JP3475033B2 - Manufacturing method of hydrogen storage alloy electrode - Google Patents

Manufacturing method of hydrogen storage alloy electrode

Info

Publication number
JP3475033B2
JP3475033B2 JP01517097A JP1517097A JP3475033B2 JP 3475033 B2 JP3475033 B2 JP 3475033B2 JP 01517097 A JP01517097 A JP 01517097A JP 1517097 A JP1517097 A JP 1517097A JP 3475033 B2 JP3475033 B2 JP 3475033B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
hydrogen
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01517097A
Other languages
Japanese (ja)
Other versions
JPH10208738A (en
Inventor
黒田  靖
衛 木本
義典 松浦
信幸 東山
光造 野上
育郎 米津
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP01517097A priority Critical patent/JP3475033B2/en
Publication of JPH10208738A publication Critical patent/JPH10208738A/en
Application granted granted Critical
Publication of JP3475033B2 publication Critical patent/JP3475033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばニッケル−
水素二次電池の負極として用いる水素吸蔵合金電極の製
造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to, for example, nickel-
The present invention relates to a method for producing a hydrogen storage alloy electrode used as a negative electrode of a hydrogen secondary battery.

【0002】[0002]

【従来の技術】図3は、正極支配型のニッケル−水素二
次電池の構造を表わしており、正極(11)、負極(12)、セ
パレータ(13)、正極リード(14)、負極リード(15)、正極
外部端子(16)、負極缶(17)、封口蓋(18)等から密閉構造
のアルカリ蓄電池が構成されている。正極(11)及び負極
(12)は、セパレータ(13)を間に挟んで渦巻き状に巻かれ
た状態で、負極缶(17)内に収容されており、正極(11)は
正極リード(14)を介して封口蓋(18)に、負極(12)は負極
リード(15)を介して負極缶(17)に接続されている。負極
缶(17)と封口蓋(18)との接合部には、絶縁性のパッキン
グ(20)が装着されて電池の密閉化が施されている。正極
外部端子(16)と封口蓋(18)との間にはコイルスプリング
(19)が設けられ、電池内圧が異常に上昇したときに該コ
イルスプリング(19)が圧縮されて、電池内部のガスが大
気中に放出される様になっている。
2. Description of the Related Art FIG. 3 shows a structure of a nickel-hydrogen secondary battery of a positive electrode dominant type, which includes a positive electrode (11), a negative electrode (12), a separator (13), a positive electrode lead (14), and a negative electrode lead ( 15), the positive electrode external terminal (16), the negative electrode can (17), the sealing lid (18) and the like constitute an alkaline storage battery having a sealed structure. Positive electrode (11) and negative electrode
The (12) is housed in the negative electrode can (17) in a spirally wound state with the separator (13) sandwiched between the positive electrode (11) and the positive electrode lead (14) and the sealing lid. The negative electrode (12) is connected to the negative electrode can (17) via the negative electrode lead (15). An insulating packing (20) is attached to the joint between the negative electrode can (17) and the sealing lid (18) to seal the battery. A coil spring is placed between the positive electrode external terminal (16) and the sealing lid (18).
(19) is provided so that when the battery internal pressure rises abnormally, the coil spring (19) is compressed and the gas inside the battery is released into the atmosphere.

【0003】ニッケル−水素二次電池の負極として用い
られる水素吸蔵合金電極は次の様にして作製される。先
ず、水素吸蔵合金塊を機械的に粉砕して水素吸蔵合金粉
末を作製する。次に、該水素吸蔵合金粉末に結着剤及び
水を加えてペーストを調製し、該ペーストをニッケルメ
ッキの施されたパンチングメタルの両面に塗布し、該ペ
ーストに乾燥を施して、パンチングメタルの両面に水素
吸蔵合金層を形成する。そして、この水素吸蔵合金層の
形成されたパンチングメタルを切断して、所定形状の水
素吸蔵合金電極片を得るのである。尚、水素吸蔵合金粉
末の作製方法としては、ガスアトマイズ法(例えば特開
平6-212213号参照)を採用することも可能である。
A hydrogen storage alloy electrode used as a negative electrode of a nickel-hydrogen secondary battery is manufactured as follows. First, a hydrogen storage alloy ingot is mechanically crushed to produce a hydrogen storage alloy powder. Next, a binder and water are added to the hydrogen-absorbing alloy powder to prepare a paste, the paste is applied to both surfaces of a nickel-plated punching metal, and the paste is dried to form a punching metal. A hydrogen storage alloy layer is formed on both surfaces. Then, the punching metal on which the hydrogen storage alloy layer is formed is cut to obtain a hydrogen storage alloy electrode piece having a predetermined shape. As a method for producing the hydrogen storage alloy powder, a gas atomizing method (see, for example, JP-A-6-212213) can be adopted.

【0004】ところで、水素吸蔵合金電極を負極に用い
た従来のニッケル−水素二次電池においては、充放電の
繰り返しによってセパレータにドライアウトが発生する
ため、サイクル寿命が短い問題があった。このセパレー
タのドライアウトは、水素吸蔵合金電極が多孔質構造を
有するためにセパレータ中の電解液が負極中に浸入し、
これによって電極の厚さが増大してセパレータが電極表
面によって圧迫され、セパレータ中の電解液が更に負極
側へ移動するために起こる現象である。
By the way, in the conventional nickel-hydrogen secondary battery using the hydrogen storage alloy electrode as the negative electrode, there is a problem that the cycle life is short because dry-out occurs in the separator due to repeated charging and discharging. The dry-out of this separator is because the hydrogen storage alloy electrode has a porous structure, so that the electrolytic solution in the separator penetrates into the negative electrode,
This is a phenomenon that occurs because the thickness of the electrode increases and the separator is pressed by the electrode surface, and the electrolytic solution in the separator further moves to the negative electrode side.

【0005】そこで、出願人は、水素吸蔵合金のペース
トをパンチングメタルの両面に塗布し、該ペーストに乾
燥を施して、水素吸蔵合金層を形成した後、該水素吸蔵
合金層を加圧して、加圧後の水素吸蔵合金層の厚さが加
圧前の水素吸蔵合金層の厚さに対して10%以上薄くな
る様に成形する水素吸蔵合金電極の製造方法を提案して
いる(特開平7-57771号)。該製造方法によって得られる
水素吸蔵合金電極を負極として用いたニッケル−水素二
次電池においては、水素吸蔵合金電極の多孔度が小さい
ため、充放電を繰り返しても、水素吸蔵合金電極への電
解液の移動が少なく、セパレータのドライアウトが抑制
される。
Therefore, the applicant applies a paste of hydrogen storage alloy to both surfaces of a punching metal, dries the paste to form a hydrogen storage alloy layer, and then pressurizes the hydrogen storage alloy layer. A method for manufacturing a hydrogen storage alloy electrode has been proposed in which the hydrogen storage alloy layer is formed so that the thickness of the hydrogen storage alloy layer after pressurization is 10% or more thinner than the thickness of the hydrogen storage alloy layer before pressurization. 7-57771). In the nickel-hydrogen secondary battery using the hydrogen storage alloy electrode obtained by the manufacturing method as the negative electrode, since the hydrogen storage alloy electrode has a small porosity, an electrolyte solution for the hydrogen storage alloy electrode is obtained even after repeated charging and discharging. Is less likely to move, and separator dryout is suppressed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、出願人
の提案に係る上述の製造方法は、水素吸蔵合金塊を機械
的に粉砕して得られる水素吸蔵合金粉末を資材とする水
素吸蔵合金電極に対しては、極めて有効であるが、アト
マイズ法によって作製した水素吸蔵合金粉末を資材とす
る水素吸蔵合金電極に対しては、必ずしも有効でないこ
とが明らかとなった。即ち、水素吸蔵合金層を加圧し
て、加圧後の水素吸蔵合金層の厚さが加圧前の水素吸蔵
合金層の厚さに対して10%以上、例えば30%だけ薄
くなる様に成形した場合、却ってサイクル寿命が低下す
ることがあった。
However, the above-mentioned manufacturing method according to the applicant's proposal is directed to a hydrogen storage alloy electrode made of hydrogen storage alloy powder obtained by mechanically crushing a hydrogen storage alloy ingot. Although it is extremely effective, it has been found that it is not always effective for a hydrogen storage alloy electrode using a hydrogen storage alloy powder produced by the atomization method as a material. That is, the hydrogen storage alloy layer is pressed so that the thickness of the hydrogen storage alloy layer after pressurization is reduced by 10% or more, for example, 30% of the thickness of the hydrogen storage alloy layer before pressurization. In that case, the cycle life may be shortened.

【0007】そこで本発明の目的は、アトマイズ法によ
って作製した水素吸蔵合金粉末を資材として水素吸蔵合
金電極を製造する場合において、該水素吸蔵合金電極を
負極とする水素−ニッケル二次電池のサイクル寿命を改
善することが可能な水素吸蔵合金電極の製造方法を提供
することである。
Therefore, an object of the present invention is to produce a hydrogen storage alloy electrode by using the hydrogen storage alloy powder produced by the atomization method as a material, and the cycle life of a hydrogen-nickel secondary battery having the hydrogen storage alloy electrode as a negative electrode. It is an object of the present invention to provide a method for producing a hydrogen storage alloy electrode capable of improving the above.

【0008】[0008]

【課題を解決する為の手段】本発明に係る水素吸蔵合金
電極の製造方法は、アトマイズ法によって水素吸蔵合金
粉末を作製する工程P1と、作製された水素吸蔵合金粉
末に結着剤及び水を加えてペーストを調製する工程P2
と、調製されたペーストを集電体の表面に塗布し、該ペ
ーストに乾燥を施して、集電体表面に水素吸蔵合金層を
形成する工程P3と、形成された水素吸蔵合金層を加圧
して、加圧後の水素吸蔵合金層の厚さが加圧前の水素吸
蔵合金層の厚さに対して1〜9%薄くなると共に、加圧
後の水素吸蔵合金層が1cm3当り4.5〜6.5gの水素
吸蔵合金を含むこととなる様、水素吸蔵合金層に成形を
施す工程P4とを有している。
A method for producing a hydrogen storage alloy electrode according to the present invention comprises a step P1 of producing a hydrogen storage alloy powder by an atomizing method and a step of producing a hydrogen storage alloy powder with a binder and water. In addition, step P2 of preparing paste
And a step P3 of applying the prepared paste to the surface of the current collector and drying the paste to form a hydrogen storage alloy layer on the surface of the current collector, and pressurizing the formed hydrogen storage alloy layer. Te, thickness 1-9% with thinner relative to the thickness of the hydrogen storage alloy layer before pressurization of the hydrogen storage alloy layer after pressing, the hydrogen storage alloy layer after pressing is 1 cm 3 per 4. And a step P4 of forming the hydrogen storage alloy layer so as to contain 5 to 6.5 g of the hydrogen storage alloy.

【0009】具体的には、集電体はニッケルメッキの施
されたパンチングメタルから構成され、前記工程P3で
は、パンチングメタルの両面に水素吸蔵合金層を形成
る。又、前記結着剤の添加率は前記水素吸蔵合金粉末に
対して、好ましくは0.9%以下、更に好ましくは0.2
〜0.8%に設定する。
Specifically, the current collector is composed of nickel-plated punching metal, and in the step P3, hydrogen storage alloy layers are formed on both surfaces of the punching metal .
It Further, the addition rate of the binder is preferably 0.9% or less, more preferably 0.2% with respect to the hydrogen storage alloy powder.
Set to ~ 0.8%.

【0010】上記水素吸蔵合金電極の製造方法において
は、工程P1にてアトマイズ法によって作製された水素
吸蔵合金粉末(以下、アトマイズ合金粉末という)が、機
械的な粉砕方法によって作製した水素吸蔵合金粉末(以
下、粉砕合金粉末という)よりも均質で、粒子の形状が
球形、概ね球形、若しくは鶏卵状となる。このため、ア
トマイズ合金粉末は、その後の工程P2にて調製される
ペーストにおいて高い流動性を有し、加えるべき水の量
が少なくて済む。この結果、加圧前においても、水素吸
蔵合金層の合金充填密度は比較的高いものとなり、塗布
すべきペーストの厚さが小さくなる。従って、工程P4
にて加圧を施す際、加圧力は、粉砕合金粉末からなる水
素吸蔵合金層よりも小さくて済み、比較的低い圧延率で
高い合金充填密度を達成でき、これによって水素吸蔵合
金層の多孔度が十分に小さくなる。
In the method for producing the hydrogen storage alloy electrode, the hydrogen storage alloy powder produced by the atomizing method in step P1 (hereinafter referred to as atomized alloy powder) is the hydrogen storage alloy powder produced by the mechanical grinding method. It is more homogeneous than (hereinafter referred to as crushed alloy powder), and the shape of the particles is spherical, roughly spherical, or egg-shaped. Therefore, the atomized alloy powder has high fluidity in the paste prepared in the subsequent step P2, and the amount of water to be added can be small. As a result, even before pressurization, the alloy packing density of the hydrogen storage alloy layer becomes relatively high, and the thickness of the paste to be applied becomes small. Therefore, the process P4
When applying pressure with, the pressing force may be smaller than that of the hydrogen storage alloy layer made of pulverized alloy powder, and a high alloy packing density can be achieved with a relatively low rolling rate, which results in the porosity of the hydrogen storage alloy layer. Is small enough.

【0011】後述する実験の結果によれば、加圧後の水
素吸蔵合金層の厚さが加圧前の水素吸蔵合金層の厚さに
対して1%以上薄くなる様に加圧することによって、水
素吸蔵合金層の多孔度が十分に小さくなって、サイクル
寿命が延びることとなる。但し、加圧後の水素吸蔵合金
層の厚さが加圧前の水素吸蔵合金層の厚さに対して25
%を越えて薄くなると、圧延率が過大となって水素吸蔵
合金粒子が割れることとなり、充放電の繰り返しによっ
て合金の微粉化が著しくなるため、合金粒子の酸化によ
って、サイクル寿命が短くなる。
According to the results of experiments described later, by applying pressure such that the thickness of the hydrogen storage alloy layer after pressurization becomes 1% or more thinner than the thickness of the hydrogen storage alloy layer before pressurization, The porosity of the hydrogen storage alloy layer is sufficiently reduced, and the cycle life is extended. However, the thickness of the hydrogen storage alloy layer after pressurization is 25 with respect to the thickness of the hydrogen storage alloy layer before pressurization.
%, The rolling ratio becomes excessive and the hydrogen-absorbing alloy particles are cracked, and the alloy particles are remarkably atomized by repeated charging and discharging, so that the cycle life is shortened due to the oxidation of the alloy particles.

【0012】又、加圧後の水素吸蔵合金層1cm3当りに
含まれる水素吸蔵合金の量(合金充填密度)が4.5g/c
cを下回る場合、圧延が不十分であって、水素吸蔵合金
層の多孔度が高いため、セパレータのドライアウトを引
き起こす。これに対し、合金充填密度が6.5gを上回
る場合は、圧延率が過大となって水素吸蔵合金粒子が割
れることとなり、合金の微粉化によって、サイクル寿命
が短くなる。
The amount of hydrogen storage alloy contained in 1 cm 3 of the hydrogen storage alloy layer after pressurization (alloy packing density) is 4.5 g / c.
When it is less than c, rolling is insufficient and the hydrogen storage alloy layer has high porosity, which causes the separator to dry out. On the other hand, when the alloy packing density exceeds 6.5 g, the rolling ratio becomes excessive and the hydrogen storage alloy particles are broken, and the cycle life is shortened due to the pulverization of the alloy.

【0013】[0013]

【発明の効果】本発明に係る水素吸蔵合金電極の製造方
法によれば、アトマイズ法によって作製した水素吸蔵合
金粉末を資材として水素吸蔵合金電極を製造する場合に
おいて、該水素吸蔵合金電極を負極とするニッケル−水
素二次電池のサイクル寿命を改善することが出来る。
According to the method for producing a hydrogen storage alloy electrode of the present invention, in the case of producing a hydrogen storage alloy electrode using the hydrogen storage alloy powder produced by the atomization method as a material, the hydrogen storage alloy electrode is used as a negative electrode. The cycle life of the nickel-hydrogen secondary battery can be improved.

【0014】[0014]

【発明の実施の形態】以下、本発明を図3に示すニッケ
ル−水素二次電池の負極として用いる水素吸蔵合金電極
の製造に実施した形態につき、図面に沿って具体的に説
明する。図1は、本発明に係る水素吸蔵合金電極の製造
方法を表わしており、先ず、工程P1では、所定の組成
となる様に調整した合金原料を溶融せしめ、この溶湯を
ガスアトマイズ法によって粉末化し、例えば平均粒径5
0μmの水素吸蔵合金粉末を得る。水素吸蔵合金として
は、AB5型の合金、例えばLaNi5、MmNi5-xx
(Mm:ミッシュメタル、M:Mn、Al、Co等)のほ
か、周知の種々の組成を有する水素吸蔵合金を用いるこ
とが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention for producing a hydrogen storage alloy electrode used as a negative electrode of a nickel-hydrogen secondary battery shown in FIG. 3 will be specifically described with reference to the drawings. FIG. 1 shows a method for manufacturing a hydrogen storage alloy electrode according to the present invention. First, in a step P1, an alloy raw material adjusted to have a predetermined composition is melted, and this molten metal is powdered by a gas atomizing method, For example, average particle size 5
A hydrogen storage alloy powder of 0 μm is obtained. Examples of hydrogen storage alloys include AB 5 type alloys such as LaNi 5 , MmNi 5-x M x.
In addition to (Mm: misch metal, M: Mn, Al, Co, etc.), hydrogen storage alloys having various known compositions can be used.

【0015】次に工程P2では、水素吸蔵合金粉末に、
結着剤としてのポリテトラフルオロエチレン粉末と水と
を混合してペーストを調製する。ここで、結着剤の添加
量は、水素吸蔵合金粉末に対して0.9重量%以下、好
ましくは0.2〜0.8重量%の範囲内に設定する。続い
て、工程P3では、このペーストをニッケルメッキの施
されたパンチングメタル(集電体)の両面に塗布し、室温
で24時間以上の乾燥を施して、パンチングメタルの両
面に所定厚さの水素吸蔵合金層が形成された電極体を得
る。
Next, in step P2, the hydrogen storage alloy powder is
A paste is prepared by mixing polytetrafluoroethylene powder as a binder and water. Here, the addition amount of the binder is set to 0.9 wt% or less, preferably 0.2 to 0.8 wt% with respect to the hydrogen storage alloy powder. Subsequently, in step P3, this paste is applied to both sides of the nickel-plated punching metal (current collector), and dried at room temperature for 24 hours or more, so that both sides of the punching metal have a predetermined thickness of hydrogen. An electrode body on which a storage alloy layer is formed is obtained.

【0016】その後、工程P4では、周知のプレス圧延
やロール圧延によって、電極体を加圧する。この際、加
圧後の水素吸蔵合金層の厚さが加圧前の水素吸蔵合金層
の厚さに対して1〜25%薄く、好ましくは1%以上、
10%未満の範囲で薄くなると共に、加圧後の水素吸蔵
合金の充填密度が4.5〜6.5g/ccとなる様、電極体
を加圧する。
Thereafter, in step P4, the electrode body is pressed by well-known press rolling or roll rolling. At this time, the thickness of the hydrogen storage alloy layer after pressurization is 1 to 25% thinner than the thickness of the hydrogen storage alloy layer before pressurization, preferably 1% or more,
The electrode body is pressurized so that it becomes thin in the range of less than 10% and the packing density of the hydrogen storage alloy after pressurization becomes 4.5 to 6.5 g / cc.

【0017】そして、加圧後の電極体を所定サイズの帯
状に切断して、水素吸蔵合金電極を作製する。この様に
して得られた水素吸蔵合金電極を図3に示すニッケル−
水素二次電池に負極として組み込む。尚、正極としては
焼結式ニッケル極を、セパレータとしては耐アルカリ性
の不織布を、又電解液としては30重量%水酸化カリウ
ム水溶液を用いることが出来る。
Then, the pressed electrode body is cut into a strip of a predetermined size to produce a hydrogen storage alloy electrode. The hydrogen storage alloy electrode thus obtained is shown in FIG.
It is incorporated as a negative electrode in a hydrogen secondary battery. A sintered nickel electrode can be used as the positive electrode, an alkali-resistant nonwoven fabric can be used as the separator, and a 30 wt% potassium hydroxide aqueous solution can be used as the electrolytic solution.

【0018】次に、本発明に係る水素吸蔵合金電極の性
能を確認するために行なった実験の内容及びその結果に
ついて説明する。(1)実験1 組成がMmNi3.2Co1.0Mn0.6Al0.2の水素吸蔵合
金を用いて、ガスアトマイズ法により、平均粒径が50
μmの水素吸蔵合金粉末を作製した。この合金粉末に、
ポリテトラフルオロエチレン粉末を合金粉末に対して1
重量%添加し、更に水を加えて、ペーストを調製した。
その後、該ペーストをニッケルメッキの施された厚さ
0.06mmのパンチングメタルの両面に塗布し、室温に
て24時間以上の乾燥を施して、図2(a)に示す様に、
集電体(1)の両面に水素吸蔵合金層(2)(3)が形成され
た電極体を作製した。そして、該電極体を所定形状に切
断し、これによって得られた複数の電極片を油圧プレス
装置によって図2(b)の如く加圧した。
Next, the contents and results of an experiment conducted to confirm the performance of the hydrogen storage alloy electrode according to the present invention will be described. (1) Experiment 1 Using a hydrogen storage alloy having a composition of MmNi 3.2 Co 1.0 Mn 0.6 Al 0.2 , the average particle size was 50 by a gas atomization method.
A hydrogen storage alloy powder of μm was produced. In this alloy powder,
Polytetrafluoroethylene powder to alloy powder 1
A paste was prepared by adding wt% and further adding water.
After that, the paste is applied to both sides of a nickel-plated punching metal having a thickness of 0.06 mm and dried at room temperature for 24 hours or more, as shown in FIG. 2 (a).
An electrode body was produced in which the hydrogen storage alloy layers (2) and (3) were formed on both sides of the current collector (1). Then, the electrode body was cut into a predetermined shape, and a plurality of electrode pieces obtained thereby were pressed by a hydraulic press device as shown in FIG. 2 (b).

【0019】電極片の加圧においては、下記数1で表わ
される圧延率が0〜30%の範囲内で種々に変化する
様、電極片ごとに異なる圧力を加え、圧延率の異なる複
数種類の水素吸蔵合金電極を作製した。
In pressurizing the electrode pieces, different pressures are applied to the electrode pieces so that the rolling rate represented by the following formula 1 varies variously within the range of 0 to 30%. A hydrogen storage alloy electrode was produced.

【数1】圧延率(%)={(d1+d2)−(d1′+d
2′)}/(d1+d2)×100 ここで、d1及びd2は加圧前の水素吸蔵合金層(2)
(3)の厚さ、d1′及びd2′は加圧後の水素吸蔵合金
層(2)(3)の厚さである(図2参照)。尚、いずれの電極
においても、加圧による集電体(1)の延びは認められな
かった。
## EQU1 ## Rolling rate (%) = {(d1 + d2)-(d1 '+ d
2 ′)} / (d1 + d2) × 100 where d1 and d2 are hydrogen storage alloy layers (2) before pressurization
The thicknesses (3), d1 'and d2' are the thicknesses of the hydrogen storage alloy layers (2) and (3) after pressurization (see FIG. 2). No extension of the current collector (1) due to pressurization was observed in any of the electrodes.

【0020】この様にして得られた水素吸蔵合金電極を
下記表1の比較例1、本発明1〜4、参考例1〜4及び
比較例2に示す。加圧後の水素吸蔵合金層の合金充填密
度は、いずれの電極においても、集電体及び結着剤を除
く合金1cc当り4.5g〜6.5gであった。
The hydrogen storage alloy electrodes thus obtained were used in Comparative Example 1 of the following Table 1, Inventions 1 to 4, Reference Examples 1 to 4 and
This is shown in Comparative Example 2 . The alloy packing density of the hydrogen storage alloy layer after pressurization was 4.5 g to 6.5 g per 1 cc of alloy excluding the current collector and the binder in any of the electrodes.

【0021】又、同一組成の水素吸蔵合金塊を機械的に
粉砕して得られた水素吸蔵合金粉末を資材として、同様
に圧延率の異なる複数種類の水素吸蔵合金電極を作製し
た。この様にして得られた水素吸蔵合金電極を下記表1
の比較例3〜7に示す。
Further, using hydrogen storage alloy powder obtained by mechanically crushing a hydrogen storage alloy ingot having the same composition, a plurality of types of hydrogen storage alloy electrodes having different rolling ratios were similarly prepared. The hydrogen storage alloy electrode thus obtained is shown in Table 1 below.
Comparative Examples 3 to 7 are shown.

【0022】[0022]

【表1】 [Table 1]

【0023】上述の各水素吸蔵金電極と公知の焼結式ニ
ッケル極の間に耐アルカリ性のセパレータを挟んで渦巻
き状に巻回し、これを負極缶内に収容し、水酸化カリウ
ムの電解液を注入した後、封口して、公称容量1000
mAhのニッケル−水素二次電池を作製した。
An alkali-resistant separator is sandwiched between each of the above-mentioned hydrogen storage gold electrodes and a known sintered nickel electrode and spirally wound, which is housed in a negative electrode can and an electrolyte solution of potassium hydroxide is placed therein. After injecting, sealing and nominal capacity 1000
A mAh nickel-hydrogen secondary battery was prepared.

【0024】充放電サイクル特性の評価 本発明電池及び比較例電池に100mAで16時間の充
電を施して満充電状態とした後、200mAで終止電圧
1Vまで放電を行なう行程を1サイクルとする充放電サ
イクル試験を行ない、各電池のサイクル寿命を調べた。
サイクル寿命は、初期の放電容量に対して放電容量が5
0%となった時点の充放電サイクル数で表わした。その
結果を下記表2に示す。
Evaluation of Charging / Discharging Cycle Characteristics After charging the battery of the present invention and the battery of Comparative Example for 16 hours at 100 mA to a fully charged state, charging / discharging in which one cycle includes a process of discharging at a final voltage of 1 V at 200 mA. A cycle test was performed to examine the cycle life of each battery.
The cycle life is 5 discharge capacity with respect to the initial discharge capacity.
It was represented by the number of charge / discharge cycles when it reached 0%. The results are shown in Table 2 below.

【0025】電池充電時の内圧特性評価 封口後の電池の底に直径1mmの孔を開設し、該孔に圧力
電送器を接続した状態で、電流値1Aで充電を行ない、
電池から発生するガスを圧力電送器により捕捉すること
によって、内圧の変化を測定した。そして、電池のガス
放出圧力である15kgf/cm2に到達するまでの時間によ
って、内圧特性を評価した。この内圧特性が長時間であ
るほど、大電流による急速充電が可能であり、又、充放
電サイクルの繰り返しに伴うセパレータのドライアウト
が抑制される。この内圧特性の評価結果を下記表2に併
せて示す。
Evaluation of internal pressure characteristics during battery charging A hole having a diameter of 1 mm was opened at the bottom of the battery after sealing, and charging was performed at a current value of 1 A with a pressure transmitter connected to the hole.
The change in internal pressure was measured by capturing the gas generated from the cell with a pressure transmitter. Then, the internal pressure characteristics were evaluated by the time required to reach the gas release pressure of the battery of 15 kgf / cm 2 . The longer this internal pressure characteristic is, the quicker the charging can be performed by a large current, and the dryout of the separator due to the repetition of the charge / discharge cycle is suppressed. The evaluation results of the internal pressure characteristics are also shown in Table 2 below.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から明らかな様に、アトマイズ合金粉
末を資材とする本発明電極1〜4、参考電極1〜4を用
いた電池(電池番号B−1〜B−4、S1〜S4)におい
ては、圧延率が1%以上であれば、500サイクルを越
えるサイクル寿命が達成されている。これに対し、粉砕
合金粉末を資材とする比較例電極3〜7を用いた電池
(電池番号D−1〜D−5)では、圧延率が10%以上で
ないと、500サイクルを越えるサイクル寿命は得られ
ない。これは、アトマイズ合金粉末が粉砕合金粉末より
も均質で、粒子の形状が球形、若しくは球状(涙状或い
は鶏卵状)となるため、加圧前においても水素吸蔵合金
層の合金充填密度が高く、1〜10%程度の低い圧延率
によっても、加圧後の水素吸蔵合金層における合金充填
密度は更に高い値となり、水素吸蔵合金電極の多孔度が
十分に低くなって、セパレータのドライアウトが抑制さ
れるからである。
As is clear from Table 2 , the electrodes 1 to 4 of the present invention and the reference electrodes 1 to 4 using atomized alloy powder are used.
In the batteries (Battery Nos. B-1 to B-4 and S1 to S4) , if the rolling rate is 1% or more, the cycle life exceeding 500 cycles is achieved. On the other hand, batteries using Comparative Example electrodes 3 to 7 made of crushed alloy powder
For (Battery Nos. D-1 to D-5), unless the rolling ratio is 10% or more, the cycle life exceeding 500 cycles cannot be obtained. This is because the atomized alloy powder is more homogeneous than the crushed alloy powder, and the shape of the particles is spherical, or spherical (tear-shaped or egg-shaped), so the alloy packing density of the hydrogen storage alloy layer is high even before pressurization, Even with a low rolling ratio of about 1 to 10%, the alloy packing density in the hydrogen storage alloy layer after pressing becomes a higher value, the porosity of the hydrogen storage alloy electrode becomes sufficiently low, and the separator dryout is suppressed. Because it is done.

【0028】但し、圧延率が20%を越えた参考電極4
では、平均粒径が小さくなっていることからもわかる様
に、加圧によって合金の割れが発生している。このた
め、該電極を用いた電池(電池番号S−4)においては、
充放電サイクルの繰り返しに伴う合金の微粉化傾向が強
まり、合金の酸化によって、サイクル寿命が短くなって
いる。更に圧延率が25%を越えた比較例電極2では、
合金の割れが著しく、該電極を用いた電池(電池番号C
−1)のサイクル寿命は大きく低下している。
However, the reference electrode 4 with a rolling ratio of over 20%
Then, as can be seen from the fact that the average particle size is small, the alloy cracks due to the pressurization. Therefore, in the battery (battery number S-4 ) using the electrode,
As the charge / discharge cycle is repeated, the tendency of the alloy to become finer increases, and the cycle life is shortened due to the oxidation of the alloy. Further, in Comparative Example Electrode 2 in which the rolling ratio exceeded 25%,
The alloy cracks significantly and the battery using this electrode (Battery No. C
The cycle life of -1) is greatly reduced.

【0029】電池の内圧特性については、本発明電極1
〜4を用いた電池(電池番号B−1〜B−4)が特に優れ
ている。ところで、電池が満充電に達すると、正極から
酸素ガスが発生し、この酸素ガスが負極から発生する水
素ガスと負極の合金表面で反応し、水が生成されるので
あるが、この反応が円滑に行なわれるためには、気体−
固体(水素吸蔵合金)−液体(電解液)の3相界面が合金表
面上に存在することが必要である。ここで、圧延率が高
く、例えば10%以上になると、合金の保液量が少ない
ために、負極から電解液への水素の供給量が減少して、
相対的に酸素ガスの発生量が増大し、電池内圧が高くな
る。従って、圧延率は9%以下とする必要がある。
Regarding the internal pressure characteristics of the battery, the electrode 1 of the present invention was used.
The batteries using No. 4 to No. 4 (Battery Nos. B-1 to B-4) are particularly excellent. By the way, when the battery reaches full charge, oxygen gas is generated from the positive electrode, and this oxygen gas reacts with hydrogen gas generated from the negative electrode on the alloy surface of the negative electrode to generate water. To be carried out in
It is necessary that a solid (hydrogen storage alloy) -liquid (electrolyte) three-phase interface be present on the alloy surface. Here, if the rolling ratio is high, for example, 10% or more, the amount of hydrogen retained from the negative electrode to the electrolytic solution decreases due to the small amount of retained liquid in the alloy.
The amount of oxygen gas generated relatively increases, and the internal pressure of the battery increases. Therefore, the rolling rate needs to be 9% or less.

【0030】上述の如く、アトマイズ合金粉末を資材と
する電極は、粉砕合金粉末を資材とする電極よりも合金
充填密度が高いために、圧延前の合金層の厚さが小さい
ために、圧延率の最適値は粉砕合金粉末の場合よりも低
く、1〜9%となる。又、合金の割れがサイクル寿命に
及ぼす影響を回避するためには、圧延率は1〜20%の
範囲に設定することが有効である。従って、電池の内圧
特性を向上させるためには、圧延率は1〜9%の範囲に
設定することが必要である。
As described above, the electrode made of atomized alloy powder has a higher alloy packing density than the electrode made of pulverized alloy powder, and therefore the thickness of the alloy layer before rolling is small. The optimum value of is lower than that of the crushed alloy powder and is 1 to 9% . Further, in order to avoid the influence of alloy cracking on the cycle life, it is effective to set the rolling ratio within the range of 1 to 20%. Therefore, the internal pressure of the battery
In order to improve the properties, the rolling rate should be in the range of 1-9%.
It is necessary to set.

【0031】実験2 アトマイズ合金粉末を用いて、合金充填密度が4.0〜
7.0g/ccであって且つ圧延率が10%の複数の水素
吸蔵合金電極を作製し、各電極を用いてニッケル−水素
二次電池を組み立て、充放電サイクル寿命を測定した。
その結果を下記表3に示す。
Experiment 2 Using atomized alloy powder, the alloy packing density was 4.0 to
A plurality of hydrogen storage alloy electrodes having 7.0 g / cc and a rolling rate of 10% were prepared, a nickel-hydrogen secondary battery was assembled using each electrode, and the charge / discharge cycle life was measured.
The results are shown in Table 3 below.

【0032】[0032]

【表3】 [Table 3]

【0033】表3から明らかな様に、電極の合金充填密
度が4.5g/ccを下回った比較例電極10及び11で
は、圧延が不十分であるために、電極の多孔度が大き
く、該電極を用いた電池(電池番号E−1、E−2)にお
いては、充放電サイクルの繰り返しに伴って、電極中に
電解液が取り込まれ、電極が膨張することによってセパ
レータのドライアウトが発生して、サイクル寿命が短く
なっている。又、合金充填密度が6.5g/ccを越える
比較例電池12では、加圧によって合金が割れるため、
充放電サイクルの繰り返しにより合金の微粉化が進ん
で、サイクル寿命が短くなっている。従って、アトマイ
ズ合金粉末を資材とする水素吸蔵合金電極を用いた電池
においては、合金層の充填密度を4.5〜6.5g/ccの
範囲に設定することが最適であると言える。
As is apparent from Table 3, in Comparative electrodes 10 and 11 in which the alloy packing density of the electrode was less than 4.5 g / cc, the rolling was insufficient and the porosity of the electrode was large. In the batteries using the electrodes (Battery Nos. E-1 and E-2), the electrolytic solution was taken into the electrodes as the charge and discharge cycles were repeated, and the electrodes expanded to cause the separator to dry out. The cycle life is shortened. Further, in Comparative Example Battery 12 having an alloy packing density of more than 6.5 g / cc, the alloy is cracked by pressurization.
The cycle life is shortened as the alloy is pulverized by repeated charge and discharge cycles. Therefore, a battery using a hydrogen storage alloy electrode made of atomized alloy powder
In the above, it can be said that it is optimal to set the packing density of the alloy layer in the range of 4.5 to 6.5 g / cc.

【0034】実験3 実験1と同様に、アトマイズ合金粉末及び粉砕合金粉末
を作製した後、各粉末に結着剤(ポリテトラフルオロエ
チレン)を下記表4の条件で添加して、ペーストを調製
した。そして、実験1と同様に、該ペーストを集電体の
両面に塗布して、複数種類の水素吸蔵合金電極を作製し
た。ここで、水素吸蔵合金層の圧延率は10%、加圧後
の充填密度は4.5〜6.5g/ccに設定した。
Experiment 3 In the same manner as in Experiment 1, after producing atomized alloy powder and crushed alloy powder, a binder (polytetrafluoroethylene) was added to each powder under the conditions shown in Table 4 below to prepare a paste. . Then, in the same manner as in Experiment 1, the paste was applied to both surfaces of the current collector to prepare a plurality of types of hydrogen storage alloy electrodes. Here, the rolling ratio of the hydrogen storage alloy layer was set to 10%, and the packing density after pressing was set to 4.5 to 6.5 g / cc.

【0035】[0035]

【表4】 [Table 4]

【0036】そして、これらの電極を用いてニッケル−
水素二次電池を組み立て、各電池について、充放電サイ
クル特性及び電池内圧特性の評価を行なった。その結果
を下記表5に示す。
Then, using these electrodes, nickel-
A hydrogen secondary battery was assembled, and charge / discharge cycle characteristics and battery internal pressure characteristics of each battery were evaluated. The results are shown in Table 5 below.

【0037】[0037]

【表5】 [Table 5]

【0038】表5から明らかな様に、アトマイズ合金粉
末を資材とする電極において、結着剤の添加率が1.0
%を下回った参考電極14〜18を用いた電池(電池番
号I−1〜I−5)では、高いサイクル寿命が得られて
いる。これに対し、粉砕合金粉末を資材とする電極にお
いて、結着剤の添加率が1.0%を下回った比較例電極
13及び14を用いた電池(電池番号J−1、J−2)で
は、サイクル寿命が著しく低下しており、サイクル寿命
を回復させるためには、結着剤の添加量を増大させる必
要がある(電池番号J−3、J−4)。
As is clear from Table 5, in the electrode using the atomized alloy powder as the material, the addition rate of the binder was 1.0.
Batteries (battery numbers I-1 to I-5) using the reference electrodes 14 to 18 having less than 0.1% have a high cycle life. On the other hand, in the electrode using the crushed alloy powder as a material, in the batteries (battery numbers J-1 and J-2) using the comparative electrodes 13 and 14 in which the addition rate of the binder was less than 1.0%, However, the cycle life is remarkably reduced, and in order to recover the cycle life, it is necessary to increase the addition amount of the binder (Battery Nos. J-3 and J-4).

【0039】これは次の理由によるものである。即ち、
アトマイズ合金粉末は球状を呈するため、ペースト状態
での流動性が粉砕合金粉末よりも優れ、均質な電極を作
製するために必要な水の量が少なくて済む。従って、ア
トマイズ合金粉末の場合、ペーストの含液率が低く、乾
燥後の合金層における合金粒子間の隙間が小さいため
に、合金粒子を保持して電極の強度を維持するために必
要な結着剤の量が、粉砕合金粉末の場合よりも少なくて
済む。結着剤の量が少ないと、電池におけるガス吸収反
応が、結着剤による阻害を受け難く、ガス吸収反応が促
進されるため、電池内圧の上昇が抑制されるのである。
又、結着剤の量が少ないと、結着剤による保液が少なく
なるために、電極全体の保液量が減少し、サイクル寿命
が改善される。
This is due to the following reason. That is,
Since the atomized alloy powder has a spherical shape, the fluidity in a paste state is superior to that of the crushed alloy powder, and the amount of water required for producing a homogeneous electrode is small. Therefore, in the case of atomized alloy powder, since the liquid content of the paste is low and the gap between the alloy particles in the alloy layer after drying is small, the binding required to hold the alloy particles and maintain the strength of the electrode. The amount of the agent is smaller than that of the pulverized alloy powder. When the amount of the binder is small, the gas absorption reaction in the battery is less likely to be hindered by the binder and the gas absorption reaction is promoted, so that the increase in the battery internal pressure is suppressed.
Further, when the amount of the binder is small, the amount of the liquid retained by the binder is reduced, so that the amount of the liquid retained in the entire electrode is reduced and the cycle life is improved.

【0040】更に結着剤の添加率が0.8%を下回る
と、充放電サイクル寿命は更に向上する(電池番号I−
2、I−3)。これは、結着剤の減少によって、合金粒
子間の接触性が更に改善されて、充放電効率が向上する
ことに加え、充電時のガス吸収性が向上するために、充
放電サイクルに伴うセパレータからの電解液のリークが
大幅に低減するからである。但し、結着剤の添加率が
0.2%を下回った参考電極14では、電極の強度が低
下するため、該電極を用いた電池(電池番号I−1)で
は、充放電サイクルの繰り返しに伴って合金粒子が電極
から脱落し易くなるため、サイクル寿命は低下傾向とな
る。従って、アトマイズ合金粉末を資材とする水素吸蔵
合金電極においては、結着剤の添加量は0.9%以下が
望ましく、更に0.2〜0.8%の範囲に設定することが
最適であると言える。
When the addition rate of the binder is less than 0.8%, the charge / discharge cycle life is further improved (Battery No. I-
2, I-3). This is because the contact between the alloy particles is further improved by the decrease of the binder, and the charge / discharge efficiency is improved, and the gas absorption at the time of charging is improved. This is because the leakage of the electrolytic solution from the electrode is significantly reduced. However, in the reference electrode 14 in which the addition rate of the binder was less than 0.2%, the strength of the electrode was reduced. Therefore, in the battery using the electrode (Battery No. I-1), the charge / discharge cycle was repeated. Along with this, the alloy particles easily fall off from the electrode, so the cycle life tends to decrease. Therefore, in the hydrogen storage alloy electrode using atomized alloy powder as the material, the addition amount of the binder is preferably 0.9% or less, and more preferably set in the range of 0.2 to 0.8%. Can be said.

【0041】上記実施の形態の説明は、本発明を説明す
るためのものであって、特許請求の範囲に記載の発明を
限定し、或は範囲を減縮する様に解すべきではない。
又、本発明の各部構成は上記実施の形態に限らず、特許
請求の範囲に記載の技術的範囲内で種々の変形が可能で
あることは勿論である。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope.
Further, it goes without saying that the configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る水素吸蔵合金電極の製造方法を表
わす工程図である。
FIG. 1 is a process drawing showing a method for producing a hydrogen storage alloy electrode according to the present invention.

【図2】加圧工程を表わす断面図である。FIG. 2 is a cross-sectional view showing a pressurizing step.

【図3】ニッケル−水素二次電池の断面図である。FIG. 3 is a cross-sectional view of a nickel-hydrogen secondary battery.

【符号の説明】[Explanation of symbols]

(1) 集電体 (2) 水素吸蔵合金層 (3) 水素吸蔵合金層 (1) Current collector (2) Hydrogen storage alloy layer (3) Hydrogen storage alloy layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東山 信幸 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平6−84514(JP,A) 特開 平7−57771(JP,A) 特開 昭64−81169(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/26 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Nobuyuki Higashiyama 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor Kozo Nogami 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 In Sanyo Electric Co., Ltd. (72) Inventor Ichiro Yonezu 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 within Sanyo Electric Co., Ltd. (56) Reference JP-A-6-84514 (JP, A) JP-A-7-57771 (JP, A) JP-A-64-81169 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1. アトマイズ法によって水素吸蔵合金粉末Hydrogen storage alloy powder by atomization method
を作製する工程P1と、作製された水素吸蔵合金粉末にTo the step P1 for producing the hydrogen storage alloy powder
結着剤及び水を加えてペーストを調製する工程P2と、Step P2 of adding a binder and water to prepare a paste,
調製されたペーストを集電体の表面に塗布し、該ペースApply the prepared paste to the surface of the current collector and
トに乾燥を施して、集電体表面に水素吸蔵合金層を形成Is dried to form a hydrogen storage alloy layer on the surface of the current collector
する工程P3と、形成された水素吸蔵合金層を加圧しStep P3 to perform and pressurizing the formed hydrogen storage alloy layer
て、加圧後の水素吸蔵合金層の厚さが加圧前の水素吸蔵The thickness of the hydrogen storage alloy layer after pressurization is
合金層の厚さに対して1〜9%薄くなると共に、加圧後It becomes 1-9% thinner than the thickness of the alloy layer, and after pressing
の水素吸蔵合金層が1cm1 cm of hydrogen storage alloy layer 33 当り4.5〜6.5gの水素吸Hydrogen absorption of 4.5-6.5g per
蔵合金を含むこととなる様、水素吸蔵合金層に成形を施The hydrogen storage alloy layer is molded so that it contains the storage alloy.
す工程P4とを有する水素吸蔵合金電極の製造方法。And a step P4 of manufacturing a hydrogen storage alloy electrode.
【請求項2】 前記結着剤の添加率が前記水素吸蔵合金2. The hydrogen storage alloy in which the addition ratio of the binder is
粉末に対して0.9%以下である請求項1に記載の水素Hydrogen according to claim 1, which is 0.9% or less with respect to the powder.
吸蔵合金電極の製造方法。Manufacturing method of storage alloy electrode.
【請求項3】 前記結着剤の添加率が前記水素吸蔵合金3. The hydrogen storage alloy, wherein the binder addition rate is the hydrogen storage alloy.
粉末に対して0.2〜0.8%である請求項2に記載の水The water according to claim 2, which is 0.2 to 0.8% with respect to the powder.
素吸蔵合金電極の製造方法。Method for manufacturing element-occlusion alloy electrode.
JP01517097A 1997-01-29 1997-01-29 Manufacturing method of hydrogen storage alloy electrode Expired - Lifetime JP3475033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01517097A JP3475033B2 (en) 1997-01-29 1997-01-29 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01517097A JP3475033B2 (en) 1997-01-29 1997-01-29 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH10208738A JPH10208738A (en) 1998-08-07
JP3475033B2 true JP3475033B2 (en) 2003-12-08

Family

ID=11881343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01517097A Expired - Lifetime JP3475033B2 (en) 1997-01-29 1997-01-29 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3475033B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110889B2 (en) * 2007-01-29 2012-12-26 三洋電機株式会社 Nickel metal hydride secondary battery

Also Published As

Publication number Publication date
JPH10208738A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
JP3475033B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JPH11162468A (en) Alkaline secondary battery
JPS6166366A (en) Hydrogen-occlusion electrode
JP3514491B2 (en) Metal oxide / hydrogen secondary batteries
JP3895984B2 (en) Nickel / hydrogen storage battery
JPH0613077A (en) Hydrogen storage electrode
JP3568337B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP3863689B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery
JP2000090921A (en) Alkaline secondary battery
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JPH0815077B2 (en) Sealed alkaline storage battery
JP4567990B2 (en) Secondary battery
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JP3501382B2 (en) Hydrogen storage alloy negative electrode and method for producing the same
US6300010B1 (en) Hydrogen absorbing alloy powder for use in the negative electrodes of alkaline rechargeable batteries and process for producing the same
JP3343413B2 (en) Alkaline secondary battery
JP3475055B2 (en) Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JPH03263760A (en) Hydrogen storage alloy electrode
JPH11260358A (en) Hydrogen storing alloy electrode and manufacture thereof
JP3504350B2 (en) Manufacturing method of alkaline secondary battery
JPH07192729A (en) Manufacture of hydrogen storage alloy electrode
JPH08213003A (en) Nickel-metal hydride battery
JPH09320576A (en) Hydrogen absorbing alloy electrode and sealed nickelhydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170919

Year of fee payment: 14

EXPY Cancellation because of completion of term