JP3355157B2 - Manufacturing method of carbon nanofiber - Google Patents

Manufacturing method of carbon nanofiber

Info

Publication number
JP3355157B2
JP3355157B2 JP30980299A JP30980299A JP3355157B2 JP 3355157 B2 JP3355157 B2 JP 3355157B2 JP 30980299 A JP30980299 A JP 30980299A JP 30980299 A JP30980299 A JP 30980299A JP 3355157 B2 JP3355157 B2 JP 3355157B2
Authority
JP
Japan
Prior art keywords
gas
carbon
reactor
metal catalyst
carbon nanofibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30980299A
Other languages
Japanese (ja)
Other versions
JP2001098430A (en
Inventor
寛一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP30980299A priority Critical patent/JP3355157B2/en
Publication of JP2001098430A publication Critical patent/JP2001098430A/en
Application granted granted Critical
Publication of JP3355157B2 publication Critical patent/JP3355157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、水素などを高密
度で吸着する特性を有するカーボンナノファイバーの迅
速な製造方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rapidly producing carbon nanofibers having a property of adsorbing hydrogen and the like at high density.

【0002】[0002]

【従来の技術】鉄やニッケルやコバルトなどの金属触媒
を用いてエチレンなどのハイドロカーボンガスや一酸化
炭素などを熱分解して得られるカーボンナノファイバー
が、最近水素吸蔵合金以上に水素ガスを吸蔵するという
驚異的な実験結果が発表され、水素吸蔵材料として注目
されている。この水素吸蔵のメカニズムは完全に明らか
にされてはいないが、水素吸蔵合金は比重が重く繰り返
し使用で粉化するなどの欠点があるので、合金と同等以
上の貯蔵性能が安定的に証明されれば、燃料電池などの
水素吸蔵材料として活用できるので、現在各所でその性
能が追試されている。
2. Description of the Related Art Carbon nanofibers obtained by thermally decomposing a hydrocarbon gas such as ethylene or carbon monoxide using a metal catalyst such as iron, nickel or cobalt have recently absorbed hydrogen gas more than a hydrogen storage alloy. Incredible experimental results have been announced and are attracting attention as hydrogen storage materials. Although the mechanism of hydrogen storage has not been fully elucidated, hydrogen storage alloys have the drawbacks of heavy specific gravity and powdering due to repeated use. For example, it can be used as a hydrogen storage material for fuel cells and the like.

【0003】また、現在リチュームイオン二次電池の陰
極に使用されているカーボンのリチュームイオン吸蔵能
力は電池の容量を左右する重要な因子なので、この陰極
にカーボンナノファイバーを用いることによってリチュ
ームイオンの吸蔵能力を増やすことができれば、電池容
量の飛躍的向上が期待できる。
[0003] Further, the capacity of carbon, which is currently used for the cathode of a lithium ion secondary battery, to absorb lithium, is an important factor influencing the capacity of the battery. If capacity can be increased, a dramatic improvement in battery capacity can be expected.

【0004】前記カーボンナノファイバーは、図3の模
式図に示すように微粒金属触媒1を核にして偏平な炭素
片2がほぼG=0.34ナノメーターの隙間をもって成
長した、太さD=数〜数百ナノメーター、長さL=数ミ
クロン、程度の微小な炭素繊維であるが、核となる微粒
金属触媒1の生成過程は、原料ガスが触媒金属と接触し
て炭素が触媒金属上に堆積し、この炭素が金属内に拡散
して金属炭化物となり、この炭化物の体積変化で生じた
応力で金属触媒の表面が破損崩壊して微粒子になると推
定されている。いずれにせよ結果的に金属触媒は消耗
し、微粒子となってカーボンナノファイバーの核になる
ことが電子顕微鏡の観察で確認されている。このような
過程を経てカーボンナノファイバーの核となる微粒金属
触媒1の生成にはかなり時間が掛かるので、従来の実験
室における固定触媒反応法では、核となる微粒金属触媒
1の生成時間がカーボンナノファイバー3の生成時間を
左右する結果となり、製造速度を遅らせて大量需要に応
える上での大きな問題となっていた。
In the carbon nanofiber, as shown in the schematic diagram of FIG. 3, a flat carbon piece 2 is grown with a fine metal catalyst 1 as a nucleus with a gap of approximately G = 0.34 nanometers. Although it is a fine carbon fiber of several to several hundreds of nanometers and length L = several microns, the production process of the fine metal catalyst 1 serving as a nucleus is based on the fact that the raw material gas comes into contact with the catalyst metal and carbon is deposited on the catalyst metal It is presumed that this carbon is diffused into the metal to form a metal carbide, and the stress generated by the change in volume of the carbide breaks and collapses the surface of the metal catalyst to form fine particles. In any case, it has been confirmed by observation with an electron microscope that as a result, the metal catalyst is consumed and becomes fine particles and becomes the core of the carbon nanofiber. Since the generation of the fine metal catalyst 1 serving as the core of the carbon nanofiber takes a considerable time through such a process, the generation of the fine metal catalyst 1 serving as the core takes a long time in the conventional fixed catalyst reaction method in the laboratory. As a result, the production time of the nanofibers 3 is affected, which is a major problem in slowing down the production speed and responding to mass demand.

【0005】この対策として、予め数〜数百ナノメータ
ーの粒径に調整済みの金属微粒子を触媒とする方法が考
えられるが、このような超微粒子の終末速度(ガスに伴
って飛翔する速度)は極めて小さいので、触媒微粒子を
静止した状態で反応させようとしても、従来の上向流型
固定層の適用は困難である。といって、触媒を原料ガス
中に浮遊させた状態で反応させようとすれば、微粒子相
互の繰返す衝突によって折角成長した炭素片の破壊脱落
が問題になる。
As a countermeasure, a method using a metal fine particle which has been adjusted to a particle size of several to several hundred nanometers in advance as a catalyst can be considered. The terminal speed of such ultrafine particles (the speed at which the particles fly with the gas) is considered. Is extremely small, so that it is difficult to apply the conventional upward-flow fixed bed even if the catalyst particles are allowed to react in a stationary state. However, if the catalyst is allowed to react in a state of being suspended in the raw material gas, the destruction and falling off of the carbon pieces grown by the repeated collision of the fine particles becomes a problem.

【0006】[0006]

【発明が解決しようとする課題】以上に鑑みこの発明
は、カーボンナノファイバーの生成速度を高め、大量需
要に応え得る迅速な製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a rapid production method capable of increasing the production speed of carbon nanofibers and meeting mass demand.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、予め反応装置の外で数ナ
ノメーターから数百ナノメーターの範囲の粒径に調整し
た鉄やニッケルやコバルトなどの微粒金属触媒を、反応
装置内に静止した状態でエチレンや一酸化炭素などの原
料ガスと接触させて熱分解し、一定時間経過後に生成し
たカーボンナノファイバーをガス中に浮遊させてフィル
ターで捕捉することを特徴とする、カーボンナノファイ
バーの製造方法である。
Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 is characterized in that iron or iron which has been adjusted to a particle size in a range of several nanometers to several hundred nanometers outside a reactor in advance. A fine metal catalyst such as nickel or cobalt is contacted with a raw material gas such as ethylene or carbon monoxide in a stationary state in a reactor to thermally decompose, and after a certain period of time, the carbon nanofibers generated are suspended in the gas. This is a method for producing carbon nanofibers, wherein the carbon nanofibers are captured by a filter.

【0008】また請求項2に記載の発明は、熱分解温度
以上の温度で磁性を有するコバルトなどの金属触媒を予
め反応装置の外で数ナノメーターから数百ナノメーター
の範囲の粒径に調整した後、該微粒金属触媒を反応装置
内に形成した高勾配磁場で保持しつつエチレンや一酸化
炭素などの原料ガスと接触させて熱分解によりカーボン
ナノファイバーを生成せしめ、一定時間経過後に磁場を
消磁して該カーボンナノファイバーをガス中に浮遊させ
ると共にバイパス管路内に設けたフィルターで捕捉する
ことを特徴とする、カーボンナノファイバーの製造方法
である。
The invention according to claim 2 is to adjust a metal catalyst such as cobalt having a magnetism at a temperature higher than the thermal decomposition temperature to a particle size in the range of several nanometers to several hundred nanometers outside the reactor in advance. After that, the fine metal catalyst is contacted with a raw material gas such as ethylene or carbon monoxide while maintaining the high-gradient magnetic field formed in the reactor to generate carbon nanofibers by thermal decomposition. A method for producing carbon nanofibers, comprising demagnetizing to float the carbon nanofibers in a gas and capturing the carbon nanofibers with a filter provided in a bypass conduit.

【0009】また請求項3に記載の発明は、予め反応装
置の外で数ナノメーターから数百ナノメーターの範囲の
粒径に調整した鉄やニッケルやコバルトなどの微粒金属
触媒を、反応装置内に設けたガス透過膜上に堆積させる
と共に上方からエチレンや一酸化炭素などの原料ガスを
供給して熱分解によりカーボンナノファイバーを生成せ
しめ、一定時間経過後にガスを逆流して該カーボンナノ
ファイバーをガス中に浮遊させてフィルターで捕捉する
ことを特徴とする、カーボンナノファイバーの製造方法
である。
Further, according to the present invention, a fine metal catalyst such as iron, nickel or cobalt, which has been adjusted to a particle size in the range of several nanometers to several hundred nanometers in advance outside the reactor, is supplied to the reactor. A carbon nanofiber is generated by pyrolysis by supplying a raw material gas such as ethylene or carbon monoxide from above and depositing the carbon nanofiber from above, and after a certain period of time, the gas is flowed back to remove the carbon nanofiber. This is a method for producing carbon nanofibers, characterized by being suspended in a gas and captured by a filter.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を実施
例に基ずき図面を参照して説明する。図1は請求項2の
実施例の説明図、図2は請求項3の実施例の説明図、図
3はカーボンナノファイバーの模式図、をそれぞれ示
す。なお、図2、図3において、図1と同じ符号を付し
た部分は同一又は相当部分を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on embodiments with reference to the drawings. FIG. 1 is an explanatory view of an embodiment of claim 2, FIG. 2 is an explanatory view of an embodiment of claim 3, and FIG. 3 is a schematic view of a carbon nanofiber. 2 and 3, the same reference numerals as in FIG. 1 denote the same or corresponding parts.

【0011】図1によって請求項2に記載の発明の実施
形態例を説明すると、カーボンナノファイバーの製造装
置は、ガス調整槽4、熱分解反応装置5、ガス循環管路
6、バイパス管路7内に設けたガスフィルター8、ガス
循環ブロワー9およびガス循環管路6とバイパス管路7
を切替える切替え弁10、11、12、13で構成され
ている。ガス調整槽4にはガスの組成と温度を常に最適
状態に維持せしめるために、内部に加熱器14や冷却器
15が、またエチレンなどのハイドロカーボンガスや一
酸化炭素などの原料ガス16の自動調整弁17と還元用
の水素ガス18の自動調整弁19が設けられている。ま
た、熱分解反応装置5の内部には熱分解温度以上で磁性
を有するウール状金属20を充填してその回りに配した
電磁石21によって高勾配磁場が形成されるようになっ
ている。しかして、熱分解反応装置5の直前の管路に触
媒供給装置22を設け、予め数ナノメーターから数百ナ
ノメーターの範囲の粒径に調整されたコバルトなどの微
粒金属触媒1を一定量自動供給し得るように配備してあ
る。なお、図中3は生成捕捉されたカーボンナノファイ
バー、23は非磁性不純物24を捕捉するフィルター、
をそれぞれ示す。
Referring to FIG. 1, an embodiment of the invention according to claim 2 will be described. The apparatus for producing carbon nanofibers comprises a gas regulating tank 4, a thermal decomposition reactor 5, a gas circulation line 6, a bypass line 7. Filter 8, gas circulation blower 9, gas circulation line 6, and bypass line 7
, Switching valves 10, 11, 12, and 13. In the gas regulating tank 4, a heater 14 and a cooler 15 are provided in order to keep the composition and temperature of the gas in an optimum state at all times, and a source gas 16 such as a hydrocarbon gas such as ethylene or a carbon monoxide is automatically prepared. An adjusting valve 17 and an automatic adjusting valve 19 for reducing hydrogen gas 18 are provided. Further, the inside of the pyrolysis reaction device 5 is filled with a wool-like metal 20 having magnetism at a temperature equal to or higher than the pyrolysis temperature, and a high gradient magnetic field is formed by an electromagnet 21 disposed therearound. Thus, a catalyst supply device 22 is provided in the pipe just before the pyrolysis reaction device 5 to automatically supply a predetermined amount of the fine metal catalyst 1 such as cobalt, which has been adjusted to a particle size in the range of several nanometers to several hundred nanometers in advance. Deployed to supply. In the figure, 3 is a carbon nanofiber formed and captured, 23 is a filter that captures nonmagnetic impurities 24,
Are respectively shown.

【0012】以上の構成において、以下に製造方法を説
明する。起動時は触媒供給装置22から微粒金属触媒1
を熱分解反応装置5に供給すると共に電磁石21を励起
し、微粒金属触媒1をウール状金属20で形成された高
勾配磁場で保持した後、自動調製弁19を開いて系内に
水素ガス18を導入し、微粒金属触媒1を含め系内を還
元状態に維持する。次いで自動調整弁17を開きハイド
ロカーボンガスや一酸化炭素などの原料ガス16を導入
する。熱分解反応の進行に伴ってガス調整槽4内のガス
組成は常に変化するので、自動調整弁17、19により
ガス組成を最適値に維持するように自動調整すると共
に、加熱器14及び/又は冷却器15によってガスの温
度を最適の熱分解温度(例えば600℃)に調整する。
ガス調整槽4内で調整された原料ガスは、循環管路6内
を循環する間に、熱分解反応装置5内のウール状金属2
0が形成する高勾配磁場に保持されている微粒金属触媒
1と接触して反応し、該微粒金属触媒1を核として偏平
な炭素片2が逐次成長してカーボンナノファイバー3が
生成する。一定時間を経過してカーボンナノファイバー
3の生成が完了した時点で、切替え弁10、11、1
2、13を切替えて原料ガスをバイパス管路7に導き、
ガス中に浮遊するカーボンナノファイバー3をガスフィ
ルター8で捕捉、回収する。尚、カーボンナノファイバ
ー3の純度を向上させる目的で、管路6の一部に図示の
ようにフィルター23を設け、熱分解で生成するガス中
の非磁性不純物24を捕捉・排出するとよい。
A method of manufacturing the above structure will be described below. At the time of startup, the fine metal catalyst 1 is supplied from the catalyst supply device 22.
Is supplied to the thermal decomposition reactor 5 and the electromagnet 21 is excited to hold the fine metal catalyst 1 in a high gradient magnetic field formed of the wool-like metal 20. Then, the automatic preparation valve 19 is opened to supply hydrogen gas 18 into the system. To maintain the inside of the system including the fine metal catalyst 1 in a reduced state. Next, the automatic control valve 17 is opened, and a raw material gas 16 such as a hydrocarbon gas or carbon monoxide is introduced. Since the gas composition in the gas adjustment tank 4 constantly changes with the progress of the thermal decomposition reaction, the gas adjustment is automatically adjusted by the automatic adjustment valves 17 and 19 so as to maintain the gas composition at an optimum value, and the heater 14 and / or The cooler 15 adjusts the temperature of the gas to an optimum pyrolysis temperature (for example, 600 ° C.).
The raw material gas adjusted in the gas adjustment tank 4 circulates in the circulation line 6 while the wool-like metal 2
The carbon nanofibers 3 are produced by contacting and reacting with the fine metal catalyst 1 held in the high gradient magnetic field formed by the microparticles 0, and the flat carbon pieces 2 are sequentially grown with the fine metal catalyst 1 as a nucleus. When the generation of the carbon nanofibers 3 is completed after a certain period of time, the switching valves 10, 11, 1
By switching between 2 and 13, the raw material gas is led to the bypass line 7,
The carbon nanofibers 3 floating in the gas are captured and collected by the gas filter 8. For the purpose of improving the purity of the carbon nanofibers 3, a filter 23 may be provided in a part of the pipe 6 as shown in the figure to capture and discharge non-magnetic impurities 24 in gas generated by thermal decomposition.

【0013】次に、図2によって請求項3に記載の発明
の実施形態例を説明すると、カーボンナノファイバーの
製造装置はガス調整槽4、二つの熱分解反応装置5、
5’、ガス循環管路6、ガス逆循環管路25に設けたガ
スフィルター8、ガス循環ブロワー9、ガス逆循環ブロ
ワー26、およびガス循環管路6とガス逆循環管路25
を切替える切替え弁A.B.C.D.E.F.G,Hで
構成されている。前記同様に、ガス調整槽4には加熱器
14、冷却器15、原料ガス16の自動調整弁17、還
元用の水素ガス18の自動調整弁19などが設けられ、
また熱分解反応装置5、5’の直前には触媒供給装置2
2を設けて予め調整された微粒金属触媒1を一定量自動
供給し得るように配備してある。しかして熱分解反応装
置5、5’の内部にはガス透過膜27を水平に設け、上
部から散布供給された微粒金属触媒1がガス透過膜27
の上面にほぼ均等に堆積し得るように構成する。
Next, an embodiment of the invention according to claim 3 will be described with reference to FIG. 2. The apparatus for producing carbon nanofibers comprises a gas regulating tank 4, two thermal decomposition reactors 5,
5 ', gas circulation line 6, gas filter 8, gas circulation blower 9, gas reverse circulation blower 26 provided in gas reverse circulation line 25, and gas circulation line 6 and gas reverse circulation line 25
Switching valve for switching A. B. C. D. E. FIG. F. G and H. Similarly to the above, the gas adjusting tank 4 is provided with a heater 14, a cooler 15, an automatic adjusting valve 17 for the raw material gas 16, an automatic adjusting valve 19 for the hydrogen gas 18 for reduction, and the like.
Immediately before the thermal decomposition reactors 5 and 5 ', a catalyst supply device 2 is provided.
2 is provided so that a predetermined amount of the fine metal catalyst 1 adjusted in advance can be automatically supplied. Thus, a gas permeable membrane 27 is provided horizontally inside the pyrolysis reactors 5 and 5 ', and the fine metal catalyst 1 sprayed and supplied from the upper portion is supplied to the gas permeable membrane 27.
So that they can be deposited almost evenly on the upper surface of the.

【0014】以上の構成において以下に製造方法を説明
する。図示の状態は、黒塗りの切替え弁A,D,E,H
は閉弁し白抜きの切替え弁B、C、F、Gは開弁してお
り、一方の熱分解反応装置5はガス循環管路6と連通
し、片方の熱分解反応装置5’はガス逆循環管路25と
連通している。起動時は触媒供給装置22により微粒金
属触媒1を熱分解反応装置5の上部から散布供給して微
粒金属触媒1をガス透過膜27の上面にほぼ均等に堆積
せしめた後、前記同様に自動調整弁19を開いて系内に
水素ガス18を導入し、微粒金属触媒1を含め系内を還
元状態に維持し次いで自動調整弁17を開き原料ガス1
6を導入する。前記同様に自動調整弁17、19により
ガス組成をまた加熱器14及び/又は冷却器15により
ガス温度を常に最適値に維持しつつ、ガス調整槽4内で
調整された原料ガスは、循環管路6を循環する間に、熱
分解反応装置5内のガス透過膜27上に堆積された微粒
金属触媒1と接触して反応し、前記同様にカーボンナノ
ファイバー3が生成する。この間にガス逆循環管路25
においては、片方の熱分解反応装置5’のガス透過膜2
7上に生成され堆積していたカーボンナノファイバー
は、逆方向のガス流で吹飛ばされてガス中に浮遊し、ガ
スフィルター8で捕捉、回収される。一定時間を経過し
て、熱分解反応装置5内のカーボンナノファイバー3の
生成が完了した時点で、切替え弁A〜Hの開閉を逆にし
て熱分解反応装置5と5’を切替えることにより同様の
サイクルが繰返される。
The manufacturing method of the above configuration will be described below. The states shown in the figure are black-colored switching valves A, D, E, and H.
Is closed and white switching valves B, C, F, and G are open, one of the pyrolysis reactors 5 communicates with the gas circulation line 6, and one of the pyrolysis reactors 5 ' It communicates with the reverse circulation line 25. At the time of startup, the fine metal catalyst 1 is sprayed and supplied from the upper portion of the thermal decomposition reaction device 5 by the catalyst supply device 22 to deposit the fine metal catalyst 1 substantially uniformly on the upper surface of the gas permeable membrane 27, and then automatically adjusted as described above. The valve 19 is opened to introduce hydrogen gas 18 into the system, the inside of the system including the fine metal catalyst 1 is maintained in a reduced state, and then the automatic regulating valve 17 is opened to open the source gas 1
6 is introduced. Similarly to the above, while maintaining the gas composition at the optimum value by the automatic control valves 17 and 19 and the gas temperature at all times by the heater 14 and / or the cooler 15, the raw material gas adjusted in the gas adjustment tank 4 is supplied to the circulation pipe. While circulating in the passage 6, the fine metal catalyst 1 deposited on the gas permeable membrane 27 in the thermal decomposition reaction device 5 comes into contact with and reacts, and the carbon nanofibers 3 are generated as described above. During this time, the gas reverse circulation line 25
, The gas permeable membrane 2 of one of the pyrolysis reactors 5 ′
The carbon nanofibers generated and deposited on 7 are blown off by the gas flow in the opposite direction, float in the gas, and are captured and collected by the gas filter 8. When a certain period of time has elapsed and the generation of the carbon nanofibers 3 in the pyrolysis reactor 5 has been completed, the switching valves A to H are opened and closed to switch the pyrolysis reactors 5 and 5 ′. Cycle is repeated.

【0015】[0015]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0016】カーボンナノファイバーの核となる微粒金
属触媒を予め反応装置の外で調整するので、カーボン
ナノファイバーの生成時間に大きな影響を与える核の生
成時間を反応時間から除外できる、微粒金属触媒の比
表面積が大きくなるので反応速度の向上に寄与する、な
どによりカーボンナノファイバーの生成速度を高め、大
量需要に応え得る迅速な製造方法を提供できる。また、
カーボンナノファイバーの太さDは核となる微粒金属触
媒の粒径に大きく影響されるので、予め反応装置の外
で微粒金属触媒の粒径範囲を調整することにより、好ま
しい太さDを有する均質かつ良質なカーボンナノファイ
バーを製造することができる。また請求項2に記載の発
明によれば、熱分解で生成する非磁性不純物を除去し
得るので、カーボンナノファイバーの純度を高めること
もできる。
Since the fine metal catalyst serving as the nucleus of the carbon nanofiber is adjusted beforehand outside the reactor, the nucleation time which greatly affects the carbon nanofiber generation time can be excluded from the reaction time. By increasing the specific surface area, it contributes to the improvement of the reaction rate, thereby increasing the production rate of carbon nanofibers and providing a rapid production method capable of meeting mass demand. Also,
Since the thickness D of the carbon nanofiber is greatly affected by the particle size of the fine metal catalyst serving as a nucleus, by adjusting the particle size range of the fine metal catalyst outside the reactor in advance, a uniform diameter having a preferable thickness D is obtained. In addition, high-quality carbon nanofibers can be manufactured. According to the second aspect of the present invention, since the non-magnetic impurities generated by thermal decomposition can be removed, the purity of the carbon nanofiber can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の請求項2に記載の実施例の説明図を示
す。
FIG. 1 is an explanatory view of an embodiment according to claim 2 of the present invention.

【図2】本発明の請求項3に記載の実施例の説明図を示
す。
FIG. 2 is an explanatory view of an embodiment according to claim 3 of the present invention.

【図3】カーボンナノファイバーの模式図を示す。FIG. 3 shows a schematic diagram of a carbon nanofiber.

【符号の説明】[Explanation of symbols]

1 微粒金属触媒 2 炭素片 3 カーボンナノファイバー 4 ガス調整槽 5 熱分解反応装置 6 ガス循環管路 7 バイパス管路 8 ガスフィルター 9 ガス循環ブロワー 10〜13 切替え弁 16 原料ガス 20 ウール状金属 21 電磁石 22 触媒供給装置 25 ガス逆循環管路 26 ガス逆循環ブロワー 27 ガス透過膜 A〜H 切替え弁 DESCRIPTION OF SYMBOLS 1 Fine metal catalyst 2 Carbon piece 3 Carbon nanofiber 4 Gas regulation tank 5 Thermal decomposition reactor 6 Gas circulation line 7 Bypass line 8 Gas filter 9 Gas circulation blower 10-13 Switching valve 16 Raw material gas 20 Wool metal 21 Electromagnet 22 Catalyst supply device 25 Gas reverse circulation pipe line 26 Gas reverse circulation blower 27 Gas permeable membrane A to H switching valve

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 予め反応装置の外で数ナノメーターから
数百ナノメーターの範囲の粒径に調整した鉄やニッケル
やコバルトなどの微粒金属触媒を、反応装置内に静止し
た状態でエチレンや一酸化炭素などの原料ガスと接触さ
せて熱分解し、一定時間経過後に生成したカーボンナノ
ファイバーをガス中に浮遊させてフィルターで捕捉する
ことを特徴とする、カーボンナノファーイバーの製造方
法。
1. A fine metal catalyst such as iron, nickel or cobalt, which has been adjusted to a particle size in the range of several nanometers to several hundreds of nanometers outside the reactor in advance, is placed in the reactor in a stationary state. A method for producing a carbon nanofiber, comprising thermally decomposing a carbon nanofiber by contacting it with a raw material gas such as carbon oxide, suspending the carbon nanofiber generated after a lapse of a predetermined time in a gas, and capturing the carbon nanofiber with a filter.
【請求項2】 熱分解温度以上の温度で磁性を有するコ
バルトなどの金属触媒を予め反応装置の外で数ナノメー
ターから数百ナノメーターの範囲の粒径に調整した後、
該微粒金属触媒を反応装置内に形成した高勾配磁場で保
持しつつエチレンや一酸化炭素などの原料ガスと接触さ
せて熱分解によりカーボンナノファイバーを生成せし
め、一定時間経過後に磁場を消磁して該カーボンナノフ
ァイバーをガス中に浮遊させると共にバイパス管路内に
設けたフィルターで捕捉することを特徴とする、カーボ
ンナノファイバーの製造方法。
2. After adjusting a metal catalyst such as cobalt having a magnetism at a temperature equal to or higher than the thermal decomposition temperature to a particle size in a range of several nanometers to several hundred nanometers in advance outside a reactor,
While maintaining the fine metal catalyst in a high gradient magnetic field formed in the reactor, it is brought into contact with a raw material gas such as ethylene or carbon monoxide to generate carbon nanofibers by thermal decomposition. A method for producing carbon nanofibers, comprising suspending the carbon nanofibers in a gas and capturing the carbon nanofibers with a filter provided in a bypass pipe.
【請求項3】 予め反応装置の外で数ナノメーターから
数百ナノメーターの範囲の粒径に調整した鉄やニッケル
やコバルトなどの微粒金属触媒を、反応装置内に設けた
ガス透過膜上に堆積させると共に上方からエチレンや一
酸化炭素などの原料ガスを供給して熱分解によりカーボ
ンナノファイバーを生成せしめ、一定時間経過後にガス
を逆流して該カーボンナノファイバーをガス中に浮遊さ
せてフィルターで捕捉することを特徴とする、カーボン
ナノファイバーの製造方法。
3. A fine metal catalyst such as iron, nickel, or cobalt, which has been adjusted to a particle size in the range of several nanometers to several hundred nanometers outside the reactor, is placed on a gas permeable membrane provided in the reactor. The raw material gas such as ethylene or carbon monoxide is supplied from above and carbon nanofibers are generated by thermal decomposition, and after a certain period of time, the gas is flowed back to float the carbon nanofibers in the gas and filtered. A method for producing carbon nanofibers, comprising capturing.
JP30980299A 1999-09-24 1999-09-24 Manufacturing method of carbon nanofiber Expired - Fee Related JP3355157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30980299A JP3355157B2 (en) 1999-09-24 1999-09-24 Manufacturing method of carbon nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30980299A JP3355157B2 (en) 1999-09-24 1999-09-24 Manufacturing method of carbon nanofiber

Publications (2)

Publication Number Publication Date
JP2001098430A JP2001098430A (en) 2001-04-10
JP3355157B2 true JP3355157B2 (en) 2002-12-09

Family

ID=17997429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30980299A Expired - Fee Related JP3355157B2 (en) 1999-09-24 1999-09-24 Manufacturing method of carbon nanofiber

Country Status (1)

Country Link
JP (1) JP3355157B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730284B2 (en) * 2000-06-16 2004-05-04 Honda Giken Kogyo Kabushiki Kaisha Method for producing carbonaceous articles
KR101002059B1 (en) * 2001-11-28 2010-12-17 도레이 카부시키가이샤 Hollow nanofiber and method for preparing hollow nanofiber
JP4160780B2 (en) * 2002-05-23 2008-10-08 三菱重工業株式会社 Fibrous nanocarbon
US20060008408A1 (en) * 2002-10-17 2006-01-12 Nexen Nano Tech. Co., Ltd. Fibrous nano-carbon and preparation method thereof
US7470418B2 (en) 2002-10-17 2008-12-30 Nexen Nano Tech Co., Ltd. Ultra-fine fibrous carbon and preparation method thereof
EP1686203B1 (en) 2003-11-21 2010-08-18 Mitsubishi Heavy Industries, Ltd. Carbon nano fibrous rod and fibrous nano carbon, and method and apparatus for preparing fibrous nano carbon
JP5708213B2 (en) * 2011-05-09 2015-04-30 住友電気工業株式会社 Carbon nanostructure manufacturing apparatus and carbon nanostructure manufacturing method

Also Published As

Publication number Publication date
JP2001098430A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
JP3100962B1 (en) Method and apparatus for producing carbon nanofiber
RU2213050C2 (en) Method for preparing carbon
Li et al. Magnetic nanofibers of nickel ferrite prepared by electrospinning
AU2010236807B2 (en) Method for producing solid carbon by reducing carbon oxides
JP3355157B2 (en) Manufacturing method of carbon nanofiber
KR100828102B1 (en) Method and apparatus for silicon powder production
CN110518219A (en) The nickelic gradient nickel cobalt manganese aluminium quaternary positive electrode of core-shell structure and preparation method
CZ292640B6 (en) Method for increasing regularity of carbon particle nanostructure
CN105870448A (en) High-capacity metallic oxide and carbon nanofiber composite flexible electrode film
EP4095095A1 (en) Method and device for preparing carbon nanotubes and hydrogen
GB2618694A (en) Nickel-doped cobalt carbonate, and preparation method therefor and use thereof
CN107342408A (en) Improve spherical doping Co3O4The method of yield and application
CN108118378B (en) In-situ growth and doping modification method of metal oxide nano catalyst
CN101570329B (en) Method for preparing carbon nanofiber
Qian et al. Recent progress of metal-organic framework-derived composites: Synthesis and their energy conversion applications
JP2006520733A (en) Large-scale synthesis of double-walled carbon nanotubes by vapor deposition
JP2001278656A (en) Method for manufacturing sintered metal oxide
KR20060046107A (en) Furnace for the manufacture of carbon fibres, procedure for obtaining using said furnace and the fibre thus obtained
CN116514180A (en) Ternary precursor material, preparation method, ternary positive electrode material and lithium ion battery
JPH06287608A (en) Production of metallic porous material
Hogg et al. Particle growth in flowing inert gases
KR100596676B1 (en) Massive synthesis method of single-walled carbon nanotubes using the vapor phase growth
JP3363113B2 (en) Method and apparatus for selecting carbon nanofiber
JP2007181766A (en) Method for manufacturing carbon nano-structural body, catalytic metal particle composite material and its manufacturing method
EP4098612A1 (en) Fullerene structure, method for producing same, and device for producing same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees