JP2879649B2 - Method for producing platinum-based catalyst - Google Patents

Method for producing platinum-based catalyst

Info

Publication number
JP2879649B2
JP2879649B2 JP6330224A JP33022494A JP2879649B2 JP 2879649 B2 JP2879649 B2 JP 2879649B2 JP 6330224 A JP6330224 A JP 6330224A JP 33022494 A JP33022494 A JP 33022494A JP 2879649 B2 JP2879649 B2 JP 2879649B2
Authority
JP
Japan
Prior art keywords
platinum
carbon
catalyst
supported
carbon powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6330224A
Other languages
Japanese (ja)
Other versions
JPH08162133A (en
Inventor
穣 水畑
アミン カリル
和明 安田
啓介 小黒
啓恭 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6330224A priority Critical patent/JP2879649B2/en
Publication of JPH08162133A publication Critical patent/JPH08162133A/en
Application granted granted Critical
Publication of JP2879649B2 publication Critical patent/JP2879649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、カーボン担持白金系触
媒の製造方法に関し、さらに詳しくはイオン交換反応に
よってカーボン表面に白金金属微細粒子を担持させた白
金系触媒の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a platinum catalyst supported on carbon, and more particularly, to a method for producing a platinum catalyst in which platinum metal fine particles are supported on a carbon surface by an ion exchange reaction.

【0002】[0002]

【従来技術およびその問題点】燃料電池、電気化学プロ
セスなどにおいて用いられる白金系触媒は、カーボンな
どの担体上に触媒活性成分である白金を分散担持するこ
とにより、反応表面積を増大し、単位触媒重量あたりの
活性を高める必要がある。すなわち、使用する白金の担
持量を低減すると同時に、その触媒活性をさらに高める
ためには、粒子径の小さい白金粒子を高分散に担持させ
る技術が必要である。
2. Description of the Related Art Platinum-based catalysts used in fuel cells, electrochemical processes, and the like increase the reaction surface area by dispersing and supporting platinum, which is a catalytically active component, on a carrier such as carbon. It is necessary to increase the activity per weight. That is, a technique for supporting platinum particles having a small particle diameter in a highly dispersed manner is required in order to further reduce the amount of supported platinum and to further increase the catalytic activity.

【0003】また、燃料電池などに用いられるガス拡散
電極では、反応に関与する触媒−燃料ガス−電解質から
なる三相界面の形成とその面積の増大が不可欠である。
その中でも、触媒については、それが持つ活性の向上が
性能の増大に大きく寄与するため、粒子径の小さな白金
微粒子の製造が必要である。
In a gas diffusion electrode used for a fuel cell or the like, it is essential to form a three-phase interface composed of a catalyst, a fuel gas, and an electrolyte involved in the reaction and to increase the area thereof.
Among them, for the catalyst, since the improvement of the activity of the catalyst greatly contributes to the increase of the performance, it is necessary to produce platinum fine particles having a small particle diameter.

【0004】従来、燃料電池用ガス拡散電極などの製造
に用いられる白金担持カーボン粉末の製造方法として
は、例えば、塩化白金酸、テトラアンミン白金(II)塩化
物などの白金化合物の水溶液中にカーボン粉末を分散
し、安定化した後、還元剤を用いて白金錯体イオンをカ
ーボン担体上にて還元し、白金を付着させる方法(特公
昭61−1869号公報)などが知られている。また、
微小な粒子径の白金を担持するために、分散剤を用いる
コロイド法(特開昭56−155645号公報)が行わ
れている。しかしながら、これらの方法には、還元速度
が自由に制御できないこと、あるいは保護コロイドが触
媒表面に残留するので、白金粒子が良好な触媒活性を発
揮できないことなどの問題点がある。さらに、これらの
方法では、白金の粒子径を1nm程度まで小さくするこ
とは困難である。
Conventionally, a method for producing a platinum-supporting carbon powder used for producing a gas diffusion electrode for a fuel cell includes, for example, a method of preparing a carbon powder in an aqueous solution of a platinum compound such as chloroplatinic acid or tetraammineplatinum (II) chloride. Are dispersed and stabilized, and then a platinum complex ion is reduced on a carbon carrier using a reducing agent to deposit platinum (Japanese Patent Publication No. 61-1869). Also,
A colloid method using a dispersant (Japanese Patent Application Laid-Open No. 56-155645) has been used to support platinum having a fine particle diameter. However, these methods have problems such that the reduction rate cannot be freely controlled, or that the protective particles remain on the catalyst surface, so that the platinum particles cannot exhibit good catalytic activity. Further, with these methods, it is difficult to reduce the particle diameter of platinum to about 1 nm.

【0005】カーボン表面を酸化処理することにより、
C−C結合からなるグラファイト構造の末端にカルボキ
シル基(−COOH)、フェノール基(−OH)、ケト
ン基(>C=O)などの官能基が形成される。とりわ
け、カルボキシル基には、末端に容易に解離する水素イ
オン(H+)が存在しており、比較的酸性度の強い表面
が形成される。これらの官能基と任意の金属イオン(例
えば、白金錯体陽イオン)との間でイオン交換させた
後、金属イオンを還元することによって金属微粒子を量
論的にカーボン表面に固定し、触媒として作用させるこ
とができる。この方法により、カーボン担体表面に触媒
粒子を微粒子状態でかつ均一に分散させることができ
る。カーボン担持白金触媒の作製に際し、この方法を行
った例としては、E.セオドリドらにより報告されている
{Electrochem. Acta.,Vol.38, No.6, p.793,(1993)}
様に、PAN系化合物から作製したカーボン繊維を用い
た例がある。しかしながら、この場合には、担体として
カーボン繊維を用いているため、繊維軸方向に対する反
応サイトの不均一性が認められ、十分な触媒能を持つ白
金微粒子が得られないという問題点があるとともに、白
金粒子径も最小でも100nm程度までしか得られてい
ないため、高い触媒活性を必要とする燃料電池などの用
途には、不適であった。
[0005] By oxidizing the carbon surface,
Functional groups such as a carboxyl group (—COOH), a phenol group (—OH), and a ketone group (> C = O) are formed at the terminal of the graphite structure composed of CC bonds. In particular, the carboxyl group has a hydrogen ion (H + ) easily dissociated at the terminal, and a surface having a relatively strong acidity is formed. After ion exchange between these functional groups and an arbitrary metal ion (for example, a platinum complex cation), the metal ions are reduced to fix the metal fine particles stoichiometrically on the carbon surface and act as a catalyst. Can be done. According to this method, the catalyst particles can be uniformly dispersed in a fine particle state on the surface of the carbon carrier. An example of performing this method in producing a platinum catalyst supported on carbon is reported by E. Theodoride et al. {Electrochem. Acta., Vol. 38, No. 6, p. 793, (1993)}.
As described above, there is an example using a carbon fiber produced from a PAN-based compound. However, in this case, since carbon fibers are used as the carrier, non-uniformity of the reaction site in the fiber axis direction is recognized, and there is a problem that platinum fine particles having sufficient catalytic ability cannot be obtained, Since the platinum particle diameter was at least as small as about 100 nm, it was unsuitable for applications such as fuel cells that require high catalytic activity.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明は、微
細な白金微粒子を均一に高分散担持し、触媒活性に優れ
たカーボン担持白金触媒を提供することを主な目的とす
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a carbon-supported platinum catalyst in which fine platinum particles are uniformly and highly dispersed and supported, and which have excellent catalytic activity.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の様な
従来技術の問題点に留意しつつ研究を重ねた結果、アセ
チレンブラックなどのカーボン粉末を酸化処理して表面
に酸性基を形成した後、イオン交換反応によってカーボ
ン表面に白金粒子を担持させることにより、約1nmの
微細な白金粒子を担持し、触媒活性に優れたカーボン担
持白金系触媒が得られることを見出した。
Means for Solving the Problems The inventors of the present invention have conducted research while paying attention to the problems of the prior art as described above. After that, it has been found that by carrying platinum particles on the carbon surface by an ion exchange reaction, fine platinum particles of about 1 nm are supported, and a carbon-supported platinum-based catalyst having excellent catalytic activity can be obtained.

【0008】すなわち、本発明は、下記の白金系触媒の
製造方法を提供するものである; 1.カーボン粉末を酸化処理して表面に酸性の官能基を
形成し、次いで白金錯体陽イオンを溶存種として含有す
る溶液に浸漬してカーボン粉末表面の官能基に存在する
イオンを白金錯体陽イオンとイオン交換させて担持した
後、還元することを特徴とする白金系触媒の製造方法。
That is, the present invention provides the following method for producing a platinum-based catalyst; The carbon powder is oxidized to form acidic functional groups on the surface, and then immersed in a solution containing a platinum complex cation as a dissolved species to convert the ions present in the functional groups on the carbon powder surface into platinum complex cations and ions. A method for producing a platinum-based catalyst, wherein the catalyst is exchanged, supported, and then reduced.

【0009】2.上記項1に記載の方法により製造され
た、平均粒径3nm以下で最大粒径5nm以下の白金粒
子をカーボンに担持してなる水素酸化用触媒。
[0009] 2. Item 4. A catalyst for hydrogen oxidation produced by the method according to Item 1, wherein platinum particles having an average particle size of 3 nm or less and a maximum particle size of 5 nm or less are supported on carbon.

【0010】3.上記項1に記載の方法により製造され
た、平均粒径3nm以下で最大粒径5nm以下の白金粒
子をカーボンに担持してなる燃料電池用触媒。
[0010] 3. Item 4. A catalyst for a fuel cell, comprising platinum supported on carbon and having platinum particles having an average particle size of 3 nm or less and a maximum particle size of 5 nm or less, produced by the method described in the above item 1.

【0011】4.上記項1に記載の方法により製造され
た、平均粒径3nm以下で最大粒径5nm以下の白金粒
子をカーボンに担持してなる電気化学プロセス用触媒。
4. Item 4. An electrochemical process catalyst produced by the method according to the above item 1, wherein platinum particles having an average particle size of 3 nm or less and a maximum particle size of 5 nm or less are supported on carbon.

【0012】本発明において、金属を担持するための担
体として使用されるカーボンとしては、黒鉛粉末を脱ガ
ス化処理して得られるアセチレンブラック;ケッチェン
ブラック、チャーなどのカーボン材料粉末などが挙げら
れる。これらの中では、アセチレンブラックがより好ま
しい。
In the present invention, examples of carbon used as a carrier for supporting a metal include acetylene black obtained by degassing graphite powder; carbon material powder such as ketjen black and char; . Of these, acetylene black is more preferred.

【0013】カーボン粒子の酸化処理は、カーボン粒子
を過マンガン酸カリウム水溶液、硝酸水溶液などの強電
解質水溶液中に浸漬する液相法によっても良く、或いは
カーボン粒子を酸素ガス、オゾンガスなどの酸化性ガス
気流と接触させる気相法によっても良い。この酸化処理
によって、カーボン粒子の表面が酸化され、官能基が形
成される。代表的な酸化剤について、カーボン粒子の酸
化処理条件を例示すれば、表1に示す通りである。
The carbon particles may be oxidized by a liquid phase method in which the carbon particles are immersed in a strong electrolyte aqueous solution such as a potassium permanganate aqueous solution or a nitric acid aqueous solution, or the carbon particles are oxidized with an oxidizing gas such as an oxygen gas or an ozone gas. A gas phase method of contacting with an air flow may be used. By this oxidation treatment, the surface of the carbon particles is oxidized to form a functional group. Table 1 shows typical oxidation conditions of carbon particles for typical oxidizing agents.

【0014】[0014]

【表1】 [Table 1]

【0015】酸化処理を終えたカーボン粒子は、白金陽
イオン錯体塩を溶存種として含有する溶液に浸漬し、表
面官能基に存在する水素イオンなどの陽イオンを白金陽
イオン錯体によりイオン交換させて担持する。白金陽イ
オン錯体塩としては、例えばテトラアンミン白金(II)塩
化物([Pt(NH3)4]Cl2、ヘキサアンミン白金(IV)塩化物
([Pt(NH3)6]Cl4などを用いることが好ましく、白金触媒
粒子径を小さくためには、特に[Pt(NH3)4]Cl2がより好
ましい。
The oxidized carbon particles are immersed in a solution containing a platinum cation complex salt as a dissolved species, and cations such as hydrogen ions present on the surface functional groups are ion-exchanged by the platinum cation complex. Carry. The Yo Shirogane complex salt, for example, tetraammine platinum (II) chloride ([Pt (NH 3) 4 ] Cl 2, hexaammine platinum (IV) chloride
([Pt (NH 3 ) 6 ] Cl 4 is preferably used, and in order to reduce the particle diameter of the platinum catalyst, [Pt (NH 3 ) 4 ] Cl 2 is particularly preferable.

【0016】次いで、上記の様に白金陽イオン錯体をイ
オン交換により担持させたカーボン粒子を乾燥した後、
水素などの還元性ガス雰囲気下もしくは水素化ホウ素ナ
トリウム水溶液などの還元剤水溶液中で還元する。水素
雰囲気中において還元反応させる際に、白金の担持量に
よっては、水素還元ガスと白金錯体とが激しく反応する
場合がある。このような場合は、水素ガスを窒素、アル
ゴンなどの不活性ガスで希釈した混合ガス気流中で還元
反応を行うことが好ましい。その際のガスの混合比は、
水素/不活性ガスの容積比で3/7〜10/0の範囲内
とすることができる。還元反応温度は、一般的に約10
0〜200℃程度が好適である。還元処理したカーボン
粒子は、窒素、アルゴンなどの不活性ガス雰囲気下にお
いて室温まで冷却する。
Next, after drying the carbon particles carrying the platinum cation complex by ion exchange as described above,
The reduction is performed in an atmosphere of a reducing gas such as hydrogen or in an aqueous solution of a reducing agent such as an aqueous solution of sodium borohydride. During the reduction reaction in a hydrogen atmosphere, the hydrogen reduction gas and the platinum complex may react violently depending on the amount of platinum carried. In such a case, it is preferable to perform the reduction reaction in a mixed gas stream in which hydrogen gas is diluted with an inert gas such as nitrogen or argon. The gas mixture ratio at that time is
The volume ratio of hydrogen / inert gas can be in the range of 3/7 to 10/0. The reduction reaction temperature is generally about 10
About 0 to 200 ° C. is preferable. The reduced carbon particles are cooled to room temperature under an atmosphere of an inert gas such as nitrogen or argon.

【0017】上記の手法により形成された白金系触媒
は、粒子径1nm程度の白金微粒子が、カーボン粒子担
体上に均一に且つ高分散された状態で担持されている。
In the platinum-based catalyst formed by the above method, fine platinum particles having a particle diameter of about 1 nm are supported on a carbon particle carrier in a uniformly and highly dispersed state.

【0018】[0018]

【発明の効果】本発明によるカーボン担持白金系触媒に
おいては、白金は、粒径約1nm程度の微細な粒子とな
っているので、公知の白金触媒に比して、白金担持量が
低減されている場合にも、触媒活性が極めて高い。従っ
て、本発明による白金系触媒は、燃料電池用触媒;水の
電気分解による水素製造、電気化学的手法による二酸化
炭素の還元などの電気化学プロセス用触媒などとして、
有用である。
In the carbon-supported platinum catalyst according to the present invention, platinum is a fine particle having a particle size of about 1 nm, so that the amount of supported platinum is reduced as compared with a known platinum catalyst. The catalyst activity is extremely high. Accordingly, the platinum-based catalyst according to the present invention is used as a catalyst for a fuel cell; a catalyst for an electrochemical process such as hydrogen production by electrolysis of water, reduction of carbon dioxide by an electrochemical method, etc.
Useful.

【0019】[0019]

【実施例】以下、実施例、比較例および試験例により、
本発明をさらに具体的に説明するが、本発明は、これら
の実施例などにより限定されるものではない。
The following examples, comparative examples, and test examples
The present invention will be described more specifically, but the present invention is not limited by these examples and the like.

【0020】実施例1 市販のカーボン粉末(商標名“Vulcan XC-72R”、Cabot
社製、比表面積257m2/g)0.5gを0.4mol/l
(2規定)過マンガン酸カリウム水溶液200ml中に
入れ、70℃で4時間反応させた。反応を終えたカーボ
ン粉末をろ過し、約70℃の蒸留水で十分洗浄し、11
0℃で乾燥した後、白金含有量10g/lのヘキサアン
ミン白金(IV)塩化物([Pt(IV)(NH3)6]Cl4)水溶液に室温
で1時間浸漬してイオン交換した。次いで、反応液をろ
過し、カーボン粉末を蒸留水で洗浄し、乾燥させた後、
水素気流中180℃にて還元して、粒径約1nmの白金
微粒子をカーボン表面に析出させ、カーボン担持白金触
媒を得た。
Example 1 Commercially available carbon powder (trade name "Vulcan XC-72R", Cabot
0.5g 0.4g / l, specific surface area 257m 2 / g)
(2N) The solution was placed in 200 ml of an aqueous potassium permanganate solution and reacted at 70 ° C. for 4 hours. The carbon powder after the reaction was filtered, washed sufficiently with distilled water at about 70 ° C.
After drying at 0 ° C., it was immersed in an aqueous solution of hexaammineplatinum (IV) chloride ([Pt (IV) (NH 3 ) 6 ] Cl 4 ) having a platinum content of 10 g / l for 1 hour at room temperature for ion exchange. Then, the reaction solution was filtered, the carbon powder was washed with distilled water, and dried,
Reduction was performed at 180 ° C. in a hydrogen stream to deposit platinum fine particles having a particle size of about 1 nm on the carbon surface, thereby obtaining a carbon-supported platinum catalyst.

【0021】実施例2 イオン交換に用いる白金アンミン錯体塩水溶液として濃
度10g/lのテトラアンミン白金(II)塩化物([Pt(N
H3)4]Cl2)水溶液を用いる以外は実施例1と同様にし
て、カーボン担持白金触媒を得た。
Example 2 As an aqueous solution of a platinum ammine complex salt used for ion exchange, a concentration of 10 g / l of tetraammineplatinum (II) chloride ([Pt (N
A platinum catalyst supported on carbon was obtained in the same manner as in Example 1 except that an aqueous solution of H 3 ) 4 ] Cl 2 ) was used.

【0022】実施例3 カーボン粉末として他の市販品(商標名“Black Pearls
2000”、Cabot 社製、比表面積2000g/m2)0.5gを
用い、イオン交換に用いる白金アンミン錯体塩水溶液と
して濃度10g/lのテトラアンミン白金(II)塩化物
([Pt(NH3)4]Cl2)水溶液を用いる以外は実施例1と同様
にして、カーボン担持白金触媒を得た。
Example 3 Another commercially available carbon powder (trade name "Black Pearls")
2000 ", manufactured by Cabot Co., using 0.5 g of specific surface area of 2000 g / m 2 ) and 10 g / l of tetraammineplatinum (II) chloride as a platinum ammine complex salt aqueous solution used for ion exchange
A platinum catalyst supported on carbon was obtained in the same manner as in Example 1 except that an aqueous solution of ([Pt (NH 3 ) 4 ] Cl 2 ) was used.

【0023】実施例4 カーボン粉末の酸化処理のために、カーボン粉末0.5
gを0.2mol/l(1規定)過マンガン酸カリウム
水溶液および63重量%の硝酸水溶液の体積比1:1混
液200ml中にいれ、70℃で4時間反応させた以外
は実施例2と同様にして、カーボン担持白金触媒を得
た。
Example 4 For the oxidation treatment of carbon powder, carbon powder 0.5
g in a mixture of 0.2 mol / l (1 N) aqueous solution of potassium permanganate and a 63 wt% aqueous solution of nitric acid in a volume ratio of 1: 1 and reacted at 70 ° C. for 4 hours. Thus, a platinum catalyst supported on carbon was obtained.

【0024】実施例5 カーボン粉末の酸化処理のために、カーボン粉末0.5
gを酸素ガス気流中にて380℃で5時間反応させた以
外は実施例2と同様にして、カーボン担持白金触媒を得
た。
Example 5 In order to oxidize carbon powder, carbon powder 0.5
g was reacted in an oxygen gas stream at 380 ° C. for 5 hours to obtain a carbon-supported platinum catalyst in the same manner as in Example 2.

【0025】比較例1 実施例1と同様の市販カーボン粉末を酸化処理した後、
濃度20g/lの塩化白金酸(H2PtCl6)水溶液に浸漬
し、その後実施例1と同様の操作を行って、カーボン担
持白金触媒を得た。
Comparative Example 1 A commercially available carbon powder similar to that in Example 1 was oxidized,
It was immersed in an aqueous solution of chloroplatinic acid (H 2 PtCl 6 ) having a concentration of 20 g / l, and then the same operation as in Example 1 was performed to obtain a platinum catalyst supported on carbon.

【0026】比較例2 実施例3と同様の市販カーボン粉末を用いるとともに、
カーボンの酸化処理を行わうことなく濃度10g/lの
[Pt(NH3)4]Cl2水溶液を含浸した後、水素気流中180
℃にて還元処理し、カーボン担持白金触媒を得た。
Comparative Example 2 A commercially available carbon powder similar to that used in Example 3 was used.
Concentration of 10 g / l without oxidizing carbon
After impregnating with an aqueous solution of [Pt (NH 3 ) 4 ] Cl 2 ,
Reduction treatment was carried out at ℃ to obtain a carbon-supported platinum catalyst.

【0027】参考例1 実施例1〜5ならびに比較例1および2でそれぞれ得ら
れた触媒のカーボン担体表面に存在する交換基濃度およ
び担持された白金量を表2に示す。
Reference Example 1 Table 2 shows the concentration of the exchange group present on the carbon support surface and the amount of supported platinum of the catalysts obtained in Examples 1 to 5 and Comparative Examples 1 and 2, respectively.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示す結果から、本発明に従って表面
酸化処理を行った後、テトラアンミン白金(II)塩化物水
溶液に浸漬した実施例2〜5のカーボン粒子において、
担持された白金量は、交換基濃度と相関関係があり、表
面酸化処理が担持量増大効果を発揮することが明らかで
ある。一方、比較例の様にカーボン表面と白金錯体とが
化学的結合を持たない場合は、白金担持量は多くなる
が、交換基濃度との間には、相関関係がないことが判
る。
From the results shown in Table 2, the carbon particles of Examples 2 to 5 immersed in an aqueous tetraammineplatinum (II) chloride solution after the surface oxidation treatment according to the present invention were obtained.
The amount of supported platinum has a correlation with the exchange group concentration, and it is clear that the surface oxidation treatment has an effect of increasing the amount of supported platinum. On the other hand, when the carbon surface and the platinum complex do not have a chemical bond as in the comparative example, the amount of supported platinum increases, but there is no correlation with the concentration of the exchange group.

【0030】さらに、透過型電子顕微鏡による観察を行
ったところ、実施例1〜5において作製したカーボン担
持白金触媒では、微細な白金粒子がカーボン担体上に高
分散していることが確かめられた。
Further, observation with a transmission electron microscope confirmed that fine platinum particles were highly dispersed on the carbon carrier in the carbon-supported platinum catalysts produced in Examples 1 to 5.

【0031】また、実施例1〜3によるカーボン担持白
金触媒中の白金金属粒子の粒子径分布をイメージアナラ
イザーを用いて求めたところ、実施例1の触媒では、
1.5〜4nmの範囲にあり、[Pt(NH3)4]Cl2を用いた
実施例2および3の触媒では、図1に示す様に0.75
〜1.7nmと極めて微小であった。実施例4および5
については、実施例2および3の結果と担持量は異なる
ものの、粒径分布に関してはほぼ同様の結果を得た。こ
れに対して、白金錯体がアニオンであるため、カーボン
粒子表面の酸性基のプロトンとイオン交換し得ない比較
例1の場合には、触媒中の白金粒子径は、20〜40n
mと大きくなっていた。
The particle size distribution of the platinum metal particles in the platinum catalysts supported on carbon according to Examples 1 to 3 was determined using an image analyzer.
In the case of the catalysts of Examples 2 and 3 using [Pt (NH 3 ) 4 ] Cl 2 in the range of 1.5 to 4 nm, as shown in FIG.
It was extremely small at ~ 1.7 nm. Examples 4 and 5
As for the particle size distribution, substantially the same result was obtained with respect to the particle size distribution, though the loading amount was different from the results of Examples 2 and 3. On the other hand, in the case of Comparative Example 1 in which the platinum complex is an anion and cannot exchange ions with the proton of the acidic group on the carbon particle surface, the platinum particle diameter in the catalyst is 20 to 40 n.
m.

【0032】さらに、得られた白金触媒の水素酸化に対
する触媒活性を調べるため、1体積%の水素を含有する
空気中での水素転化率の温度依存性を調べた。その結果
を示すグラフを図2に示す。実施例3で得られた触媒を
使用する場合には、すべての水素が室温で反応するのに
対し、比較例2で得られた触媒を使用する場合には、す
べての水素を反応させるためには、120℃以上に温度
を上げなければならない。図2から、本発明の方法によ
って作製された白金触媒が、優れた水素酸化性能をもっ
ていることがわかる。
Further, in order to examine the catalytic activity of the obtained platinum catalyst against hydrogen oxidation, the temperature dependence of the hydrogen conversion in air containing 1% by volume of hydrogen was examined. A graph showing the results is shown in FIG. When the catalyst obtained in Example 3 is used, all the hydrogens react at room temperature. On the other hand, when the catalyst obtained in Comparative Example 2 is used, all the hydrogens are reacted. Must raise the temperature above 120 ° C. FIG. 2 shows that the platinum catalyst produced by the method of the present invention has excellent hydrogen oxidation performance.

【0033】実施例および比較例で得られた各触媒につ
いて、水素酸化に対する触媒活性を水素転化率が50%
を超える温度で示すと、表3に示す通りである。
For each of the catalysts obtained in Examples and Comparative Examples, the catalytic activity for hydrogen oxidation was determined to be 50% for hydrogen conversion.
Table 3 shows that the temperature is higher than

【0034】[0034]

【表3】 [Table 3]

【0035】表1〜3に示す結果から、本発明によるイ
オン交換法で白金を担持させた触媒は、比較例の条件に
て作製された触媒よりも低担持量であっても、平均粒径
3nm以下、最大粒径5nm以下の粒径分布を持つ微粒
子状態の白金が担持できる。この様な微粒子触媒は、特
に低担持量、高触媒活性の触媒を必要とする燃料電池用
触媒或いは関連する電気化学的反応を伴う電気化学的プ
ロセス用触媒として有用であり、それぞれの用途におい
て優れた触媒活性を発揮することが明らかである。
From the results shown in Tables 1 to 3, it can be seen that the catalyst loaded with platinum by the ion exchange method according to the present invention has an average particle size even if the loading amount is lower than that of the catalyst prepared under the conditions of Comparative Example Fine-particle platinum having a particle size distribution of 3 nm or less and a maximum particle size of 5 nm or less can be supported. Such a fine particle catalyst is particularly useful as a catalyst for a fuel cell which requires a catalyst having a low supported amount and a high catalytic activity or a catalyst for an electrochemical process involving a related electrochemical reaction. It is clear that the catalyst exerts its catalytic activity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法により得られたカーボン担持白金触
媒中の白金粒子径分布を示すグラフである。
FIG. 1 is a graph showing a platinum particle size distribution in a carbon-supported platinum catalyst obtained by the method of the present invention.

【図2】本発明によるカーボン担持白金触媒の水素酸化
触媒としての性能および従来法による白金触媒の性能を
示すグラフである。
FIG. 2 is a graph showing the performance of a carbon-supported platinum catalyst according to the present invention as a hydrogen oxidation catalyst and the performance of a conventional platinum catalyst.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小黒 啓介 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 (72)発明者 竹中 啓恭 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 (56)参考文献 特開 平6−23270(JP,A) 特開 平1−227360(JP,A) 特開 平4−274167(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/86 - 4/96 B01J 23/42,37/30 C25B 11/08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keisuke Oguro 1-81-31 Midorioka, Ikeda-shi, Osaka Inside the Industrial Technology Research Institute Osaka Industrial Research Institute (72) Inventor Hiroyasu Takenaka 1--8-3 Midorioka, Ikeda-shi, Osaka No. 31 Inside the Osaka Institute of Technology (56) Reference JP-A-6-23270 (JP, A) JP-A 1-227360 (JP, A) JP-A 4-274167 (JP, A) (58) ) Surveyed field (Int.Cl. 6 , DB name) H01M 4/86-4/96 B01J 23 / 42,37 / 30 C25B 11/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】カーボン粉末を酸化処理して表面にカルボ
キシル基を形成し、次いで白金系錯体陽イオンを溶存種
として含有する溶液に浸漬してカーボン粉末表面のカル
ボキシル基に存在するイオンを白金系錯体陽イオンとイ
オン交換させて白金錯体を担持した後、カーボン粉末を
溶液から分離し、還元することを特徴とする電気化学プ
ロセス用白金系触媒の製造方法。
1. A method for oxidizing carbon powder to form a carboxyl group on the surface thereof, and then immersing the carbon powder in a solution containing a platinum-based complex cation as a dissolved species to convert the ions present in the carboxyl group on the carbon powder surface into platinum-based ions. A method for producing a platinum-based catalyst for an electrochemical process, comprising separating a carbon powder from a solution and reducing it after carrying a platinum complex by ion exchange with a complex cation.
【請求項2】イオン交換後のカーボン粉末を白金系錯体
陽イオン含有溶液から分離した後、蒸留水で洗浄し、還
元する請求項1に記載の電気化学プロセス用白金系触媒
の製造方法。
2. The method for producing a platinum-based catalyst for an electrochemical process according to claim 1, wherein the carbon powder after the ion exchange is separated from the solution containing a platinum-based complex cation, and then washed with distilled water and reduced.
【請求項3】請求項1または2に記載の方法により製造
され、平均粒径3nm以下で最大粒径5nm以下の白金
粒子をカーボンに担持してなる電気化学プロセス用白金
系触媒。
3. A platinum-based catalyst for an electrochemical process, comprising platinum supported on carbon and produced by the method according to claim 1 and having an average particle size of 3 nm or less and a maximum particle size of 5 nm or less.
JP6330224A 1994-12-05 1994-12-05 Method for producing platinum-based catalyst Expired - Lifetime JP2879649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6330224A JP2879649B2 (en) 1994-12-05 1994-12-05 Method for producing platinum-based catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6330224A JP2879649B2 (en) 1994-12-05 1994-12-05 Method for producing platinum-based catalyst

Publications (2)

Publication Number Publication Date
JPH08162133A JPH08162133A (en) 1996-06-21
JP2879649B2 true JP2879649B2 (en) 1999-04-05

Family

ID=18230248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6330224A Expired - Lifetime JP2879649B2 (en) 1994-12-05 1994-12-05 Method for producing platinum-based catalyst

Country Status (1)

Country Link
JP (1) JP2879649B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988834B2 (en) 2001-06-01 2011-08-02 Sony Corporation Conductive catalyst particles and process for production thereof, gas-diffusing catalytic electrode, and electrochemical device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325964A (en) * 2000-05-19 2001-11-22 Ne Chemcat Corp Electrode catalyst for solid polymer electrolyte fuel cell
WO2002015303A1 (en) * 2000-08-16 2002-02-21 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2003128409A (en) * 2001-10-22 2003-05-08 Ube Ind Ltd Porous carbon film, catalyst carrier, electrode for fuel battery, material for connecting electrode and fuel battery
US7541308B2 (en) * 2001-04-11 2009-06-02 Cabot Corporation Fuel cells and other products containing modified carbon products
US6593023B2 (en) * 2001-04-27 2003-07-15 The Gillette Company Battery and method of making the same
JP2004022346A (en) * 2002-06-17 2004-01-22 Norio Tsubokawa Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell using same
JP2004207228A (en) * 2002-12-12 2004-07-22 Hitachi Ltd Catalyst material, electrode, and fuel cell using this
JP4709477B2 (en) * 2003-05-07 2011-06-22 株式会社キャタラー Method for producing electrode catalyst for fuel cell
JP4645015B2 (en) * 2003-10-24 2011-03-09 株式会社日立製作所 Catalyst material and fuel cell using the same
EP1726018A2 (en) * 2004-03-15 2006-11-29 Cabot Corporation Modified carbon products, their use in fluid/gas diffusion layers and similar devices and methods relating to the same
KR100953545B1 (en) * 2004-03-23 2010-04-21 삼성에스디아이 주식회사 Supported catalyst and method of preparing the same
JP2007111635A (en) * 2005-10-20 2007-05-10 Sumitomo Electric Ind Ltd Metal catalyst and method for manufacturing the same
HUP0501201A2 (en) * 2005-12-23 2007-07-30 Cella H Electrode for electrochemical cell working with high differential pressure difference, method for producing said electrode and electrochemical cell for using said electrode
JP4797166B2 (en) * 2005-12-26 2011-10-19 国立大学法人神戸大学 Noble metal catalyst-supported conductive polymer composite and method for producing the same
JP2008041498A (en) * 2006-08-08 2008-02-21 Sharp Corp Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2008114217A (en) * 2006-10-12 2008-05-22 Sharp Corp Catalyst containing noble metal particle carried on carbon substrate, and its manufacturing method
JP5121290B2 (en) * 2007-04-17 2013-01-16 新日鐵住金株式会社 Catalyst for polymer electrolyte fuel cell electrode
JP5212224B2 (en) 2009-03-31 2013-06-19 トヨタ自動車株式会社 Particle size distribution model preparation method, fuel cell catalyst deterioration prediction method using the particle size distribution model preparation method, and fuel cell control method using the fuel cell catalyst deterioration prediction method
JP5547428B2 (en) * 2009-06-17 2014-07-16 国立大学法人北海道大学 Reaction method of organic compounds using metal fine particles as catalyst
JP5581884B2 (en) * 2010-08-06 2014-09-03 株式会社Gsユアサ Method for producing catalyst-supported powder for fuel cell, method for producing electrode for fuel cell
JPWO2012029162A1 (en) * 2010-09-02 2013-10-28 地方独立行政法人大阪府立産業技術総合研究所 Method for producing electrode for hydrogen generation and electrode for hydrogen generation
JP5555615B2 (en) * 2010-12-15 2014-07-23 株式会社キャタラー Fuel cell supported catalyst and fuel cell
CN108352507A (en) * 2015-11-13 2018-07-31 阿瓦隆电池(加拿大)公司 Modified electrode for redox flow batteries
JP6635976B2 (en) 2017-04-28 2020-01-29 株式会社キャタラー Electrode catalyst for fuel cell and method for producing the same
CN113957244A (en) * 2021-10-26 2022-01-21 中钢集团南京新材料研究院有限公司 Method for enriching platinum group metal in platinum-containing feed liquid
CN115863676A (en) * 2022-12-16 2023-03-28 中汽创智科技有限公司 Preparation method of carbon-supported platinum electrocatalyst, carbon-supported platinum electrocatalyst and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566110A (en) * 1979-06-27 1981-01-22 Yokogawa Hewlett Packard Ltd Ink pen
JPH01227360A (en) * 1988-03-07 1989-09-11 Fuji Electric Co Ltd Manufacture of fuel cell catalyst
JPH04274167A (en) * 1991-02-28 1992-09-30 Fuji Electric Co Ltd Electrode catalyst layer for fuel cell
JPH0723972Y2 (en) * 1992-08-20 1995-05-31 庄田商事株式会社 Divided groove on divided printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988834B2 (en) 2001-06-01 2011-08-02 Sony Corporation Conductive catalyst particles and process for production thereof, gas-diffusing catalytic electrode, and electrochemical device

Also Published As

Publication number Publication date
JPH08162133A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
JP2879649B2 (en) Method for producing platinum-based catalyst
CN104769759B (en) Method for producing a catalyst for fuel cells
EP2441108B1 (en) Method for producing electrode catalyst for fuel cell
CN101305485B (en) Electrocatalyst for fuel cell and method for preparing the same
US20210008535A1 (en) Method for producing catalysts with nanoparticles of platinum and its alloys with metals
US10957915B2 (en) Platinum-based alloy catalyst and preparation method therefor, membrane electrode, and fuel cell
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
CN111725524A (en) Fuel cell cathode catalyst, preparation method thereof, membrane electrode and fuel cell
CN109792059B (en) Catalyst for solid polymer fuel cell and method for producing same
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
WO2021114056A1 (en) Fuel cell cathode catalyst and preparation method therefor, membrane electrode and fuel cell
JP2642888B2 (en) Manufacturing method of gas diffusion electrode
EP1565952B1 (en) Metal alloy for electrochemical oxidation reactions and method of production thereof
CN110600752B (en) H2Method for preparing carbon-supported Pt alloy catalyst by gas-phase thermal reduction
Arulrajan et al. Pd‐Decorated Tungsten as Pt‐Free Bimetallic Catalysts for Hydrogen Oxidation Reaction in Alkaline Electrolyte
JP3839961B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
RU2646761C2 (en) Method for producing a platinum electric catalyst on carbon
JP2890486B2 (en) Fuel electrode catalyst for liquid fuel cell and method for producing the same
KR102234245B1 (en) Catalyst for solid polymer fuel cell and method for manufacturing same
CN115863679A (en) Microporous carbon-coated platinum nanoparticle electrocatalyst and preparation method thereof
CN115458755A (en) Preparation method of platinum-carbon catalyst, platinum-carbon catalyst and catalyst coating film
JP4773622B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
JP5531313B2 (en) Composite electrode catalyst and method for producing the same
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
JP2006092957A (en) Cathode catalyst for solid polymer fuel cell, cathode electrode equipped with catalyst, solid polymer fuel cell equipped with electrode, and manufacturing method of catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term