JP3496050B2 - Method for producing hollow particles of fullerene-like boron nitride - Google Patents

Method for producing hollow particles of fullerene-like boron nitride

Info

Publication number
JP3496050B2
JP3496050B2 JP2000111620A JP2000111620A JP3496050B2 JP 3496050 B2 JP3496050 B2 JP 3496050B2 JP 2000111620 A JP2000111620 A JP 2000111620A JP 2000111620 A JP2000111620 A JP 2000111620A JP 3496050 B2 JP3496050 B2 JP 3496050B2
Authority
JP
Japan
Prior art keywords
fullerene
boron nitride
fine particles
boron
boron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000111620A
Other languages
Japanese (ja)
Other versions
JP2001294409A (en
Inventor
義雄 板東
ハン ウエイチン
忠雄 佐藤
敬次 倉嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2000111620A priority Critical patent/JP3496050B2/en
Publication of JP2001294409A publication Critical patent/JP2001294409A/en
Application granted granted Critical
Publication of JP3496050B2 publication Critical patent/JP3496050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、フラーレン状の
窒化ホウ素の中空の微粒子を製造する合成方法に関す
る。さらに詳しくは、本発明は、潤滑材料や触媒等とし
て使用できるフラーレン状窒化ホウ素の微粒子の製造法
に関するものである。
TECHNICAL FIELD The present invention relates to a synthetic method for producing hollow fine particles of fullerene-like boron nitride. More specifically, the present invention relates to a method for producing fine particles of fullerene-like boron nitride that can be used as a lubricating material, a catalyst, or the like.

【0002】[0002]

【従来の技術】近年、カーボンを構成物質とするナノメ
ートル径の微細な粒子であるフラーレンやナノチューブ
が発見され、新しい機能性材料として期待されている。
C60で代表されるフラーレンは炭素原子が60個からな
り、サッカーボール状の構造をしている。また、グラフ
ァイト層が多層からなり、粒子の内部が中空であるフラ
ーレン状の微微粒子も見いだされている。
2. Description of the Related Art In recent years, fullerenes and nanotubes, which are fine particles having a diameter of nanometer and made of carbon as a constituent substance, have been discovered and are expected as new functional materials.
The fullerene typified by C60 has 60 carbon atoms and has a soccer ball-like structure. In addition, fullerene-shaped fine particles in which the graphite layer is composed of multiple layers and the inside of the particle is hollow are also found.

【0003】本発明者は、先にカーボンナノチューブを
原料として窒化ホウ素ナノチューブを製造する方法を発
明し、特許出願した(特許第2972882号公報)。
The present inventor previously invented a method for producing boron nitride nanotubes using carbon nanotubes as a raw material, and applied for a patent (Japanese Patent No. 2972882).

【0004】[0004]

【発明が解決しようとする課題】これまで、フラーレン
状のカーボンや窒化ホウ素の微粒子はアーク放電法やレ
ーザー加熱法などにより合成されている。しかし、従来
の方法ではフラーレン状微粒子の収率は悪く、また生成
物の大きさは一定でなく、多くの金属不純物を含んでい
た。
Heretofore, fine particles of fullerene-like carbon or boron nitride have been synthesized by an arc discharge method or a laser heating method. However, in the conventional method, the yield of fullerene-like fine particles was poor, the size of the product was not constant, and many metal impurities were contained.

【0005】この発明は、大きさのそろったカーボンナ
ノチューブを出発原料とし、不純物を含まなく、しかも
外径の大きさがそろったフラーレン状の窒化ホウ素の中
空の微粒子を製造することを目的としている。
The object of the present invention is to produce hollow particles of fullerene-like boron nitride which have carbon nanotubes of uniform size as a starting material, are free of impurities and have uniform outer diameters. .

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するものとして、カーボンナノチューブを出発物質
とし、ホウ素酸化物と高温下の窒素ガス中で化学反応さ
せることによりカーボンナノチューブとほぼ同じ直径を
有するフラーレン状の窒化ホウ素の中空微粒子を製造す
る方法を提供する。
Means for Solving the Problems In order to solve the above problems, the present invention uses carbon nanotubes as a starting material, and chemically reacts with boron oxide in nitrogen gas at high temperature to obtain almost the same carbon nanotubes. Provided is a method for producing hollow fine particles of fullerene-shaped boron nitride having a diameter.

【0007】上記の本発明者らの先の発明が黒鉛るつぼ
を用いて、1500℃以上の高温で反応させるのに対して、
本発明は、窒化ホウ素るつぼを用いて、1500℃以下の温
度で反応させる点に特徴がある。
[0007] Whereas the above-mentioned previous inventions of the inventors of the present invention use a graphite crucible to react at a high temperature of 1500 ° C or higher,
The present invention is characterized in that a reaction is carried out at a temperature of 1500 ° C. or lower using a boron nitride crucible.

【0008】本発明の製造方法における化学反応は下記
の通りである。 B2O3 + 3C(カーボンナノチューブ)= 2BN(フラーレン
状微粒子)+ 3CO 上記のホウ素酸化物としては、ホウ酸、酸化ホウ素、ま
たは高温下でホウ素酸化物を発生する物質を用いること
ができ、加熱手段としては高周波加熱炉を用いることが
できる。反応るつぼの材料はカーボンでなく、窒化ホウ
素を用いる。反応温度は1000℃以上1500℃以下が適して
おり、特に1300℃がより好ましい。反応るつぼに黒鉛を
用い、1500℃以上の高温で反応させると、フラーレン状
のBN微粒子でなく、BNナノチューブが生成してしま
う。
The chemical reaction in the production method of the present invention is as follows. B 2 O 3 + 3C (carbon nanotube) = 2BN (fullerene fine particles) + 3CO As the above-mentioned boron oxide, boric acid, boron oxide, or a substance capable of generating boron oxide at high temperature can be used. A high-frequency heating furnace can be used as the heating means. The material of the reaction crucible is not carbon but boron nitride. The reaction temperature is suitably 1000 ° C or higher and 1500 ° C or lower, and particularly preferably 1300 ° C. When graphite is used for the reaction crucible and the reaction is performed at a high temperature of 1500 ° C. or higher, BN nanotubes are generated instead of fullerene-like BN fine particles.

【0009】[0009]

【発明の実施の形態】図1は、この発明の方法を窒化ホ
ウ素るつぼを使用して実施するために用いる高周波誘導
加熱炉の模式図である。まず、本発明の製造方法に用い
る装置を説明する。高周波誘導加熱炉(1)の断熱材
(2)を被覆した石英外筒(3)の内部に設置した管状
の黒鉛発熱体(4)とワークコイル(5)で加熱する。
***14を設けたBN第1るつぼ(6)中にB2O3(B)
を、BN第2るつぼ(8)の中にカーボンナノチューブ
(C)を配置する。BNるつぼ(6,8)は筒状の黒鉛
発熱体(4)内部の黒鉛スぺーサー(7)上に配置す
る。筒状の黒鉛発熱体(4)に窒素ガスを上下2ヶ所の
入口(9,10)から導入する。石英外筒(3)の下部
には窒素ガスの排出用出口(11)を設ける。反応部の
温度は、筒状の黒鉛発熱体(4)の開口部を通る光をガ
ラスプリズム(12)で屈折させて光高温計(13)を
用いて測定する。
FIG. 1 is a schematic diagram of a high frequency induction heating furnace used for carrying out the method of the present invention using a boron nitride crucible. First, an apparatus used in the manufacturing method of the present invention will be described. Heating is performed by a tubular graphite heating element (4) and a work coil (5) installed inside a quartz outer cylinder (3) coated with a heat insulating material (2) of a high frequency induction heating furnace (1).
B 2 O 3 (B) in the BN first crucible (6) with small holes 14
Place carbon nanotubes (C) in the BN second crucible (8). The BN crucible (6, 8) is arranged on the graphite spacer (7) inside the cylindrical graphite heating element (4). Nitrogen gas is introduced into the cylindrical graphite heating element (4) through the upper and lower two inlets (9, 10). An outlet (11) for discharging nitrogen gas is provided at the bottom of the quartz outer cylinder (3). The temperature of the reaction part is measured using an optical pyrometer (13) by refracting the light passing through the opening of the cylindrical graphite heating element (4) by the glass prism (12).

【0010】原料の配置は、BN第1るつぼ(6)中に
酸化ホウ素を、上部に位置したBN第2るつぼの中にカ
ーボンナノチューブを置き、高温でホウ素酸化物が拡散
または輸送により、カーボンナノチューブと反応する構
造である必要がある。
The raw materials are arranged such that boron oxide is placed in the BN first crucible (6) and carbon nanotubes are placed in the BN second crucible located above, and the boron oxide is diffused or transported at a high temperature so that the carbon nanotubes Must be a structure that reacts with.

【0011】上記の酸化ホウ素は、加熱によりホウ素酸
化物を生成する物質であれば他の物質でもよい。例え
ば、ホウ酸、メラミンボレート等の有機ホウ酸化合物、
ホウ酸と有機物の混合物等の固体、液体、さらにはホウ
素、酸素を含む気体ででもよい。
The above-mentioned boron oxide may be any other substance as long as it is a substance that produces boron oxide by heating. For example, boric acid, an organic boric acid compound such as melamine borate,
It may be a solid or liquid such as a mixture of boric acid and an organic material, or a gas containing boron or oxygen.

【0012】反応に用いるるつぼはBN焼結体るつぼを
用いる。安価で加工性がよく還元性を有する黒鉛るつぼ
を用いると、窒化ホウ素ナノチューブが生成し易くな
る。本発明の方法において、フラーレン状の窒化ホウ素
中空微粒子の生成には、1000℃以上が必要であり、好ま
しくは1300℃以上である。
The crucible used for the reaction is a BN sintered crucible. If a graphite crucible that is inexpensive, has good workability, and has a reducing property is used, boron nitride nanotubes are easily generated. In the method of the present invention, the generation of fullerene-shaped boron nitride hollow fine particles requires 1000 ° C. or higher, preferably 1300 ° C. or higher.

【0013】上記に説明した装置を用いて、例えば、窒
素ガス中で1300℃で1時間加熱すると、B2O3は加熱によ
り、ホウ素酸化物(B2O3等)として気化または表面拡散
によりカーボンナノチューブに到達し、化学反応を起こ
して、フラーレン状窒化ホウ素の中空微粒子が生成す
る。
When the apparatus described above is used, for example, when it is heated in nitrogen gas at 1300 ° C. for 1 hour, B 2 O 3 is heated to form boron oxide (B 2 O 3 etc.) by vaporization or surface diffusion. When they reach the carbon nanotubes and undergo a chemical reaction, hollow fine particles of fullerene-like boron nitride are generated.

【0014】本発明の方法で得られるフラーレン状窒化
ホウ素微粒子の大きさ(実施例の場合、外径は約20〜50
nm程度)は出発物質のカーボンナノチューブの平均太さ
(実施例の場合で約20nm程度)とほぼ一致する。
The size of the fullerene-like boron nitride fine particles obtained by the method of the present invention (in the embodiment, the outer diameter is about 20 to 50).
The average thickness (about nm) is approximately the same as the average thickness of the carbon nanotubes as a starting material (about 20 nm in the case of the example).

【0015】[0015]

【実施例】以下に、実施例を示してさらに詳しくフラー
レン状窒化ホウ素の製造方法について説明する。 実施例1 図1に示す高周波加熱炉(1)を用い、平均直径約20nm
のカーボンナノチューブ(C)を出発物質に用いた。内
径2cm、深さ2cmのBN第1るつぼ(6)の底に酸化ホウ
素(B)を0.5g、BN第2るつぼ(8)の中にカーボン
ナノチューブ(C)を15mgいれた。これを筒状の黒鉛発
熱体(4)の内部に入れ、ガス入口(9,10)から窒
素ガスを0.5リットル/分で導入し、筒状の黒鉛発熱体
(4)内部に流し、ワークコイル5にて1300℃、1時間
加熱後、自然冷却した。温度の測定は、黒鉛発熱体
(4)の蓋に開けた開口部を通じて光高温計(13)で
行った。
EXAMPLES Hereinafter, the method for producing fullerene-like boron nitride will be described in more detail with reference to examples. Example 1 Using the high frequency heating furnace (1) shown in FIG. 1, an average diameter of about 20 nm
The carbon nanotube (C) of No. 1 was used as a starting material. 0.5 g of boron oxide (B) was placed in the bottom of the BN first crucible (6) having an inner diameter of 2 cm and a depth of 2 cm, and 15 mg of carbon nanotube (C) was placed in the BN second crucible (8). This is put in the cylindrical graphite heating element (4), nitrogen gas is introduced at 0.5 liter / min from the gas inlet (9, 10), and it is made to flow inside the cylindrical graphite heating element (4), and the work coil The sample was heated at 5 ° C. for 1 hour at 1300 ° C. and then naturally cooled. The temperature was measured by an optical pyrometer (13) through an opening opened in the lid of the graphite heating element (4).

【0016】図1に示した装置で製造したフラーレン状
窒化ホウ素の微粒子の電子顕微鏡写真を図2に示す。窒
化ホウ素のフラーレン状の微粒子はグラファイト層面が
6層から20層(厚みが約2〜8nm)程度で多面体状に被
われ、粒子の内部は中空である。微粒子の外径は約20か
ら50nm程度であった。
An electron micrograph of fine particles of fullerene-like boron nitride produced by the apparatus shown in FIG. 1 is shown in FIG. The boron nitride fullerene-like fine particles are covered in a polyhedral shape with 6 to 20 layers (thickness of about 2 to 8 nm) of graphite layers, and the inside of the particles is hollow. The outer diameter of the fine particles was about 20 to 50 nm.

【0017】図3に示す電子エネルギー損失スペクトル
分析によれば、フラーレン状微粒子の組成がB(ホウ素)
と窒素(N)からでき、その組成がB:N=1:1である
ことを確認した。金属不純物は含まれていなかった。
According to the electron energy loss spectrum analysis shown in FIG. 3, the composition of the fullerene fine particles is B (boron).
And nitrogen (N), and its composition was confirmed to be B: N = 1: 1. It contained no metallic impurities.

【0018】[0018]

【発明の効果】フラーレン状の窒化ホウ素微粒子は、潤
滑材料、耐熱性充填材料や触媒等の分野において、従来
にない特性を有する新材料として応用が期待される。特
に、本物質は化学的に安定で、耐熱性や強度に優れてい
ることから、高温で作動する機械部品の潤滑材料として
の用途が期待される。
INDUSTRIAL APPLICABILITY The fullerene-like boron nitride fine particles are expected to be applied as new materials having unprecedented properties in the fields of lubricating materials, heat resistant filling materials, catalysts and the like. In particular, since this substance is chemically stable and has excellent heat resistance and strength, it is expected to be used as a lubricating material for mechanical parts that operate at high temperatures.

【0019】本発明により、カーボンナノチューブを出
発原料として、安価な簡単な方法でフラーレン状の窒化
ホウ素の微粒子を製造することができる。カーボンナノ
チューブは既に大量生産法が確立されているので、これ
を出発物質として用いれば、約60%以上の収率でフラ
ーレン状の窒化ホウ素の中空の微粒子を大量に製造する
ことができる。
According to the present invention, fullerene-like boron nitride fine particles can be produced from carbon nanotubes as a starting material by an inexpensive and simple method. Since a mass production method of carbon nanotubes has already been established, if this is used as a starting material, a large amount of fullerene-like hollow fine particles of boron nitride can be produced in a yield of about 60% or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法の実施例に用いる高周波誘導
加熱炉の模式図(BNるつぼ使用)である。
FIG. 1 is a schematic diagram (using a BN crucible) of a high-frequency induction heating furnace used in an example of a manufacturing method of the present invention.

【図2】実施例1によって合成したフラーレン状窒化ホ
ウ素の中空微粒子の図面代用電子顕微鏡写真である。
2 is a drawing-substitute electron micrograph of hollow fine particles of fullerene-like boron nitride synthesized according to Example 1. FIG.

【図3】実施例1によって合成したフラーレン状窒化ホ
ウ素の中空微粒子の電子エネルギー損失スペクトルを示
すグラフである。
FIG. 3 is a graph showing an electron energy loss spectrum of hollow fine particles of fullerene-like boron nitride synthesized according to Example 1.

【符号の説明】[Explanation of symbols]

1 高周波誘導加熱炉 2 断熱材 3 石英外筒 4 黒鉛発熱体 5 ワークコイル 6 BN第1るつぼ 7 黒鉛スペーサー 8 BN第2るつぼ 9、10 窒素ガス入口 11 窒素ガス出口 12 ガラスプリズム 13 光高温計 14 *** B B23 C カーボンナノチューブ1 High Frequency Induction Furnace 2 Heat Insulation Material 3 Quartz Outer Cylinder 4 Graphite Heating Element 5 Work Coil 6 BN First Crucible 7 Graphite Spacer 8 BN Second Crucible 9, 10 Nitrogen Gas Inlet 11 Nitrogen Gas Outlet 12 Glass Prism 13 Optical Pyrometer 14 Small hole B B 2 O 3 C carbon nanotube

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2000−109306(JP,A) 日本セラミックス協会年会講演予稿 集,2000年 3月21日,Vol.2000, p85 (58)調査した分野(Int.Cl.7,DB名) C01B 21/064 CA(STN)─────────────────────────────────────────────────── ─── Continued Front Page (56) References JP 2000-109306 (JP, A) Proceedings of Annual Meeting of the Ceramic Society of Japan, March 21, 2000, Vol. 2000, p85 (58) Fields investigated (Int.Cl. 7 , DB name) C01B 21/064 CA (STN)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カーボンナノチューブを原料とし、これ
にホウ素酸化物および窒素を1000℃から1500℃の高温下
で化学反応させることを特徴とするフラーレン状窒化ホ
ウ素の中空微粒子の製造法。
1. A method for producing hollow fine particles of fullerene-like boron nitride, which comprises using carbon nanotubes as a raw material and chemically reacting the same with boron oxide and nitrogen at a high temperature of 1000 ° C. to 1500 ° C.
【請求項2】 反応に用いるホウ素酸化物は酸化ホウ素
(B2O3)、ホウ酸(H 3BO3)または高温でホウ素酸化物を
生成する物質とし、反応に用いるガスは窒素とすること
を特徴とする請求項1記載のフラーレン状窒化ホウ素の
中空微粒子の製造法。
2. The boron oxide used in the reaction is boron oxide
(B2O3), Boric acid (H 3BO3) Or boron oxide at high temperature
As a substance to be generated, the gas used for the reaction should be nitrogen
A fullerene-like boron nitride according to claim 1, wherein
Method for producing hollow fine particles.
【請求項3】 ホウ素酸化物粉末とカーボンナノチュー
ブを窒化ホウ素焼結体からなるるつぼの中に入れて、高
周波誘導加熱炉の中に置き、窒素ガス中で加熱すること
を特徴とする請求項1または2記載のフラーレン状窒化
ホウ素の中空微粒子の製造法。
3. The boron oxide powder and the carbon nanotubes are placed in a crucible made of a boron nitride sintered body, placed in a high-frequency induction heating furnace, and heated in nitrogen gas. Alternatively, the method for producing hollow fine particles of fullerene-like boron nitride according to 2.
JP2000111620A 2000-04-13 2000-04-13 Method for producing hollow particles of fullerene-like boron nitride Expired - Lifetime JP3496050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000111620A JP3496050B2 (en) 2000-04-13 2000-04-13 Method for producing hollow particles of fullerene-like boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000111620A JP3496050B2 (en) 2000-04-13 2000-04-13 Method for producing hollow particles of fullerene-like boron nitride

Publications (2)

Publication Number Publication Date
JP2001294409A JP2001294409A (en) 2001-10-23
JP3496050B2 true JP3496050B2 (en) 2004-02-09

Family

ID=18623920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000111620A Expired - Lifetime JP3496050B2 (en) 2000-04-13 2000-04-13 Method for producing hollow particles of fullerene-like boron nitride

Country Status (1)

Country Link
JP (1) JP3496050B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673539B2 (en) * 2009-08-20 2015-02-18 株式会社カネカ Method for producing spheroidized boron nitride
CN104233454A (en) * 2014-06-17 2014-12-24 中山大学 Method for effectively synthesizing monocrystal hexagonal boron nitride structure by substitution reaction
DK3184494T3 (en) * 2015-12-21 2018-05-22 Adf Mat Gmbh CHEMICAL COMPOSITION FOR THE PREPARATION OF HOLE SPERRIC GLASS PARTICLES WITH HIGH PRESSURE
CN114105109B (en) * 2021-11-25 2023-06-23 中国人民解放***箭军工程大学 Preparation method of fig-shaped hollow hexagonal boron nitride nanostructured powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本セラミックス協会年会講演予稿集,2000年 3月21日,Vol.2000,p85

Also Published As

Publication number Publication date
JP2001294409A (en) 2001-10-23

Similar Documents

Publication Publication Date Title
Meng et al. Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles
Aguilar-Elguézabal et al. Study of carbon nanotubes synthesis by spray pyrolysis and model of growth
JP2972882B1 (en) Method for producing boron nitride nanotubes
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
Choi et al. Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition
Kibria et al. Synthesis of narrow-diameter carbon nanotubes from acetylene decomposition over an iron–nickel catalyst supported on alumina
Alexandrescu et al. Combining resonant/non-resonant processes: Nanometer-scale iron-based material preparation via CO2 laser pyrolysis
Qi et al. Synthesis of titanium carbide nanowires
Xu et al. Synergic nitrogen source route to inorganic fullerene-like boron nitride with vessel, hollow sphere, onion, and peanut nanostructures
JP4817103B2 (en) Method for producing boron nitride nanotubes
JPH08225395A (en) Production of diamond doped with boron
KR20060112546A (en) A production process of fe nano powder with silica coating by chemical vapor condensation
Wang et al. Synthesis of ultrafine silicon carbide nanoparticles using nonthermal arc plasma at atmospheric pressure
Luo et al. Synthesis of long indium nitride nanowires with uniform diameters in large quantities
Zhong et al. Preparation and ultraviolet− visible luminescence property of novel BN whiskers with a cap-stacked structure
Peng et al. Growth and Mechanism of Network‐Like Branched Si3N4 Nanostructures
Han Anisotropic Hexagonal Boron Nitride Nanomaterials-Synthesis and Applications
Chatei et al. Growth and characterisation of carbon nanostructures obtained by MPACVD system using CH4/CO2 gas mixture
JP3496050B2 (en) Method for producing hollow particles of fullerene-like boron nitride
Sung et al. Two-stage plasma nitridation approach for rapidly synthesizing aluminum nitride powders
JP2000281323A (en) Production of carbon nanotube containing boron
Moriyoshi et al. B C N nanotubes prepared by a plasma evaporation method
JP3834640B2 (en) Method for producing boron nitride nanotubes
JP2004161561A (en) Manufacturing process of boron nitride nanotube
JP2004182571A (en) Method of manufacturing boron nitride nanotube using gallium oxide as catalyst

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3496050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term