JP3032823B1 - Carbon structure having conical protrusions on the surface and method for producing the same - Google Patents

Carbon structure having conical protrusions on the surface and method for producing the same

Info

Publication number
JP3032823B1
JP3032823B1 JP10376505A JP37650598A JP3032823B1 JP 3032823 B1 JP3032823 B1 JP 3032823B1 JP 10376505 A JP10376505 A JP 10376505A JP 37650598 A JP37650598 A JP 37650598A JP 3032823 B1 JP3032823 B1 JP 3032823B1
Authority
JP
Japan
Prior art keywords
carbon
membered ring
particles
pyramidal
carbon structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10376505A
Other languages
Japanese (ja)
Other versions
JP2000191311A (en
Inventor
清志 横川
誠司 福山
白 安
雅満 吉村
勲 持田
要三 光来
港 江頭
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP10376505A priority Critical patent/JP3032823B1/en
Priority to US09/271,900 priority patent/US6228498B1/en
Application granted granted Critical
Publication of JP3032823B1 publication Critical patent/JP3032823B1/en
Publication of JP2000191311A publication Critical patent/JP2000191311A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/735Carbon buckyball
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/844Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Abstract

【要約】 【課題】 新規な機能材料として有用な表面に特定形状
の突起をもつ炭素構造体、及びこのものを効率よく製造
する方法を提供する。 【解決手段】 単一の五員環構造からなる頂部と、複数
の六員環構造からなる周面部とで構成された錐体状突起
を表面に有する導電性炭素構造体であり、五員環構造を
含む炭素又は炭素化合物を、非酸化性条件下において加
熱して分子結晶を完全に崩壊させたのち、さらに180
0℃以上になるまで昇温して再結晶させることにより製
造する。
Abstract: PROBLEM TO BE SOLVED: To provide a carbon structure having a projection having a specific shape on a surface useful as a novel functional material, and a method for efficiently producing the same. A conductive carbon structure having on its surface a pyramidal projection composed of a top portion having a single five-membered ring structure and a peripheral portion having a plurality of six-membered ring structures. After heating the carbon or carbon compound containing the structure under non-oxidizing conditions to completely break the molecular crystals,
It is manufactured by elevating the temperature to 0 ° C. or higher and recrystallizing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性を示し、陰
極管などの電子部品として、また、走査型プローブ顕微
鏡の測定標準として有用な表面に特定な形状の突起をも
つ炭素構造体、及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon structure having projections of a specific shape on its surface, which exhibits conductivity and is useful as an electronic component such as a cathode ray tube or a measurement standard of a scanning probe microscope. The present invention relates to the manufacturing method.

【0002】[0002]

【従来の技術】近年、新しい構造を有する炭素として、
フラーレンや炭素ナノチューブが注目されている。フラ
ーレンは、炭素原子が60個以上集合して球状の閉殻構
造を形成している分子であって、このフラーレンを形成
する炭素原子同士は共有結合でつながれており、その結
合は五員環と六員環の規則的な組合せからなっている。
一方、炭素ナノチューブは、黒鉛シートが円筒状に閉じ
た単層ないし多層構造を有しており、その径は1nmな
いし数10nmである。
2. Description of the Related Art In recent years, as a carbon having a new structure,
Fullerenes and carbon nanotubes are attracting attention. Fullerene is a molecule in which 60 or more carbon atoms are aggregated to form a spherical closed shell structure. The carbon atoms forming this fullerene are connected by a covalent bond, and the bond is formed by a five-membered ring and a six-membered ring. It consists of a regular combination of member rings.
On the other hand, carbon nanotubes have a single-layer or multilayer structure in which a graphite sheet is closed in a cylindrical shape, and have a diameter of 1 nm to several tens of nm.

【0003】ところで、このような炭素ナノチューブの
先端、あるいはフラーレンや多面体炭素粒子の表面に
は、頂部が五員環炭素構造の錐体状突起物が存在すると
考えられていた。そして、この存在をめぐって、透過型
電子顕微鏡による観察が行われてきたが、透過型電子顕
微鏡は、原理的に透過像を観察するため、五員環炭素構
造の錐体状突起物を直接観察することができない。その
ため、頂部が五員環炭素構造の錐体状突起物の存在は推
定するだけで直接観察して確認することはできなかっ
た。その後、走査型トンネル顕微鏡が開発されて、炭素
表面を原子レベルで観察可能になったため、前記の炭素
表面構造も明らかにされたが、予想に反して頂部が五員
環炭素構造の錐体状突起物は、見出すことができなかっ
た。
By the way, it has been considered that pyramidal projections having a five-membered ring carbon structure are present at the tips of such carbon nanotubes or on the surfaces of fullerenes and polyhedral carbon particles. Observation with a transmission electron microscope has been carried out over this existence, but the transmission electron microscope directly observes a five-membered ring carbon structure pyramidal projection in order to observe a transmission image in principle. Can not do. Therefore, the existence of a pyramidal projection having a five-membered ring carbon structure at the top could not be confirmed by direct observation but only by estimation. Later, a scanning tunneling microscope was developed, which made it possible to observe the carbon surface at the atomic level, so that the carbon surface structure was also revealed. No protrusion could be found.

【0004】フラーレンは半導体としての性質を有して
いるため、導電性が低く、良好な電子放射体としては利
用できない。これに対し、表面に、頂部が五員環炭素構
造の錐体状突起物を有する炭素粒子は、良好な導電性と
電子放射性を有することが期待され、陰極管などの電子
部品として、また、原子レベルの鋭い形状の突起を有す
ることから、走査型プローブ顕微鏡の測定標準などとし
て有用である。
[0004] Since fullerene has a semiconductor property, it has low conductivity and cannot be used as a good electron emitter. On the other hand, carbon particles having pyramidal projections having a five-membered ring carbon structure on the surface are expected to have good conductivity and electron emission properties, and as electronic components such as a cathode ray tube, Since it has a sharp protrusion at the atomic level, it is useful as a measurement standard of a scanning probe microscope.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、新規な機能材料として期待される表面に
特定形状の突起をもつ炭素構造体を提供することを目的
としてなされたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a carbon structure having projections of a specific shape on the surface which is expected as a novel functional material. Things.

【0006】[0006]

【課題を解決するための手段】本発明者らは、新規な表
面構造を有する炭素構造体を開発するために鋭意研究を
重ねた結果、分子内に少なくとも五員環構造を含む炭素
又は炭素化合物粒子を非酸化性雰囲気下に加熱処理する
ことにより得られる、頂部が五員環構造の錐体状突起を
表面に有する炭素構造体は、これまでのフラーレンとは
異なり、黒鉛に匹敵する導電性を有することを見出し、
この知見に基づいて本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to develop a carbon structure having a novel surface structure, and as a result, have found that a carbon or carbon compound containing at least a five-membered ring structure in the molecule. The carbon structure, which has pyramidal protrusions with a five-membered ring structure on the surface, obtained by heat-treating the particles in a non-oxidizing atmosphere, has a conductive property comparable to graphite, unlike conventional fullerenes. Have a
Based on this finding, the present invention has been completed.

【0007】すなわち、本発明は、単一の五員環構造か
らなる頂部と、複数の六員環構造からなる周面部とで構
成された錐体状突起を表面に有する導電性炭素構造体及
び五員環構造を含む炭素又は炭素化合物を、非酸化性条
件下において、先ず10℃/分以上の昇温速度で800
〜1200℃まで加熱して分子結晶構造を崩壊させ、次
いで10℃/分以上の昇温速度で1800〜2500℃
まで加熱して再結晶させ、錐体状突起を形成させたの
ち、この錐体状突起が破壊されない速度で冷却すること
を特徴とする錐体状突起を表面に有する導電性炭素構造
体の製造方法を提供するものである。
That is, the present invention provides a conductive carbon structure having on its surface a pyramidal projection composed of a top portion having a single five-membered ring structure and a peripheral portion having a plurality of six-membered ring structures. Under a non-oxidizing condition, carbon or a carbon compound having a five-membered ring structure is first heated at a rate of 10 ° C./min or more for 800
To 1200 ° C. to break down the molecular crystal structure, then 1800 to 2500 ° C. at a rate of 10 ° C./min or more.
After heating and recrystallizing to form a pyramidal projection, cooling at a rate at which the pyramidal projection is not destroyed, producing a conductive carbon structure having pyramidal projections on the surface. It provides a method.

【0008】[0008]

【発明の実施の形態】次に、添付図面に従って本発明を
さらに詳細に説明する。図1は、本発明炭素構造体の表
面の走査型トンネル顕微鏡写真で、(a)は錐体状突起
の全体図を示すものであり、これによると中央に錐体を
有する多面体粒子の存在が認められる。(b)は錐体の
頂部をさらに拡大したもので、これによると中央の丸い
像を中心とした5回対称すなわち5本の対称軸により六
員環構造が左右対称に配列されている状態が認められ
る。図2は、本発明炭素構造体の錐体状突起部分の原子
配列を示す模式図であって、(a)は側面図、(b)は
平面図である。このような錐体状突起を表面に有する導
電性構造体は、通常粒子状として得られるが、また所望
に応じ板状体の表面、柱状体の先端面に形成させること
もできる。粒子状として得られるものは、通常10〜3
0nmの粒径を有している。
Next, the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a scanning tunneling microscopic photograph of the surface of the carbon structure of the present invention. FIG. 1 (a) shows an overall view of the pyramidal projections, according to which the presence of polyhedral particles having a pyramid in the center. Is recognized. (B) is an enlarged view of the apex of the cone, showing that the six-membered ring structure is symmetrically arranged by five-fold symmetry around the central round image, that is, five symmetry axes. Is recognized. FIGS. 2A and 2B are schematic diagrams showing the atomic arrangement of the conical projections of the carbon structure of the present invention, wherein FIG. 2A is a side view and FIG. 2B is a plan view. The conductive structure having such conical protrusions on the surface is usually obtained in the form of particles, but may be formed on the surface of the plate-like body or the tip end of the columnar body, if desired. What is obtained as particles is usually 10 to 3
It has a particle size of 0 nm.

【0009】本発明方法によると、錐体状突起を表面に
有する導電性構造体は、五員環構造を含む炭素又は炭素
化合物を非酸化性条件下、加熱処理することによって製
造することができる。この方法において、原料として用
いられる五員環構造を含む炭素又は炭素化合物の中で好
ましいのは、五員環及び六員環で構成された球状の閉殻
構造体、例えばフラーレンである。このフラーレンに
は、代表的なサッカーボール型のC60をはじめとして、
70、C76、C78、C82、C84、C240、C540などが知
られているが、いずれも用いることができる。前記のC
60は、炭素原子の六員環20個を12個の五員環が形成
されるように結合した構造を有している。このC60の六
員環を30個に増大したものがC70であり、さらに六員
環を増大することによって、C76、C78、C82、C84
240、C540の構造になる。これらのフラーレンを化学
修飾した金属内包フラーレンも原料として用いることが
できる。
According to the method of the present invention, a conductive structure having pyramidal projections on its surface can be produced by heat-treating carbon or a carbon compound having a five-membered ring structure under non-oxidizing conditions. . In this method, among the carbons or carbon compounds containing a five-membered ring structure used as a raw material, preferred are spherical closed shell structures composed of a five-membered ring and a six-membered ring, for example, fullerene. The fullerene, including the C 60 of a typical soccer ball-shaped,
C 70 , C 76 , C 78 , C 82 , C 84 , C 240 , C 540 and the like are known, but any of them can be used. Said C
No. 60 has a structure in which 20 six-membered rings of carbon atoms are bonded to form 12 five-membered rings. C 70 is obtained by increasing the number of C 60 six-membered rings to 30. By further increasing the number of six-membered rings, C 76 , C 78 , C 82 , C 84 ,
Resulting in the structure of the C 240, C 540. Metal-containing fullerenes obtained by chemically modifying these fullerenes can also be used as raw materials.

【0010】本発明方法においては、これらの原料を非
酸化性条件下で加熱する必要があるが、これは例えば窒
素、アルゴン、ヘリウム、ネオンなどの不活性ガス雰囲
気中又は真空中で加熱することによって行われる。原料
をこのような非酸化性条件下で加熱すると、800〜1
200℃程度で原料の分子結晶構造が崩壊し、昇華を伴
なって非晶質化する。そして、分子結晶構造が完全に崩
壊して非晶質になると、昇華が停止する。さらに加熱を
続け、1800〜2500℃程度になると再結晶化が行
われ、この間に結晶構造中の五員環、六員環がそれぞれ
安定な位置を求めて移動し、単一の五員環構造からなる
頂部と、複数の六員環構造からなる周面部とで構成され
た錐体状突起を形成し、さらに加熱を継続すると最終的
には、全体が六員環構造の重なった網状層状体の黒鉛に
なる。
In the method of the present invention, it is necessary to heat these raw materials under non-oxidizing conditions, for example, by heating in an inert gas atmosphere such as nitrogen, argon, helium, neon or in a vacuum. Done by When the raw material is heated under such non-oxidizing conditions, 800 to 1
At about 200 ° C., the molecular crystal structure of the raw material collapses and becomes amorphous with sublimation. Then, when the molecular crystal structure completely collapses and becomes amorphous, sublimation stops. Heating is further continued, and when the temperature reaches about 1800 to 2500 ° C., recrystallization is performed. During this time, the five-membered ring and the six-membered ring in the crystal structure move in search of a stable position, and a single five-membered ring structure is formed. And a conical projection composed of a plurality of six-membered ring structures and a peripheral surface part formed of a plurality of six-membered ring structures. Becomes graphite.

【0011】このように、本発明の錐体状突起を表面に
有する炭素構造体は、原料例えばフラーレンから黒鉛に
至る途中で形成されるので、原料を加熱する過程におい
て分解時の昇華を抑制し、かつ再結晶を制御して、所望
の錐体状突起の形成を助長することが必要である。
As described above, since the carbon structure of the present invention having pyramidal projections on its surface is formed on the way from a raw material, for example, fullerene to graphite, it suppresses sublimation during decomposition during the heating of the raw material. In addition, it is necessary to control the recrystallization to promote the formation of the desired pyramidal projection.

【0012】それは、加熱の際の昇温速度及び分子構造
が所望のように再編成された時点からの冷却速度の制御
によって行われる。すなわち、原料粒子例えばフラーレ
ンを加熱すると、第1段階では分子結晶が崩壊するとと
もに昇華が開始し、前記したように800〜1200℃
程度、通常は1000〜1200℃で分子結晶が完全に
崩壊すると昇華が止むので、この段階をいかに速く通過
するかが歩留まりを左右する。通常、この段階での昇温
速度は、10℃/分以上、好ましくは50℃/分以上で
ある。この段階において、原料粒子は非晶質になるが、
走査型トンネル顕微鏡による観察では粒子状で、その外
観にはほとんど変化は認められない。次いで、第2段階
ではこれをさらに加熱し、再結晶を起させ、粒子を成長
させる。この段階では、10℃/分程度又はそれ以上の
昇温速度を用いて、前記した再結晶化が行われる温度1
800〜2500℃、好ましくは2000〜2400℃
になるまで加熱し、粒子表面に単一の五員環構造からな
る頂部と、複数の六員環構造からなる周面部で構成され
た錐体状突起を形成させる。この間の加熱は、いったん
形成された錐体状突起が破壊されないように昇温速度を
制御することが必要である。この段階において、加熱し
た粒子を走査型トンネル顕微鏡により観察すると、原料
粒子には存在しない錐体状突起が認められる。このよう
にして得られた表面に錐体状突起を有する炭素構造体
は、次いでその構造を保った状態で室温まで冷却するこ
とが必要である。この冷却は、例えばガス冷却などによ
り10℃/分程度の冷却速度で行われる。
This is accomplished by controlling the rate of temperature rise during heating and the rate of cooling from the point at which the molecular structure has been reorganized as desired. That is, when the raw material particles, for example, fullerene, are heated, in the first stage, the molecular crystal collapses and sublimation starts, and as described above, 800 to 1200 ° C.
Sublimation stops when the molecular crystal completely collapses at a degree, usually 1000-1200 ° C., so how fast it passes this stage determines the yield. Usually, the heating rate at this stage is 10 ° C./min or more, preferably 50 ° C./min or more. At this stage, the raw material particles become amorphous,
Observation with a scanning tunneling microscope shows that the particles are in the form of particles, and there is almost no change in their appearance. Then, in a second stage, it is further heated, causing recrystallization and growing the particles. At this stage, the temperature 1 at which the above-mentioned recrystallization is performed is performed using a heating rate of about 10 ° C./min or more.
800 to 2500 ° C, preferably 2000 to 2400 ° C
To form a pyramidal projection composed of a top portion having a single five-membered ring structure and a peripheral portion having a plurality of six-membered ring structures on the particle surface. During the heating, it is necessary to control the heating rate so that the once formed conical projections are not broken. At this stage, when the heated particles are observed with a scanning tunneling microscope, pyramidal projections not present in the raw material particles are observed. The thus obtained carbon structure having pyramidal projections on the surface needs to be cooled to room temperature while maintaining the structure. This cooling is performed at a cooling rate of about 10 ° C./minute by, for example, gas cooling.

【0013】このようにして、単一の五員環構造からな
る頂部と、複数の六員環構造からなる周面部とで構成さ
れた錐体状突起を表面に有する炭素構造体が得られる。
このものは、文献未載の新規物質であって、原料の五員
環構造を含む炭素又は炭素化合物が半導体であるのに対
し、黒鉛に匹敵する導電性を有している。
In this manner, a carbon structure having on its surface a pyramidal projection composed of a top portion having a single five-membered ring structure and a peripheral portion having a plurality of six-membered ring structures is obtained.
This is a novel substance which has not been described in the literature. Carbon or carbon compound containing a five-membered ring structure as a raw material is a semiconductor, but has conductivity comparable to that of graphite.

【0014】[0014]

【実施例】次に、本発明を実施例によりさらに詳細に説
明する。
Next, the present invention will be described in more detail with reference to examples.

【0015】実施例 粒径10〜30nmのC60フラーレン粒子3gを電気炉
に入れ、窒素ガス雰囲気下、昇温速度10℃/分で10
00℃まで加熱した。この加熱処理によりフラーレン
は、分子結晶が崩壊するとともに昇華が起り、分子結晶
が完全に崩壊して非晶質になった時点で昇華が停止し
た。これまでに要した時間は約10分間であった。図3
は、フラーレンを1000℃に加熱して得られる非晶質
炭素粒子の走査型トンネル顕微鏡写真である。なお、比
較のために原料として用いたC60フラーレン粒子の走査
型トンネル顕微鏡写真を図4に示す。これらの図から分
るように、フラーレン粒子を1000℃に加熱後の非晶
質炭素は粒子状であり、フラーレン粒子に比べて形状に
大きな変化はないが、表面に原子像は観察されない。次
に、この非晶質の炭素粒子を、窒素ガス雰囲気下、さら
に10℃/分の昇華速度で2400℃まで加熱した。こ
の加熱処理によって、非晶質の炭素粒子は再結晶を始め
るとともに、粒子が成長し始め、五員環及び六員環はそ
れぞれ安定な位置を求めて移動し、表面に頂部が五員環
炭素構造の錐体状突起が形成された。図5は、2400
℃に加熱後の炭素粒子の六員環に対応している錐体状突
起の環状超構造の走査型トンネル顕微鏡写真であって、
(a)は中央の丸い像を中心に5回対称の環状超構造を
示し、(b)はその四角で囲った部分の拡大図を示す。
[0015] EXAMPLE particle diameter placed in an electric furnace to C 60 fullerene particles 3g of 10 to 30 nm, a nitrogen gas atmosphere, at a heating rate 10 ° C. / min 10
Heated to 00 ° C. Due to this heat treatment, the sublimation of the fullerene occurred along with the collapse of the molecular crystal, and the sublimation was stopped when the molecular crystal was completely collapsed and became amorphous. The time required so far was about 10 minutes. FIG.
3 is a scanning tunneling microscopic photograph of amorphous carbon particles obtained by heating fullerene to 1000 ° C. Incidentally, a scanning tunneling microscope photograph of C 60 fullerene particles used as a raw material for comparison in Fig. As can be seen from these figures, the amorphous carbon after heating the fullerene particles to 1000 ° C. is in the form of particles, and there is no significant change in the shape as compared with the fullerene particles, but no atomic image is observed on the surface. Next, the amorphous carbon particles were further heated to 2400 ° C. in a nitrogen gas atmosphere at a sublimation rate of 10 ° C./min. By this heat treatment, the amorphous carbon particles begin to recrystallize, the particles start to grow, the five-membered ring and the six-membered ring move in search of a stable position, and the top of the surface becomes a five-membered carbon. Conical pyramidal projections were formed. FIG.
FIG. 4 is a scanning tunneling micrograph of an annular superstructure of pyramidal projections corresponding to the six-membered ring of the carbon particles after heating to ° C.
(A) shows a five-fold symmetrical annular superstructure centered on a central round image, and (b) shows an enlarged view of a portion surrounded by a square.

【0016】[0016]

【発明の効果】本発明により提供される炭素構造体は、
新規な導電性物質であり、電子放射が可能なので陰極管
のような電子部品として有用であり、また原子レベルの
錐体状突起を有するため、走査型プローブ顕微鏡の測定
標準として用いられる。
The carbon structure provided by the present invention comprises:
It is a new conductive substance and is useful as an electronic component such as a cathode ray tube because of its ability to emit electrons, and has a pyramidal projection at the atomic level, so that it is used as a measurement standard for a scanning probe microscope.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明炭素構造体の660万倍(a)及び1
500万倍(b)拡大走査型トンネル顕微鏡写真。
FIG. 1 shows the carbon structure of the present invention at a rate of 6.60 million times (a) and 1
5 million times (b) enlarged scanning tunneling micrograph.

【図2】 本発明炭素構造体の錐体状突起部分の原子配
列を示す模式図の側面図(a)及び平面図(b)。
FIG. 2 is a side view (a) and a plan view (b) of a schematic view showing an atomic arrangement of a conical projection portion of the carbon structure of the present invention.

【図3】 フラーレンの非晶質状態の33万倍拡大走査
型トンネル顕微鏡写真。
FIG. 3 is a 330,000-fold enlarged scanning tunneling micrograph of the amorphous state of fullerene.

【図4】 フラーレンの33万倍拡大走査型トンネル顕
微鏡写真。
FIG. 4 is a 330,000-fold enlarged scanning tunneling micrograph of fullerene.

【図5】 本発明炭素構造体の660万倍(a)拡大走
査型トンネル顕微鏡写真及びその一部の3800万倍
(b)拡大した写真。
FIG. 5 is a photograph of a scanning tunneling microscope with a magnification of 6.6 million times (a) of the carbon structure of the present invention and a photograph of a part thereof at a magnification of 38 million times (b).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01J 9/02 G01N 37/00 A // G01N 37/00 H01J 1/30 F (72)発明者 吉村 雅満 愛知県名古屋市天白区久方2丁目12番1 号 豊田工業大学内 (72)発明者 持田 勲 福岡県春日市春日公園6−1 九州大学 機能物質科学研究所内 (72)発明者 光来 要三 福岡県春日市春日公園6−1 九州大学 機能物質科学研究所内 (72)発明者 江頭 港 福岡県春日市春日公園6−1 九州大学 機能物質科学研究所内 (56)参考文献 特開 平7−11520(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 31/02 101 G01N 1/00 102 H01B 1/00 H01B 1/04 H01J 1/304 H01J 9/02 G01N 37/00 CA(STN)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI H01J 9/02 G01N 37/00 A // G01N 37/00 H01J 1/30 F (72) Inventor Masamitsu Yoshimura Tenpaku, Nagoya City, Aichi Prefecture 2-12-1, Kukata-ku, Toyota (Tokyo Institute of Technology) (72) Inventor Isao Mochida 6-1 Kasuga Park, Kasuga-shi, Fukuoka Pref. Park 6-1 Kyushu University Institute of Functional Materials Science (72) Inventor Minato Ega Port 6-1 Kasuga Park Kasuga-shi, Fukuoka Prefecture Kyushu University Institute of Functional Materials Science (56) References JP-A-7-11520 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C01B 31/02 101 G01N 1/00 102 H01B 1/00 H01B 1/04 H01J 1/304 H01J 9/02 G01N 37/00 CA (STN)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単一の五員環構造からなる頂部と、複数
の六員環構造からなる周面部とで構成された錐体状突起
を表面に有する導電性炭素構造体。
1. A conductive carbon structure having, on its surface, a pyramidal projection composed of a top portion having a single five-membered ring structure and a peripheral portion having a plurality of six-membered ring structures.
【請求項2】 10〜30nmの粒径をもつ請求項1記
載の導電性炭素構造体。
2. The conductive carbon structure according to claim 1, having a particle size of 10 to 30 nm.
【請求項3】 五員環構造を含む炭素又は炭素化合物
を、非酸化性条件下において、先ず10℃/分以上の昇
温速度で800〜1200℃まで加熱して分子結晶構造
を崩壊させ、次いで10℃/分以上の昇温速度で180
0〜2500℃まで加熱して再結晶させ、錐体状突起を
形成させたのち、この錐体状突起が破壊されない速度で
冷却することを特徴とする錐体状突起を表面に有する導
電性炭素構造体の製造方法。
3. A carbon or carbon compound containing a five-membered ring structure is heated to 800 to 1200 ° C. under a non-oxidizing condition at a rate of 10 ° C./min or more to break up the molecular crystal structure. Then, at a heating rate of 10 ° C./min or more, 180
Conductive carbon having pyramidal projections on the surface, which is heated to 0 to 2500 ° C. and recrystallized to form pyramidal projections, and then cooled at a rate at which the pyramidal projections are not destroyed. The method of manufacturing the structure.
JP10376505A 1998-12-25 1998-12-25 Carbon structure having conical protrusions on the surface and method for producing the same Expired - Lifetime JP3032823B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10376505A JP3032823B1 (en) 1998-12-25 1998-12-25 Carbon structure having conical protrusions on the surface and method for producing the same
US09/271,900 US6228498B1 (en) 1998-12-25 1999-03-18 Structured body of carbon having frustum protrusion and method for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10376505A JP3032823B1 (en) 1998-12-25 1998-12-25 Carbon structure having conical protrusions on the surface and method for producing the same

Publications (2)

Publication Number Publication Date
JP3032823B1 true JP3032823B1 (en) 2000-04-17
JP2000191311A JP2000191311A (en) 2000-07-11

Family

ID=18507252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10376505A Expired - Lifetime JP3032823B1 (en) 1998-12-25 1998-12-25 Carbon structure having conical protrusions on the surface and method for producing the same

Country Status (2)

Country Link
US (1) US6228498B1 (en)
JP (1) JP3032823B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422302B2 (en) * 1999-09-22 2003-06-30 日本電気株式会社 Method for producing carbon nanotube and laser target
JP4093498B2 (en) * 2001-05-28 2008-06-04 喜萬 中山 Nanotube length control method
FR3040698B1 (en) * 2015-09-03 2017-09-01 Commissariat Energie Atomique METHOD FOR RECRYSTALLIZING CARBON MATERIAL, SUCH AS GRAPHENE OR CARBON NANOTUBES

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026925A1 (en) * 1994-03-30 1995-10-12 Massachusetts Institute Of Technology Production of fullerenic nanostructures in flames
US5640705A (en) * 1996-01-16 1997-06-17 Koruga; Djuro L. Method of containing radiation using fullerene molecules
US5993697A (en) * 1996-05-14 1999-11-30 The Regents Of The University Of California Metallic carbon materials
US5750615A (en) * 1996-11-26 1998-05-12 The Goodyear Tire & Rubber Company Use of fullerene carbon in curable rubber compounds

Also Published As

Publication number Publication date
US6228498B1 (en) 2001-05-08
JP2000191311A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
Avigal et al. Growth of aligned carbon nanotubes by biasing during growth
JP3183845B2 (en) Method for producing carbon nanotube and carbon nanotube film
Ugarte Morphology and structure of graphitic soot particles generated in arc-discharge C60 production
JP3363759B2 (en) Carbon nanotube device and method of manufacturing the same
JP5363260B2 (en) Carbon nanotube composite material and manufacturing method thereof
US7754182B2 (en) Carbon nanotube array and method for forming same
TW526170B (en) Carbon nanostructures and methods of preparation
JP2006007213A (en) Production method of catalyst for producing carbon nanotube
JP5139457B2 (en) Method for producing carbon nanotube structure
US20040124755A1 (en) Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube
US7462499B2 (en) Carbon nanotube with ZnO asperities
JPH10203810A (en) Production of carbon nanotube
Lee et al. Growth and field emission of carbon nanotubes on sodalime glass at 550 C using thermal chemical vapor deposition
WO2004027127A1 (en) Acicular silicon crystal and process for producing the same
JP2009231287A (en) Carbon nanotube needle and manufacturing method of the same
US7755264B2 (en) Composition for formatting an electron emission source for use in an electron emission device and an electron emission source fabricated using the same
JP4903664B2 (en) Method for manufacturing electron-emitting device
JP3032823B1 (en) Carbon structure having conical protrusions on the surface and method for producing the same
JP2012153540A (en) Carbon nanotube aggregate, and method for manufacturing the same
TW200407933A (en) Patterned granulized catalyst layer suitable for electron-emitting device, and associated fabrication method
Chen et al. Aligned conical carbon nanotubes
Ren et al. Large arrays of well-aligned carbon nanotubes
JPH07165406A (en) Production of carbon tube
JPH08217431A (en) Fullerene and its production
JP3994161B2 (en) Single crystal tungsten oxide nanotube and method for producing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term