においては、水素吸蔵合金電極に
おける放電性能を向上させるため、従来より、水素吸蔵
合金中に導電剤を混入させて、水素吸蔵合金粒子間にお
ける導電性を高め、その内部抵抗を小さくさせるように
していた。
Here, in an alkaline secondary battery using such a hydrogen storage alloy electrode, in order to improve the discharge performance of the hydrogen storage alloy electrode, conventionally, a conductive agent is mixed in the hydrogen storage alloy, It has been attempted to increase the conductivity between the hydrogen storage alloy particles and reduce their internal resistance.

【0004】そして、このように水素吸蔵合金中に混入
させる導電剤として、従来においては、一般に球状の銅
粉やニッケル粉が使用されており、また近年において
は、特開平4−262367号公報に示されるように、
フレーク状ニッケルパウダーを使用することが提案され
ている。
As the conductive agent to be mixed in the hydrogen storage alloy, spherical copper powder or nickel powder has been generally used in the past, and in recent years, it has been disclosed in Japanese Patent Laid-Open No. 4-262367. As shown
It has been proposed to use flake nickel powder.

【0005】しかし、上記のような球状銅粉や球状ニッ
ケル粉やフレーク状ニッケルパウダーからなる導電剤を
水素吸蔵合金中に混入させた場合においても、これらの
導電剤と水素吸蔵合金との密着性が十分ではなく、水素
吸蔵合金電極における導電性を十分に向上させることが
できず、このため、このような水素吸蔵合金電極を用い
たアルカリ二次電池における放電特性が十分に向上され
ず、特に、高密度電流での放電特性が悪く、高密度電流
での放電時における放電容量や電池電圧が低下するとい
う問題があった。
However, even when a conductive agent made of spherical copper powder, spherical nickel powder or flake nickel powder as described above is mixed in the hydrogen storage alloy, the adhesion between these conductive agent and the hydrogen storage alloy is high. Is not sufficient, it is not possible to sufficiently improve the conductivity in the hydrogen storage alloy electrode, for this reason, the discharge characteristics in the alkaline secondary battery using such a hydrogen storage alloy electrode is not sufficiently improved, However, there is a problem in that the discharge characteristics at high density current are poor and the discharge capacity and battery voltage at the time of discharge at high density current are reduced.

【0006】[0006]

【発明が解決しようとする課題】この発明は、ニッケル
・水素蓄電池等のアルカリ二次電池の負極に使用する水
素吸蔵合金電極における上記のような様々な問題を解決
することを課題とするものであり、水素吸蔵合金中に混
入させる導電剤を改良し、この導電剤と水素吸蔵合金と
の密着性を向上させて、水素吸蔵合金電極における導電
性を高め、この水素吸蔵合金電極を使用したアルカリ二
次電池における放電特性、特に高電流密度での放電特性
を向上させることを課題とするものである。
SUMMARY OF THE INVENTION The present invention is intended to solve various problems as described above in the hydrogen storage alloy electrode used as the negative electrode of the alkaline secondary battery such as nickel-hydrogen storage battery. Yes, improve the conductive agent mixed in the hydrogen storage alloy, improve the adhesion between the conductive agent and the hydrogen storage alloy, enhance the conductivity in the hydrogen storage alloy electrode, alkali using this hydrogen storage alloy electrode It is an object to improve the discharge characteristics of a secondary battery, particularly the discharge characteristics at high current density.

【0007】[0007]

【課題を解決するための手段】この発明の請求項1にお
ける水素吸蔵合金電極用導電剤においては、上記のよう
な課題を解決するため、水素吸蔵合金中に混入させる導
電剤として、平坦面を有するフレーク状銅粉を用い、
のフレーク状銅粉の表面の少なくとも一部を銅の酸化物
で被覆するようにしたのである。
In order to solve the above-mentioned problems, in the conductive agent for a hydrogen storage alloy electrode according to claim 1 of the present invention, a flat surface is used as the conductive agent mixed in the hydrogen storage alloy. the flaky copper powder having used this
At least part of the surface of the flake-shaped copper powder of copper oxide
It was covered with .

【0008】 ここで、この請求項1に示すように、水素
吸蔵合金中に混入させる導電剤に平坦面をし、かつ、
表面の少なくとも一部を銅の酸化物で被覆するようにし
たフレーク状銅粉を用いると、このフレーク状銅粉の平
坦面の部分が水素吸蔵合金粒子の表面に接触すると共
に、このフレーク状銅粉の延性によってフレーク状銅粉
が水素吸蔵合金粒子の表面にうまく密着する。
[0008] Here, as shown in claim 1, have a flat surface on the conductive agent to be mixed in the hydrogen-absorbing alloy, and,
When flake-shaped copper powder is used, in which at least a part of the surface is coated with copper oxide, the flat surface portion of the flake-shaped copper powder comes into contact with the surface of the hydrogen storage alloy particles, and the flake-shaped copper powder Due to the ductility of the powder, the flaky copper powder adheres well to the surface of the hydrogen storage alloy particles.

【0009】さらに、フレーク状銅粉の表面に設けられ
た銅の酸化物が水素吸蔵合金粒子と接触した 状態とな
り、この状態で充電を行なうと、水素吸蔵合金と接触す
る面において、フレーク状銅粉の表面に形成された銅の
酸化物が導電性の高い銅に還元されると共に水素吸蔵合
金粒子と一体的になって、フレーク状銅粉と水素吸蔵合
金粒子との密着性が高まり、水素吸蔵合金電極における
導電性が向上する。
Further, it is provided on the surface of the flaky copper powder.
When the copper oxide is in contact with the hydrogen storage alloy particles and charging is performed in this state, the copper oxide formed on the surface of the flaky copper powder becomes conductive on the surface in contact with the hydrogen storage alloy. Of the hydrogen-absorbing alloy particles together with the hydrogen-absorbing alloy particles, the adhesion between the flaky copper powder and the hydrogen-absorbing alloy particles is enhanced, and the conductivity of the hydrogen-absorbing alloy electrode is improved.

【0010】ここで、水素吸蔵合金中に混入させるフレ
ーク状銅粉が大きすぎると、水素吸蔵合金粒子と接触し
ない無駄な部分が生じる一方、フレーク状銅粉が小さす
ぎると、このフレーク状銅粉と水素吸蔵合金粒子との密
着部分が少なくなり、いずれの場合においても、水素吸
蔵合金電極における導電性を十分に向上させることがで
きなくなるため、フレーク状銅粉としては、その平均直
径が2〜20μmの範囲のものを用いるようにすること
が好ましい。
Here, if the flaky copper powder mixed in the hydrogen storage alloy is too large, a useless portion that does not come into contact with the hydrogen storage alloy particles is produced, while if the flake copper powder is too small, the flaky copper powder is produced. And the hydrogen-occlusion alloy particles have a reduced adhesion portion, and in any case, the conductivity of the hydrogen-occlusion alloy electrode cannot be sufficiently improved, so that the flaky copper powder has an average diameter of 2 to It is preferable to use one having a range of 20 μm.

【0011】また、このフレーク状銅粉の厚みが薄くな
り過ぎると、水素吸蔵合金粒子との接触性が悪くなる一
方、このフレーク状銅粉の厚みが厚くなり過ぎると、水
素吸蔵合金粒子の形状に沿った変形が起こりにくくなっ
て、水素吸蔵合金粒子との密着性が悪くなり、いずれの
場合においても、水素吸蔵合金電極の導電性を十分に向
上させることができなくなるため、フレーク状銅粉とし
ては、その厚みが0.1〜2.0μmの範囲のものを用
いるようにすることが好ましい。
Further, if the thickness of the flake-shaped copper powder is too thin, the contact property with the hydrogen storage alloy particles is deteriorated, while if the thickness of the flake-shaped copper powder is too thick, the shape of the hydrogen storage alloy particles is increased. Along with the hydrogen-absorbing alloy particles, the adhesion with the hydrogen-absorbing alloy particles deteriorates, and in any case, the conductivity of the hydrogen-absorbing alloy electrode cannot be sufficiently improved. It is preferable to use one having a thickness of 0.1 to 2.0 μm.

【0012】また、上記のようなフレーク状銅粉を水素
吸蔵合金中に混入させるにあたり、その量が少ないと、
水素吸蔵合金電極における導電性を十分に向上させるこ
とができない一方、その量が多くなり過ぎると、水素吸
蔵合金粒子の表面の多くがこのフレーク状銅粉によって
覆われるようになり、電解液との接触によって電極反応
が生じる水素吸蔵合金の有効な面積が減少し、これによ
って放電容量が低くなるため、水素吸蔵合金中にこのフ
レーク状銅粉を10〜20重量%の範囲で添加させるこ
とが好ましい。
In addition, when the flake-like copper powder as described above is mixed in the hydrogen storage alloy, if the amount is small,
While it is not possible to sufficiently improve the conductivity in the hydrogen storage alloy electrode, if the amount becomes too large, many of the surfaces of the hydrogen storage alloy particles will be covered by the flaky copper powder, and Since the effective area of the hydrogen storage alloy in which the electrode reaction occurs due to the contact is reduced and the discharge capacity is reduced thereby, it is preferable to add the flaky copper powder in the hydrogen storage alloy in the range of 10 to 20% by weight. .

【0013】 そして、上記のようなフレーク状銅粉から
なる導電剤を水素吸蔵合金中に混入させた求項3にお
ける水素吸蔵合金電極においては、上記のようなフレー
ク状銅粉からなる導電剤によって水素吸蔵合金電極にお
ける導電性が十分に向上されるようになり、この水素吸
蔵合金電極をアルカリ二次電池の負極に使用した場合に
は、その放電特性が向上され、高密度電流での放電時に
おいても、放電容量が低下したり、電池電圧が低下した
りするのが抑制される。
[0013] Then, in the hydrogen storage alloy electrode in Motomeko 3 obtained by mixing a conductive agent comprising a flaky copper powder as described above in the hydrogen storage alloy, a conductive agent comprising a flaky copper powder as described above As a result, the conductivity of the hydrogen storage alloy electrode is sufficiently improved, and when this hydrogen storage alloy electrode is used as the negative electrode of an alkaline secondary battery, its discharge characteristics are improved and discharge at high density current is improved. Even at times, the discharge capacity and the battery voltage are prevented from decreasing.

【0014】[0014]

【実施例】以下、この発明に係る水素吸蔵合金電極用導
電剤及び水素吸蔵合金電極について実施例を挙げて具体
的に説明すると共に、この実施例における水素吸蔵合金
電極をアルカリ二次電池の負極に使用した場合に、高密
度電流での放電特性が向上されることを比較例を挙げて
明らかにする。なお、この発明における水素吸蔵合金電
極用導電剤及び水素吸蔵合金電極は、特に下記の実施例
に示したものに限定されるものではなく、その要旨を変
更しない範囲において適宜変更して実施できるものであ
る。
EXAMPLES The conductive agent for hydrogen storage alloy electrode and the hydrogen storage alloy electrode according to the present invention will be specifically described below with reference to examples, and the hydrogen storage alloy electrode in this example is used as a negative electrode of an alkaline secondary battery. It will be clarified by using a comparative example that the discharge characteristics at a high density current are improved when used for. The conductive agent for hydrogen storage alloy electrodes and the hydrogen storage alloy electrodes in the present invention are not particularly limited to those shown in the following examples, and can be appropriately modified and implemented within the scope not changing the gist thereof. Is.

【0015】(実施例1) この実施例 においては、水素吸蔵合金粒子を得るにあた
り、希土類の混合物であるミッシュメタル(Mm)に対
して、NiとCoとMnとAlとを所定のモル比で混合
し、これらをアルゴン雰囲気のアーク溶解炉で溶解させ
て、MmNi3.2Co1.0Mn0.6Al0.2
組成式で示される水素吸蔵合金を作製し、この水素吸蔵
合金を粉砕して分級し、平均粒径が30μmになった水
素吸蔵合金粒子を得た。
Example 1 In this example , in obtaining hydrogen storage alloy particles, Ni, Co, Mn, and Al were mixed at a predetermined molar ratio with respect to a misch metal (Mm) that is a mixture of rare earths. These are mixed and melted in an arc melting furnace in an argon atmosphere to prepare a hydrogen storage alloy represented by a composition formula of MmNi 3.2 Co1.0Mn 0.6 Al 0.2 , and the hydrogen storage alloy is crushed. And classified to obtain hydrogen storage alloy particles having an average particle size of 30 μm.

【0016】 一方、上記の水素吸蔵合金粒子に混入させ
る導電剤を得るにあたっては、銅粒子をロールプレスで
圧延させて平板化させるようにした。そして、この平均
直径が10μm、厚みが0.5μmになったフレーク状
銅粉の表面だけを酸化させて、このフレーク状銅粉の表
面をCuOで被覆したCuO被覆フレーク状銅粉を
用いるようにした。
[0016] On the other hand, when the obtained conductive agent to be mixed in the hydrogen absorbing alloy particles were copper particles so as to flatten by rolling with a roll press. And this average
Diameter 10 [mu] m, only by oxidizing the surface of the flaky copper powder becomes 0.5μm thick, the surface of the flaky copper powder as used Cu 2 O coating flaky copper powder coated with Cu 2 O did.

【0017】 そして、下記の表1に示すように、上記の
水素吸蔵合金粒子に対して上記の導電剤を10重量%添
加させた負極材料を用い、この負極材料800gに対し
て、ポリエチレンオキサイド5%水溶液を160g添加
し、これらを混合してペーストを調製し、このペースト
をニッケルメッキを施したパンチングメタルの両面に塗
布し、これを乾燥させて実施例1の水素吸蔵合金電極を
作製した。
[0017] Then, as shown in Table 1 below, using the negative electrode material and the above conductive agent was added 1 0 wt% with respect to the hydrogen absorbing alloy particles for the negative electrode material 800 g, polyethylene oxide A 5% aqueous solution (160 g) was added, and these were mixed to prepare a paste. The paste was applied to both sides of a nickel-plated punching metal, and this was dried to produce the hydrogen storage alloy electrode of Example 1. .

【0018】 (比較例1) 比較例1においては、上記の実施例1の場合と同じ水素
吸蔵合金粒子を用いる一方、下記の表1に示すように導
電剤を加えないようにし、それ以外については、上記の
実施例1の場合と同様にして水素吸蔵合金電極を作製し
た。
[0018] (Comparative Example 1) Comparative Example 1, while using the same hydrogen storage alloy particles as in Example 1 above, to avoid adding a conductive agent as shown in Table 1 below, except for it Is above
A hydrogen storage alloy electrode was produced in the same manner as in Example 1 .

【0019】 (比較例2) 比較例2においても、上記の実施例1の場合と同じ水素
吸蔵合金粒子を用いる一方、導電剤としては、平均粒径
が10μmになった球状銅粉を用い、上記の水素吸蔵合
金粒子にこの球状銅粉を10重量%添加させるように
し、それ以外については、上記の実施例1の場合と同様
にして水素吸蔵合金電極を作製した。
[0019] Also in Comparative Example 2, while using the same hydrogen storage alloy particles as in Example 1 above, as the conductive agent, using a spherical copper powder with an average particle size becomes 10 [mu] m, 10% by weight of the spherical copper powder was added to the hydrogen storage alloy particles, and the hydrogen storage alloy electrode was manufactured in the same manner as in Example 1 except for the above.

【0020】 (比較例3) 比較例3においても、上記の実施例1の場合と同じ水素
吸蔵合金粉末を用いる一方、導電剤としては平均粒径が
10μmになった球状ニッケル粉を用い、下記の表1に
示すように、上記の水素吸蔵合金粒子にこの球状ニッケ
ル粉を10重量%添加させるようにし、それ以外につい
ては、上記の実施例1の場合と同様にして水素吸蔵合金
電極を作製した。
[0020] In Comparative Example 3, while using the same hydrogen-absorbing alloy powders as in Example 1 above, using a spherical nickel powder having an average particle diameter becomes 10μm as a conductive agent, the following As shown in Table 1 above, a hydrogen storage alloy electrode was prepared in the same manner as in Example 1 except that 10% by weight of the spherical nickel powder was added to the hydrogen storage alloy particles. did.

【0021】 (比較例4) 比較例4においても、上記の実施例1の場合と同じ水素
吸蔵合金粉末を用いる一方、導電剤としては球状のニッ
ケル粒子をロールプレスで圧延させて平板化させ、平均
直径が10μm、厚みが0.5μmになったフレーク状
ニッケル粉を用い、下記の表1に示すように、上記の水
素吸蔵合金粒子にこのフレーク状ニッケル粉を10重量
%添加させるようにし、それ以外については、上記の
施例1の場合と同様にして水素吸蔵合金電極を作製し
た。
[0021] Also in Comparative Example 4 Comparative Example 4, while using the same hydrogen-absorbing alloy powders as in Example 1 above, as the conductive agent is flattened by rolling nickel particles spherical by a roll press, Using flaky nickel powder having an average diameter of 10 μm and a thickness of 0.5 μm, as shown in Table 1 below, 10% by weight of the flaky nickel powder was added to the hydrogen storage alloy particles. for other, the real
A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 .

【0022】 (比較例5) 比較例5においても、上記の実施例1の場合と同じ水素
吸蔵合金粉末を用いる一方、導電剤として、上記の比較
例4において用いた平均直径が10μm、厚みが0.5
μmになったフレーク状ニッケル粉の表面だけを酸化さ
せて、このフレーク状ニッケル粉の表面をNiOで被覆
したNiO被覆フレーク状ニッケル粉を用い、下記の表
1に示すように、上記の水素吸蔵合金粒子にこのNiO
被覆フレーク状ニッケル粉を10重量%添加させるよう
にし、それ以外については、上記の実施例1の場合と同
様にして水素吸蔵合金電極を作製した。
[0022] Also in Comparative Example 5, while using the same hydrogen-absorbing alloy powders as in Example 1 above, as a conductive agent, the average diameter was used in Comparative Example 4 above is 10 [mu] m, the thickness 0.5
Only the surface of the flaky nickel powder having a size of μm was oxidized, and the NiO-coated flake nickel powder obtained by coating the surface of this flake nickel powder with NiO was used, as shown in Table 1 below. NiO for alloy particles
A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that the coated flake nickel powder was added in an amount of 10% by weight.

【0023】 (比較例6) 比較例6においても、上記の実施例1の場合と同じ水素
吸蔵合金粉末を用いる一方、導電剤としてはCuOの
微粉を用い、下記の表1に示すように、上記の水素吸蔵
合金粒子にこのCuO微粉を10重量%添加させるよ
うにし、それ以外については、上記の実施例1の場合と
同様にして水素吸蔵合金電極を作製した。
[0023] Also in the Comparative Example 6 Comparative Example 6, while using the same hydrogen-absorbing alloy powders as in Example 1 above, as the conductive agent with fines Cu 2 O, as shown in Table 1 below to, the Cu 2 O fine powder the hydrogen absorbing alloy particles so as to add 10 wt%, for otherwise, to prepare a hydrogen storage alloy was produced in the same manner as in example 1 above.

【0024】 次に、上記のようにして作製した実施例1
及び比較例1〜6の各水素吸蔵合金電極を油圧プレスに
より圧延して負極に使用する一方、正極には一般に使用
されている焼結式ニッケル極を使用し、またセパレータ
に耐アルカリ性不織布を用い、図1に示すようなニッケ
ル・水素蓄電池を作製した。
Next, Example 1 produced as described above
And each hydrogen storage alloy electrode of Comparative Examples 1 to 6 is rolled by a hydraulic press to be used as a negative electrode, while a commonly used sintered nickel electrode is used as a positive electrode, and an alkali resistant nonwoven fabric is used as a separator. A nickel-hydrogen storage battery as shown in FIG. 1 was produced.

【0025】ここで、上記の各ニッケル・水素蓄電池を
作製するにあたっては、図1に示すように、上記の正極
1と各負極2との間にそれぞれ上記のセパレータ3を介
在させてスパイラル状に巻き取り、これをそれぞれ電池
缶4内に収容させた後、各電池缶4内に6mol/lの
水酸化カリウム水溶液に水酸化リチウムを1mol/l
の割合で溶解させたアルカリ電解液を注液して封口し、
正極1を正極リード5を介して正極蓋6に接続させると
共に、負極2を負極リード7を介して電池缶4に接続さ
せ、電池缶4と正極蓋6とを絶縁パッキン8により電気
的に分離させると共に、正極蓋6と正極外部端子9との
間にコイルスプリング10を設け、電池の内圧が異常に
上昇した場合には、このコイルスプリング10が圧縮さ
れて電池内部のガスが大気に放出されるようにした。
Here, in producing each of the nickel-hydrogen storage batteries, as shown in FIG. 1, the separator 3 is interposed between the positive electrode 1 and the negative electrode 2 to form a spiral shape. After winding up and accommodating each in a battery can 4, each battery can 4 has 1 mol / l lithium hydroxide in a 6 mol / l potassium hydroxide aqueous solution.
Inject and seal the alkaline electrolyte dissolved in the ratio of
The positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5, the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and the battery can 4 and the positive electrode lid 6 are electrically separated by the insulating packing 8. In addition, a coil spring 10 is provided between the positive electrode lid 6 and the positive electrode external terminal 9, and when the internal pressure of the battery rises abnormally, the coil spring 10 is compressed and the gas inside the battery is released to the atmosphere. It was to so.

【0026】 そして、上記の実施例1及び比較例1〜6
の各水素吸蔵合金電極を用いて作製した各ニッケル・水
素蓄電池を100mAで12時間充電させた後、400
0mAの高密度電流で1.0Vまで放電を行ない、この
時の放電容量を測定すると共に、50%の放電時におけ
る電池電圧を測定し、これらの結果を下記の表1にあわ
せて示した。
[0026] Then, the above-described Example 1 and Comparative Examples 1 to 6
After charging each nickel-hydrogen storage battery produced by using each hydrogen storage alloy electrode of 100 mA for 12 hours, 400
Discharge was performed up to 1.0 V with a high-density current of 0 mA, the discharge capacity at this time was measured, and the battery voltage at the time of 50% discharge was measured. The results are also shown in Table 1 below.

【0027】[0027]

【表1】 [Table 1]

【0028】この結果から明らかなように、導電剤とし
て、フレーク状銅粉の表面をCu2Oで被覆したCu
O被覆フレーク状銅粉を添加させた実施例1の水素吸蔵
合金電極を使用したニッケル・水素蓄電池においては、
導電剤を添加させない比較例1の水素吸蔵合金電極や、
導電剤として、球状銅粉や球状ニッケル粉やフレーク状
ニッケル粉やNiO被覆フレーク状ニッケル粉やCu
O微粉を添加させた比較例2〜4の各水素吸蔵合金電極
を使用したニッケル・水素蓄電池に比べて、高密度電流
での放電時における放電容量が著しく向上すると共に、
50%放電時における電池電圧も高くなっており、高密
度電流で安定した放電が行なえるようになっていた。
[0028] As apparent from the results, a conductive agent
Te was coated the surface of the flaky copper powder with Cu2 O Cu 2
In the nickel-hydrogen storage battery using the hydrogen storage alloy electrode of Example 1 to which O-coated flake-like copper powder was added,
A hydrogen storage alloy electrode of Comparative Example 1 in which a conductive agent is not added,
As a conductive agent, spherical copper powder, spherical nickel powder, flake nickel powder, NiO coated flake nickel powder, or Cu 2
Compared with the nickel-hydrogen storage battery using the hydrogen storage alloy electrodes of Comparative Examples 2 to 4 to which O fine powder was added, the discharge capacity at the time of discharging at a high density current was significantly improved, and
The battery voltage at the time of 50% discharge was also high, and stable discharge could be performed with a high-density current.

【0029】これは、前記のように充電時より、水素吸
蔵合金粒子と接触する面において、フレーク 状銅粉の表
面に形成された銅の酸化物が導電性の高い銅に還元され
ると共に、水素吸蔵合金粒子と一体的になって、フレー
ク状銅粉と水素吸蔵合金粒子との密着性が高まり、水素
吸蔵合金電極における導電性が向上したためであると考
えられる。
As described above, this is due to hydrogen absorption
On the surface in contact with the storage alloy particles, the copper oxide formed on the surface of the flaky copper powder is reduced to highly conductive copper, and together with the hydrogen storage alloy particles, the flaky copper powder is formed. It is considered that this is because the adhesion between the hydrogen storage alloy particles and the hydrogen storage alloy particles was enhanced, and the conductivity of the hydrogen storage alloy electrode was improved.

【0030】 (実験例1〜4) これらの実験例においては、上記の実施例1の場合と同
じ水素吸蔵合金粒子を用いると共に、導電剤として、平
均直径が10μm、厚みが0.5μmになったフレーク
状銅粉を用い、このフレーク状銅粉を上記の水素吸蔵合
金粒子に添加させる量を、下記の表2に示すように1〜
30重量%の範囲で変更させ、それ以外は、上記の実施
例1の場合と同様にして水素吸蔵合金電極を作製した。
[0030] In (Experimental Examples 1-4) Example of these experiments, the use of the same hydrogen storage alloy particles as in Example 1 above, as a conductive agent, Rights
Flakes with a uniform diameter of 10 μm and a thickness of 0.5 μm
As shown in Table 2 below, the amount of flaky copper powder added to the hydrogen storage alloy particles is
A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that the content was changed within the range of 30% by weight.

【0031】そして、このように作製した各水素吸蔵合
金電極を用い、実施例1の場合と同様にして各ニッケル
・水素蓄電池を作製し、各ニッケル・水素蓄電池につい
て、上記の場合と同様にして、4000mAの高密度電
流で1.0Vまで放電を行ない、この時の放電容量を測
定すると共に、50%放電時における電池電圧を測定
し、その結果を下記の表2に示した。
Then, using the hydrogen storage alloy electrodes thus produced, nickel-hydrogen storage batteries were produced in the same manner as in Example 1, and the nickel-hydrogen storage batteries were produced in the same manner as in the above case. The battery was discharged at a high density current of 4000 mA to 1.0 V, the discharge capacity at this time was measured, and the battery voltage at 50% discharge was measured. The results are shown in Table 2 below.

【0032】[0032]

【表2】 [Table 2]

【0033】この結果、水素吸蔵合金中におけるフレー
ク状銅粉の添加量が1重量%と少なくなった水素吸蔵合
金電極や、フレーク状銅粉の添加量が30重量%と多く
なった水素吸蔵合金電極を用いた各ニッケル・水素蓄電
池に比べて、水素吸蔵合金中におけるフレーク状銅粉の
添加量が10〜20重量%の範囲になった水素吸蔵合金
電極を用いた各ニッケル・水素蓄電池においては、高密
度電流での放電容量がさらに向上すると共に50%放電
時における電池電圧も高くなっており、特に、水素吸蔵
合金中におけるフレーク状銅粉の添加量を10重量%に
した場合に、高密度電流での放電容量が一番高くなって
いた。
As a result, the hydrogen storage alloy electrode in which the amount of flaky copper powder added in the hydrogen storage alloy was reduced to 1% by weight, and the hydrogen storage alloy in which the amount of flaky copper powder added was increased to 30% by weight were added. Compared to each nickel-hydrogen storage battery using an electrode, each nickel-hydrogen storage battery using a hydrogen storage alloy electrode in which the amount of flaky copper powder added in the hydrogen storage alloy is in the range of 10 to 20 wt% In addition, the discharge capacity at high-density current is further improved and the battery voltage at 50% discharge is also high. Especially, when the amount of flaky copper powder added in the hydrogen storage alloy is 10% by weight, The discharge capacity at the density current was the highest.

【0034】これは、前記のように水素吸蔵合金中に混
入させるフレーク状銅粉の量が少ないと、水素吸蔵合金
電極における導電性を十分に向上させることができない
一方、その量が多くなり過ぎると、水素吸蔵合金粒子の
表面の多くがこのフレーク状銅粉によって覆われ、電解
液との接触によって電極反応が生じる水素吸蔵合金の有
効な面積が減少したためであると考えられる。
This is because when the amount of the flaky copper powder mixed in the hydrogen storage alloy is small as described above, the conductivity of the hydrogen storage alloy electrode cannot be sufficiently improved, but the amount becomes too large. It is considered that this is because most of the surfaces of the hydrogen storage alloy particles are covered with the flaky copper powder, and the effective area of the hydrogen storage alloy in which an electrode reaction occurs due to contact with the electrolytic solution is reduced.

【0035】 (実験例5〜9) これらの実験例においても、上記の実施例1の場合と同
じ水素吸蔵合金粒子を用いる一方、導電剤としては、下
記の表3に示すように、平均直径を10μmにする一
、厚みを0.05〜5.0μmの範囲で変更させた各
フレーク状銅粉を用い、これらのフレーク状銅粉を上記
の水素吸蔵合金粒子にそれぞれ10重量%添加させるよ
うにし、それ以外は、上記の実施例1の場合と同様にし
て水素吸蔵合金電極を作製した。
[0035] Also in (Experimental Example 5-9) Example These experiments, while using the same hydrogen storage alloy particles as in Example 1 above, as the conductive agent, as shown in Table 3 below, the average diameter To 10 μm
On the other hand , each flaky copper powder having a thickness changed in the range of 0.05 to 5.0 μm is used, and each of these flaky copper powders is added to the hydrogen storage alloy particles in an amount of 10% by weight. A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 above.

【0036】そして、このように作製した各水素吸蔵合
金電極を用い、上記の実施例1の場合と同様にして各ニ
ッケル・水素蓄電池を作製し、各ニッケル・水素蓄電池
について、上記の場合と同様にして、4000mAの高
密度電流で1.0Vまで放電を行ない、この時の放電容
量を測定すると共に、50%放電時における電池電圧を
測定し、その結果を下記の表3に示した。
Then, using the hydrogen storage alloy electrodes thus produced, nickel-hydrogen storage batteries were produced in the same manner as in the case of Example 1 above, and the nickel-hydrogen storage batteries were produced in the same manner as in the case described above. Then, the battery was discharged at a high density current of 4000 mA to 1.0 V, the discharge capacity at this time was measured, and the battery voltage at 50% discharge was measured. The results are shown in Table 3 below.

【0037】[0037]

【表3】 [Table 3]

【0038】この結果、水素吸蔵合金中に厚みが0.0
5μmと薄くなったフレーク状銅粉を添加させた水素吸
蔵合金電極や、厚みが5.0μmと厚くなったフレーク
状銅粉を添加させた水素吸蔵合金電極を用いた各ニッケ
ル・水素蓄電池に比べて、水素吸蔵合金中に厚みが0.
1〜2.0μmになったフレーク状銅粉を添加させた水
素吸蔵合金電極を用いた各ニッケル・水素蓄電池におい
ては、高密度電流での放電容量がさらに向上する共に5
0%放電時における電池電圧も高くなっており、特に、
厚みが0.5μmのフレーク状銅粉を添加させた水素吸
蔵合金電極を用いた場合に、高密度電流での放電容量及
び50%放電時における電池電圧が一番高くなってい
た。
As a result, the hydrogen storage alloy has a thickness of 0.0
Compared to each nickel-hydrogen storage battery using a hydrogen storage alloy electrode added with flake-shaped copper powder thinned to 5 μm and a hydrogen storage alloy electrode added with flake-shaped copper powder thickened to 5.0 μm The hydrogen storage alloy has a thickness of 0.
In each nickel-hydrogen storage battery using the hydrogen storage alloy electrode to which the flake-like copper powder having a size of 1 to 2.0 μm was added, the discharge capacity at high density current was further improved.
The battery voltage at 0% discharge is also high.
When the hydrogen storage alloy electrode containing the flaky copper powder having a thickness of 0.5 μm was used, the discharge capacity at high density current and the battery voltage at 50% discharge were the highest.

【0039】これは、前記のように水素吸蔵合金中に混
入させるフレーク状銅粉の厚みが薄すぎると、水素吸蔵
合金粒子との接触性が悪くなり、一方このフレーク状銅
粉の厚みが厚くなり過ぎると、水素吸蔵合金粒子の形状
に沿った変形が起こりにくくなって、水素吸蔵合金粒子
との密着性が悪くなったためであると考えられる。
This is because when the thickness of the flaky copper powder mixed in the hydrogen storage alloy is too thin as described above, the contact property with the hydrogen storage alloy particles becomes poor, while the thickness of the flake copper powder becomes thick. It is considered that when it is too much, the deformation along the shape of the hydrogen storage alloy particles is hard to occur, and the adhesion with the hydrogen storage alloy particles is deteriorated.

【0040】 (実験例10〜14) これらの実験例においても、上記の実施例1の場合と同
じ水素吸蔵合金粒子を用いる一方、導電剤としては、下
記の表4に示すように、厚みを0.5μmにする一方
平均直径を1〜30μmの範囲で変更させた各フレーク
状銅粉を用い、これらのフレーク状銅粉を上記の水素吸
蔵合金粒子にそれぞれ10重量%添加させるようにし、
それ以外は、上記の実施例1の場合と同様にして水素吸
蔵合金電極を作製した。
[0040] Also in (Experiment 10 to 14) Examples of these experiments, while using the same hydrogen storage alloy particles as in Example 1 above, as the conductive agent, as shown in Table 4 below, the thickness While making it 0.5 μm ,
Each flaky copper powder having an average diameter changed in the range of 1 to 30 μm is used, and each of these flaky copper powders is added to the hydrogen storage alloy particles in an amount of 10% by weight.
A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except the above.

【0041】そして、このように作製した各水素吸蔵合
金電極を用い、上記の実施例1の場合と同様にして各ニ
ッケル・水素蓄電池を作製し、各ニッケル・水素蓄電池
について、上記の場合と同様にして、4000mAの高
密度電流で1.0Vまで放電を行ない、この時の放電容
量を測定すると共に、50%放電時における電池電圧を
測定し、その結果を下記の表4に示した。
Then, using the hydrogen storage alloy electrodes thus produced, nickel-hydrogen storage batteries were produced in the same manner as in the case of Example 1 above, and the nickel-hydrogen storage batteries were produced in the same manner as in the above case. Then, the battery was discharged at a high density current of 4000 mA to 1.0 V, the discharge capacity at this time was measured, and the battery voltage at 50% discharge was measured. The results are shown in Table 4 below.

【0042】[0042]

【表4】 [Table 4]

【0043】この結果、水素吸蔵合金中に平均直径が1
μmの小さいフレーク状銅粉の添加させた水素吸蔵合金
電極や、平均直径が30μmの大きいフレーク状銅粉の
添加させた水素吸蔵合金電極を用いたニッケル・水素蓄
電池に比べて、水素吸蔵合金中に平均直径が2〜20μ
mになったフレーク状銅粉を添加させた水素吸蔵合金電
極を用いた各ニッケル・水素蓄電池においては、高密度
電流での放電容量がさらに向上する共に50%放電時に
おける電池電圧も高くなっており、特に、平均直径が2
0μmのフレーク状銅粉を添加させた水素吸蔵合金電極
を用いた場合において、高密度電流での放電容量及び5
0%放電時における電池電圧が一番高くなっていた。
As a result, the hydrogen storage alloy has an average diameter of 1
Compared to a nickel-hydrogen storage battery using a hydrogen storage alloy electrode containing a flaky copper powder having a small average diameter of 30 μm or a hydrogen storage alloy electrode having a large average diameter of 30 μm Has an average diameter of 2 to 20μ
In each nickel-hydrogen storage battery using the hydrogen storage alloy electrode with the addition of the flaky copper powder of m, the discharge capacity at high density current is further improved and the battery voltage at 50% discharge is also increased. The average diameter is 2
When a hydrogen storage alloy electrode containing 0 μm flaky copper powder was used, the discharge capacity at high density current and 5
The battery voltage was highest at 0% discharge.

【0044】これは、前記のように水素吸蔵合金中に混
入させるフレーク状銅粉が大きすぎると、水素吸蔵合金
粒子と接触しない無駄な部分が生じる一方、フレーク状
銅粉が小さすぎると、このフレーク状銅粉と水素吸蔵合
金粒子との密着部分が少なくなり、いずれの場合におい
ても水素吸蔵合金粒子との密着性が悪くなったためであ
ると考えられる。
This is because when the flake-shaped copper powder mixed in the hydrogen-absorbing alloy is too large as described above, there is a wasteful portion that does not come into contact with the hydrogen-absorbing alloy particles, whereas when the flake-shaped copper powder is too small, It is considered that this is because the adhesion portion between the flaky copper powder and the hydrogen storage alloy particles decreased, and the adhesion with the hydrogen storage alloy particles deteriorated in any case.

【0045】[0045]

【発明の効果】以上詳述したように、この発明に係る水
素吸蔵合金電極用導電剤においては、水素吸蔵合金中に
混入させる導電剤として、平坦面を有し、かつ、表面の
少なくとも一部を銅の酸化物で被覆するようにしたフレ
ーク状銅粉を用いるようにしたため、このフレーク状銅
粉の平坦面の部分が水素吸蔵合金粒子の表面に接触する
と共に、フレーク状銅粉の延性によってフレーク状銅粉
が水素吸蔵合金粒子の表面にうまく密着するようになっ
た。さらに、フレーク状銅粉の表面に設けられた銅の酸
化物が水素吸蔵合金粒子と接触した状態となり、この状
態で充電を行なうと、水素吸蔵合金と接触する面におい
て、フレーク状銅粉の表面に形成された銅の酸化物が導
電性の高い銅に還元されると共に水素吸蔵合金粒子と一
体的になって、フレーク状銅粉と水素吸蔵合金粒子との
密着性が高まり、水素吸蔵合金電極における導電性が向
上した。
As described in detail above, in the conductive agent for hydrogen storage alloy electrodes according to the present invention, the conductive agent mixed in the hydrogen storage alloy has a flat surface and
Since at least part was to use a flaky copper powder which is adapted to cover at copper oxides, with portions of the flat surface of the flaky copper powder is brought into contact with the surface of the hydrogen storage alloy particles, flaky copper powder Due to the ductility of, the flaky copper powder came to adhere well to the surface of the hydrogen storage alloy particles. Furthermore, the copper oxide provided on the surface of the flaky copper powder is in contact with the hydrogen storage alloy particles, and when charging is performed in this state, the surface of the flaky copper powder is contacted with the hydrogen storage alloy. The oxide of copper formed on the hydrogen is reduced to highly conductive copper and is integrated with the hydrogen-absorbing alloy particles, so that the adhesion between the flaky copper powder and the hydrogen-absorbing alloy particles is increased, and the hydrogen-absorbing alloy electrode is formed. The electric conductivity in is improved.

【0046】そして、上記のようなフレーク状銅粉から
なる導電剤を水素吸蔵合金中に混入させたこの発明にお
ける水素吸蔵合金電極においては、上記のようにフレー
ク状銅粉からなる導電剤が水素吸蔵合金粒子の表面にう
まく密着して、水素吸蔵合金電極における導電性が十分
に向上されるようになった。
Then, in the hydrogen storage alloy electrode of the present invention in which the conductive agent made of the flaky copper powder as described above is mixed in the hydrogen storage alloy, the conductive agent made of the flaky copper powder is hydrogen as described above. The hydrogen-absorbing alloy electrode was well adhered to the surface of the hydrogen-absorbing alloy particle, and the conductivity of the hydrogen-absorbing alloy electrode was sufficiently improved.

【0047】この結果、この発明に係る水素吸蔵合金電
極をニッケル・水素蓄電池の負極に使用した場合、ニッ
ケル・水素蓄電池における放電特性が著しく向上され、
高密度電流での放電時においても、放電容量が低下した
り、電池電圧が低下したりするのが抑制され、高密度電
流での放電特性に優れたニッケル・水素蓄電池が得られ
るようになった。
As a result, when the hydrogen storage alloy electrode according to the present invention is used as the negative electrode of a nickel-hydrogen storage battery, the discharge characteristics of the nickel-hydrogen storage battery are remarkably improved.
Even when discharging at high-density current, it is possible to obtain a nickel-hydrogen storage battery that has excellent discharge characteristics at high-density current by suppressing the decrease in discharge capacity and battery voltage. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例及び比較例における水素吸蔵
合金電極を用いて作製したニッケル・水素蓄電池の概略
断面図である。
FIG. 1 is a schematic cross-sectional view of a nickel-hydrogen storage battery manufactured using a hydrogen storage alloy electrode in Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極(水素吸蔵合金電極) 1 positive electrode 2 Negative electrode (hydrogen storage alloy electrode)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井本 輝彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平7−307154(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruhiko Imoto 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Mamoru Kimoto 2-5, Keihanhondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Inventor Shin Fujitani 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 within Sanyo Electric Co., Ltd. (56) Reference JP-A-7-307154 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金中に混入される導電剤が平
坦面を有するフレーク状銅粉からなり、かつ、前記フレ
ーク状銅粉の表面の少なくとも一部が銅の酸化物で被覆
されていることを特徴とする水素吸蔵合金電極用導電
剤。
1. A conductive agent to be mixed in the hydrogen storage alloy consists of flaky copper powder having a flat surface, and wherein the frame
At least a part of the surface of the copper powder is coated with copper oxide
A conductive agent for a hydrogen storage alloy electrode, which is characterized in that
【請求項2】 請求項1に記載した水素吸蔵合金電極用
導電剤において、上記のフレーク状銅粉の平均直径が2
〜20μm、厚みが0.1〜2.0μmの範囲にあるこ
とを特徴とする水素吸蔵合金電極用導電剤。
2. The conductive agent for a hydrogen storage alloy electrode according to claim 1, wherein the flaky copper powder has an average diameter of 2
A conductive agent for a hydrogen storage alloy electrode, which has a thickness of -20 μm and a thickness of 0.1-2.0 μm.
【請求項3】 水素吸蔵合金中に請求項1〜2のいずれ
か1項に記載した水素吸蔵合金電極用導電剤が混入され
てなることを特徴とする水素吸蔵合金電極。
3. A hydrogen storage alloy according to claim 1 or 2.
Or hydrogen absorbing alloy electrode in which the hydrogen-absorbing alloy electrodes conductive agents described item 1 is characterized by comprising a mixed.
JP26395997A 1997-09-29 1997-09-29 Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode Expired - Fee Related JP3475055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26395997A JP3475055B2 (en) 1997-09-29 1997-09-29 Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26395997A JP3475055B2 (en) 1997-09-29 1997-09-29 Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH11102706A JPH11102706A (en) 1999-04-13
JP3475055B2 true JP3475055B2 (en) 2003-12-08

Family

ID=17396626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26395997A Expired - Fee Related JP3475055B2 (en) 1997-09-29 1997-09-29 Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3475055B2 (en)

Also Published As

Publication number Publication date
JPH11102706A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US6338917B1 (en) Alkaline storage battery
JPH02239566A (en) Hydrogen storage alloy electrode for alkaline storage battery
US6242133B1 (en) Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacture thereof
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JP3475055B2 (en) Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode
JP3469754B2 (en) Hydrogen storage alloy electrode
JPH11162468A (en) Alkaline secondary battery
US20050019663A1 (en) Coin-shaped all solid battery
JP4423412B2 (en) Alkaline secondary battery negative electrode and alkaline secondary battery
US6270547B1 (en) Hydrogen absorbing alloy electrode and process for fabricating same
JPH11354124A (en) Alkaline secondary battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3071026B2 (en) Metal hydride storage battery
JP3968248B2 (en) Aluminum battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3343413B2 (en) Alkaline secondary battery
JPH0763004B2 (en) Sealed alkaline storage battery
JP2002008710A (en) Cylindrical nickel-hydrogen secondary battery
JP2001015107A (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3475033B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH08315852A (en) Nickel hydrogen storage battery
JP2000090921A (en) Alkaline secondary battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JP3229636B2 (en) Metal-hydrogen alkaline storage battery
JPH0794176A (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees