JP2996843B2 - Heat pipe cooler - Google Patents

Heat pipe cooler

Info

Publication number
JP2996843B2
JP2996843B2 JP5228737A JP22873793A JP2996843B2 JP 2996843 B2 JP2996843 B2 JP 2996843B2 JP 5228737 A JP5228737 A JP 5228737A JP 22873793 A JP22873793 A JP 22873793A JP 2996843 B2 JP2996843 B2 JP 2996843B2
Authority
JP
Japan
Prior art keywords
heat
block
unit block
holes
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5228737A
Other languages
Japanese (ja)
Other versions
JPH0786473A (en
Inventor
隆 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5228737A priority Critical patent/JP2996843B2/en
Publication of JPH0786473A publication Critical patent/JPH0786473A/en
Application granted granted Critical
Publication of JP2996843B2 publication Critical patent/JP2996843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体素子を冷却するヒ
ートパイプ式冷却器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe type cooler for cooling a semiconductor device.

【0002】[0002]

【従来の技術】半導体素子は動作時に熱を発するため、
冷却をすることが必要であり、その冷却方式にも沸騰冷
却方式やヒートパイプを用いた冷却方式がある。沸騰冷
却方式に比べて冷媒量が著しく減少できる等の理由か
ら、近年ヒートパイプを用いた冷却方式が多く使用され
てきている。
2. Description of the Related Art Since a semiconductor device generates heat during operation,
Cooling is necessary, and the cooling method includes a boiling cooling method and a cooling method using a heat pipe. In recent years, cooling systems using heat pipes have been widely used because the amount of refrigerant can be significantly reduced as compared with the boiling cooling system.

【0003】ヒートパイプ式冷却器は、半導体素子が押
圧される受熱部ブロックにヒートパイプの一端が接続さ
れ、そしてヒートパイプの他端に放熱フィンが複数枚取
付けられて構成されている。冷媒が封入された端部の閉
じたヒートパイプの一端を、受熱部ブロックに設けられ
たヒートパイプの径より若干大きな穴に挿入し、できた
すきまにハンダ等を充填することで、受熱部ブロックと
ヒートパイプとは接続される。複数枚の放熱フィンには
ヒートパイプが貫通する穴がそれぞれ設けられている。
これら放熱フィンに設けられた穴は、ヒートパイプの径
よりも若干小さい穴であり、この穴に対して圧入方式に
よりヒートパイプを挿入し放熱フィンとヒートパイプを
密着させ、複数枚の放熱フィンはヒートパイプの軸方向
に垂直となる方向に適当なピッチで積層される。また放
熱フィンに設けられる穴をヒートパイプの径と同じ若し
くは若干大きく形成し、その穴にヒートパイプを挿入し
てヒートパイプ内部よりパイプ管径を拡げる拡管方式に
より互いを密着させる方式もある。
[0003] The heat pipe type cooler is configured such that one end of a heat pipe is connected to a heat receiving unit block against which a semiconductor element is pressed, and a plurality of heat radiation fins are attached to the other end of the heat pipe. Insert one end of the closed heat pipe at the end where the refrigerant is sealed into a hole slightly larger than the diameter of the heat pipe provided in the heat receiving unit block, and fill the resulting gap with solder, etc., so that the heat receiving unit block And the heat pipe are connected. Holes through which the heat pipes pass are provided in the plurality of radiation fins.
The holes provided in these radiating fins are slightly smaller than the diameter of the heat pipe.The heat pipe is inserted into this hole by the press-fitting method, and the radiating fin and the heat pipe are brought into close contact. The layers are stacked at an appropriate pitch in a direction perpendicular to the axial direction of the heat pipe. There is also a method in which a hole provided in the radiation fin is formed to be the same as or slightly larger than the diameter of the heat pipe, and the heat pipe is inserted into the hole so that the diameter of the pipe is expanded from the inside of the heat pipe so that they are in close contact with each other.

【0004】何れの方式も、穴の径、穴の位置は寸法精
度が要求されるが、同時にヒートパイプの位置、ピッチ
にも寸法精度は要求されることになる。最も一般的なヒ
ートパイプ式冷却器では、真直なヒートパイプ数本が用
いられるが、放熱フィン側の空気の流れ、受熱部ブロッ
クの素子取付部の周辺の部品実装を効率良くする為、屈
曲したヒートパイプ数本を用いて受熱部ブロックの素子
取付面と放熱フィン積層方向とにある角度をもたせるこ
とがある。
In any of the methods, dimensional accuracy is required for the hole diameter and the hole position, but dimensional accuracy is also required for the position and pitch of the heat pipe. In the most common heat pipe type cooler, several straight heat pipes are used, but they are bent to make the air flow on the radiating fin side and the component mounting around the element mounting part of the heat receiving part block efficient. In some cases, a plurality of heat pipes are used to make a certain angle between the element mounting surface of the heat receiving unit block and the radiating fin stacking direction.

【0005】[0005]

【発明が解決しようとする課題】上述した屈曲したヒー
トパイプ数本の一端を受熱部ブロックに挿入し、他端に
複数枚の放熱フィンを取付けてヒートパイプ式冷却器を
構成する場合、放熱フィンに設けられた各穴に数本の屈
曲したヒートパイプが同時に挿入される。ヒートパイプ
の位置、ピッチには寸法精度が要求されるが、ヒートパ
イプが屈曲しているため、寸法精度が上げられず、又ヒ
ートパイプと各放熱フィンとの密着度合にそれぞれバラ
ツキが生じ、放熱性能が満足に得られないという問題が
あった。
When a heat pipe type cooler is constructed by inserting one end of several bent heat pipes into the heat receiving section block and attaching a plurality of heat radiation fins to the other end, Several bent heat pipes are simultaneously inserted into each of the holes provided in the holes. Dimensional accuracy is required for the position and pitch of the heat pipe, but the dimensional accuracy cannot be increased because the heat pipe is bent, and the degree of adhesion between the heat pipe and each radiating fin varies, causing heat radiation. There is a problem that performance cannot be obtained satisfactorily.

【0006】更に放熱フィン側を自然対流により冷却す
る場合、放熱フィンを大きくし放熱面積を増やす必要が
ある。しかしヒートパイプが挿入される箇所は受熱部ブ
ロックの大きさにより限定されてしまうため、放熱フィ
ンを大形化しても放熱フィン全体に渡ってヒートパイプ
が挿入されず、放熱フィンの効率が悪く、効果的に冷却
が行えない。そのため冷却フィンの枚数を増やす等の対
策をとる必要があり、装置が大型化してしまうという問
題も生じていた。
Further, when cooling the heat radiation fin side by natural convection, it is necessary to enlarge the heat radiation fin and increase the heat radiation area. However, since the place where the heat pipe is inserted is limited by the size of the heat receiving unit block, even if the heat radiation fin is enlarged, the heat pipe is not inserted over the entire heat radiation fin, and the efficiency of the heat radiation fin is poor, Cooling cannot be performed effectively. Therefore, it is necessary to take measures such as increasing the number of cooling fins, and there has been a problem that the apparatus becomes large.

【0007】そこで本発明は上記問題点を除去し、ヒー
トパイプの位置、ピッチの寸法精度をあげ、又ヒートパ
イプと放熱フィンとの接合度合をそれぞれ均等にして放
熱性能を向上させるヒートパイプ式冷却器を提供するこ
とを目的とする。又本発明は放熱フィンを大形化しても
受熱部ブロックの大きさに限定されずに放熱フィンの効
率を上げ、放熱性能を向上させるヒートパイプ式冷却器
を提供することを目的とする。
Therefore, the present invention eliminates the above problems, improves the dimensional accuracy of the position and pitch of the heat pipe, and improves the heat radiation performance by improving the heat radiation performance by equalizing the degree of joining between the heat pipe and the heat radiation fin. The purpose is to provide a vessel. Another object of the present invention is to provide a heat pipe-type cooler that increases the efficiency of the radiation fins and improves the heat radiation performance without being limited to the size of the heat receiving unit block even if the radiation fins are enlarged.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の発明では、冷媒液が注入される複数個
の穴が1つの面に所定の間隔毎に形成され、半導体素子
が押圧される受熱部ブロックと、この受熱部ブロックと
接合され、この接合面とこの接合面に所定の角度傾いて
対向する面との間に、受熱部ブロックに形成される複数
個の穴それぞれと連通する複数個の貫通穴が形成される
中継部ブロックと、この中継部ブロックの受熱部ブロッ
クとの接合面と対向する面に垂直に取付けられ、中継部
ブロックに形成される複数個の貫通穴と連通する複数本
のヒートパイプと、これらヒートパイプにそれぞれ取付
けられた複数枚の放熱フィンとを備えてなる。
According to the first aspect of the present invention, a plurality of holes into which a refrigerant liquid is injected are formed at predetermined intervals on one surface, and a semiconductor element is formed. A plurality of holes formed in the heat-receiving unit block, between the heat-receiving unit block to be pressed and the heat-receiving unit block, which are bonded to the heat-receiving unit block, and the surface facing the bonding surface at a predetermined angle. A relay block in which a plurality of through holes communicating with each other are formed; and a plurality of through holes formed in the relay block perpendicular to a surface of the relay block opposite to a joint surface of the relay block with the heat receiving block. And a plurality of heat radiation fins respectively attached to these heat pipes.

【0009】又請求項2記載の発明では、冷媒液が注入
される複数個の穴が1つの面に所定の間隔毎に形成さ
れ、半導体素子が押圧される受熱部ブロックと、この受
熱部ブロックと接合され、この接合面からこの接合面に
所定の角度傾いて対向する面にかけて受熱部ブロックに
形成される複数個の穴の間隔から広がって形成され、複
数個の穴それぞれと連通する複数個の貫通穴を有する中
継部ブロックと、この中継部ブロックの受熱部ブロック
との接合面と対向する面に垂直に取付けられ、中継部ブ
ロックに形成される複数個の貫通穴と連通する複数本の
ヒートパイプと、これらヒートパイプにそれぞれ取付け
られた複数枚の放熱フィンとを備えてなる。
According to the second aspect of the present invention, a plurality of holes into which the coolant liquid is injected are formed at predetermined intervals on one surface, and the heat receiving unit block against which the semiconductor element is pressed, and the heat receiving unit block. A plurality of holes formed in the heat receiving unit block extending from an interval between a plurality of holes formed in the heat receiving unit block from the joining surface to a surface facing the joining surface at a predetermined angle and communicating with each of the plurality of holes. A relay unit block having a through hole, and a plurality of relay units which are vertically mounted on a surface of the relay unit block facing the joint surface with the heat receiving unit block and communicate with a plurality of through holes formed in the relay unit block. It comprises a heat pipe and a plurality of radiating fins respectively attached to these heat pipes.

【0010】[0010]

【作用】上述した構成により請求項1記載の発明では、
受熱部ブロックに設けた穴は、中継部ブロックに設けた
貫通穴を介してヒートパイプと接続されるが、中継部ブ
ロックにより冷媒が通る穴の軸方向は曲げられることに
なる。中継部ブロックに接続されるヒートパイプは真直
なもので、その接続される中継部ブロックの面は複数本
のヒートパイプに対して同一の平面である為、ヒートパ
イプは、その位置、ピッチの寸法精度をあげることがで
き、放熱フィンの取付の際、良好に圧入あるいは拡管が
可能となる。
According to the first aspect of the present invention,
The hole provided in the heat receiving unit block is connected to the heat pipe via a through hole provided in the relay unit block, and the axial direction of the hole through which the refrigerant passes is bent by the relay unit block. The heat pipe connected to the relay block is straight, and the surface of the connected relay block is the same plane with respect to the plurality of heat pipes. Accuracy can be improved, and when the radiating fins are attached, press-fitting or expansion can be performed well.

【0011】また請求項2記載の発明では、中継部ブロ
ックに設けられる複数個の貫通穴を平行ではなく、ヒー
トパイプの接続される側を広げるような穴に形成するこ
とで、受熱部ブロックに設けた穴ピッチよりも大きなピ
ッチで複数個のヒートパイプが中継部ブロックに接続さ
れることになる。従って放熱フィンのより周辺部分の方
までヒートパイプが放熱フィンに挿入されることにな
り、放熱フィンの放熱効率が向上する。
According to the second aspect of the present invention, the plurality of through-holes provided in the relay block are formed not so as to be parallel to each other but as holes that widen the side to which the heat pipe is connected, so that the heat-receiving block is formed. A plurality of heat pipes are connected to the relay block at a pitch larger than the provided hole pitch. Therefore, the heat pipe is inserted into the radiating fin up to the peripheral portion of the radiating fin, and the radiating efficiency of the radiating fin is improved.

【0012】[0012]

【実施例】本発明の一実施例を図面を参照して詳細に説
明する。図1,図2は請求項1記載の発明の第1の実施
例を示す図で、図1はヒートパイプ式冷却器の斜視図、
図2は図1のA−A断面図である。半導体素子(図示し
ない)が押圧される受熱部ブロック1には複数個の穴1
a(本実施例では3つの場合を示している)が設けられ
ていて、穴1aには冷媒1bが入れられている。受熱部
ブロック1の穴1aが設けられた面には、中継部ブロッ
ク2がロウ付け等により接合される。この中継部ブロッ
ク2は受熱部ブロック1との接合面と対向する面が平行
ではなく本実施例では約80度の角度をもつように形成さ
れ、その接合面と対向する面を貫通する複数の穴2a
(本実施例では3つの場合を示している)が設けられて
いる。この中継部ブロック2の穴2aと受熱部ブロック
1の穴1aが、連通するように受熱部ブロック1と中継
部ブロック2とは接合されている。そして中継部ブロッ
ク2の受熱部ブロック1との接合面と対向する面には一
端が開放した複数本(本実施例では3本)のヒートパイ
プ3が垂直にそして各々平行となるように接合され、こ
れらヒートパイプ3はそれぞれ中継部ブロック2に設け
られた穴2aと連通している。そしてヒートパイプ3の
他端には、複数枚の放熱フィン4が圧入方式、拡管方式
等により取付けられている。このように構成されたヒー
トパイプ式冷却器では、半導体素子から発生する熱は受
熱部ブロック1に伝わり穴1a内の冷媒1bが沸騰して
気化し、中継部ブロック2の穴2aを介してヒートパイ
プ3に伝わる。そして、ヒートパイプ3に取付けられた
放熱フィン4で熱を放出し、気化した冷媒1bが圧縮し
て受熱部ブロック1の穴1aに戻る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described in detail with reference to the drawings. 1 and 2 are views showing a first embodiment of the invention described in claim 1, FIG. 1 is a perspective view of a heat pipe type cooler,
FIG. 2 is a sectional view taken along line AA of FIG. A plurality of holes 1 are formed in the heat receiving section block 1 against which a semiconductor element (not shown) is pressed.
a (in this embodiment, three cases are shown), and the refrigerant 1b is put in the hole 1a. The relay block 2 is joined to the surface of the heat receiving block 1 where the holes 1a are provided by brazing or the like. The junction block 2 is formed so that the surface facing the joining surface with the heat receiving unit block 1 is not parallel and has an angle of about 80 degrees in the present embodiment, and a plurality of surfaces penetrating the surface facing the joining surface. Hole 2a
(Three cases are shown in this embodiment). The heat receiving unit block 1 and the relay unit block 2 are joined so that the hole 2a of the relay unit block 2 and the hole 1a of the heat receiving unit block 1 communicate with each other. A plurality (three in this embodiment) of heat pipes 3 having one end opened are joined to the surface of the relay unit block 2 facing the joining surface with the heat receiving unit block 1 so as to be vertical and parallel to each other. Each of these heat pipes 3 communicates with a hole 2 a provided in the relay block 2. A plurality of radiation fins 4 are attached to the other end of the heat pipe 3 by a press-fitting method, a pipe expanding method, or the like. In the heat pipe type cooler configured as described above, the heat generated from the semiconductor element is transmitted to the heat receiving unit block 1 and the refrigerant 1b in the hole 1a is boiled and vaporized, and the heat is generated through the hole 2a in the relay unit block 2. It reaches the pipe 3. Then, heat is released by the radiation fins 4 attached to the heat pipe 3, and the vaporized refrigerant 1b is compressed and returns to the hole 1a of the heat receiving unit block 1.

【0013】受熱部ブロック1に対して中継部ブロック
2が接合され、その中継部ブロック2に対して複数本の
ヒートパイプ3が接合されるが、中継部ブロック2の受
熱部ブロック1が接合される面とヒートパイプ3が接合
される面とは平行ではなく約80度という傾きをもってい
る為、ヒートパイプ3は中継部ブロック2に対して垂直
に接合しているが、受熱部ブロック1に対してヒートパ
イプ3は約80度の傾きをもつことになる。従ってヒート
パイプ3は真直なものを使用することで受熱部ブロック
1との傾きを約80度とれることになる。ヒートパイプ3
の中継部ブロック2への接続は、真直な複数本のヒート
パイプ3を中継部ブロック2の1つの平面に直角に取付
けることになるので、各ヒートパイプの位置、ピッチ等
は決めやすくなり寸法精度をあげることができる。又放
熱フィン4へヒートパイプ3を挿入する時も、容易に作
業を行うことができるので、放熱フィン4に設けられた
ヒートパイプ3を挿入する為の各穴の位置は正確にヒー
トパイプ3の位置と合わせることができる。更にヒート
パイプ3を放熱フィン4へ圧入方式又は拡管方式により
接合する時、ヒートパイプ3と放熱フィン4とを良好に
密着させることができるため効率良く冷却を行うことが
できる。
The relay block 2 is joined to the heat receiving block 1, and a plurality of heat pipes 3 are joined to the relay block 2. The heat receiving block 1 of the relay block 2 is joined. The heat pipe 3 is perpendicular to the junction block 2, but the heat pipe 3 is perpendicular to the junction block 2. Thus, the heat pipe 3 has an inclination of about 80 degrees. Therefore, by using a straight heat pipe 3, the inclination with respect to the heat receiving unit block 1 can be set to about 80 degrees. Heat pipe 3
Is connected to the relay block 2 by mounting a plurality of straight heat pipes 3 at a right angle to one plane of the relay block 2, so that the position, pitch, etc. of each heat pipe can be easily determined and the dimensional accuracy can be improved. Can be given. Also, when the heat pipe 3 is inserted into the radiating fin 4, the work can be easily performed. Therefore, the position of each hole for inserting the heat pipe 3 provided on the radiating fin 4 is accurately determined. Can be matched with position. Further, when the heat pipe 3 is joined to the radiation fins 4 by a press-fitting method or an expansion method, the heat pipes 3 and the radiation fins 4 can be brought into close contact with each other, so that cooling can be performed efficiently.

【0014】なお本実施例では真直な3本のヒートパイ
プ3を用いた場合を示したが、ヒートパイプ3の本数は
これに限られず、ヒートパイプ3の本数と同じ数の穴2
aをもつ中継部ブロック2、同じ数の穴1aをもつ受熱
部ブロック1それぞれを上述した実施例と同様に接合し
てもよい。又本実施例では、中継部ブロック2の受熱部
ブロック1との接合面とヒートパイプ3との接合面と
は、約80度の傾きをもたせているが、この角度は中継部
ブロック1に取付けられたヒートパイプ3が水平より上
方へ向く角度であればよい。約80度の角度をもたせると
いうことは、ヒートパイプ3は水平より上方へ約10度向
いていることになり、気化した冷媒1bが放熱フィン4
へと伝わっていくことになる。
In this embodiment, three straight heat pipes 3 are used. However, the number of heat pipes 3 is not limited to this, and the number of holes 2 is equal to the number of heat pipes 3.
The relay block 2 having a and the heat receiving block 1 having the same number of holes 1a may be joined in the same manner as in the above-described embodiment. In this embodiment, the junction surface of the junction block 2 with the heat receiving unit block 1 and the junction surface of the junction with the heat pipe 3 have an inclination of about 80 degrees. It is sufficient if the angle of the heat pipe 3 is higher than horizontal. Having an angle of about 80 degrees means that the heat pipe 3 is oriented about 10 degrees above the horizontal, and the vaporized refrigerant 1b is
It will be transmitted to.

【0015】次に図3は請求項1記載の発明の第2の実
施例を示すヒートパイプ式冷却器の斜視図である。本実
施例は図1,図2に示した第1の実施例の受熱部ブロッ
ク1、ヒートパイプ3を90度回転した構成である。受熱
部ブロック5には冷媒が入れられる穴5aが設けられて
いて、中継部ブロック6が接合される。中継部ブロック
6に設けられた穴6aと受熱部ブロック5に設けられた
穴5aが連通している。中継部ブロック6に設けられる
穴6aは、受熱部ブロック5との接合面とその面に対向
する面とを貫通するものである。2つの対向する面は平
行ではなく、ある角度傾いているため、穴6aはそれぞ
れ平行ではあるが、長さが異なっている。そして、中継
部ブロック6の受熱部ブロック5との接合面と対向する
面には、穴6aと連通するように複数本の真直なヒート
パイプ7がそれぞれ直角にそして平行に接合される。ヒ
ートパイプ7には複数枚の放熱フィン8が取付けられて
いる。本実施例でも第1の実施例と同様に、中継部ブロ
ック6の受熱部ブロック5との接合面、ヒートパイプ7
との接合面が平面であるため、中継部ブロック6に設け
られる穴6aの間隔は受熱部ブロック5に設けられる穴
5aの間隔と同じ間隔にあければよく、又ヒートパイプ
7も中継部ブロック6に対して垂直に取付けることで、
各ヒートパイプ7は平行にすることができる。従って放
熱フィン8への各ヒートパイプ7の挿入作業も容易に行
うことができ、接合度合も均等に良くなるので冷却性能
を上昇させることができる。
FIG. 3 is a perspective view of a heat pipe type cooler according to a second embodiment of the present invention. This embodiment has a configuration in which the heat receiving unit block 1 and the heat pipe 3 of the first embodiment shown in FIGS. 1 and 2 are rotated by 90 degrees. The heat receiving unit block 5 is provided with a hole 5a into which the refrigerant is inserted, and the relay unit block 6 is joined thereto. The hole 6 a provided in the relay block 6 and the hole 5 a provided in the heat receiving block 5 communicate with each other. The hole 6a provided in the relay unit block 6 penetrates a joint surface with the heat receiving unit block 5 and a surface facing the joint surface. Since the two opposing surfaces are not parallel but are inclined at an angle, the holes 6a are parallel but have different lengths. A plurality of straight heat pipes 7 are joined at right angles and parallel to the surface of the relay block 6 opposite to the joint surface with the heat receiving unit block 5 so as to communicate with the holes 6a. A plurality of radiation fins 8 are attached to the heat pipe 7. In this embodiment, as in the first embodiment, the joint surface of the relay block 6 with the heat receiving block 5 and the heat pipe 7
Since the joining surface with the heat receiving unit block 6 is flat, the interval between the holes 6a provided in the relay unit block 6 may be the same as the interval between the holes 5a provided in the heat receiving unit block 5. By mounting vertically to
Each heat pipe 7 can be parallel. Therefore, the work of inserting each heat pipe 7 into the radiation fins 8 can be easily performed, and the degree of joining can be evenly improved, so that the cooling performance can be improved.

【0016】次に図4は請求項2記載の第1の実施例を
示す図で、図4(a)はヒートパイプ式冷却器の斜視
図、図4(b)は中継部ブロックの断面図である。半導
体素子が押圧される受熱部ブロック9に接合される中継
部ブロック10には、受熱部ブロック9に設けられ冷媒が
入れられる穴9aと連通する穴10aが設けられている。
中継部ブロック10の受熱部ブロック9との接合面と対抗
する面は平行ではなく、ある角度(本実施例では約80
度)傾いて形成され、ヒートパイプ11が中継部ブロック
10に設けられた穴10aと連通するように接合される。各
ヒートパイプ11は中継部ブロック10に対して垂直に接合
することで、それぞれが平行に配置される。そしてこれ
らヒートパイプ11を複数枚の放熱フィン12に挿入して圧
入方式や拡管方式によりヒートパイプ11と放熱フィン12
とは密着接合される。中継部ブロック10に設けられた複
数の穴10aは、それぞれが平行ではなく、対向する2面
10b,10c間を受熱部ブロック9に設けられた穴9aの
間隔から、広がるように貫通する穴となっている。つま
り受熱部ブロック9とは中継部ブロック10の接合面10b
が接合され、接合面10cにはヒートパイプ11が接合され
ることになる。従って複数本のヒートパイプ11の間隔は
受熱部ブロック9に設けられた穴9aの間隔よりも広く
なるため、放熱フィン12の中心に近い部分だけでなく全
体に渡ってヒートパイプ11を挿入することができる。又
放熱フィン12を大型化した場合でも中継部ブロック10に
設ける穴10aを接合面10cにおいて間隔をひろげて形成
することで、ヒートパイプ11の取付け間隔をひろげ、放
熱フィン12の効率を向上し、放熱性能の良好なヒートパ
イプ式冷却器を提供できる。更に真直な複数本のヒート
パイプ11を中継部ブロック10の接合面10cに接続するこ
とは図1乃至図3に示した実施例と同様に放熱フィン12
にヒートパイプ11を挿入して密着することは良好に行う
ことができる。
FIG. 4 is a view showing a first embodiment of the present invention. FIG. 4 (a) is a perspective view of a heat pipe type cooler, and FIG. 4 (b) is a sectional view of a relay block. It is. The relay block 10 joined to the heat receiving block 9 against which the semiconductor element is pressed is provided with a hole 10a communicating with the hole 9a provided in the heat receiving block 9 and containing a coolant.
The surface of the junction block 10 opposite to the junction surface with the heat receiving block 9 is not parallel, but is at an angle (about 80 in this embodiment).
Degree) inclined, heat pipe 11 is a relay block
It is joined so as to communicate with the hole 10 a provided in the 10. Each of the heat pipes 11 is perpendicularly joined to the relay block 10 so that they are arranged in parallel. Then, these heat pipes 11 are inserted into a plurality of radiating fins 12, and the heat pipes 11 and the radiating fins 12 are press-fitted or expanded.
Are tightly joined. The plurality of holes 10a provided in the relay block 10 are not parallel to each other, but are opposed to each other.
A hole penetrates between 10b and 10c so as to extend from the space between the holes 9a provided in the heat receiving unit block 9. In other words, the joining surface 10b of the relay unit block 10 is different from the heat receiving unit block 9.
Are joined, and the heat pipe 11 is joined to the joint surface 10c. Therefore, since the interval between the plurality of heat pipes 11 is wider than the interval between the holes 9 a provided in the heat receiving unit block 9, it is necessary to insert the heat pipe 11 not only in the vicinity of the center of the radiation fin 12 but also in the whole. Can be. Also, even when the heat dissipating fins 12 are increased in size, the holes 10a provided in the relay block 10 are formed with a wide gap on the joint surface 10c, so that the mounting intervals of the heat pipes 11 are widened and the efficiency of the heat dissipating fins 12 is improved. A heat pipe type cooler having good heat radiation performance can be provided. Connecting a plurality of straight heat pipes 11 to the joint surface 10c of the relay block 10 is similar to the embodiment shown in FIGS.
It is possible to satisfactorily insert and insert the heat pipe 11 into the heat sink.

【0017】次に図5は請求項2記載の第2の実施例を
示すヒートパイプ式冷却器の斜視図である。本実施例で
は受熱部ブロック13に設けられた穴13aが水平方向に向
くように配置され、中継部ブロック14が受熱部ブロック
13に接合される。中継部ブロック14に設けられる穴14a
は、接合面14bと接合面14c間を少し上向きの角度をも
たせて貫通する穴であるが、接合面14bにおいては穴の
位置間隔は受熱部ブロック13に設けられた穴13aの間隔
と同じで、接合面14cにおいてはその間隔が広がるよう
にあけられている。又この中継部ブロック14の接合面14
bと接合面14cとは、平行な面で形成されている。そし
て接合面14cには垂直にヒートパイプ15が接合され各ヒ
ートパイプ15は平行に配置される。これらヒートパイプ
15を複数枚の放熱フィン16に挿入して、圧入方式や拡管
方式によりヒートパイプ15と放熱フィン16とは密着接合
される。本実施例でも第1の実施例と同様に、受熱部ブ
ロック13に設けられた穴13aの間隔に限らず放熱フィン
16の大きさに合わせて中継部ブロック14の穴14aの間隔
を変えることで、ヒートパイプ15を放熱フィン16の全体
に渡って挿入することができ、放熱フィン16の効率を上
げることができる。
FIG. 5 is a perspective view of a heat pipe type cooler according to a second embodiment of the present invention. In this embodiment, the holes 13a provided in the heat receiving unit block 13 are arranged so as to face in the horizontal direction, and the relay unit block 14 is
Joined to 13. Hole 14a provided in relay block 14
Is a hole that penetrates the bonding surface 14b and the bonding surface 14c at a slight upward angle, but the hole spacing on the bonding surface 14b is the same as the space between the holes 13a provided in the heat receiving unit block 13. The gap is widened on the joint surface 14c. Also, the joining surface 14 of the relay block 14
b and the joint surface 14c are formed as parallel surfaces. The heat pipes 15 are vertically joined to the joint surface 14c, and the heat pipes 15 are arranged in parallel. These heat pipes
The heat pipe 15 and the heat radiation fin 16 are tightly joined by inserting the heat radiation fin 15 into a plurality of heat radiation fins 16 by a press-fitting method or a pipe expansion method. In the present embodiment, similarly to the first embodiment, the radiation fins are not limited to the intervals between the holes 13a provided in the heat receiving unit block 13.
By changing the interval between the holes 14a of the relay block 14 according to the size of the heat sink 16, the heat pipe 15 can be inserted over the entire heat dissipating fin 16, and the efficiency of the heat dissipating fin 16 can be increased.

【0018】更に図1乃至図5に記載した各実施例にお
いて、中継部ブロックとヒートパイプ間に絶縁管を介し
て接続し、絶縁性の高い冷媒を封入することで絶縁形ヒ
ートパイプ式冷却器としてもよい。
Further, in each of the embodiments shown in FIGS. 1 to 5, an insulating heat pipe type cooler is connected between the relay block and the heat pipe via an insulating pipe and filled with a highly insulating refrigerant. It may be.

【0019】[0019]

【発明の効果】以上説明したように請求項1記載の発明
によれば、真直な複数本のヒートパイプを中継部ブロッ
クの1つの平面に全て垂直に取付けることで容易にヒー
トパイプどうしを平行に配置することができるので、取
付位置、ピッチの寸法精度を上げることができる。従っ
て放熱フィンにヒートパイプを挿入することを良好に行
え、密着度合も均等となり冷却性能を上げることができ
る。
As described above, according to the first aspect of the present invention, a plurality of straight heat pipes are all attached vertically to one plane of the junction block so that the heat pipes can be easily paralleled. Since they can be arranged, the dimensional accuracy of the mounting position and the pitch can be improved. Therefore, the heat pipe can be inserted into the radiation fins satisfactorily, and the degree of adhesion becomes uniform, so that the cooling performance can be improved.

【0020】更に請求項2記載の発明によれば、中継部
ブロックに設けられた穴によって複数本のヒートパイプ
の取付間隔を、放熱フィンにあわせた最適な間隔にでき
るので放熱フィンの効率を上げて放熱性能を向上するこ
とができる。
Further, according to the second aspect of the present invention, the holes provided in the relay block allow the plurality of heat pipes to be installed at an optimum interval according to the radiating fins, thereby increasing the efficiency of the radiating fins. Heat dissipation performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の発明の第1の実施例を示すヒー
トパイプ式冷却器の斜視図である。
FIG. 1 is a perspective view of a heat pipe type cooler according to a first embodiment of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】請求項1記載の発明の第2の実施例を示すヒー
トパイプ式冷却器の斜視図である。
FIG. 3 is a perspective view of a heat pipe type cooler according to a second embodiment of the present invention.

【図4】請求項2記載の発明の第1の実施例を示す図で
(a)はヒートパイプ式冷却器の斜視図で、(b)は中
継部ブロックの断面図である。
FIG. 4 is a view showing a first embodiment of the invention according to claim 2, wherein (a) is a perspective view of a heat pipe type cooler, and (b) is a cross-sectional view of a relay block.

【図5】請求項2記載の発明の第2の実施例を示すヒー
トパイプ式冷却器の斜視図である。
FIG. 5 is a perspective view of a heat pipe type cooler according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,5,9,13 受熱部ブロック 2,6,10,14 中継部ブロック 3,7,11,15 ヒートパイプ 4,8,12,16 放熱フィン 1,5,9,13 Heat receiving block 2,6,10,14 Relay block 3,7,11,15 Heat pipe 4,8,12,16 Radiation fin

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒液が注入される複数個の穴が1つの
面に所定の間隔毎に形成され、半導体素子が押圧される
受熱部ブロックと、 この受熱部ブロックと接合され、この接合面とこの接合
面に所定の角度傾いて対向する面との間に、前記受熱部
ブロックに形成される複数個の穴それぞれと連通する複
数個の貫通穴が形成される中継部ブロックと、 この中継部ブロックの前記受熱部ブロックとの接合面と
対向する面に垂直に取付けられ、前記中継部ブロックに
形成される複数個の貫通穴と連通する複数本のヒートパ
イプと、 これらヒートパイプにそれぞれ取付けられた複数枚の放
熱フィンとを有するヒートパイプ式冷却器。
1. A plurality of holes into which a coolant liquid is injected are formed on one surface at predetermined intervals, and a heat receiving unit block against which a semiconductor element is pressed is joined to the heat receiving unit block. A relay section block formed with a plurality of through holes communicating with the plurality of holes formed in the heat receiving section block, between the surface and the surface facing the joining surface at a predetermined angle. A plurality of heat pipes vertically attached to a surface of the unit block facing the joint surface with the heat receiving unit block and communicating with a plurality of through holes formed in the relay unit block; A heat pipe type cooler having a plurality of radiating fins.
【請求項2】 冷媒液が注入される複数個の穴が1つの
面に所定の間隔毎に形成され、半導体素子が押圧される
受熱部ブロックと、 この受熱部ブロックと接合され、この接合面からこの接
合面と対向する面にかけて前記受熱部ブロックに形成さ
れる複数個の穴の間隔から広がって形成され、前記複数
個の穴それぞれと連通する複数個の貫通穴を有する中継
部ブロックと、 この中継部ブロックの前記受熱部ブロックとの接合面と
対向する面に垂直に取付けられ、前記中継部ブロックに
形成される複数個の貫通穴と連通する複数本のヒートパ
イプと、 これらヒートパイプにそれぞれ取付けられた複数枚の放
熱フィンとを有するヒートパイプ式冷却器。
2. A plurality of holes into which a coolant liquid is injected are formed on one surface at predetermined intervals, and a heat receiving unit block against which a semiconductor element is pressed is joined to the heat receiving unit block. A relay block having a plurality of through-holes formed to extend from an interval between the plurality of holes formed in the heat-receiving unit block over a surface facing the joining surface, and having a plurality of through-holes communicating with the plurality of holes, respectively. A plurality of heat pipes which are vertically mounted on a surface of the relay block opposite to a joint surface with the heat receiving block and communicate with a plurality of through holes formed in the relay block; A heat pipe type cooler having a plurality of radiating fins respectively attached.
JP5228737A 1993-09-14 1993-09-14 Heat pipe cooler Expired - Fee Related JP2996843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5228737A JP2996843B2 (en) 1993-09-14 1993-09-14 Heat pipe cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5228737A JP2996843B2 (en) 1993-09-14 1993-09-14 Heat pipe cooler

Publications (2)

Publication Number Publication Date
JPH0786473A JPH0786473A (en) 1995-03-31
JP2996843B2 true JP2996843B2 (en) 2000-01-11

Family

ID=16881035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5228737A Expired - Fee Related JP2996843B2 (en) 1993-09-14 1993-09-14 Heat pipe cooler

Country Status (1)

Country Link
JP (1) JP2996843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10677533B2 (en) * 2015-11-16 2020-06-09 Airbus Defence And Space Sas Heat exchange device for artificial satellite, wall and assembly of walls comprising such a heat exchange device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777986B1 (en) * 1998-04-23 2000-07-28 Ferraz HEAT EXCHANGER, PARTICULARLY FOR COOLING AN ELECTRONIC POWER COMPONENT, AND MANUFACTURING METHOD THEREOF
DE102004042154B4 (en) * 2004-08-31 2011-01-05 Asia Vital Components Co., Ltd. cooler
JP2008130702A (en) * 2006-11-20 2008-06-05 Furukawa Electric Co Ltd:The Heat sink with joint
US20140293541A1 (en) * 2013-03-26 2014-10-02 Ge Energy Power Conversion Technology Ltd Heat pipe heat sink for high power density
US20140290929A1 (en) * 2013-03-26 2014-10-02 Ge Energy Power Conversion Technology Ltd Heat pipe heat sink with heating unit
JP2017187214A (en) * 2016-04-05 2017-10-12 三菱重工サーマルシステムズ株式会社 Cooling device, refrigerating cycle device, and method for manufacturing the cooling device
US11592145B2 (en) 2019-01-10 2023-02-28 Hisense Laser Display Co., Ltd. Laser light source and laser projection device
US11570411B2 (en) * 2019-01-10 2023-01-31 Hisense Laser Display Co., Ltd. Laser light source and laser projection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10677533B2 (en) * 2015-11-16 2020-06-09 Airbus Defence And Space Sas Heat exchange device for artificial satellite, wall and assembly of walls comprising such a heat exchange device

Also Published As

Publication number Publication date
JPH0786473A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
EP0858578B1 (en) Liquid cooled heat sink for cooling electronic components
JP2724033B2 (en) Semiconductor module
US5040596A (en) Heat exchanger core
US6466441B1 (en) Cooling device of electronic part having high and low heat generating elements
EP1276362B1 (en) Flattened tube cold plate for liquid cooling electrical components
US7284597B2 (en) Heat sink with combined parallel fins and the method for assembling the same
US6006827A (en) Cooling device for computer component
JP2996843B2 (en) Heat pipe cooler
US20080055855A1 (en) Heat sink for electronic components
US5265321A (en) Integrated circuit structure with heat exchanger elements secured thereto and method of making
US7011147B1 (en) Heat pipe type circular radiator with sector cooling fins
TW201315960A (en) Laminated heat sinks
JPH0363825B2 (en)
JP2005175163A (en) Cooling structure of semiconductor module
EP3772629A1 (en) Heat dissipating fin with thermosiphon
WO1995017765A2 (en) Liquid cooled heat sink for cooling electronic components
US20060113662A1 (en) Micro heat pipe with wedge capillaries
US7131199B2 (en) Mechanical highly compliant thermal interface pad
US7188661B2 (en) Process for joining members of a heat transfer assembly and assembly formed thereby
JP2002151636A (en) Heat sink
JPH0727634Y2 (en) Air-cooled fin structure
US20110240259A1 (en) Thermal module
TWI823234B (en) Heat dissipating device and heat dissipating device assembling method
JP2002130964A (en) Thermal diffusion plate
JP4151265B2 (en) Radiator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees