JP3107024B2 - 薄膜トランジスタの製造方法 - Google Patents

薄膜トランジスタの製造方法

Info

Publication number
JP3107024B2
JP3107024B2 JP09339037A JP33903797A JP3107024B2 JP 3107024 B2 JP3107024 B2 JP 3107024B2 JP 09339037 A JP09339037 A JP 09339037A JP 33903797 A JP33903797 A JP 33903797A JP 3107024 B2 JP3107024 B2 JP 3107024B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
hydrogen
electrode
thin film
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09339037A
Other languages
English (en)
Other versions
JPH11177096A (ja
Inventor
克久 湯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP09339037A priority Critical patent/JP3107024B2/ja
Priority to US09/207,156 priority patent/US6118139A/en
Priority to KR1019980053743A priority patent/KR100283304B1/ko
Publication of JPH11177096A publication Critical patent/JPH11177096A/ja
Priority to US09/460,114 priority patent/US6281053B1/en
Application granted granted Critical
Publication of JP3107024B2 publication Critical patent/JP3107024B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/3003Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ゲート電極とゲー
ト配線電極を別層で有するトップゲート型薄膜トランジ
スタの構造およびその製造方法に関し、特に水素パッシ
ベーション(水素化)工程時間を短縮するための技術に
関する。
【0002】
【従来の技術】多結晶シリコン薄膜トランジスタは非晶
質シリコン薄膜トランジスタの100倍以上の電子移動
度を有し、nチャネルおよびpチャネルトランジスタが
形成可能である。このためガラス基板上に形成した多結
晶シリコン薄膜トランジスタは、高精細液晶ディスプレ
イのスイッチングトランジスタ、駆動回路一体型液晶デ
ィスプレイの駆動回路および液晶スイッチングトランジ
スタ、各種フラットパネルディスプレイの駆動回路トラ
ンジスタなどへの応用が可能である。
【0003】図30は多結晶シリコン薄膜トランジスタ
の典型的な製造プロセス過程をデバイスの断面図および
上面図を用いて示したものである。図30(a)、
(b)に示すように、ガラス基板1上に非晶質シリコン
膜または多結晶シリコン膜を成膜し、これらのシリコン
膜が十分吸収できる波長のエキシマレーザ光3を照射し
てシリコンを溶融再結晶させて良質の多結晶シリコン膜
2を作製する。次に図30(c)、(d)に示すよう
に、多結晶シリコン膜2をアイランド状にパターニング
し、その上に酸化シリコンなどのゲート絶縁膜4を成膜
する。さらに図30(e)、(f)に示すように、燐な
どを高濃度に添加した低抵抗多結晶シリコンゲート電極
5およびゲート配線電極6を形成、パターニングする。
ゲート配線電極6の材質はアルミニウムなどの金属また
はタングステンシリサイドなどの金属シリサイドであ
る。続いて図30(g)、(h)に示すように、レジス
ト15、ゲート配線電極6および低抵抗多結晶シリコン
ゲート電極5をマスクとして不純物イオン7の導入を行
い、ソース、ドレイン領域8を形成する。ここで、導入
した不純物を結晶格子に配置するための活性化熱処理を
行う。この後、図30(i)、(j)に示すようにデバ
イスを200〜400℃の温度下で水素プラズマ雰囲気
または水素雰囲気に1〜2時間曝して、水素または水素
ラジカルまたは水素イオンをデバイス内に拡散させて多
結晶シリコン膜の水素パッシベーション(以下水素化)
を行う。最後に図30(k)、(l)に示すように、層
間絶縁膜10を形成してコンタクトホール11を開口
し、ソース、ドレイン配線電極12を形成して多結晶シ
リコン薄膜トランジスタが完成する。
【0004】近年、図30(a)に示したエキシマレー
ザアニールによる多結晶シリコン薄膜形成技術が確立さ
れ、トランジスタのプロセス最高温度は500度〜60
0度程度となっており、安価な無アルカリガラス基板を
用いることが可能となっている。さらに各種成膜技術、
エッチング技術、パターン露光技術、不純物導入技術、
エキシマレーザアニーリング技術が基板の大型化に対応
して進展してきている。安価な大面積ガラス基板にトラ
ンジスタを形成することにより製造コストは下がり、応
用製品の価格を下げることが可能となるため、多結晶シ
リコン薄膜トランジスタ応用製品の市場創造、市場拡大
が進んでいる。
【0005】
【発明が解決しようとする課題】多結晶シリコン薄膜ト
ランジスタ応用製品市場の拡大を加速していくために
は、主に低コスト化が重要であり、そのためには薄膜ト
ランジスタプロセスにおいて、(1)ガラス基板大型
化、(2)プロセス低温化、(3)スループット向上が
必要である。前記(3)に注目すると、多結晶シリコン
薄膜トランジスタ全工程の中で特にスループット低減の
原因となっているのが、活性層となる多結晶シリコンの
結晶粒界やMOS界面に存在するシリコン未結合手を水
素終端するための水素化工程である。水素化は通常薄膜
トランジスタ工程の最終段階で行われ、その処理時間は
1〜2時間程度と非常に長い。長時間化する原因は、通
常のトランジスタ構造が図31または図32に示すよう
なトップゲート型であり、水素は金属や金属シリサイド
などで形成されるゲート配線電極6をほとんど通過でき
ないため、パッシベーションすべき多結晶シリコン活性
領域13へ到達する水素の大部分が図31中および図3
2中に示したような遠回りの拡散経路14を通っている
ことに起因している。図32の例においてはコンタクト
ホール11がゲート配線電極6よりも小さい分、活性領
域13上からも水素が拡散してくるため図31の例に比
べて水素化効率が向上するが、層間絶縁膜10の膜厚と
コンタクトホール11までの距離を水素が拡散しなけれ
ばならず、水素化効率の大幅な上昇は期待できない。水
素が図31または図32に示すような拡散経路を通って
拡散する場合の活性領域中のソース−ドレイン方向での
水素濃度は図33のようになり、ゲート電極端から2〜
3μm離れた活性領域中心部の水素化効率は非常に低
く、これが水素化長時間化の原因となっている。
【0006】この問題を解決する方法の一つとして、水
素化工程をゲート電極形成前に行い、ゲート絶縁膜を通
して水素拡散を行うことにより効率よく水素化を行う手
法もあるが、通常の薄膜トランジスタ工程では金属また
は金属シリサイドなどのゲート電極をマスクとしてソー
ス、ドレイン領域への不純物導入を行い、この後に不純
物活性化のための500℃以上の熱処理を行うため、シ
リコン未結合手を終端した水素がほとんど熱解離してし
まう。本手法を用いるためには350℃程度以下での不
純物活性化方法の確立が必要であり、現状では困難であ
る。
【0007】このため、ゲート電極をマスクとした不純
物導入およびその活性化のあとに、短時間で十分に水素
化を行う方法が望まれている。
【0008】そのような水素化方法として、特開平7−
38118号公報には、一つの多結晶シリコン活性領域
上に互いに平行で一端が接続された二つのゲート電極を
形成し、不純物注入を行うことで、短いチャネル長のチ
ャネル領域を二つ形成し、このトランジスタに対して水
素化を行うことで、効率よく水素化が行われることが開
示されている。その薄膜トランジスタの構造断面図を図
34に示す。しかしながら、この薄膜トランジスタにお
いては様々な問題点が発生する。第1に、ゲート絶縁膜
上に開口部があり、この上には層間膜、保護膜などしか
存在しないため、大気中からゲート絶縁膜へ拡散する水
分の量がゲート電極で覆われている場合に比べて非常に
多くなり、デバイス動作信頼性に問題が生じる。第2
に、水素化を行うべき多結晶シリコン活性化領域がゲー
ト電極に覆われているため、一つ一つのチャネル長を非
常に短くしない限り大幅な水素化効率向上は望めない。
第3にソース−ドレイン間の2つのチャネルの間に低抵
抗多結晶シリコン領域が存在するが、この抵抗成分によ
りトランジスタのオン電流が減少してしまう。以上の理
由により、特開平7−38118号公報に開示された手
法は実用的でなかった。
【0009】本発明の目的は、以上の課題を解決し、ト
ップゲート型薄膜トランジスタの水素化を短時間で行う
ことのできる構造および製造方法を提供することにあ
る。
【0010】
【課題を解決するための手段】上記の課題を解決するた
め本発明は、低抵抗シリコンゲート電極およびゲート配
線電極を有する薄膜トランジスタにおいて、活性領域上
の低抵抗シリコンゲート電極の一部が露出するように前
記活性領域上の前記ゲート配線電極が任意の形状をとる
ことを特徴とする。水素パッシベーション工程におい
て、活性領域上のゲート配線電極が開口部などを有し、
活性領域上で低抵抗シリコンゲート電極が露出する部分
があるため、水素が前記の露出した低抵抗シリコンゲー
ト電極膜を通って活性領域へ拡散することができ、短時
間で十分な水素化を行うことが可能である。活性領域上
には低抵抗シリコンゲート電極が存在するため、トラン
ジスタ動作や信頼性は、従来の薄膜トランジスタと同等
である。なお、活性領域上のゲート配線電極の形状は任
意であり、低抵抗シリコン膜の露出部の形状、個数など
も任意である。
【0011】また、露出した低抵抗シリコンゲート電極
を覆うようにゲート配線電極上に第2のゲート配線電極
を形成することにより、ゲート配線電極の形状を変えた
ことによる信号遅延の心配はなくなる。
【0012】本発明の薄膜トランジスタの製造方法は、
ソース、ドレイン領域を形成し、ゲート配線電極の少な
くとも一部をエッチングし、活性領域上の低抵抗シリコ
ンゲート電極の一部を露出させた後に、水素パッシベー
ション工程を行うことを特徴とする。本発明では水素パ
ッシベーション工程の前にソース、ドレイン領域を形成
しているので、不純物活性化のため高温処理を行っても
何の問題もない。さらに、水素パッシベーション工程時
には低抵抗シリコンゲート電極の一部を露出させている
ため、水素が前記の露出した低抵抗シリコンゲート電極
膜を通って活性領域へ拡散することができ、短時間で効
率よく水素パッシベーションを行うことができる。
【0013】
【発明の実施の形態】本発明の実施の形態を、多結晶シ
リコン薄膜トランジスタの製造工程の概略図を参照しな
がら詳細に説明する。
【0014】本発明の第1の実施の形態を図1〜図6を
参照しながら説明する。
【0015】図1は本発明の第1の実施の形態における
多結晶シリコン薄膜トランジスタの製造プロセス過程を
デバイスのチャネル方向断面図および上面図を用いて示
したものである。ゲート配線電極をマスクとする不純物
導入のプロセスまでは図30に示す従来例と同様である
ため、不純物導入プロセスから素子完成までを図1
(a)〜(h)に示した。
【0016】図1(a)、(b)に示すように、パター
ニングしたレジスト15、ゲート配線電極6および低抵
抗多結晶シリコンゲート電極5をマスクとして、ソー
ス、ドレイン領域8を形成するための不純物導入をイオ
ン注入またはイオンドーピング法により行う。不純物は
nチャネルトランジスタを形成する箇所には燐または砒
素を、pチャネルトランジスタを形成する箇所には硼素
などを導入すればよい。
【0017】次に図1(c)、(d)に示すように、レ
ジストマスク15を再パターニングして、ゲート配線電
極6が多結晶シリコン活性領域13上で開口部を有する
ようにパターニングし、低抵抗多結晶シリコンゲート電
極5を露出させ、低抵抗多結晶シリコン電極露出部25
を形成する。
【0018】ここで、低抵抗多結晶シリコン電極露出部
25の形状は、図1に示した長方形に限るものでなく、
図2に示すような正方形、図3に示すような円、図4に
示すような楕円など、どのような形状でも構わない。
【0019】続いて図1(e)、(f)に示すように、
水素化を行う。水素化は、デバイス温度を200〜40
0℃程度とし、水素雰囲気または水素プラズマ雰囲気ま
たは水素ラジカル雰囲気に曝すことによって行われる。
水素プラズマに曝す方法としては、図7に示すように、
平行平板プラズマCVD装置と同様の構成を有する装置
において、高周波印加電極19の対向電極20にデバイ
ス16を設置する陽極結合方式でデバイス16を水素プ
ラズマ17に曝すのが一般的である。水素ラジカルに曝
す方法としては、図8に示すように平行平板リモートプ
ラズマCVD装置を利用して水素プラズマ17を高周波
印加電極19と中間メッシュプレート電極23との間で
発生させ、プラズマ領域外を拡散してデバイス16に到
達した水素ラジカル18を水素化に寄与させる方法があ
る。リモートプラズマ法としては、単にプラズマ発生箇
所をデバイスと空間的に離せばよいため、ECRプラズ
マCVD装置やマイクロ波プラズマCVD装置なども利
用できる。
【0020】ここで本発明の水素化における水素の拡散
経路は、図5に示すように、低抵抗多結晶シリコンゲー
ト電極の外側からゲート絶縁膜4を通って行く拡散経路
14と、活性領域13上の低抵抗多結晶シリコンゲート
電極露出部25からゲート絶縁膜4を通って行く拡散経
路24の2つに大きく分けられる。拡散経路14は図3
1に示す従来例の拡散経路と同じであり、低抵抗多結晶
シリコンゲート電極5を介さないためこの低抵抗多結晶
シリコンゲート電極5での水素ロスはないが、低抵抗多
結晶シリコンゲート電極5の端から多結晶シリコン活性
領域13中央までの距離が2〜3μm程度以上と長いた
めに、図6または図33に示す従来例のように、多結晶
シリコン活性領域13中央部に向かうほど水素濃度が低
くなり、水素化不足となるような拡散経路であった。こ
れに対し本発明の水素化では活性領域直上からの拡散経
路24が存在し、活性領域直上から0.1μm程度の低
抵抗多結晶シリコンゲート電極5/ゲート絶縁膜4の2
層膜を通して水素ラジカルまたは水素イオンまたは水素
分子が拡散してくるため、従来方法で問題となっていた
活性領域中央部の水素化不足を解消することができる。
この結果、従来の水素化に比べて水素化プロセス時間を
短くすることが可能となる。
【0021】実際の多結晶シリコン薄膜トランジスタで
の例を以下に示す。チャネル長6μm、チャネル幅6μ
mのnチャネル多結晶シリコン薄膜トランジスタにおい
て、水素化前のオン電流は、ドレイン電圧12V、ゲー
ト電圧12Vにおいて1×105 Aであり、このデバイ
スを平行平板プラズマ処理装置において2時間の水素化
を行ったところ、同測定条件でのオン電流は5×104
Aとなった。ここで、同様の薄膜トランジスタの多結晶
シリコン活性領域中央上に、4μm□の低抵抗多結晶シ
リコンゲート電極露出部を形成し水素化を行ったとこ
ろ、20分の水素化で同測定条件でのオン電流5×10
4 Aを得ることができた。
【0022】最後に図1(g)、(h)に示すように、
層間絶縁膜10を形成し、コンタクトホール11を開口
してソース、ドレイン配線電極12を形成して多結晶シ
リコン薄膜トランジスタが完成する。
【0023】本発明の第2の実施の形態を図9〜図14
を参照しながら説明する。
【0024】図9は本発明の第2の実施の形態における
多結晶シリコン薄膜トランジスタの製造プロセス過程を
デバイスのチャネル長方向断面図および上面図を用いて
示したものである。ゲート配線電極をマスクとする不純
物導入のプロセスまでは図30に示す従来例と同様であ
るため、不純物導入プロセスから素子完成までを図9
(a)〜(h)に示した。
【0025】図9(a)、(b)に示すように、パター
ニングしたレジスト15、ゲート配線電極6および低抵
抗多結晶シリコンゲート電極5をマスクとして、ソー
ス、ドレイン領域8を形成するための不純物導入をイオ
ン注入またはイオンドーピング法により行う。不純物は
nチャネルトランジスタを形成する箇所には燐または砒
素を、pチャネルトランジスタを形成する箇所には硼素
などを導入すればよい。
【0026】次に図9(c)、(d)に示すように、レ
ジストマスク15を再パターニングして、ゲート配線電
極6が多結晶シリコン活性領域13上で開口部を2箇所
有するようにパターニングし、低抵抗多結晶シリコンゲ
ート電極5を露出させ、多結晶シリコン活性領域13上
で低抵抗多結晶シリコン電極露出部25を2箇所形成す
る。
【0027】続いて図9(e)、(f)に示すように、
水素化を行う。水素化は、デバイス温度を200〜40
0℃程度とし、水素雰囲気または水素プラズマ雰囲気ま
たは水素ラジカル雰囲気に曝すことによって行われる。
水素プラズマに曝すには第1の実施の形態で述べたよう
に平行平板プラズマCVD装置を用い、水素ラジカルに
曝すには、同じく第1の実施の形態で述べたように平行
平板リモートプラズマCVD装置、ECRプラズマCV
D装置およびマイクロ波プラズマCVD装置などのリモ
ートプラズマ処理装置を用いる。
【0028】ここで本発明の水素化における水素の拡散
経路は、図10に示すように、低抵抗多結晶シリコンゲ
ート電極の外側からゲート絶縁膜4を通って行く拡散経
路14と、活性領域13上の2カ所の低抵抗多結晶シリ
コンゲート電極露出部25からゲート絶縁膜4を通って
行く拡散経路24の2つに大きく分けられる。拡散経路
14は図31に示す従来例の拡散経路と同じであり、低
抵抗多結晶シリコンゲート電極5を介さないためこの低
抵抗多結晶シリコンゲート電極5での水素ロスはない
が、低抵抗多結晶シリコンゲート電極5の端から多結晶
シリコン活性領域13中央までの距離が2〜3μm程度
以上と長いために、図11または図33に示す従来例の
ように、多結晶シリコン活性領域13中央部に向かうほ
ど水素濃度が低くなり、水素化不足となるような拡散経
路であった。これに対し本発明の水素化では活性領域直
上からの拡散経路24が存在し、活性領域直上から0.
1μm程度の低抵抗多結晶シリコンゲート電極5/ゲー
ト絶縁膜4の2層膜を通して水素ラジカルまたは水素イ
オンまたは水素分子が拡散してくるため、従来方法で問
題となっていた活性領域中央部の水素化不足を解消する
ことができる。この結果、従来の水素化に比べて水素化
プロセス時間を短くすることが可能となる。
【0029】最後に図9(g)、(h)に示すように、
層間絶縁膜10を形成し、コンタクトホール11を開口
してソース、ドレイン配線電極12を形成して多結晶シ
リコン薄膜トランジスタが完成する。
【0030】なお本発明において、多結晶シリコン活性
領域13上の低抵抗多結晶シリコンゲート電極露出部2
5の形状は図6に示すようなチャネル長方向に並んだも
のだけでなく、図12に示すようなチャネル幅方向に並
んだものなど開口部がどのような方向に並んでいてもよ
い。また、低抵抗多結晶シリコンゲート電極露出部25
の個数は2カ所だけでなく、図13に示すような4箇
所、図14に示すような9箇所など、いくつの露出部が
存在しても良い。
【0031】実際の多結晶シリコン薄膜トランジスタで
の例を以下に示す。チャネル長12μm、チャネル幅1
2μmのnチャネル多結晶シリコン薄膜トランジスタに
おいて、水素化前のオン電流は、ドレイン電圧12V、
ゲート電圧12Vにおいて1×105 Aであり、このデ
バイスを平行平板プラズマ処理装置において2時間の水
素化を行ったところ、同測定条件でのオン電流は1×1
4 Aとなった。ここで、同様の薄膜トランジスタの多
結晶シリコン活性領域上に、チャネル長方向3μm×チ
ャネル幅方向8μmの低抵抗多結晶シリコンゲート電極
露出部を2カ所形成し水素化を行ったところ、30分の
水素化で同測定条件でのオン電流1×104 Aを得るこ
とができた。
【0032】本発明の第3の実施の形態を図15〜図2
1を参照しながら説明する。
【0033】図15は本発明の第3の実施の形態におけ
る多結晶シリコン薄膜トランジスタの製造プロセス過程
をデバイスのチャネル長方向断面図および上面図を用い
て示したものである。ゲート配線電極をマスクとする不
純物導入のプロセスまでは図30に示す従来例と同様で
あるため、不純物導入プロセスから素子完成までを図1
5(a)〜(h)に示した。
【0034】図15(a)、(b)に示すように、パタ
ーニングしたレジスト15、ゲート配線電極6および低
抵抗多結晶シリコンゲート電極5をマスクとして、ソー
ス、ドレイン領域8を形成するための不純物導入をイオ
ン注入またはイオンドーピング法により行う。不純物は
nチャネルトランジスタを形成する箇所には燐または砒
素を、pチャネルトランジスタを形成する箇所には硼素
などを導入すればよい。
【0035】次に図15(c)、(d)に示すように、
レジストマスク15を再パターニングして、ゲート配線
電極6の両側面が多結晶シリコン活性領域13上で削ら
れるようにパターニングし、低抵抗多結晶シリコンゲー
ト電極5を露出させ、低抵抗多結晶シリコン電極露出部
25を形成する。
【0036】続いて図15(e)、(f)に示すよう
に、水素化を行う。水素化は、デバイス温度を200〜
400℃程度とし、水素雰囲気または水素プラズマ雰囲
気または水素ラジカル雰囲気に曝すことによって行われ
る。水素プラズマに曝すには第1の実施の形態で述べた
ように平行平板プラズマCVD装置を用い、水素ラジカ
ルに曝すには、同じく第1の実施の形態で述べたように
平行平板リモートプラズマCVD装置、ECRプラズマ
CVD装置およびマイクロ波プラズマCVD装置などの
リモートプラズマ処理装置を用いる。
【0037】ここで本発明の水素化における水素の拡散
経路は、図16に示すように、低抵抗多結晶シリコンゲ
ート電極の外側からゲート絶縁膜4を通って行く拡散経
路14と、活性領域13上の低抵抗多結晶シリコンゲー
ト電極露出部25からゲート絶縁膜4を通って行く拡散
経路24の2つに大きく分けられる。拡散経路14は図
31に示す従来例の拡散経路と同じであり、低抵抗多結
晶シリコンゲート電極5を介さないためこの低抵抗多結
晶シリコンゲート電極5での水素ロスはないが、低抵抗
多結晶シリコンゲート電極5の端から多結晶シリコン活
性領域13中央までの距離が2〜3μm程度以上と長い
ために、図17または図33に示す従来例のように、多
結晶シリコン活性領域13中央部に向かうほど水素濃度
が低くなり、水素化不足となるような拡散経路であっ
た。これに対し本発明の水素化では活性領域直上からの
拡散経路24が存在し、活性領域直上から0.1μm程
度の低抵抗多結晶シリコンゲート電極5/ゲート絶縁膜
4の2層膜を通して水素ラジカルまたは水素イオンまた
は水素分子が拡散し、多結晶シリコン活性領域13の中
心に非常に近いところから拡散していくため、従来方法
で問題となっていた活性領域中央部の水素化不足を解消
することができる。この結果、従来の水素化に比べて水
素化プロセス時間を短くすることが可能となる。
【0038】最後に図15(g)、(h)に示すよう
に、層間絶縁膜10を形成し、コンタクトホール11を
開口してソース、ドレイン配線電極12を形成して多結
晶シリコン薄膜トランジスタが完成する。
【0039】なお本発明において、低抵抗多結晶シリコ
ンゲート電極露出部25の形状は図15に示したような
長方形に限らず、図18に示すような半円など、どのよ
うな形状でもよい。また本発明における低抵抗多結晶シ
リコンゲート電極露出部25の形成箇所は、多結晶シリ
コン活性領域13上のゲート配線電極6の全側面に渡る
ものでなくてもよく、図19に示すように側面の一部分
に形成されていればよい。さらに低抵抗多結晶シリコン
ゲート電極露出部25の多結晶シリコン活性領域13上
の個数は図20、図21に示すように何個でもよい。
【0040】実際の多結晶シリコン薄膜トランジスタで
の例を以下に示す。チャネル長6μm、チャネル幅6μ
mのnチャネル多結晶シリコン薄膜トランジスタにおい
て、水素化前のオン電流は、ドレイン電圧12V、ゲー
ト電圧12Vにおいて1×105 Aであり、このデバイ
スを平行平板プラズマ処理装置において2時間の水素化
を行ったところ、同測定条件でのオン電流は1×104
Aとなった。ここで、同様の薄膜トランジスタの多結晶
シリコン活性領域上でゲート配線電極の両側面を2μm
エッチング除去し、低抵抗多結晶シリコンゲート電極露
出部を形成して水素化を行ったところ、40分の水素化
で同測定条件でのオン電流1×104 Aを得ることがで
きた。
【0041】本発明の第4の実施の形態を図22〜図2
8を参照しながら説明する。
【0042】図22は本発明の第4の実施の形態におけ
る多結晶シリコン薄膜トランジスタの製造プロセス過程
をデバイスのチャネル長方向断面図および上面図を用い
て示したものである。ゲート配線電極をマスクとする不
純物導入のプロセスまでは図30に示す従来例と同様で
あるため、不純物導入プロセスから素子完成までを図2
2(a)〜(h)に示した。
【0043】図22(a)、(b)に示すように、パタ
ーニングしたレジスト15、ゲート配線電極6および低
抵抗多結晶シリコンゲート電極5をマスクとして、ソー
ス、ドレイン領域8を形成するための不純物導入をイオ
ン注入またはイオンドーピング法により行う。不純物は
nチャネルトランジスタを形成する箇所には燐または砒
素を、pチャネルトランジスタを形成する箇所には硼素
などを導入すればよい。
【0044】次に図22(c)、(d)に示すように、
レジストマスク15を再パターニングして、多結晶シリ
コン活性領域13上で、ゲート配線電極6の中央付近お
よび両側面を開口し、低抵抗多結晶シリコンゲート電極
5を露出させ、低抵抗多結晶シリコン電極露出部25を
形成する。
【0045】続いて図22(e)、(f)に示すよう
に、水素化を行う。水素化は、デバイス温度を200〜
400℃程度とし、水素雰囲気または水素プラズマ雰囲
気または水素ラジカル雰囲気に曝すことによって行われ
る。水素プラズマに曝すには第1の実施の形態で述べた
ように平行平板プラズマCVD装置を用い、水素ラジカ
ルに曝すには、同じく第1の実施の形態で述べたように
平行平板リモートプラズマCVD装置、ECRプラズマ
CVD装置およびマイクロ波プラズマCVD装置などの
リモートプラズマ処理装置を用いる。
【0046】ここで本発明の水素化における水素の拡散
経路は、図23に示すように、低抵抗多結晶シリコンゲ
ート電極の外側からゲート絶縁膜4を通って行く拡散経
路14と、活性領域13上の低抵抗多結晶シリコンゲー
ト電極露出部25からゲート絶縁膜4を通って行く拡散
経路24の2つに大きく分けられる。拡散経路14は図
31に示す従来例の拡散経路と同じであり、低抵抗多結
晶シリコンゲート電極5を介さないためこの低抵抗多結
晶シリコンゲート電極5での水素ロスはないが、低抵抗
多結晶シリコンゲート電極5の端から多結晶シリコン活
性領域13中央までの距離が2〜3μm程度以上と長い
ために、図24または図33に示す従来例のように、多
結晶シリコン活性領域13中央部に向かうほど水素濃度
が低くなり、水素化不足となるような拡散経路であっ
た。これに対し本発明の水素化では活性領域直上からの
拡散経路24が存在し、活性領域直上から0.1μm程
度の低抵抗多結晶シリコンゲート電極5/ゲート絶縁膜
4の2層膜を通して水素ラジカルまたは水素イオンまた
は水素分子が拡散し、多結晶シリコン活性領域13の中
心に非常に近いところから拡散していくため、従来方法
で問題となっていた活性領域中央部の水素化不足を解消
することができる。この結果、従来の水素化に比べて水
素化プロセス時間を短くすることが可能となる。
【0047】最後に図22(g)、(h)に示すよう
に、層間絶縁膜10を形成し、コンタクトホール11を
開口してソース、ドレイン配線電極12を形成して多結
晶シリコン薄膜トランジスタが完成する。
【0048】なお本発明において、低抵抗多結晶シリコ
ンゲート電極露出部25の形状は図22に示したような
開口形状、開口位置、開口数に限らず、図25〜図28
に示すような開口形状、開口位置、開口数など、どのよ
うな開口形状、開口位置、開口数でもよい。
【0049】実際の多結晶シリコン薄膜トランジスタで
の例を以下に示す。チャネル長12μm、チャネル幅1
2μmのnチャネル多結晶シリコン薄膜トランジスタに
おいて、水素化前のオン電流は、ドレイン電圧12V、
ゲート電圧12Vにおいて1×105 Aであり、このデ
バイスを平行平板プラズマ処理装置において2時間の水
素化を行ったところ、同測定条件でのオン電流は1×1
4 Aとなった。ここで、図22に示すように、薄膜ト
ランジスタの多結晶シリコン活性領域上でゲート配線電
極の両側面を2μmエッチング除去し、中央付近に2μ
m×12μmの開口部を設け、低抵抗多結晶シリコンゲ
ート電極露出部を形成して水素化を行ったところ、30
分の水素化で同測定条件でのオン電流5×104 Aを得
ることができた。
【0050】以上の第1〜第4の実施の形態における低
抵抗多結晶シリコンゲート電極5の材質は、低抵抗非晶
質シリコンまたは低抵抗微結晶シリコンなどでもよい。
【0051】本発明において、MOS電界効果を与える
ゲート電界の分布変化、および配線における信号遅延が
危惧される。ゲート電界の分布変化に関しては低抵抗多
結晶シリコンゲート電極の形状に変化はないため、ゲー
ト電界分布が変化することはほとんどない。また信号遅
延に関しては、低抵抗多結晶シリコンゲート電極露出部
の面積、すなわちゲート配線電極の開口部面積がゲート
配線電極の全面積に比べて小さいため、本発明が原因と
なる信号遅延はほとんどない。さらに通常のデバイスで
は、例えば第3の実施の形態における薄膜トランジスタ
の配線を図29に示すように第2ゲート配線電極27で
覆うことが多く、この場合は本発明に原因する信号遅延
は皆無である。
【0052】
【発明の効果】本発明により、トップゲート型多結晶シ
リコン薄膜トランジスタにおいて、ゲート電極をマスク
とした自己整合不純物導入およびその活性化の後に、従
来よりも短時間で効果的な水素化を行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例における第1例の多結晶
シリコン薄膜トランジスタの製造工程図である。
【図2】本発明の第1の実施例における第2例の多結晶
シリコン薄膜トランジスタのチャネル長方向断面概略図
と上面概略図である。
【図3】本発明の第1の実施例における第3例の多結晶
シリコン薄膜トランジスタのチャネル長方向断面概略図
と上面概略図である。
【図4】本発明の第1の実施例における第4例の多結晶
シリコン薄膜トランジスタのチャネル長方向断面概略図
と上面概略図である。
【図5】本発明の第1の実施例における水素化工程の水
素拡散の様子を示した概略図である。
【図6】本発明の第1の実施例における水素化工程にお
いて、多結晶シリコン活性領域中を拡散する水素の濃度
分布を示した図である。
【図7】平行平板プラズマ処理装置を用いた水素化の様
子を示した装置概略図である。
【図8】平行平板リモートプラズマ処理装置を用いた水
素化の様子を示した装置概略図である。
【図9】本発明の第2の実施例における第1例の多結晶
シリコン薄膜トランジスタの製造工程図である。
【図10】本発明の第2の実施例における水素化工程の
水素拡散の様子を示した概略図である。
【図11】本発明の第2の実施例における水素化工程に
おいて、多結晶シリコン活性領域中を拡散する水素の濃
度分布を示した図である。
【図12】本発明の第2の実施例における第2例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図13】本発明の第2の実施例における第3例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図14】本発明の第2の実施例における第4例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図15】本発明の第3の実施例における第1例の多結
晶シリコン薄膜トランジスタの製造工程図である。
【図16】本発明の第3の実施例における水素化工程の
水素拡散の様子を示した概略図である。
【図17】本発明の第3の実施例における水素化工程に
おいて、多結晶シリコン活性領域中を拡散する水素の濃
度分布を示した図である。
【図18】本発明の第3の実施例における第2例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図19】本発明の第3の実施例における第3例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図20】本発明の第3の実施例における第4例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図21】本発明の第3の実施例における第5例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図22】本発明の第4の実施例における第1例の多結
晶シリコン薄膜トランジスタの製造工程図である。
【図23】本発明の第4の実施例における水素化工程の
水素拡散の様子を示した概略図である。
【図24】本発明の第4の実施例における水素化工程に
おいて、多結晶シリコン活性領域中を拡散する水素の濃
度分布を示した図である。
【図25】本発明の第4の実施例における第2例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図26】本発明の第4の実施例における第3例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図27】本発明の第4の実施例における第4例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図28】本発明の第4の実施例における第5例の多結
晶シリコン薄膜トランジスタのチャネル長方向断面概略
図と上面概略図である。
【図29】本発明の第3の実施例における多結晶シリコ
ン薄膜トランジスタにおいて、ゲート配線を第2ゲート
配線電極を用いて行った場合の素子概略図である。
【図30】従来例における多結晶シリコン薄膜トランジ
スタの製造工程図である。
【図31】第1の従来例における水素化工程の水素拡散
の様子を示した概略図である。
【図32】第2の従来例における水素化工程の水素拡散
の様子を示した概略図である。
【図33】従来例における水素化工程において、多結晶
シリコン活性領域中を拡散する水素の濃度分布を示した
図である。
【図34】従来例の多結晶シリコン薄膜トランジスタの
構造断面図を示したものである
【符号の説明】
1 ガラス基板 2 多結晶シリコン膜 3 エキシマレーザ 4 ゲート絶縁膜 5 低抵抗多結晶シリコンゲート電極 6 ゲート配線電極 7 不純物イオン 8 ソース、ドレイン領域 9 水素または水素ラジカルまたは水素イオン 10 層間絶縁膜 11 コンタクトホール 12 ソーズ、ソレイン配線電極 13 多結晶シリコン活性領域 14 水素の拡散経路 15 レジスト 16 デバイス 17 水素プラスマ 18 水素ラジカル 19 高周波印加電極 20 対向電極 21 水素 22 真空排気 23 中間メッシュ電極 24 活性領域直上からの水素の拡散経路 25 低抵抗多結晶シリコン電極露出部 27 第2ゲート配線電極 28 ゲート電極

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】シリコン薄膜、ゲート絶縁膜、低抵抗シリ
    コンゲート電極、ゲート配線電極を順次積層し、前記低
    抵抗シリコンゲート電極および前記ゲート配線電極をゲ
    ート電極形状にパターニングし、この低抵抗シリコンゲ
    ート電極および前記ゲート配線電極のパターンをもとに
    ソース領域、ドレイン領域を形成し、ゲート配線電極の
    少なくとも一部をエッチングし、活性領域上の低抵抗シ
    リコンゲート電極の一部を露出させた後に、水素パッシ
    ベーション工程を行うことを特徴とする薄膜トランジス
    タの製造方法。
  2. 【請求項2】前記ゲート配線電極形成後に該ゲート配線
    電極に孔を開口して前記低抵抗シリコンゲート電極の露
    出部分を形成することを特徴とする請求項1に記載の薄
    膜トランジスタの製造方法。
  3. 【請求項3】前記ゲート配線電極形成後に該ゲート配線
    電極の側面を削って前記低抵抗シリコンゲート電極の露
    出部分を形成することを特徴とする請求項1または2に
    記載の薄膜トランジスタの製造方法。
  4. 【請求項4】前記水素パッシベーション工程の後に、前
    記ゲート配線電極および前記低抵抗シリコンゲート電極
    を覆う第2のゲート配線電極を形成することを特徴とす
    る請求項1乃至3いずれか1項に記載の薄膜トランジス
    タの製造方法。
JP09339037A 1997-12-09 1997-12-09 薄膜トランジスタの製造方法 Expired - Fee Related JP3107024B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP09339037A JP3107024B2 (ja) 1997-12-09 1997-12-09 薄膜トランジスタの製造方法
US09/207,156 US6118139A (en) 1997-12-09 1998-12-08 Thin film transistor with reduced hydrogen passivation process time
KR1019980053743A KR100283304B1 (ko) 1997-12-09 1998-12-08 단축된 수소 패시베이션 공정 시간을 갖는 박막 트랜지스터
US09/460,114 US6281053B1 (en) 1997-12-09 1999-12-13 Thin film transistor with reduced hydrogen passivation process time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09339037A JP3107024B2 (ja) 1997-12-09 1997-12-09 薄膜トランジスタの製造方法

Publications (2)

Publication Number Publication Date
JPH11177096A JPH11177096A (ja) 1999-07-02
JP3107024B2 true JP3107024B2 (ja) 2000-11-06

Family

ID=18323682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09339037A Expired - Fee Related JP3107024B2 (ja) 1997-12-09 1997-12-09 薄膜トランジスタの製造方法

Country Status (3)

Country Link
US (2) US6118139A (ja)
JP (1) JP3107024B2 (ja)
KR (1) KR100283304B1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3107024B2 (ja) * 1997-12-09 2000-11-06 日本電気株式会社 薄膜トランジスタの製造方法
JP2002184944A (ja) * 2000-12-12 2002-06-28 Mitsubishi Electric Corp 半導体装置
JP2003332582A (ja) * 2002-05-13 2003-11-21 Toshiba Corp 半導体装置及びその製造方法
US7446023B2 (en) * 2004-03-15 2008-11-04 Sharp Laboratories Of America, Inc. High-density plasma hydrogenation
TWI316736B (en) * 2003-05-02 2009-11-01 Au Optronics Corp Method of fabricating polysilicon film by excimer laser crystallization process
US7300829B2 (en) * 2003-06-02 2007-11-27 Applied Materials, Inc. Low temperature process for TFT fabrication
US20060197088A1 (en) * 2005-03-07 2006-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20070161165A1 (en) * 2006-01-12 2007-07-12 Toppoly Optoelectronics Corp. Systems and methods involving thin film transistors
JP5091536B2 (ja) * 2007-05-07 2012-12-05 株式会社アルバック ポリシリコン層の改質方法、ポリシリコン太陽電池の製造方法及びポリシリコン型薄膜トランジスタの製造方法並びにポリシリコン層の改質装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141022A (en) * 1977-09-12 1979-02-20 Signetics Corporation Refractory metal contacts for IGFETS
JPS63119270A (ja) * 1986-11-06 1988-05-23 Matsushita Electric Ind Co Ltd 薄膜トランジスタの製造方法
JP2525587B2 (ja) 1987-01-13 1996-08-21 株式会社日立製作所 薄膜半導体素子およびその製造方法
JPS6451626A (en) 1987-08-24 1989-02-27 Nippon Telegraph & Telephone Hydrogenating method to silicon thin-film transistor
JPS6453553A (en) 1987-08-25 1989-03-01 Ricoh Kk Hydrogen treatment of thin film transistor
JPH0242419A (ja) 1988-08-02 1990-02-13 Hitachi Ltd 半導体装置およびその製造方法
JPH0555521A (ja) * 1991-08-26 1993-03-05 Sony Corp 半導体装置の製法
JPH0677484A (ja) * 1992-08-27 1994-03-18 Sharp Corp 薄膜トランジスタ及びその製造方法
JPH0738118A (ja) * 1992-12-22 1995-02-07 Korea Electron Telecommun 薄膜トランジスタの製造方法
US5324960A (en) * 1993-01-19 1994-06-28 Motorola, Inc. Dual-transistor structure and method of formation
EP1119053B1 (en) * 1993-02-15 2011-11-02 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating TFT semiconductor device
JP2898167B2 (ja) * 1993-04-28 1999-05-31 シャープ株式会社 薄膜トランジスタの製造方法
JPH0714849A (ja) * 1993-06-18 1995-01-17 Fujitsu Ltd 薄膜トランジスタの製造方法
JP2536413B2 (ja) * 1993-06-28 1996-09-18 日本電気株式会社 半導体集積回路装置の製造方法
KR960015271B1 (ko) * 1993-08-18 1996-11-07 엘지반도체 주식회사 전하전송장치의 제조방법
JP3635469B2 (ja) * 1993-08-20 2005-04-06 富士通株式会社 多結晶SiTFTの製造方法
JPH07335904A (ja) * 1994-06-14 1995-12-22 Semiconductor Energy Lab Co Ltd 薄膜半導体集積回路
JPH07249772A (ja) * 1994-03-14 1995-09-26 Sanyo Electric Co Ltd 多結晶シリコン薄膜トランジスタ及びその製造方法
JPH0897431A (ja) * 1994-09-28 1996-04-12 Fuji Xerox Co Ltd 半導体装置およびその製造方法
JP3476320B2 (ja) * 1996-02-23 2003-12-10 株式会社半導体エネルギー研究所 半導体薄膜およびその作製方法ならびに半導体装置およびその作製方法
US6080606A (en) * 1996-03-26 2000-06-27 The Trustees Of Princeton University Electrophotographic patterning of thin film circuits
EP0844670B1 (en) * 1996-06-06 2004-01-02 Seiko Epson Corporation Method for manufacturing thin film transistor, liquid crystal display and electronic device both produced by the method
KR100253699B1 (ko) * 1996-06-29 2000-05-01 김영환 Soi소자 및 그 제조방법
JP3390633B2 (ja) * 1997-07-14 2003-03-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3107024B2 (ja) * 1997-12-09 2000-11-06 日本電気株式会社 薄膜トランジスタの製造方法
KR100252866B1 (ko) * 1997-12-13 2000-04-15 김영환 반도체소자 및 이의 제조방법
US5981365A (en) * 1998-03-10 1999-11-09 Advanced Micro Devices, Inc. Stacked poly-oxide-poly gate for improved silicide formation
US6191017B1 (en) * 1999-04-22 2001-02-20 Lucent Technologies, Inc. Method of forming a multi-layered dual-polysilicon structure

Also Published As

Publication number Publication date
US6118139A (en) 2000-09-12
US6281053B1 (en) 2001-08-28
KR100283304B1 (ko) 2001-04-02
JPH11177096A (ja) 1999-07-02
KR19990062900A (ko) 1999-07-26

Similar Documents

Publication Publication Date Title
JP4372993B2 (ja) アクティブマトリックス液晶表示装置の製造方法
KR100253611B1 (ko) 활성-매트릭스액정표시장치및그제조방법
KR100280171B1 (ko) 비단결정반도체장치(박막트랜지스터)와 이것을 이용한 액정표시장치 및 그 제조방법
US6362028B1 (en) Method for fabricating TFT array and devices formed
JP4802364B2 (ja) 半導体層のドーピング方法、薄膜半導体素子の製造方法、及び半導体層の抵抗制御方法
US7375375B2 (en) Semiconductor device and method for forming the same
US6838698B1 (en) Semiconductor device having source/channel or drain/channel boundary regions
TW200910605A (en) Thin film transistor substrate and display device
JP3107024B2 (ja) 薄膜トランジスタの製造方法
CN1329966C (zh) 薄膜晶体管的制造方法
JPH11307777A (ja) トップゲート型薄膜トランジスタ及びその製造方法
JP2005159306A (ja) 薄膜トランジスタ、この製造方法及びこれを用いた平板表示装置
KR100686338B1 (ko) 박막 트랜지스터, 이의 제조 방법 및 이를 사용하는 평판표시 장치
JPH11258636A (ja) 薄膜トランジスタおよびその製造方法
JPH1197699A (ja) 薄膜トランジスタ
JPH0969631A (ja) 半導体装置、その製造方法およびその製造装置、並びに液晶表示装置
JP2000036602A (ja) 薄膜トランジスタ及びその製造方法と表示装置
JPH07106559A (ja) 半導体装置の製造方法
KR100243738B1 (ko) 반도체 소자의 제조 방법(Method for manufacturing semiconductor device)
JPH1079513A (ja) 薄膜トランジスタ装置およびその製造方法
KR100299373B1 (ko) 저도핑드레인구조의모스트랜지스터및그제조방법
KR100955380B1 (ko) 폴리실리콘 액정표시소자 제조방법
JPH08130313A (ja) 逆スタガー型薄膜トランジスタ及びその製造方法
JP2701828B2 (ja) 半導体装置及びその製造方法
JPH0562999A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

LAPS Cancellation because of no payment of annual fees