JPH11102706A - Conductive agent for hydrogen storage alloy electrode, and hydrogen storage alloy electrode - Google Patents

Conductive agent for hydrogen storage alloy electrode, and hydrogen storage alloy electrode

Info

Publication number
JPH11102706A
JPH11102706A JP9263959A JP26395997A JPH11102706A JP H11102706 A JPH11102706 A JP H11102706A JP 9263959 A JP9263959 A JP 9263959A JP 26395997 A JP26395997 A JP 26395997A JP H11102706 A JPH11102706 A JP H11102706A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
copper powder
flake
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9263959A
Other languages
Japanese (ja)
Other versions
JP3475055B2 (en
Inventor
Yohei Hirota
洋平 廣田
Nobuyuki Higashiyama
信幸 東山
Kikuko Katou
菊子 加藤
Teruhiko Imoto
輝彦 井本
Mamoru Kimoto
衛 木本
Shin Fujitani
伸 藤谷
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26395997A priority Critical patent/JP3475055B2/en
Publication of JPH11102706A publication Critical patent/JPH11102706A/en
Application granted granted Critical
Publication of JP3475055B2 publication Critical patent/JP3475055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve discharge characteristic in a battery, particularly the discharge characteristic at the high current density by using the flake-like copper powder with flat surface as a conductive agent to increase the close adhesion of a hydrogen storage alloy to the conductive agent. SOLUTION: When flake-like copper powder with flat surface is used for the conductive agent to be mixed in a hydrogen storage alloy, the part of the flat surface is brought into contact with the surface of alloy particles and is closely adhered to the surface of alloy particles through the ductility of the copper powder for to improving the electrode conductivity. The flake-like copper powder is preferably set to 2-20 μm in mean diameter, and 0.1-2.0 μm in thickens. At least a part of the surface of the flake-like copper powder is preferably covered with the copper oxide. When charging is achieved under this condition, the oxide is reduced into copper high in conductivity, and integrated with the alloy particles for enhancing close adhesion of copper powder to the alloy particles and the conductivity is further improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ニッケル・水素
蓄電池等のアルカリ二次電池において、その負極に使用
される水素吸蔵合金電極に混入させる水素吸蔵合金電極
用導電剤及びこのような導電剤を混入させた水素吸蔵合
金電極に関するものであり、特に、水素吸蔵合金に混入
させる導電剤を改良し、水素吸蔵合金電極における導電
性を高めて、このような水素吸蔵合金電極を用いたアル
カリ二次電池における放電特性、特に高密度電流で放電
特性を向上させる点に特徴を有するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive agent for a hydrogen storage alloy electrode mixed with a hydrogen storage alloy electrode used for a negative electrode of an alkaline secondary battery such as a nickel-metal hydride storage battery, and a conductive agent for such a conductive agent. The present invention relates to a mixed hydrogen storage alloy electrode, and in particular, to improve a conductive agent mixed in a hydrogen storage alloy, to enhance conductivity in the hydrogen storage alloy electrode, and to use a hydrogen storage alloy electrode for such secondary alkaline storage. The present invention is characterized in that discharge characteristics of a battery, particularly, discharge characteristics are improved at a high density current.

【0002】[0002]

【従来の技術】従来より、アルカリ二次電池の一つとし
て、ニッケル・水素蓄電池が知られており、このニッケ
ル・水素蓄電池においては、一般にその負極に水素吸蔵
合金を用いた水素吸蔵合金電極が使用されていた。
2. Description of the Related Art Conventionally, a nickel-hydrogen storage battery has been known as one of alkaline secondary batteries. In this nickel-hydrogen storage battery, a hydrogen storage alloy electrode using a hydrogen storage alloy for a negative electrode is generally used. Had been used.

【0003】ここで、このような水素吸蔵合金電極を用
いたアルカリ二次電池においては、水素吸蔵合金電極に
おける放電性能を向上させるため、従来より、水素吸蔵
合金中に導電剤を混入させて、水素吸蔵合金粒子間にお
ける導電性を高め、その内部抵抗を小さくさせるように
していた。
Here, in an alkaline secondary battery using such a hydrogen storage alloy electrode, in order to improve the discharge performance of the hydrogen storage alloy electrode, a conductive agent has conventionally been mixed into the hydrogen storage alloy. The conductivity between the hydrogen-absorbing alloy particles has been increased to reduce the internal resistance.

【0004】そして、このように水素吸蔵合金中に混入
させる導電剤として、従来においては、一般に球状の銅
粉やニッケル粉が使用されており、また近年において
は、特開平4−262367号公報に示されるように、
フレーク状ニッケルパウダーを使用することが提案され
ている。
Conventionally, spherical copper powder or nickel powder is generally used as the conductive agent to be mixed into the hydrogen storage alloy, and in recent years, Japanese Patent Application Laid-Open No. Hei 4-26267 has disclosed the method. As shown,
It has been proposed to use flaky nickel powder.

【0005】しかし、上記のような球状銅粉や球状ニッ
ケル粉やフレーク状ニッケルパウダーからなる導電剤を
水素吸蔵合金中に混入させた場合においても、これらの
導電剤と水素吸蔵合金との密着性が十分ではなく、水素
吸蔵合金電極における導電性を十分に向上させることが
できず、このため、このような水素吸蔵合金電極を用い
たアルカリ二次電池における放電特性が十分に向上され
ず、特に、高密度電流での放電特性が悪く、高密度電流
での放電時における放電容量や電池電圧が低下するとい
う問題があった。
[0005] However, even when a conductive agent comprising spherical copper powder, spherical nickel powder, or flake-like nickel powder as described above is mixed into a hydrogen storage alloy, the adhesion between the conductive agent and the hydrogen storage alloy can be reduced. Is not sufficient, the conductivity of the hydrogen storage alloy electrode cannot be sufficiently improved, and therefore, the discharge characteristics in the alkaline secondary battery using such a hydrogen storage alloy electrode are not sufficiently improved, particularly In addition, there is a problem that the discharge characteristics at high density current are poor, and the discharge capacity and battery voltage at the time of discharging at high density current are reduced.

【0006】[0006]

【発明が解決しようとする課題】この発明は、ニッケル
・水素蓄電池等のアルカリ二次電池の負極に使用する水
素吸蔵合金電極における上記のような様々な問題を解決
することを課題とするものであり、水素吸蔵合金中に混
入させる導電剤を改良し、この導電剤と水素吸蔵合金と
の密着性を向上させて、水素吸蔵合金電極における導電
性を高め、この水素吸蔵合金電極を使用したアルカリ二
次電池における放電特性、特に高電流密度での放電特性
を向上させることを課題とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned various problems in a hydrogen storage alloy electrode used for a negative electrode of an alkaline secondary battery such as a nickel-metal hydride storage battery. Yes, the conductive agent mixed into the hydrogen storage alloy is improved, the adhesion between the conductive agent and the hydrogen storage alloy is improved, the conductivity of the hydrogen storage alloy electrode is increased, and the alkali using the hydrogen storage alloy electrode is used. It is an object of the present invention to improve discharge characteristics of a secondary battery, particularly, discharge characteristics at a high current density.

【0007】[0007]

【課題を解決するための手段】この発明の請求項1にお
ける水素吸蔵合金電極用導電剤においては、上記のよう
な課題を解決するため、水素吸蔵合金中に混入させる導
電剤として、平坦面を有するフレーク状銅粉を用いるよ
うにしたのである。
The conductive agent for a hydrogen storage alloy electrode according to claim 1 of the present invention has a flat surface as a conductive agent to be mixed into the hydrogen storage alloy in order to solve the above problems. That is, the flake-like copper powder was used.

【0008】ここで、この請求項1に示すように、水素
吸蔵合金中に混入させる導電剤に平坦面を有するフレー
ク状銅粉を用いると、このフレーク状銅粉の平坦面の部
分が水素吸蔵合金粒子の表面に接触すると共に、このフ
レーク状銅粉の延性によってフレーク状銅粉が水素吸蔵
合金粒子の表面にうまく密着し、これにより水素吸蔵合
金電極の導電性が向上するようになる。
[0008] Here, when the flake-like copper powder having a flat surface is used as the conductive agent to be mixed into the hydrogen storage alloy, the flat surface portion of the flake-like copper powder is hydrogen-absorbing. In addition to the contact with the surface of the alloy particles, the ductility of the flake copper powder makes the flake copper powder adhere well to the surface of the hydrogen storage alloy particles, thereby improving the conductivity of the hydrogen storage alloy electrode.

【0009】ここで、水素吸蔵合金中に混入させるフレ
ーク状銅粉が大きすぎると、水素吸蔵合金粒子と接触し
ない無駄な部分が生じる一方、フレーク状銅粉が小さす
ぎると、このフレーク状銅粉と水素吸蔵合金粒子との密
着部分が少なくなり、いずれの場合においても、水素吸
蔵合金電極における導電性を十分に向上させることがで
きなくなるため、フレーク状銅粉としては、その平均直
径が2〜20μmの範囲のものを用いるようにすること
が好ましい。
Here, if the flake-like copper powder mixed into the hydrogen-absorbing alloy is too large, wasteful portions that do not come into contact with the hydrogen-absorbing alloy particles will be produced, while if the flake-like copper powder is too small, this flake-like copper powder will be used. And the adhesion portion between the hydrogen storage alloy particles decreases, and in any case, the conductivity of the hydrogen storage alloy electrode cannot be sufficiently improved, so that the flaky copper powder has an average diameter of 2 to 2. It is preferable to use one having a range of 20 μm.

【0010】また、このフレーク状銅粉の厚みが薄くな
り過ぎると、水素吸蔵合金粒子との接触性が悪くなる一
方、このフレーク状銅粉の厚みが厚くなり過ぎると、水
素吸蔵合金粒子の形状に沿った変形が起こりにくくなっ
て、水素吸蔵合金粒子との密着性が悪くなり、いずれの
場合においても、水素吸蔵合金電極の導電性を十分に向
上させることができなくなるため、フレーク状銅粉とし
ては、その厚みが0.1〜2.0μmの範囲のものを用
いるようにすることが好ましい。
On the other hand, if the thickness of the flake-like copper powder is too small, the contact with the hydrogen-absorbing alloy particles is deteriorated. On the other hand, if the thickness of the flake-like copper powder is too thick, the shape of the hydrogen-absorbing alloy particles is reduced. Along with the hydrogen storage alloy particles, the adhesion to the hydrogen storage alloy particles is deteriorated, and in any case, the conductivity of the hydrogen storage alloy electrode cannot be sufficiently improved. It is preferable to use one having a thickness in the range of 0.1 to 2.0 μm.

【0011】また、上記のようなフレーク状銅粉におい
て、請求項3に示すように、その表面の少なくとも一部
を銅の酸化物で被覆すると、フレーク状銅粉の表面に設
けられた銅の酸化物が水素吸蔵合金粒子と接触した状態
となり、この状態で充電を行なうと、水素吸蔵合金と接
触する面において、フレーク状銅粉の表面に形成された
銅の酸化物が導電性の高い銅に還元されると共に水素吸
蔵合金粒子と一体的になって、フレーク状銅粉と水素吸
蔵合金粒子との密着性が高まり、水素吸蔵合金電極にお
ける導電性がさらに向上する。
In the above-mentioned flake-like copper powder, if at least a part of the surface is coated with a copper oxide, the copper flake provided on the surface of the flake-like copper powder may be coated. When the oxide comes into contact with the hydrogen storage alloy particles, and charging is performed in this state, the copper oxide formed on the surface of the flake-like copper powder on the surface in contact with the hydrogen storage alloy becomes a highly conductive copper. And become integrated with the hydrogen storage alloy particles, the adhesion between the flake copper powder and the hydrogen storage alloy particles is increased, and the conductivity of the hydrogen storage alloy electrode is further improved.

【0012】また、上記のようなフレーク状銅粉を水素
吸蔵合金中に混入させるにあたり、その量が少ないと、
水素吸蔵合金電極における導電性を十分に向上させるこ
とができない一方、その量が多くなり過ぎると、水素吸
蔵合金粒子の表面の多くがこのフレーク状銅粉によって
覆われるようになり、電解液との接触によって電極反応
が生じる水素吸蔵合金の有効な面積が減少し、これによ
って放電容量が低くなるため、水素吸蔵合金中にこのフ
レーク状銅粉を10〜20重量%の範囲で添加させるこ
とが好ましい。
In addition, when mixing the above-mentioned flaky copper powder into a hydrogen storage alloy, if the amount is small,
While the conductivity of the hydrogen-absorbing alloy electrode cannot be sufficiently improved, if the amount is too large, most of the surfaces of the hydrogen-absorbing alloy particles will be covered by the flake-like copper powder, and the electrolyte and the electrolytic solution Since the effective area of the hydrogen storage alloy in which an electrode reaction is caused by the contact is reduced and the discharge capacity is reduced, it is preferable to add the flake-form copper powder to the hydrogen storage alloy in a range of 10 to 20% by weight. .

【0013】そして、上記のようなフレーク状銅粉から
なる導電剤を水素吸蔵合金中に混入させた請求項5にお
ける水素吸蔵合金電極においては、上記のようなフレー
ク状銅粉からなる導電剤によって水素吸蔵合金電極にお
ける導電性が十分に向上されるようになり、この水素吸
蔵合金電極をアルカリ二次電池の負極に使用した場合に
は、その放電特性が向上され、高密度電流での放電時に
おいても、放電容量が低下したり、電池電圧が低下した
りするのが抑制される。
[0013] In the hydrogen storage alloy electrode according to claim 5, wherein the conductive agent comprising the flake-like copper powder is mixed into the hydrogen storage alloy, the conductive agent comprising the flake-like copper powder is used. The conductivity of the hydrogen storage alloy electrode is sufficiently improved, and when the hydrogen storage alloy electrode is used as a negative electrode of an alkaline secondary battery, its discharge characteristics are improved and the discharge characteristics at the time of high density current discharge are improved. Also in this case, a decrease in discharge capacity and a decrease in battery voltage are suppressed.

【0014】[0014]

【実施例】以下、この発明に係る水素吸蔵合金電極用導
電剤及び水素吸蔵合金電極について実施例を挙げて具体
的に説明すると共に、この実施例における水素吸蔵合金
電極をアルカリ二次電池の負極に使用した場合に、高密
度電流での放電特性が向上されることを比較例を挙げて
明らかにする。なお、この発明における水素吸蔵合金電
極用導電剤及び水素吸蔵合金電極は、特に下記の実施例
に示したものに限定されるものではなく、その要旨を変
更しない範囲において適宜変更して実施できるものであ
る。
EXAMPLES Hereinafter, the conductive agent for a hydrogen storage alloy electrode and the hydrogen storage alloy electrode according to the present invention will be specifically described with reference to examples, and the hydrogen storage alloy electrode in this example will be referred to as a negative electrode of an alkaline secondary battery. It will be clarified by using a comparative example that the discharge characteristics at a high density current are improved when used in the present invention. The conductive agent for a hydrogen storage alloy electrode and the hydrogen storage alloy electrode in the present invention are not particularly limited to those shown in the following Examples, but can be appropriately modified and implemented within the scope of the gist of the invention. It is.

【0015】(実施例1,2)これらの実施例において
は、水素吸蔵合金粒子を得るにあたり、希土類の混合物
であるミッシュメタル(Mm)に対して、NiとCoと
MnとAlとを所定のモル比で混合し、これらをアルゴ
ン雰囲気のアーク溶解炉で溶解させて、MmNi3.2
1.0 Mn0.6 Al0.2 の組成式で示される水素吸蔵合
金を作製し、この水素吸蔵合金を粉砕して分級し、平均
粒径が30μmになった水素吸蔵合金粒子を得た。
(Embodiments 1 and 2) In these embodiments, in obtaining hydrogen storage alloy particles, Ni, Co, Mn, and Al were mixed with a predetermined amount of misch metal (Mm), which is a mixture of rare earth elements. These were mixed in a molar ratio and melted in an arc melting furnace in an argon atmosphere to obtain MmNi 3.2 C
A hydrogen storage alloy represented by a composition formula of o 1.0 Mn 0.6 Al 0.2 was prepared, and this hydrogen storage alloy was pulverized and classified to obtain hydrogen storage alloy particles having an average particle size of 30 μm.

【0016】一方、上記の水素吸蔵合金粒子に混入させ
る導電剤を得るにあたっては、銅粒子をロールプレスで
圧延させて平板化させるようにした。そして、実施例1
においては、平均直径が10μm、厚みが0.5μmに
なったフレーク状銅粉を用いるようにし、また実施例2
においては、この平均直径が10μm、厚みが0.5μ
mになったフレーク状銅粉の表面だけを酸化させて、こ
のフレーク状銅粉の表面をCu2 Oで被覆したCu2
被覆フレーク状銅粉を用いるようにした。
On the other hand, in order to obtain a conductive agent to be mixed with the hydrogen storage alloy particles, the copper particles were rolled by a roll press to be flattened. And Example 1
In Example 2, flaky copper powder having an average diameter of 10 μm and a thickness of 0.5 μm was used.
Has an average diameter of 10 μm and a thickness of 0.5 μm.
Only by oxidizing the surface of the flaky copper powder became m, Cu 2 O in which the surface of the flaky copper powder coated with Cu 2 O
The coated flake copper powder was used.

【0017】そして、下記の表1に示すように、上記の
水素吸蔵合金粒子に対して上記の各導電剤をそれぞれ1
0重量%添加させた各負極材料を用い、この各負極材料
800gに対して、それぞれポリエチレンオキサイド5
%水溶液を160g添加し、これらを混合して各ペース
トを調製し、各ペーストをそれぞれニッケルメッキを施
したパンチングメタルの両面に塗布し、これを乾燥させ
て実施例1,2の各水素吸蔵合金電極を作製した。
As shown in Table 1 below, each of the above-mentioned conductive agents was added to the above-mentioned hydrogen-absorbing alloy particles in an amount of 1%.
0% by weight of each negative electrode material was used, and polyethylene oxide 5 was added to 800 g of each negative electrode material.
% Aqueous solution was added, and these were mixed to prepare each paste. Each paste was applied to both surfaces of a nickel-plated punched metal, dried, and dried to obtain each hydrogen storage alloy of Examples 1 and 2. An electrode was prepared.

【0018】(比較例1)比較例1においては、上記の
実施例1,2の場合と同じ水素吸蔵合金粒子を用いる一
方、下記の表1に示すように導電剤を加えないように
し、それ以外については、上記の実施例1,2の場合と
同様にして水素吸蔵合金電極を作製した。
(Comparative Example 1) In Comparative Example 1, the same hydrogen storage alloy particles as in Examples 1 and 2 were used, but the conductive agent was not added as shown in Table 1 below. Except for the above, a hydrogen storage alloy electrode was produced in the same manner as in Examples 1 and 2 described above.

【0019】(比較例2)比較例2においても、上記の
実施例1,2の場合と同じ水素吸蔵合金粒子を用いる一
方、導電剤としては、平均粒径が10μmになった球状
銅粉を用い、上記の水素吸蔵合金粒子にこの球状銅粉を
10重量%添加させるようにし、それ以外については、
上記の実施例1,2の場合と同様にして水素吸蔵合金電
極を作製した。
Comparative Example 2 In Comparative Example 2, the same hydrogen storage alloy particles as in Examples 1 and 2 were used, while spherical copper powder having an average particle diameter of 10 μm was used as the conductive agent. The spherical copper powder was added in an amount of 10% by weight to the above hydrogen storage alloy particles.
A hydrogen storage alloy electrode was produced in the same manner as in Examples 1 and 2 described above.

【0020】(比較例3)比較例3においても、上記の
実施例1,2の場合と同じ水素吸蔵合金粉末を用いる一
方、導電剤としては平均粒径が10μmになった球状ニ
ッケル粉を用い、下記の表1に示すように、上記の水素
吸蔵合金粒子にこの球状ニッケル粉を10重量%添加さ
せるようにし、それ以外については、上記の実施例1,
2の場合と同様にして水素吸蔵合金電極を作製した。
Comparative Example 3 In Comparative Example 3, the same hydrogen storage alloy powder as in Examples 1 and 2 was used, while spherical nickel powder having an average particle diameter of 10 μm was used as the conductive agent. As shown in Table 1 below, 10% by weight of the spherical nickel powder was added to the above-mentioned hydrogen storage alloy particles.
In the same manner as in the case of No. 2, a hydrogen storage alloy electrode was produced.

【0021】(比較例4)比較例4においても、上記の
実施例1,2の場合と同じ水素吸蔵合金粉末を用いる一
方、導電剤としては球状のニッケル粒子をロールプレス
で圧延させて平板化させ、平均直径が10μm、厚みが
0.5μmになったフレーク状ニッケル粉を用い、下記
の表1に示すように、上記の水素吸蔵合金粒子にこのフ
レーク状ニッケル粉を10重量%添加させるようにし、
それ以外については、上記の実施例1,2の場合と同様
にして水素吸蔵合金電極を作製した。
Comparative Example 4 In Comparative Example 4, the same hydrogen-absorbing alloy powder as in Examples 1 and 2 was used, while spherical nickel particles were rolled by a roll press as a conductive agent and flattened. Using flake-like nickel powder having an average diameter of 10 μm and a thickness of 0.5 μm, as shown in Table 1 below, the hydrogen-absorbing alloy particles were added with 10% by weight of the flake-like nickel powder. West,
Otherwise, a hydrogen storage alloy electrode was produced in the same manner as in Examples 1 and 2 described above.

【0022】(比較例5)比較例5においても、上記の
実施例1,2の場合と同じ水素吸蔵合金粉末を用いる一
方、導電剤として、上記の比較例4において用いた平均
直径が10μm、厚みが0.5μmになったフレーク状
ニッケル粉の表面だけを酸化させて、このフレーク状ニ
ッケル粉の表面をNiOで被覆したNiO被覆フレーク
状ニッケル粉を用い、下記の表1に示すように、上記の
水素吸蔵合金粒子にこのNiO被覆フレーク状ニッケル
粉を10重量%添加させるようにし、それ以外について
は、上記の実施例1,2の場合と同様にして水素吸蔵合
金電極を作製した。
Comparative Example 5 In Comparative Example 5, the same hydrogen storage alloy powder as in Examples 1 and 2 was used, while the average diameter used in Comparative Example 4 was 10 μm as the conductive agent. By oxidizing only the surface of the flaky nickel powder having a thickness of 0.5 μm, and using a NiO-coated flaky nickel powder obtained by coating the surface of the flaky nickel powder with NiO, as shown in Table 1 below, A hydrogen storage alloy electrode was produced in the same manner as in Examples 1 and 2 except that 10% by weight of the NiO-coated nickel flake powder was added to the hydrogen storage alloy particles.

【0023】(比較例6)比較例6においても、上記の
実施例1,2の場合と同じ水素吸蔵合金粉末を用いる一
方、導電剤としてはCu2 Oの微粉を用い、下記の表1
に示すように、上記の水素吸蔵合金粒子にこのCu2
微粉を10重量%添加させるようにし、それ以外につい
ては、上記の実施例1,2の場合と同様にして水素吸蔵
合金電極を作製した。
Comparative Example 6 In Comparative Example 6, the same hydrogen storage alloy powder as in Examples 1 and 2 above was used, while fine powder of Cu 2 O was used as the conductive agent.
As shown in the figure, the Cu 2 O was added to the hydrogen storage alloy particles.
A hydrogen storage alloy electrode was manufactured in the same manner as in Examples 1 and 2 except that 10% by weight of the fine powder was added.

【0024】次に、上記のようにして作製した実施例
1,2及び比較例1〜6の各水素吸蔵合金電極を油圧プ
レスにより圧延して負極に使用する一方、正極には一般
に使用されている焼結式ニッケル極を使用し、またセパ
レータに耐アルカリ性不織布を用い、図1に示すような
ニッケル・水素蓄電池を作製した。
Next, each of the hydrogen storage alloy electrodes of Examples 1 and 2 and Comparative Examples 1 to 6 produced as described above was rolled by a hydraulic press and used as a negative electrode. A nickel-metal hydride storage battery as shown in FIG. 1 was manufactured using the same sintered nickel electrode and using an alkali-resistant nonwoven fabric for the separator.

【0025】ここで、上記の各ニッケル・水素蓄電池を
作製するにあたっては、図1に示すように、上記の正極
1と各負極2との間にそれぞれ上記のセパレータ3を介
在させてスパイラル状に巻き取り、これをそれぞれ電池
缶4内に収容させた後、各電池缶4内に6mol/lの
水酸化カリウム水溶液に水酸化リチウムを1mol/l
の割合で溶解させたアルカリ電解液を注液して封口し、
正極1を正極リード5を介して正極蓋6に接続させると
共に、負極2を負極リード7を介して電池缶4に接続さ
せ、電池缶4と正極蓋6とを絶縁パッキン8により電気
的に分離させると共に、正極蓋6と正極外部端子9との
間にコイルスプリング10を設け、電池の内圧が異常に
上昇した場合には、このコイルスプリング10が圧縮さ
れて電池内部のガスが大気に放出されるようにした。
Here, in producing each of the nickel-metal hydride storage batteries, as shown in FIG. 1, the above-described separator 3 is interposed between the above-described positive electrode 1 and each of the negative electrodes 2 to form a spiral. After winding, each of them is accommodated in the battery can 4, 1 mol / l of lithium hydroxide is added to a 6 mol / l aqueous solution of potassium hydroxide in each battery can 4.
Inject and close the alkaline electrolyte dissolved in the proportion of
The positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5, and the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and the battery can 4 and the positive electrode lid 6 are electrically separated by the insulating packing 8. At the same time, a coil spring 10 is provided between the positive electrode cover 6 and the positive electrode external terminal 9, and when the internal pressure of the battery rises abnormally, the coil spring 10 is compressed to release the gas inside the battery to the atmosphere. It was to so.

【0026】そして、上記の実施例1,2及び比較例1
〜6の各水素吸蔵合金電極を用いて作製した各ニッケル
・水素蓄電池を100mAで12時間充電させた後、4
000mAの高密度電流で1.0Vまで放電を行ない、
この時の放電容量を測定すると共に、50%の放電時に
おける電池電圧を測定し、これらの結果を下記の表1に
あわせて示した。
The above Examples 1 and 2 and Comparative Example 1
After charging each nickel-metal hydride storage battery manufactured using each hydrogen storage alloy electrode of Nos. 6 to 6 at 100 mA for 12 hours,
Discharge to 1.0 V with a high density current of 000 mA,
The discharge capacity at this time was measured, and the battery voltage at the time of 50% discharge was measured. The results are shown in Table 1 below.

【0027】[0027]

【表1】 [Table 1]

【0028】この結果から明らかなように、導電剤とし
て、フレーク状銅粉やこのフレーク状銅粉の表面をCu
2 Oで被覆したCu2 O被覆フレーク状銅粉を添加させ
た実施例1,2の水素吸蔵合金電極を使用したニッケル
・水素蓄電池においては、導電剤を添加させない比較例
1の水素吸蔵合金電極や、導電剤として、球状銅粉や球
状ニッケル粉やフレーク状ニッケル粉やNiO被覆フレ
ーク状ニッケル粉やCu2 O微粉を添加させた比較例2
〜4の各水素吸蔵合金電極を使用したニッケル・水素蓄
電池に比べて、高密度電流での放電時における放電容量
が著しく向上すると共に、50%放電時における電池電
圧も高くなっており、高密度電流で安定した放電が行な
えるようになっていた。
As is evident from the results, flake-like copper powder and the surface of the flake-like copper powder
In the nickel-metal hydride storage batteries using the hydrogen storage alloy electrodes of Examples 1 and 2 to which Cu 2 O-coated flake copper powder coated with 2 O was added, the hydrogen storage alloy electrode of Comparative Example 1 in which no conductive agent was added was used. Comparative Example 2 in which spherical copper powder, spherical nickel powder, flake-like nickel powder, NiO-coated flake-like nickel powder, and Cu 2 O fine powder were added as conductive agents
As compared with the nickel-metal hydride storage battery using each of the hydrogen storage alloy electrodes of Nos. 1 to 4, the discharge capacity at the time of discharging at a high density current is remarkably improved, and the battery voltage at the time of 50% discharging is also increased. A stable discharge could be performed by the current.

【0029】また、実施例1,2の水素吸蔵合金電極を
使用したニッケル・水素蓄電池を比較した場合、Cu2
O被覆フレーク状銅粉を添加させた実施例2の水素吸蔵
合金電極を使用したニッケル・水素蓄電池において、さ
らに高密度電流での放電時における放電容量が向上する
と共に、50%放電時における電池電圧も高くなってお
り、高密度電流でさらに安定した放電が行なえるように
なっていた。これは、前記のように充電時より、水素吸
蔵合金粒子と接触する面において、フレーク状銅粉の表
面に形成された銅の酸化物が導電性の高い銅に還元され
ると共に、水素吸蔵合金粒子と一体的になって、フレー
ク状銅粉と水素吸蔵合金粒子との密着性が高まり、水素
吸蔵合金電極における導電性がさらに向上したためであ
ると考えられる。
When comparing the nickel-hydrogen storage batteries using the hydrogen storage alloy electrodes of Examples 1 and 2 , Cu 2
In the nickel-metal hydride storage battery using the hydrogen storage alloy electrode of Example 2 to which O-coated flake copper powder was added, the discharge capacity at the time of discharging at a high density current was further improved, and the battery voltage at the time of 50% discharging. And a more stable discharge could be performed with a high-density current. This is because the oxide of copper formed on the surface of the flake-like copper powder is reduced to highly conductive copper on the surface in contact with the hydrogen storage alloy particles from the time of charging as described above, and the hydrogen storage alloy This is considered to be because the adhesion between the flake-like copper powder and the hydrogen storage alloy particles was increased by being integrated with the particles, and the conductivity of the hydrogen storage alloy electrode was further improved.

【0030】(実験例1〜4)これらの実験例において
は、上記の実施例1,2の場合と同じ水素吸蔵合金粒子
を用いると共に、導電剤として、上記の実施例1の場合
と同じ平均直径が10μm、厚みが0.5μmになった
フレーク状銅粉を用い、このフレーク状銅粉を上記の水
素吸蔵合金粒子に添加させる量を、下記の表2に示すよ
うに1〜30重量%の範囲で変更させ、それ以外は、上
記の実施例1の場合と同様にして水素吸蔵合金電極を作
製した。
(Experimental Examples 1 to 4) In these experimental examples, the same hydrogen storage alloy particles as in Examples 1 and 2 were used, and the same average as that in Example 1 was used as a conductive agent. A flake-form copper powder having a diameter of 10 μm and a thickness of 0.5 μm was used. The amount of the flake-form copper powder added to the hydrogen storage alloy particles was 1 to 30% by weight as shown in Table 2 below. The hydrogen storage alloy electrode was manufactured in the same manner as in Example 1 except for the above.

【0031】そして、このように作製した各水素吸蔵合
金電極を用い、上記の実施例1の場合と同様にして各ニ
ッケル・水素蓄電池を作製し、各ニッケル・水素蓄電池
について、上記の場合と同様にして、4000mAの高
密度電流で1.0Vまで放電を行ない、この時の放電容
量を測定すると共に、50%放電時における電池電圧を
測定し、その結果を下記の表2に示した。
Each nickel-hydrogen storage battery was manufactured in the same manner as in the first embodiment using each of the hydrogen storage alloy electrodes manufactured as described above, and each nickel-hydrogen storage battery was manufactured in the same manner as in the above-described case. The battery was discharged to 1.0 V with a high-density current of 4000 mA, the discharge capacity at this time was measured, and the battery voltage at 50% discharge was measured. The results are shown in Table 2 below.

【0032】[0032]

【表2】 [Table 2]

【0033】この結果、水素吸蔵合金中におけるフレー
ク状銅粉の添加量が1重量%と少なくなった水素吸蔵合
金電極や、フレーク状銅粉の添加量が30重量%と多く
なった水素吸蔵合金電極を用いた各ニッケル・水素蓄電
池に比べて、水素吸蔵合金中におけるフレーク状銅粉の
添加量が10〜20重量%の範囲になった水素吸蔵合金
電極を用いた各ニッケル・水素蓄電池においては、高密
度電流での放電容量がさらに向上すると共に50%放電
時における電池電圧も高くなっており、特に、水素吸蔵
合金中におけるフレーク状銅粉の添加量を10重量%に
した場合に、高密度電流での放電容量が一番高くなって
いた。
As a result, the hydrogen storage alloy electrode in which the addition amount of the flake copper powder in the hydrogen storage alloy was reduced to 1% by weight, and the hydrogen storage alloy in which the addition amount of the flake copper powder was increased to 30% by weight. Compared with each nickel-hydrogen storage battery using an electrode, in each nickel-hydrogen storage battery using a hydrogen storage alloy electrode in which the addition amount of flake-like copper powder in the hydrogen storage alloy is in the range of 10 to 20% by weight, In addition, the discharge capacity at high-density current is further improved, and the battery voltage at 50% discharge is also increased. In particular, when the addition amount of the flake-like copper powder in the hydrogen storage alloy is 10% by weight, the high The discharge capacity at the density current was the highest.

【0034】これは、前記のように水素吸蔵合金中に混
入させるフレーク状銅粉の量が少ないと、水素吸蔵合金
電極における導電性を十分に向上させることができない
一方、その量が多くなり過ぎると、水素吸蔵合金粒子の
表面の多くがこのフレーク状銅粉によって覆われ、電解
液との接触によって電極反応が生じる水素吸蔵合金の有
効な面積が減少したためであると考えられる。
If the amount of the flake-like copper powder mixed into the hydrogen storage alloy is small as described above, the conductivity of the hydrogen storage alloy electrode cannot be sufficiently improved, but the amount becomes too large. This is considered to be because most of the surfaces of the hydrogen storage alloy particles were covered with the flake-like copper powder, and the effective area of the hydrogen storage alloy in which an electrode reaction was caused by contact with the electrolyte solution was reduced.

【0035】(実験例5〜9)これらの実験例において
も、上記の実施例1,2の場合と同じ水素吸蔵合金粒子
を用いる一方、導電剤としては、下記の表3に示すよう
に、平均直径を上記の実施例1の場合と同じ10μmに
する一方、厚みを0.05〜5.0μmの範囲で変更さ
せた各フレーク状銅粉を用い、これらのフレーク状銅粉
を上記の水素吸蔵合金粒子にそれぞれ10重量%添加さ
せるようにし、それ以外は、上記の実施例1の場合と同
様にして水素吸蔵合金電極を作製した。
(Experimental Examples 5 to 9) In these experimental examples, the same hydrogen storage alloy particles as in Examples 1 and 2 were used, while the conductive agent was as shown in Table 3 below. Each flaky copper powder having an average diameter of 10 μm, which is the same as that in Example 1 described above, and having a thickness changed in the range of 0.05 to 5.0 μm was used. A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that 10% by weight was added to each of the storage alloy particles.

【0036】そして、このように作製した各水素吸蔵合
金電極を用い、上記の実施例1の場合と同様にして各ニ
ッケル・水素蓄電池を作製し、各ニッケル・水素蓄電池
について、上記の場合と同様にして、4000mAの高
密度電流で1.0Vまで放電を行ない、この時の放電容
量を測定すると共に、50%放電時における電池電圧を
測定し、その結果を下記の表3に示した。
Using each of the hydrogen-absorbing alloy electrodes thus produced, nickel-metal hydride batteries were produced in the same manner as in Example 1 above, and each nickel-hydrogen battery was produced in the same manner as in the above case. Then, the battery was discharged to 1.0 V with a high-density current of 4000 mA, the discharge capacity at this time was measured, and the battery voltage at 50% discharge was measured. The results are shown in Table 3 below.

【0037】[0037]

【表3】 [Table 3]

【0038】この結果、水素吸蔵合金中に厚みが0.0
5μmと薄くなったフレーク状銅粉を添加させた水素吸
蔵合金電極や、厚みが5.0μmと厚くなったフレーク
状銅粉を添加させた水素吸蔵合金電極を用いた各ニッケ
ル・水素蓄電池に比べて、水素吸蔵合金中に厚みが0.
1〜2.0μmになったフレーク状銅粉を添加させた水
素吸蔵合金電極を用いた各ニッケル・水素蓄電池におい
ては、高密度電流での放電容量がさらに向上する共に5
0%放電時における電池電圧も高くなっており、特に、
厚みが0.5μmのフレーク状銅粉を添加させた水素吸
蔵合金電極を用いた場合に、高密度電流での放電容量及
び50%放電時における電池電圧が一番高くなってい
た。
As a result, the thickness of the hydrogen storage alloy was 0.0
Compared to nickel-hydrogen storage batteries using a hydrogen storage alloy electrode to which flake-shaped copper powder thinned to 5 μm was added or a hydrogen storage alloy electrode to which flake-shaped copper powder thinned to 5.0 μm was added. And a thickness of 0. 0 in the hydrogen storage alloy.
In each nickel-metal hydride storage battery using a hydrogen storage alloy electrode to which flake-like copper powder of 1 to 2.0 μm is added, the discharge capacity at high density current is further improved.
The battery voltage at the time of 0% discharge is also high.
When a hydrogen storage alloy electrode to which flake-form copper powder having a thickness of 0.5 μm was added was used, the discharge capacity at high density current and the battery voltage at 50% discharge were highest.

【0039】これは、前記のように水素吸蔵合金中に混
入させるフレーク状銅粉の厚みが薄すぎると、水素吸蔵
合金粒子との接触性が悪くなり、一方このフレーク状銅
粉の厚みが厚くなり過ぎると、水素吸蔵合金粒子の形状
に沿った変形が起こりにくくなって、水素吸蔵合金粒子
との密着性が悪くなったためであると考えられる。
This is because, as described above, if the thickness of the flake-like copper powder mixed into the hydrogen-absorbing alloy is too small, the contact with the hydrogen-absorbing alloy particles deteriorates, while the thickness of the flake-like copper powder increases. It is considered that this is because, if it becomes too much, deformation along the shape of the hydrogen storage alloy particles becomes difficult to occur, and the adhesion to the hydrogen storage alloy particles deteriorates.

【0040】(実験例10〜14)これらの実験例にお
いても、上記の実施例1,2の場合と同じ水素吸蔵合金
粒子を用いる一方、導電剤としては、下記の表4に示す
ように、厚みを上記の実施例1の場合と同じ0.5μm
にする一方、平均直径を1〜30μmの範囲で変更させ
た各フレーク状銅粉を用い、これらのフレーク状銅粉を
上記の水素吸蔵合金粒子にそれぞれ10重量%添加させ
るようにし、それ以外は、上記の実施例1の場合と同様
にして水素吸蔵合金電極を作製した。
(Experimental Examples 10 to 14) In these experimental examples, the same hydrogen storage alloy particles as in Examples 1 and 2 were used, while the conductive agent was as shown in Table 4 below. The thickness is 0.5 μm, which is the same as in the case of the first embodiment.
On the other hand, each flake-like copper powder whose average diameter was changed in the range of 1 to 30 μm was used, and these flake-like copper powders were added to the hydrogen storage alloy particles by 10% by weight, respectively. Then, a hydrogen storage alloy electrode was produced in the same manner as in Example 1 described above.

【0041】そして、このように作製した各水素吸蔵合
金電極を用い、上記の実施例1の場合と同様にして各ニ
ッケル・水素蓄電池を作製し、各ニッケル・水素蓄電池
について、上記の場合と同様にして、4000mAの高
密度電流で1.0Vまで放電を行ない、この時の放電容
量を測定すると共に、50%放電時における電池電圧を
測定し、その結果を下記の表4に示した。
Then, each nickel-metal hydride storage battery was manufactured in the same manner as in Example 1 using each of the hydrogen storage alloy electrodes thus manufactured, and each nickel-metal hydride storage battery was manufactured in the same manner as described above. Then, the battery was discharged at a high density current of 4000 mA to 1.0 V, the discharge capacity at this time was measured, and the battery voltage at 50% discharge was measured. The results are shown in Table 4 below.

【0042】[0042]

【表4】 [Table 4]

【0043】この結果、水素吸蔵合金中に平均直径が1
μmの小さいフレーク状銅粉の添加させた水素吸蔵合金
電極や、平均直径が30μmの大きいフレーク状銅粉の
添加させた水素吸蔵合金電極を用いたニッケル・水素蓄
電池に比べて、水素吸蔵合金中に平均直径が2〜20μ
mになったフレーク状銅粉を添加させた水素吸蔵合金電
極を用いた各ニッケル・水素蓄電池においては、高密度
電流での放電容量がさらに向上する共に50%放電時に
おける電池電圧も高くなっており、特に、平均直径が2
0μmのフレーク状銅粉を添加させた水素吸蔵合金電極
を用いた場合において、高密度電流での放電容量及び5
0%放電時における電池電圧が一番高くなっていた。
As a result, the average diameter of the hydrogen storage alloy was 1
Compared to a nickel-hydrogen storage battery using a hydrogen storage alloy electrode to which small flake-shaped copper powder of μm is added or a hydrogen storage alloy electrode to which large flake copper powder having an average diameter of 30 μm is added, the hydrogen storage alloy has Has an average diameter of 2-20μ
In each of the nickel-metal hydride storage batteries using the hydrogen storage alloy electrode to which the flake-shaped copper powder added to m is added, the discharge capacity at high density current is further improved and the battery voltage at 50% discharge is also increased. Especially, the average diameter is 2
When a hydrogen storage alloy electrode to which 0 μm flake-like copper powder was added was used, the discharge capacity at a high density current and the
The battery voltage at the time of 0% discharge was highest.

【0044】これは、前記のように水素吸蔵合金中に混
入させるフレーク状銅粉が大きすぎると、水素吸蔵合金
粒子と接触しない無駄な部分が生じる一方、フレーク状
銅粉が小さすぎると、このフレーク状銅粉と水素吸蔵合
金粒子との密着部分が少なくなり、いずれの場合におい
ても水素吸蔵合金粒子との密着性が悪くなったためであ
ると考えられる。
This is because, as described above, if the flake-like copper powder mixed into the hydrogen-absorbing alloy is too large, a wasteful portion that does not come into contact with the hydrogen-absorbing alloy particles is generated. It is considered that this is because the adhesion portion between the flake-like copper powder and the hydrogen storage alloy particles was reduced, and in any case, the adhesion to the hydrogen storage alloy particles was deteriorated.

【0045】[0045]

【発明の効果】以上詳述したように、この発明に係る水
素吸蔵合金電極用導電剤においては、水素吸蔵合金中に
混入させる導電剤として、平坦面を有するフレーク状銅
粉を用いるようにしたため、このフレーク状銅粉の平坦
面の部分が水素吸蔵合金粒子の表面に接触すると共に、
フレーク状銅粉の延性によってフレーク状銅粉が水素吸
蔵合金粒子の表面にうまく密着するようになった。
As described above in detail, in the conductive agent for a hydrogen storage alloy electrode according to the present invention, flake-like copper powder having a flat surface is used as the conductive agent to be mixed into the hydrogen storage alloy. The flat surface portion of the flaky copper powder contacts the surface of the hydrogen storage alloy particles,
Due to the ductility of the flaky copper powder, the flaky copper powder came into close contact with the surface of the hydrogen storage alloy particles.

【0046】そして、上記のようなフレーク状銅粉から
なる導電剤を水素吸蔵合金中に混入させたこの発明にお
ける水素吸蔵合金電極においては、上記のようにフレー
ク状銅粉からなる導電剤が水素吸蔵合金粒子の表面にう
まく密着して、水素吸蔵合金電極における導電性が十分
に向上されるようになった。
In the hydrogen-absorbing alloy electrode according to the present invention in which the above-mentioned conductive agent made of flake-like copper powder is mixed into the hydrogen-absorbing alloy, the conductive agent made of flake-like copper powder is made of hydrogen as described above. The adhesion to the surface of the storage alloy particles was successfully achieved, and the conductivity of the hydrogen storage alloy electrode was sufficiently improved.

【0047】この結果、この発明に係る水素吸蔵合金電
極をニッケル・水素蓄電池の負極に使用した場合、ニッ
ケル・水素蓄電池における放電特性が著しく向上され、
高密度電流での放電時においても、放電容量が低下した
り、電池電圧が低下したりするのが抑制され、高密度電
流での放電特性に優れたニッケル・水素蓄電池が得られ
るようになった。
As a result, when the hydrogen storage alloy electrode according to the present invention is used as the negative electrode of a nickel-metal hydride storage battery, the discharge characteristics of the nickel-metal hydride storage battery are significantly improved.
Even during high-density current discharge, a reduction in discharge capacity and a decrease in battery voltage are suppressed, and a nickel-metal hydride storage battery with excellent discharge characteristics at high-density current has been obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例及び比較例における水素吸蔵
合金電極を用いて作製したニッケル・水素蓄電池の概略
断面図である。
FIG. 1 is a schematic cross-sectional view of a nickel-hydrogen storage battery manufactured using a hydrogen storage alloy electrode according to an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極(水素吸蔵合金電極) 1 positive electrode 2 negative electrode (hydrogen storage alloy electrode)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井本 輝彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Teruhiko Imoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Mamoru Kimoto 2-chome Keihanhondori, Moriguchi-shi, Osaka No.5-5 Sanyo Electric Co., Ltd. (72) Inventor Shin Fujitani 2-5-2-5 Keihanhondori, Moriguchi City, Osaka Prefecture (72) Inventor Koji Nishio Keihanhondori, Moriguchi City, Osaka Prefecture 2-5-5 Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金中に混入される導電剤が平
坦面を有するフレーク状銅粉からなることを特徴とする
水素吸蔵合金電極用導電剤。
1. A conductive agent for a hydrogen storage alloy electrode, wherein the conductive agent mixed into the hydrogen storage alloy comprises flake-like copper powder having a flat surface.
【請求項2】 請求項1に記載した水素吸蔵合金電極用
導電剤において、上記のフレーク状銅粉の平均直径が2
〜20μm、厚みが0.1〜2.0μmの範囲にあるこ
とを特徴とする水素吸蔵合金電極用導電剤。
2. The conductive agent for a hydrogen storage alloy electrode according to claim 1, wherein said flake-like copper powder has an average diameter of 2%.
A conductive agent for a hydrogen storage alloy electrode, wherein the conductive agent has a thickness of 0.1 to 2.0 μm.
【請求項3】 請求項1又は2に記載した水素吸蔵合金
電極用導電剤において、上記のフレーク状銅粉の表面の
少なくとも一部が銅の酸化物で被覆されていることを特
徴とする水素吸蔵合金電極用導電剤。
3. The conductive agent for a hydrogen storage alloy electrode according to claim 1, wherein at least a part of the surface of the flake-like copper powder is coated with a copper oxide. Conductive agent for occlusion alloy electrodes.
【請求項4】 水素吸蔵合金中に請求項1〜3のいずれ
か1項に記載した水素吸蔵合金電極用導電剤が混入され
てなることを特徴とする水素吸蔵合金電極。
4. A hydrogen storage alloy electrode comprising the hydrogen storage alloy and the conductive agent for a hydrogen storage alloy electrode according to claim 1 mixed therein.
JP26395997A 1997-09-29 1997-09-29 Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode Expired - Fee Related JP3475055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26395997A JP3475055B2 (en) 1997-09-29 1997-09-29 Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26395997A JP3475055B2 (en) 1997-09-29 1997-09-29 Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH11102706A true JPH11102706A (en) 1999-04-13
JP3475055B2 JP3475055B2 (en) 2003-12-08

Family

ID=17396626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26395997A Expired - Fee Related JP3475055B2 (en) 1997-09-29 1997-09-29 Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3475055B2 (en)

Also Published As

Publication number Publication date
JP3475055B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
US6338917B1 (en) Alkaline storage battery
JPH1186898A (en) Alkaline storage battery
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JPH1021897A (en) Secondary battery electrode
JPH11162468A (en) Alkaline secondary battery
JP3469754B2 (en) Hydrogen storage alloy electrode
JP3475055B2 (en) Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3071026B2 (en) Metal hydride storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2001223000A (en) Alkaline secondary battery
JP4236399B2 (en) Alkaline storage battery
JPH11354124A (en) Alkaline secondary battery
JP4497797B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP3863689B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery
JP2002008710A (en) Cylindrical nickel-hydrogen secondary battery
JP2000090921A (en) Alkaline secondary battery
JP2001015107A (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3561597B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JPH0794176A (en) Hydrogen storage electrode
JPH09320576A (en) Hydrogen absorbing alloy electrode and sealed nickelhydrogen storage battery
JPH10208738A (en) Manufacture of hydrogen storage alloy electrode
JPH0417262A (en) Metal-alikaline hydride storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees