JP3448638B2 - Method for producing boron nitride nanotube having SP3 bond - Google Patents

Method for producing boron nitride nanotube having SP3 bond

Info

Publication number
JP3448638B2
JP3448638B2 JP2000087835A JP2000087835A JP3448638B2 JP 3448638 B2 JP3448638 B2 JP 3448638B2 JP 2000087835 A JP2000087835 A JP 2000087835A JP 2000087835 A JP2000087835 A JP 2000087835A JP 3448638 B2 JP3448638 B2 JP 3448638B2
Authority
JP
Japan
Prior art keywords
boron nitride
nanotubes
boron
bond
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000087835A
Other languages
Japanese (ja)
Other versions
JP2001270707A (en
Inventor
斉 遊佐
敬次 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2000087835A priority Critical patent/JP3448638B2/en
Publication of JP2001270707A publication Critical patent/JP2001270707A/en
Application granted granted Critical
Publication of JP3448638B2 publication Critical patent/JP3448638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、ナノチューブ状
の形態をもつ窒化ホウ素(BN)の製造方法に関するも
のである。また、既存の低圧合成法ではその出現が困難
である強固なSP 3結合を持つ窒化ホウ素ナノチューブ
に関するものである。 【0002】 【従来技術とその課題】工業技術の発展における集積技
術の進歩は、ナノテクノロジーといえる微細合成技術の
必要性を産み出した。カーボンナノチューブをその初め
とする、ナノメートルサイズの形状を持つ線材は、非常
に大きなアスペクト比をもつことから、ナノメートルサ
イズの電子デバイスや構造材への応用が期待されてい
る。 【0003】窒化ホウ素ナノチューブの合成法として
は、低圧下で放電により合成する方法があるが、電極等
からの不純物を含有する場合があり、問題とされてい
た。高圧下で超臨界窒素流体を反応源としての窒化ホウ
素ナノチューブの合成法によれば、純度の点で優れると
いう利点がある。 【0004】これまでに、立方晶窒化ホウ素を超臨界窒
素流体中で融解後、冷却析出させることにより多層型窒
化ホウ素ナノチューブが得られたが、純度が高いもの
の、サイズ的には100ナノメートル程度の長さを持つ
ものが少量合成できるのみであった。そのため、よりサ
イズの長いものを得るための出発物質の選択、温度およ
び圧力条件の最適化が必要である。また、高圧下ではグ
ラファイト(SP2結合)がダイヤモンド(SP3結合)
に変わるように、窒化ホウ素ナノチューブにSP3結合
を付与できる可能性があり、より硬質の窒化ホウ素ナノ
チューブの合成技術を開発する必要があった。 【0005】 【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、超臨界窒素流体との出発反応物
質として炭素とホウ素をその構成元素に持つ物質(ボロ
ンカーバイド等)を選択し超高温高圧力下で存在する超
臨界窒素流体と反応させて該物質の表面に窒化ホウ素成
分をもつナノチューブを生成させる製造方法を提供す
る。 【0006】この発明の製造方法において、従来より5
0倍も長い、最大5ミクロンの長さをもつ窒化ホウ素ナ
ノチューブの合成が可能であり、また中心部にSP3
合を持つ新規な窒化ホウ素ナノチューブの合成が可能で
ある。 【0007】本発明による窒化ホウ素ナノチューブ製造
方法は、ダイヤモンドアンビルセル装置の試料室に炭素
とホウ素をその構成元素に持つ物質を液体窒素とともに
封じ込め、装置に荷重をかけ5GPa以上の圧力を試料
室に発生させた後、炭酸ガスレーザーを試料表面に照射
し、その表面に1000℃以上の温度を発生させる。 【0008】それにより、出発試料が超臨界窒素流体と
反応し、窒化ホウ素成分と炭素成分に分解する。その過
程で、BNナノチューブが生成する。この過程により製
造された窒化ホウ素ナノチューブは、高圧下においてそ
の発現が容易となるSP3結合を含む点がその特徴とな
る。これらは、既存のナノチューブより構造的に強固で
あると思われる。炭素とホウ素をその構成元素に持つ物
質としては、ボロンカーバイドが挙げられるが、その他
に、BC3やBC2N等の物質も使用可能である。 【0009】高圧下での窒化ホウ素ナノチューブの製造
方法としては、以前に、立方晶窒化ホウ素を出発試料に
した方法があったが、本発明の製造方法では、炭素をそ
の成分の一部にもつボロンカーバイドを出発試料にする
ことができる。本発明の製造方法によれば、格段にサイ
ズが大きなナノチューブが合成でき、かつ高効率に得ら
れることが確かめられた。本発明の製造方法によって合
成された窒化ホウ素ナノチューブは、その形状および長
さから走査型プローブ顕微鏡の探針等に対する需要がで
てくると考えられる。 【0010】 【実施例】実施例1 図1は、実施例において用いる製造装置の概略側面を示
す概念図である。また、図2は、図1の装置の拡大斜視
図である。これらのダイヤモンドアンビルセル装置自体
は公知のものである。まず、炭素とホウ素をその構成元
素に持つ物質として、塊状のボロンカーバイド単結晶を
粉砕し、100ミクロン角、20ミクロン厚に整形した
試料1をダイヤモンドアンビルセル2中に入れ、ダイヤ
モンドアンビルセル2とガスケット3によって形成され
る試料室4に−196℃で液体窒素を封入し、ダイヤモ
ンドアンビルセル2によって15GPaの圧力を試料1
にかけた。 【0011】その後、試料1に100Wの炭酸ガスレー
ザーを用いて100ミクロンのサイズにレンズにより集
光したレーザービーム5を照射し、ボロンカーバイド試
料1の表面に3000Kの温度を発生させ、加熱により
同時に生じた超臨界窒素6の流体とボロンカーバイド試
料1の表面が窒化ホウ素および炭素に分解反応する過程
により窒化ホウ素ナノチューブをボロンカーバイド試料
1の結晶表面に10平方ミクロンあたり100本程度成
長させ、急冷後減圧して試料を回収した。 【0012】図3は、実施例1の方法により生成した窒
化ホウ素ナノチューブの形状を示す高分解能走査電子顕
微鏡写真である。また、図4は、生成した窒化ホウ素ナ
ノチューブの形状を示す透過型電子顕微鏡写真と電子線
エネルギー損失スペクトルを示すグラフである。 【0013】これらの高分解能走査電子顕微鏡、透過型
電子顕微鏡、電子線エネルギー損失スペクトルおよび、
電子線回折により、生成したナノチューブの形状は、1
〜5ミクロンと長いこと、10nm〜100nm程度の
多様な太さをもつこと、および殻の中心近傍にSP
結合を持つことを確認した。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention
Also relates to a method for producing boron nitride (BN) having the form
It is. In addition, it is difficult to use conventional low-pressure synthesis.
Is a solid SP ThreeBoron nitride nanotubes with bonds
It is about. [0002] [Prior art and its problems] Integrated technology in the development of industrial technology
Advances in the art are based on nano-technology
Spawned the need. Carbon nanotubes at the beginning
Wire with nanometer size shape
Because of its large aspect ratio,
Is expected to be applied to electronic devices and structural materials
You. As a method for synthesizing boron nitride nanotubes
Can be synthesized by electric discharge under low pressure.
May contain impurities from
Was. Boron nitride using supercritical nitrogen fluid as reaction source under high pressure
According to the synthesis method of carbon nanotubes, it is excellent in purity
There are advantages. Until now, cubic boron nitride has been supercritically nitrided.
After melting in an elementary fluid, it is cooled and precipitated to form a multilayer nitrogen
Boron iodide nanotubes obtained, but with high purity
Has a length of about 100 nanometers in size
Only a small amount could be synthesized. Therefore,
Selection of starting materials, temperature and
Optimization of pressure and pressure conditions is required. Also, under high pressure
Lafite (SPTwoBond) is a diamond (SPThreeJoin)
SP to boron nitride nanotubesThreeJoin
May be added, the harder boron nitride nano
Tube synthesis technology had to be developed. [0005] SUMMARY OF THE INVENTION The present invention has been made to solve the above problems.
As a solution to the starting reactant with the supercritical nitrogen fluid
Substances with carbon and boron as their constituent elements (boro
Carbide, etc.) and exist under ultra-high temperature and high pressure
Reacts with a critical nitrogen fluid to form boron nitride on the surface of the material.
To provide a production method for producing nanotubes
You. In the manufacturing method of the present invention, the conventional
Boron nitride with 0 times longer and up to 5 microns long
No tube can be synthesized, and SP is located at the center.ThreeConclusion
Synthesis of new boron nitride nanotubes
is there. Production of boron nitride nanotubes according to the present invention
The method uses carbon in the sample chamber of the diamond anvil cell device.
With boron as a constituent element with liquid nitrogen
Contain, apply a load to the device and apply a pressure of 5 GPa or more to the sample.
After generating in the chamber, irradiate the sample surface with carbon dioxide laser
Then, a temperature of 1000 ° C. or more is generated on the surface. [0008] Thereby, the starting sample is supercritical nitrogen fluid.
Reacts and decomposes into boron nitride component and carbon component. That over
In the process, BN nanotubes are generated. This process
The produced boron nitride nanotubes are
That facilitate expression ofThreeThe point that includes the bond
You. These are structurally more robust than existing nanotubes
It appears to be. Materials with carbon and boron as their constituent elements
The quality is boron carbide, but other
And BCThreeAnd BCTwoSubstances such as N can also be used. Production of boron nitride nanotubes under high pressure
Previously, cubic boron nitride was used as a starting sample.
However, in the production method of the present invention, carbon was
Of boron carbide as a starting material
be able to. According to the manufacturing method of the present invention,
Can be synthesized with high efficiency and high efficiency.
Was confirmed. The manufacturing method of the present invention
The resulting boron nitride nanotube has a shape and length
Therefore, the demand for the scanning probe microscope probe etc.
It is thought to come. [0010] Embodiment 1 FIG. 1 shows a schematic side view of a manufacturing apparatus used in the embodiment.
FIG. FIG. 2 is an enlarged perspective view of the apparatus of FIG.
FIG. These diamondsAnvilCell device itself
Is known. First, carbon and boron
Lump-like boron carbide single crystal
Crushed and shaped into 100 micron square and 20 micron thickness
Place sample 1 in diamond anvil cell 2
Formed by Monde anvil cell 2 and gasket 3
Fill the sample chamber 4 with liquid nitrogen at -196 ° C.
A pressure of 15 GPa is applied to the sample 1 by the anvil cell 2.
To Then, a 100 W carbon dioxide gas
With a lens to a size of 100 microns
Irradiates the laser beam 5 and emits boron carbide
A temperature of 3000K is generated on the surface of material 1 and heated
Simultaneously generated fluid of supercritical nitrogen 6 and boron carbide test
Of surface decomposition of boron 1 into boron nitride and carbon
Boron Nitride Nanotube with Boron Carbide Sample
About 100 crystals per 10 square micron on the surface of 1 crystal
After elongating, quenching and reducing the pressure, the sample was collected. FIG. 3 shows the nitrogen generated by the method of Example 1.
High-resolution scanning electron microscope showing the shape of boron nitride nanotubes
It is a microscopic photograph. FIG. 4 shows the boron nitride produced.
Transmission electron micrograph showing electron tube shape and electron beam
It is a graph which shows an energy loss spectrum. These high-resolution scanning electron microscopes, transmission type
Electron microscope, electron beam energy loss spectrum and
The shape of the nanotube produced by electron diffraction is 1
~ 5 microns long and about 10-100nm
Various thickness and SP near the center of the shell3of
Confirmed to have a bond.

【図面の簡単な説明】 【図1】図1は、本発明の窒化ホウ素ナノチューブの製
造に用いる製造装置の概略側面を示す概念図である。 【図2】図2は、図1の装置の拡大斜視図である。 【図3】図3は、実施例1の方法により生成した窒化ホ
ウ素ナノチューブの形状を示す図面代用の高分解能走査
電子顕微鏡写真である。 【図4】図4は、生成した窒化ホウ素ナノチューブの形
状を示す図面代用の透過型電子顕微鏡写真と電子線エネ
ルギー損失スペクトルを示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing a schematic side view of a manufacturing apparatus used for manufacturing a boron nitride nanotube of the present invention. FIG. 2 is an enlarged perspective view of the device of FIG. 1; FIG. 3 is a high-resolution scanning electron micrograph as a substitute for a drawing, showing the shape of a boron nitride nanotube produced by the method of Example 1. FIG. 4 is a transmission electron micrograph instead of a drawing and a graph showing an electron beam energy loss spectrum showing the shape of the produced boron nitride nanotubes.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2000−109306(JP,A) Appl.Phys.Lett,1996 年 9月30日,Vol.69,No.14, 2045−2047 Chemical Physics Letters,1997年11月14日,Vo l 279,191−196 (58)調査した分野(Int.Cl.7,DB名) C01B 21/064 B01J 3/00 CA(STN)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2000-109306 (JP, A) Appl. Phys. Lett, September 30, 1996, Vol. 69, no. 14, 2045-2047 Chemical Physics Letters, November 14, 1997, Vol 279, 191-196 (58) Fields investigated (Int. Cl. 7 , DB name) C01B 21/064 B01J 3/00 CA (STN )

Claims (1)

(57)【特許請求の範囲】 【請求項1】超臨界窒素流体との出発反応物質として炭
素とホウ素をその構成元素に持つ物質を選択してダイヤ
モンドアンビルセル装置により5GPa以上の高圧状態
で炭酸ガスレーザーを該物質に照射し1000℃以上の
温度を発生させて該物質の表面に窒化ホウ素成分をもつ
ナノチューブを生成させることを特徴とするSP結合
をもつ窒化ホウ素ナノチューブの製造方法。
(57) Claims 1. A substance having carbon and boron as its constituent elements is selected as a starting reactant with a supercritical nitrogen fluid, and carbon dioxide is produced under a high pressure state of 5 GPa or more by a diamond anvil cell apparatus. A method for producing boron nitride nanotubes having an SP 3 bond, comprising irradiating a gas laser to the substance to generate a temperature of 1000 ° C. or more to generate nanotubes having a boron nitride component on the surface of the substance.
JP2000087835A 2000-03-28 2000-03-28 Method for producing boron nitride nanotube having SP3 bond Expired - Lifetime JP3448638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087835A JP3448638B2 (en) 2000-03-28 2000-03-28 Method for producing boron nitride nanotube having SP3 bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087835A JP3448638B2 (en) 2000-03-28 2000-03-28 Method for producing boron nitride nanotube having SP3 bond

Publications (2)

Publication Number Publication Date
JP2001270707A JP2001270707A (en) 2001-10-02
JP3448638B2 true JP3448638B2 (en) 2003-09-22

Family

ID=18603788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087835A Expired - Lifetime JP3448638B2 (en) 2000-03-28 2000-03-28 Method for producing boron nitride nanotube having SP3 bond

Country Status (1)

Country Link
JP (1) JP3448638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899659A (en) * 2012-10-16 2013-01-30 哈尔滨工业大学 Preparation method of boron nitride nanotube hydrophobic membrane

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232418B2 (en) 2002-09-10 2009-03-04 日本電気株式会社 Method for producing reactive graphite-like layered material
JP4674353B2 (en) * 2005-10-07 2011-04-20 独立行政法人物質・材料研究機構 Boron nitride nanotubes introduced with fluorine atoms and method for producing the same
JP5054313B2 (en) * 2006-01-26 2012-10-24 帝人株式会社 Heat resistant resin composition and method for producing the same
JP5054314B2 (en) * 2006-01-27 2012-10-24 帝人株式会社 Polyethersulfone resin composition having excellent thermal stability and method for producing the same
JP5054344B2 (en) * 2006-09-12 2012-10-24 帝人株式会社 Heat-resistant resin composite composition and method for producing the same
KR20090127399A (en) * 2007-03-05 2009-12-11 데이진 가부시키가이샤 Boron nitride fiber paper and method for producing the same
WO2008123326A1 (en) * 2007-03-23 2008-10-16 Teijin Limited Thermosetting resin composite composition, resin molded body, and method for producing the composition
JP5105372B2 (en) 2009-02-03 2012-12-26 独立行政法人物質・材料研究機構 Boron nitride spherical nanoparticles and production method thereof
US8673120B2 (en) * 2011-01-04 2014-03-18 Jefferson Science Associates, Llc Efficient boron nitride nanotube formation via combined laser-gas flow levitation
JP6709041B2 (en) * 2015-11-19 2020-06-10 積水化学工業株式会社 Thermosetting material
CN112415055B (en) * 2020-10-10 2023-06-13 牡丹江师范学院 Comprehensive in-situ electric transport measurement method based on diamond anvil cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett,1996年 9月30日,Vol.69,No.14,2045−2047
Chemical Physics Letters,1997年11月14日,Vol 279,191−196

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899659A (en) * 2012-10-16 2013-01-30 哈尔滨工业大学 Preparation method of boron nitride nanotube hydrophobic membrane

Also Published As

Publication number Publication date
JP2001270707A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
Zhi et al. Boron nitride nanotubes
JP3448638B2 (en) Method for producing boron nitride nanotube having SP3 bond
Shenderova et al. Types of nanocrystalline diamond
Loa Raman spectroscopy on carbon nanotubes at high pressure
Ekimov et al. High-pressure synthesis of boron-doped ultrasmall diamonds from an organic compound
US7754179B2 (en) Lower pressure synthesis of diamond material
Sadeghi et al. Producing graphene nanosheets by pulsed laser ablation: Effects of liquid environment
US11254575B2 (en) Process, reactor and system for fabrication of free-standing two-dimensional nanostructures using plasma technology
JP2004131336A (en) Diamond polycrystal and its production method
KR20160114372A (en) A method for producing graphene with rapid expansion and graphene made thereby
TWI811364B (en) -bonded carbon materials, methods of manufacturing and uses thereof
Narayan et al. Pseudo-topotactic growth of diamond nanofibers
Juvaid et al. Realization of good quality bilayer graphene by single step laser ablation process
US9200378B2 (en) Methods of making nanowires
US20110300056A1 (en) Production Of Nano-Structures
US8206624B2 (en) Method for producing carbon nanotube
Han Anisotropic Hexagonal Boron Nitride Nanomaterials-Synthesis and Applications
JP3500423B2 (en) Nanodiamond and its manufacturing method
Ohfuji et al. Origin of unique microstructures in nano-polycrystalline diamond synthesized by direct conversion of graphite at static high pressure
Tang et al. Behavior of carbon nanotubes under high pressure and high temperature
Govindaraju et al. Synthesis and properties of boron nitride nanotubes
Guo et al. Tailoring the type and size of Fe-catalytically synthesized nanodiamond during chlorine-etching carbide at ambient pressure: influence of the type of carbide as precursor
Wang et al. Transformation of carbon nanotubes to diamond at high pressure and high temperature
JP3496050B2 (en) Method for producing hollow particles of fullerene-like boron nitride
JP4576603B2 (en) Method for producing indium phosphide nanotubes

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3448638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term