JP2004207228A - Catalyst material, electrode, and fuel cell using this - Google Patents

Catalyst material, electrode, and fuel cell using this Download PDF

Info

Publication number
JP2004207228A
JP2004207228A JP2003394873A JP2003394873A JP2004207228A JP 2004207228 A JP2004207228 A JP 2004207228A JP 2003394873 A JP2003394873 A JP 2003394873A JP 2003394873 A JP2003394873 A JP 2003394873A JP 2004207228 A JP2004207228 A JP 2004207228A
Authority
JP
Japan
Prior art keywords
catalyst
electrode
metal
atom
catalyst metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003394873A
Other languages
Japanese (ja)
Inventor
Shuichi Suzuki
修一 鈴木
Akira Ri
燦 李
Yuuichi Satsuu
祐一 佐通
Kishifu Hidaka
貴志夫 日高
Mitsuo Hayashibara
光男 林原
Yoshiyuki Takamori
良幸 高森
Yuichi Kamo
友一 加茂
Yasuhisa Aono
泰久 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003394873A priority Critical patent/JP2004207228A/en
Publication of JP2004207228A publication Critical patent/JP2004207228A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly active catalyst capable of inhibiting it from flocculating and becoming coarse and bulky, an electrode having high performance, and a fuel cell using it while having high output density. <P>SOLUTION: In the catalyst material and the electrode, catalyst carriers composing the catalyst material and the electrode contain nitrogen atoms. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は燃料電池に関する。   The present invention relates to a fuel cell.

近年、化石燃料の大量消費による地球温暖化・環境汚染問題は深刻な問題となっている。この問題に対する対処手段として、化石燃料を燃やす内燃機関に代わり、固体高分子型燃料電池(PEFC)を始めとする水素を燃料とした燃料電池が注目を集めている。また電子技術の進歩によって、年々、情報端末機器などが小型化され、携帯用電子機器として急速な普及が進んでいる。現在、携帯用電子機器の情報量の増加とその高速処理に伴う消費電力の増加を補う次世代電源として、メタノールを燃料とした直接メタノール型燃料電池(DMFC)が開発されている。   In recent years, the problem of global warming and environmental pollution due to mass consumption of fossil fuels has become a serious problem. As a solution to this problem, a fuel cell using hydrogen as a fuel, such as a polymer electrolyte fuel cell (PEFC), has been attracting attention instead of an internal combustion engine burning fossil fuel. Also, with the advance of electronic technology, information terminal devices and the like have been reduced in size year by year, and are rapidly spreading as portable electronic devices. At present, a direct methanol fuel cell (DMFC) using methanol as a fuel has been developed as a next-generation power supply to compensate for an increase in the amount of information of a portable electronic device and an increase in power consumption due to its high-speed processing.

これら燃料電池の電極等に使われる触媒材料は、一般的に触媒を触媒担体上に分散させた構成になっている(特許文献1)。また、触媒担体には炭素材料が用いられている。   The catalyst material used for these fuel cell electrodes and the like generally has a structure in which a catalyst is dispersed on a catalyst carrier (Patent Document 1). Further, a carbon material is used for the catalyst carrier.

特開2002−83604号公報JP-A-2002-83604

触媒材料の活性度は、触媒材料に含まれる触媒金属の粒子径に大きく依存する。触媒金属の粒子径が小さいほど触媒金属の比表面積(触媒金属粒子の表面積/触媒金属粒子の重さ)が大きくなり、同量の触媒金属を用いた場合、触媒として作用する面積が大きくなるため、触媒の活性度が高まる。   The activity of the catalyst material largely depends on the particle diameter of the catalyst metal contained in the catalyst material. The smaller the particle diameter of the catalyst metal, the larger the specific surface area of the catalyst metal (the surface area of the catalyst metal particle / the weight of the catalyst metal particle). When the same amount of the catalyst metal is used, the area acting as a catalyst increases. As a result, the activity of the catalyst increases.

しかしながら、これまでの触媒材料では、触媒金属が触媒担体に主に物理吸着で担持されているため、触媒材料作製時および電池使用環境下で、触媒金属の凝集,粗大化が起こる。その結果、触媒金属の粒径は大きくなり、比表面積は小さくなる。この凝集,粗大化により、粒子径の小さい触媒金属を作製すること、あるいは電池使用環境下で触媒金属の粒径を小さく維持することは困難であった。   However, in the conventional catalyst materials, since the catalyst metal is mainly supported on the catalyst carrier by physical adsorption, aggregation and coarsening of the catalyst metal occur during the preparation of the catalyst material and in a battery operating environment. As a result, the particle size of the catalyst metal increases, and the specific surface area decreases. Due to the aggregation and coarsening, it has been difficult to produce a catalyst metal having a small particle diameter, or to keep the particle diameter of the catalyst metal small in a battery operating environment.

本発明は、高い比表面積を有した粒子径の小さい触媒金属を電極に用いることにより出力密度が向上した燃料電池を提供することを目的とする。   An object of the present invention is to provide a fuel cell having an improved power density by using a catalyst metal having a high specific surface area and a small particle diameter for an electrode.

ここで「触媒金属」とは、触媒作用を持つ金属あるいは金属化合物等のことであり、
「触媒担体」とは前記触媒を担持するもので、燃料電池用の触媒担体の場合には、カーボンブラック,カーボンナノチューブ等の炭素材料が用いられる。
Here, "catalytic metal" refers to a metal or metal compound having a catalytic action,
The "catalyst carrier" supports the above-mentioned catalyst. In the case of a catalyst carrier for a fuel cell, a carbon material such as carbon black or carbon nanotube is used.

本願に係る発明の主な特徴は、触媒担体と触媒金属とを含む触媒材料における触媒担体に触媒金属と共有結合可能な原子を含むことである。   A main feature of the invention according to the present application is that a catalyst carrier in a catalyst material containing a catalyst carrier and a catalyst metal contains an atom capable of being covalently bonded to the catalyst metal.

また、触媒担体は炭素を主成分とする触媒担体であれば、燃料電池用の触媒材料として好適である。   Further, any catalyst carrier containing carbon as a main component is suitable as a catalyst material for a fuel cell.

ここで、「炭素」とは、構造上、非晶質のものからグラファイトのような結晶質のものまで含むものもある。   Here, the term “carbon” includes from structurally amorphous to crystalline such as graphite.

「配位結合可能な原子を含む」とは、触媒金属と共有結合可能な原子が触媒担体を構成する原子(例えば炭素原子)と共有結合して、触媒担体中に存在することを意味する。ただし、触媒担体を構成する原子が炭素原子の場合は、炭素結晶の結晶子径は大きくても、小さくても良く、また非晶質であっても良い。また、触媒金属と共有結合可能な原子は、炭素原子と共有結合していると同時に、水素原子と共有結合している場合もある。ここで共有結合には配位結合も含まれる。   “Including an atom capable of coordinating” means that an atom capable of covalently bonding to a catalyst metal is covalently bonded to an atom (for example, a carbon atom) constituting the catalyst support and is present in the catalyst support. However, when the atoms constituting the catalyst support are carbon atoms, the crystallite diameter of the carbon crystal may be large or small, or may be amorphous. In addition, an atom that can be covalently bonded to a catalyst metal may be covalently bonded to a carbon atom and also to a hydrogen atom in some cases. Here, the covalent bond includes a coordinate bond.

本発明にかかる触媒材料を燃料電池に用いることにより出力密度の高い燃料電池を提供することができる。   By using the catalyst material according to the present invention for a fuel cell, a fuel cell having a high output density can be provided.

以下の触媒材料の作製方法はDMFCに適用する場合について記述するが、本実施例に係る触媒材料はDMFCに適用する場合に限定されずPEFC等、炭素原子を主成分とする触媒担体に触媒を分散する構成をとる触媒材料であれば適用可能である。尚、本実施例の「触媒材料」とは、触媒担体に触媒金属を担持させたものを意味する。   The following method for producing a catalyst material is described for a case where the catalyst material is applied to a DMFC. However, the catalyst material according to this example is not limited to a case where the catalyst material is applied to a DMFC, and a catalyst is applied to a catalyst carrier mainly containing carbon atoms, such as PEFC. As long as the catalyst material is configured to be dispersed, it can be applied. The “catalyst material” in the present embodiment means a catalyst carrier on which a catalyst metal is supported.

本実施例に係る触媒材料および電極の作製方法を示す。   A method for manufacturing a catalyst material and an electrode according to this example will be described.

本実施例では触媒金属と配位結合可能な原子として窒素原子を用いる。   In this embodiment, a nitrogen atom is used as an atom capable of coordinating with the catalyst metal.

窒素を5原子%含んだカーボンブラック3.5g と、アルカリ性水溶液と、還元剤とを容器に入れ、スターラにて30分間攪拌し混合する。ここで、アルカリ性水溶液としては例えば、水酸化カリウム水溶液,水酸化ナトリウム水溶液,アンモニア水等を用いることができ、還元剤としては水素化ホウ素ナトリウム,ホルマリン等を用いることができる。本実施例ではアルカリ性水溶液として水酸化ナトリウム水溶液,還元剤としてホルマリンを用いる。これに触媒金属塩の水溶液を加え、ウォーターバスを用いて容器を40℃に保ち、更に1時間スターラにて攪拌を行う。触媒金属塩は、例えば塩化物を用いることができ、本実施例では塩化白金酸2.1g を用いる。ガラスフィルターを用いて攪拌後の溶液を、濾過する。得られた物質に純水を加え洗浄,濾過する作業を7回行い最終的に得られた物質を恒温槽にて80℃で2日間、乾燥を行う。乾燥後、乳鉢にて粉砕し、窒素原子を含んだ炭素に白金が担持された触媒材料4.5g を得る。作製法は本実施例の方法以外にも、例えばアルコール還元法を用いることもできる。   3.5 g of carbon black containing 5 atomic% of nitrogen, an alkaline aqueous solution, and a reducing agent are put in a container, and mixed by stirring with a stirrer for 30 minutes. Here, as the alkaline aqueous solution, for example, an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, aqueous ammonia or the like can be used, and as the reducing agent, sodium borohydride, formalin, or the like can be used. In this embodiment, an aqueous sodium hydroxide solution is used as an alkaline aqueous solution, and formalin is used as a reducing agent. An aqueous solution of a catalytic metal salt is added thereto, and the vessel is kept at 40 ° C. using a water bath, and further stirred for 1 hour with a stirrer. As the catalyst metal salt, for example, chloride can be used. In this embodiment, 2.1 g of chloroplatinic acid is used. The solution after stirring is filtered using a glass filter. Pure water is added to the obtained substance, washing and filtration are performed seven times, and the finally obtained substance is dried at 80 ° C. for 2 days in a thermostat. After drying, the mixture is pulverized in a mortar to obtain 4.5 g of a catalyst material in which platinum is supported on carbon containing nitrogen atoms. As a manufacturing method, for example, an alcohol reduction method can be used in addition to the method of this embodiment.

得られた触媒材料1.0g と、プロトン伝導性材料であるパーフルオロカーボンスルホン酸0.6g及び水/アルコール(1/4)混合溶媒のスラリーとを調製し、カーボンペーパー上にスクリーン印刷法で電極を形成する。   1.0 g of the obtained catalyst material and a slurry of perfluorocarbon sulfonic acid (0.6 g), which is a proton conductive material, and a mixed solvent of water / alcohol (1/4) were prepared, and the electrodes were formed on carbon paper by screen printing. To form

図1,図2に本実施例に係る触媒担体の模式図を示す。炭素中の炭素原子の一部は主に図1と図2との2種の形で窒素原子と置換される。図1は、ピリジン構造をとる形で炭素原子101と窒素原子102とが置換している。図2は、六員環構造を保ったままの形で、炭素原子201と窒素原子202とが置換している。ただし、結晶子径が非常に小さい場合では、炭素原子と窒素原子との結合が必ずしも図1、図2の形態をとっているとは限らず、非晶質炭素中に存在する炭素原子に窒素原子が結合しているような場合、また、五員環を形成している場合もあるため、これらに限定されるものではない。   1 and 2 are schematic views of the catalyst carrier according to the present embodiment. Some of the carbon atoms in the carbon are replaced by nitrogen atoms in two main forms, FIGS. In FIG. 1, a carbon atom 101 and a nitrogen atom 102 are substituted in a form having a pyridine structure. In FIG. 2, the carbon atom 201 and the nitrogen atom 202 are substituted while maintaining the six-membered ring structure. However, when the crystallite diameter is very small, the bond between the carbon atom and the nitrogen atom does not always take the form shown in FIGS. 1 and 2, and the carbon atom existing in the amorphous carbon has a nitrogen atom. The present invention is not limited to the case where atoms are bonded or a five-membered ring is formed.

このような炭素と窒素とを有する触媒担体は例えば気相化学蒸着(CVD)法でC22とN2 との混合ガスをフローさせ、得ることができる。あるいはArガスとN2 ガスとの混合雰囲気中でグラファイトターゲットを用いてDCマグネトロンスパッタ法でも得ることができる。また窒素原子を含んだ有機物をArガス雰囲気中で、加熱することでも得ることができる。 Such a catalyst carrier having carbon and nitrogen can be obtained, for example, by flowing a mixed gas of C 2 H 2 and N 2 by a chemical vapor deposition (CVD) method. Alternatively, it can also be obtained by DC magnetron sputtering using a graphite target in a mixed atmosphere of Ar gas and N 2 gas. Alternatively, it can be obtained by heating an organic substance containing a nitrogen atom in an Ar gas atmosphere.

ここで窒素原子と触媒金属の粒子との結合は、共有結合であり、この結合により触媒金属粒子は炭素表面上に安定に担持されると考えられる。   Here, the bond between the nitrogen atom and the particles of the catalyst metal is a covalent bond, and it is considered that the catalyst metal particles are stably supported on the carbon surface by this bond.

したがって窒素原子を含んだ炭素を触媒担体に用いることで、触媒金属の粒子は窒素原子との結合により運動を束縛される。そのため触媒材料の作製時あるいは電池使用環境下における触媒金属の粒子の凝集,粗大化を防ぐことができる。   Therefore, by using carbon containing a nitrogen atom for the catalyst carrier, the movement of the catalyst metal particles is restricted by the bond with the nitrogen atom. Therefore, it is possible to prevent the catalyst metal particles from agglomerating and coarsening during the preparation of the catalyst material or in the battery operating environment.

触媒金属の粒子の凝集,粗大化を防ぐことができるという利点はアノード電極,カソード電極のいずれにおいても有効である。   The advantage that the aggregation and coarsening of the catalyst metal particles can be prevented is effective for both the anode electrode and the cathode electrode.

また、分散した触媒金属の粒子それぞれに燃料が十分に供給される範囲であれば、触媒担体に担持される触媒金属の担持量は、多いほどよい。   Also, as long as the fuel is sufficiently supplied to each of the dispersed catalyst metal particles, the larger the amount of the catalyst metal supported on the catalyst carrier, the better.

しかし、触媒担体として従来用いられてきたカーボンブラックでは触媒金属の担持量を増加させすぎると、触媒金属の粒子同士が凝集しやすくなってしまい、触媒金属が触媒作用を起こす表面積である有効面積が減少してしまう。そのため触媒金属の担持量は50重量%(触媒金属の重量/触媒材料の重量)程度が最大であった。   However, in the case of carbon black that has been conventionally used as a catalyst carrier, if the amount of the supported catalyst metal is excessively increased, the particles of the catalyst metal tend to aggregate, and the effective area, which is the surface area where the catalyst metal performs a catalytic action, is reduced. Will decrease. Therefore, the maximum amount of the supported catalyst metal was about 50% by weight (weight of the catalyst metal / weight of the catalyst material).

しかし、窒素原子を含んだ触媒担体を用いると、上述のように触媒金属は触媒担体に含まれる窒素原子との共有結合により動きが束縛されるため、凝集を防ぐことができ、更に触媒金属の担持量を増加させることが可能となる。   However, when a catalyst carrier containing a nitrogen atom is used, the movement of the catalyst metal is restricted by the covalent bond with the nitrogen atom contained in the catalyst carrier as described above, so that aggregation can be prevented, and furthermore, the catalyst metal It is possible to increase the carrying amount.

なお、本実施例で作成される触媒材料はある確率で触媒金属の一部が小さな粒径(2
nm程度)を保ったまま窒素原子と共有結合をすることにより動きが束縛される。
In the catalyst material prepared in this example, a part of the catalyst metal has a small particle size (2
The movement is constrained by forming a covalent bond with the nitrogen atom while maintaining the same (about nm).

しかし、一部の触媒金属の粒子は依然として熱エネルギなどを得て動き回ることができる状態にある。これらの触媒金属の粒子は動き回る過程で窒素原子に近づいたものは共有結合により動きを束縛されるし、またある確率で触媒金属の粒子同士がある程度凝集,粗大化した後、窒素原子の近傍で動きを束縛されるものもある。触媒金属の粒子が小さな粒径を保ったまま動きを束縛されるか、ある程度凝集した後動きを束縛されるかは窒素原子が触媒担体上にどの程度の割合で分散しているか、あるいは作製時の触媒金属の粒子の粒子径に依存すると考えられる。   However, some catalyst metal particles are still in a state where they can move around by obtaining heat energy or the like. Those catalyst metal particles that approach the nitrogen atom in the process of moving are bound by covalent bonds, and at a certain probability, the catalyst metal particles are aggregated and coarsened to some extent, and then near the nitrogen atom. Some are restricted in movement. Whether the catalytic metal particles are constrained to move while maintaining a small particle size, or constrained to a certain degree after aggregating to some extent depends on how much nitrogen atoms are dispersed on the catalyst support, or during production. Of the catalyst metal particles.

触媒金属の粒子の動きが束縛され凝集を防ぐことができるということは、触媒金属の粒子同士の距離を従来よりも近づけることができるという利点がある。すなわち、従来では触媒金属の粒子同士が近すぎて凝集してしまうような距離であっても、本実施例の触媒材料によれば触媒金属の粒子の動きが束縛されるため隣同士の触媒金属の粒子は凝集しない。したがって、従来に比べ同一の触媒金属の量を電極内に含ませたときに、触媒担体の量をより少なくすることが可能となる。触媒担体の量を少なくできるということは、同一の電極面積であれば、電極の厚さをより薄くすることが可能となり、電極における燃料の拡散性,電子の伝導性,プロトンの伝導性を向上させることが可能となる。このように物質易動抵抗を減少させることができるため、膜電極接合体(以下、MEA804)の出力密度を向上させることが可能となる。また出力密度の高いMEAを用いることで、PEFCやDMFCの出力を向上させることが可能となる。また、出力を一定とすれば小型化することもできる。   The fact that the movement of the catalyst metal particles is restricted and aggregation can be prevented has the advantage that the distance between the catalyst metal particles can be made shorter than before. That is, even if the distance is such that the particles of the catalyst metal are conventionally too close to agglomerate, the movement of the particles of the catalyst metal is restricted according to the catalyst material of the present embodiment, so that the adjacent catalyst metal Do not agglomerate. Therefore, when the same amount of the catalyst metal is included in the electrode as compared with the related art, the amount of the catalyst carrier can be further reduced. The fact that the amount of catalyst carrier can be reduced means that if the electrode area is the same, the thickness of the electrode can be reduced, and the fuel diffusion, electron conductivity, and proton conductivity at the electrode are improved. It is possible to do. Since the material mobility resistance can be reduced in this manner, the output density of the membrane electrode assembly (hereinafter, MEA 804) can be improved. Further, by using MEA having a high output density, the output of PEFC or DMFC can be improved. If the output is fixed, the size can be reduced.

窒素原子による触媒金属を束縛する効果は、触媒担体の表面層にある窒素原子によるものである。ここで表面の窒素原子の濃度は目標とする触媒金属の担持量や触媒金属の粒子径によって左右されるため、特に規定されるものではないが、好ましくはX線光電子分光法(XPS)による触媒担体の表面の窒素原子の濃度分析において0.1 〜30原子%程度が良い。これは触媒担体の表面の窒素原子の濃度が0.1 原子%以下であると、実用的に必要な量である0.01 重量%以上の触媒を担持する際に、効果が得られにくい。また、30原子%以上であると、窒素原子がカーボンブラック中にグラファイト構造を保って安定に含まれることが困難となり、触媒担体の機械的強度が弱くなってしまう。また、ダイヤモンドのような立体構造になり、グラファイト的な構造の割合が減少するため、電子伝導性が低くなる。更に好ましくは、1〜10原子%である。   The effect of binding the catalyst metal by nitrogen atoms is due to the nitrogen atoms in the surface layer of the catalyst support. Here, the concentration of nitrogen atoms on the surface is not particularly limited since it depends on the target amount of supported catalytic metal and the particle diameter of the catalytic metal, but is preferably determined by X-ray photoelectron spectroscopy (XPS). In the analysis of the concentration of nitrogen atoms on the surface of the carrier, it is preferably about 0.1 to 30 atomic%. This is because if the concentration of nitrogen atoms on the surface of the catalyst carrier is 0.1 atomic% or less, it is difficult to obtain an effect when supporting a practically necessary amount of 0.01% by weight or more of the catalyst. On the other hand, if the content is 30 atomic% or more, it becomes difficult for nitrogen atoms to be stably contained in the carbon black while maintaining the graphite structure, and the mechanical strength of the catalyst carrier is reduced. In addition, a three-dimensional structure such as diamond is formed, and the proportion of a graphite-like structure is reduced, so that electron conductivity is reduced. More preferably, it is 1 to 10 atomic%.

本実施例では、窒素原子を含ませる触媒担体の主成分としてはカーボンブラックを用いたが、カーボンブラックは直径数十〜数百nm程度の一次粒子の凝集体である二次粒子から構成され、その表面には凹凸があり、比表面積が大きいため、触媒を担持するサイト、ここでは触媒担体の表面に存在する窒素原子、が多く、単位体積あたりの触媒金属の担持量を増やすことができると考えられる。   In the present embodiment, carbon black was used as the main component of the catalyst carrier containing nitrogen atoms, but carbon black is composed of secondary particles which are aggregates of primary particles having a diameter of about several tens to several hundreds of nm, Since the surface has irregularities and a large specific surface area, there are many sites for supporting the catalyst, here, nitrogen atoms present on the surface of the catalyst carrier, and it is possible to increase the amount of the catalyst metal carried per unit volume. Conceivable.

したがってここからも電極を薄くすることが可能となり、燃料拡散性や電子,プロトン導電性が高くなると考えられる。また一般にカーボンブラックは生産が容易であるためコストを低く抑えることができる。   Therefore, it is considered that the electrode can be made thinner, and the fuel diffusivity and the electron and proton conductivity are increased. In general, carbon black is easy to produce, so that the cost can be kept low.

比較例1として本実施例にて作成した電極を評価するため、窒素原子を含んだ炭素の代わりに、窒素原子を含まない炭素を用いて実施例1と同様の方法で電極を作成した。   In order to evaluate the electrode prepared in this example as Comparative Example 1, an electrode was prepared in the same manner as in Example 1 except that carbon containing no nitrogen atom was used instead of carbon containing a nitrogen atom.

実施例1の電極と、比較例1の電極と、をメタノール含有電解質水溶液(1.5M(Mはmol /lの略)硫酸,20重量%メタノール)中に浸し、単極測定(電流/電圧測定)を行った。ここで参照電極には飽和カロメル電極、対極には金板を用いた。   The electrode of Example 1 and the electrode of Comparative Example 1 were immersed in a methanol-containing electrolyte aqueous solution (1.5 M (M is mol / l) sulfuric acid, 20% by weight methanol), and subjected to unipolar measurement (current / voltage Measurement). Here, a saturated calomel electrode was used as a reference electrode, and a gold plate was used as a counter electrode.

その結果、比較例1の電極に比べ、実施例1の電極は同一電位で約1.2 倍程度の電流密度が得られ、電極性能が高いと考えられる。   As a result, compared to the electrode of Comparative Example 1, the electrode of Example 1 has a current density of about 1.2 times at the same potential, and is considered to have high electrode performance.

触媒担体として窒素原子を5原子%含んだカーボンブラック20重量%に、窒素原子を5原子%含んだカーボンナノチューブ(以下、CNT)が80重量%となるように混合した以外は、実施例1と同様とする。   Example 1 was repeated except that 20% by weight of carbon black containing 5 atomic% of nitrogen atoms and 80% by weight of carbon nanotubes containing 5 atomic% of nitrogen atoms (hereinafter referred to as CNT) were mixed as a catalyst carrier. The same shall apply.

CNTを用いた場合は、複数のCNT同士が複数の接点を持ち、接触するため電極内の抵抗率を低減させることができる。   When CNT is used, the plurality of CNTs have a plurality of contact points and come into contact with each other, so that the resistivity in the electrode can be reduced.

本実施例に係るCNTを図3,図4に示す。図3はグラフェンシート301が筒状になったもので単層CNT(SWCNT)と呼ばれるものである。図4は、外側グラフェンシート401の内部に内側グラフェンシート402を有する多層CNT(MWCNT)と呼ばれるものである。   FIGS. 3 and 4 show a CNT according to the present embodiment. FIG. 3 is a graphene sheet 301 having a cylindrical shape, which is called single-walled CNT (SWCNT). FIG. 4 shows what is called a multilayer CNT (MWCNT) having an inner graphene sheet 402 inside an outer graphene sheet 401.

なおMWCNTには2層だけのものではなく、3層若しくはそれ以上のものがある。   Note that the MWCNT has not only two layers but also three layers or more.

また、SWCNT,MWCNTはいずれも五員環を有する半球状のキャップで覆われているものもあり、これはフラーレンキャップとも呼ばれている。   Some of SWCNT and MWCNT are both covered with a hemispherical cap having a five-membered ring, and this is also called a fullerene cap.

また、カーボンナノファイバーと呼ばれるグラフェンシートがチューブの長手方向と平行でないものもあり、これを用いることもできる。   Some graphene sheets called carbon nanofibers are not parallel to the longitudinal direction of the tube, and can be used.

一般的にSWCNTは比表面積が大きいため、触媒を担持するサイトが多いという利点がある。また、MWCNTは電子伝導性が高く、電子移動のロスが少ないという利点がある。   Generally, SWCNT has a large specific surface area, and thus has an advantage that there are many sites for supporting a catalyst. In addition, MWCNT has the advantage that electron conductivity is high and electron transfer loss is small.

図5に本実施例に係る窒素原子を含んだCNTを示す。窒素原子502はCNTを構成する炭素原子501と置換される形でドーピングされる。   FIG. 5 shows a CNT containing a nitrogen atom according to the present embodiment. The nitrogen atoms 502 are doped in such a manner as to replace the carbon atoms 501 constituting the CNT.

図6に本実施例に係る触媒材料の模式図を示す。窒素原子を含んだCNT601上に触媒金属602が粒子状に担持されている。触媒金属602が担持されている場所は窒素原子を含んだCNT601に含まれる窒素原子の近傍である。この場所で触媒金属602はその動きが束縛される。窒素原子を含んだCNT601は、電子伝導性が高く、尚且つ繊維構造を持っているため、電極内で良い電子伝導パスとなり得る。触媒金属602としては、マンガン,鉄,コバルト,ニッケル,ルテニウム,ロジウム,パラジウム,レニウム,オスミウム,イリジウム,白金から選ばれる少なくとも一種以上の金属あるいはその化合物が望ましく、更に望ましくはこれらが合金化している方が良い。   FIG. 6 shows a schematic diagram of the catalyst material according to the present example. The catalyst metal 602 is supported on the CNT 601 containing a nitrogen atom in the form of particles. The place where the catalyst metal 602 is supported is near the nitrogen atoms contained in the CNT 601 containing nitrogen atoms. At this point, the movement of the catalytic metal 602 is restricted. Since the CNT 601 containing nitrogen atoms has high electron conductivity and has a fiber structure, it can be a good electron conduction path in the electrode. The catalyst metal 602 is preferably at least one metal selected from manganese, iron, cobalt, nickel, ruthenium, rhodium, palladium, rhenium, osmium, iridium and platinum, or a compound thereof, and more preferably, these are alloyed. Is better.

燃料電池のアノード,カソードに用いられる触媒金属としては白金が好ましい。ただし、一酸化炭素が存在する場合や、メタノールを酸化する場合には、白金とルテニウムを触媒金属に用いることで、より高い性能を示す。また、白金とルテニウムの他に、白金,ルテニウム,マンガン,鉄,コバルト,ニッケル,ロジウム,パラジウム,レニウム,オスミウム,イリジウムを組み合わせることで近い性能を持たすことが可能となる。   Platinum is preferred as the catalytic metal used for the anode and cathode of the fuel cell. However, when carbon monoxide is present or methanol is oxidized, higher performance is exhibited by using platinum and ruthenium as the catalyst metal. In addition, in addition to platinum and ruthenium, it is possible to obtain similar performance by combining platinum, ruthenium, manganese, iron, cobalt, nickel, rhodium, palladium, rhenium, osmium, and iridium.

一般にアノード電極に用いる場合は、白金とルテニウムの合金が望ましく、カソード電極に用いる場合は白金が望ましい。   Generally, when used for an anode electrode, an alloy of platinum and ruthenium is desirable, and when used for a cathode electrode, platinum is desirable.

実施例1と同様な手法で比較例1と実施例2とを比較すると比較例1の電極に比べ、実施例2の電極は同一電位で約1.5 倍程度の電流密度が得られ、電極性能が高いと考えられる。   Comparing Comparative Example 1 and Example 2 with the same method as in Example 1, compared with the electrode of Comparative Example 1, the electrode of Example 2 has about 1.5 times the current density at the same potential, and It is considered that the performance is high.

触媒金属塩として塩化白金酸2.1g,塩化ルテニウム1.1gを用いる以外は実施例1と同様とした。   Example 1 was repeated except that 2.1 g of chloroplatinic acid and 1.1 g of ruthenium chloride were used as catalyst metal salts.

比較例2として、触媒金属塩として塩化白金酸2.1g,塩化ルテニウム1.1gを用いる以外は比較例1と同様の電極を用いた。   As Comparative Example 2, the same electrode as in Comparative Example 1 was used except that 2.1 g of chloroplatinic acid and 1.1 g of ruthenium chloride were used as the catalyst metal salts.

実施例3の触媒材料と比較例2の触媒材料とを透過型電子顕微鏡で観察した結果を図9に示す。比較例2の触媒金属の平均粒径は約5nm、実施例3の触媒の平均粒径は約2
nmであり、実施例3の触媒粒子の方がより微細に担持されていることがわかる。
FIG. 9 shows the results of observing the catalyst material of Example 3 and the catalyst material of Comparative Example 2 with a transmission electron microscope. The average particle size of the catalyst metal of Comparative Example 2 was about 5 nm, and the average particle size of the catalyst of Example 3 was about 2 nm.
nm, which indicates that the catalyst particles of Example 3 are more finely supported.

実施例1と同様な手法で実施例3の電極と比較例2の電極について、単極測定を行った。その結果、比較例2の電極に比べ、実施例3の電極は同一電位で約3倍の電流密度が得られ、電極性能が高かった。   The unipolar measurement was performed on the electrode of Example 3 and the electrode of Comparative Example 2 in the same manner as in Example 1. As a result, as compared with the electrode of Comparative Example 2, the electrode of Example 3 had about three times the current density at the same potential, and the electrode performance was high.

したがって、触媒金属として白金の他に白金とルテニウムを用いても効果があることがわかった。その他、白金とマンガン,白金と鉄等でも同様であった。   Therefore, it was found that the use of platinum and ruthenium in addition to platinum as the catalytic metal was also effective. The same applies to platinum and manganese, platinum and iron, and the like.

また、白金と、ルテニウム,マンガン,鉄などは触媒担体上に単体で存在しているものから合金となって存在しているものもある。さらに、これらの金属は何らかの化合物であっても良く、例えば酸化物や塩化物であっても良い。   Platinum, ruthenium, manganese, iron, and the like may be present on the catalyst carrier alone or in the form of an alloy. Further, these metals may be any compounds, for example, oxides and chlorides.

本実施例に係るMEA804の断面模式図を図8に示す。図8はわかりやすくするため電極及び膜の厚さを大きく描いているが、実際に作成するMEAはシート状で、その厚さは70〜500μm程度(電極の厚さ10〜100μm,電解質膜の厚さ50〜300
μm)であり、本実施例に係るMEAは100μmである。本実施例のMEAはアノード電極801とカソード電極802とその中間に位置する電解質膜803から構成される。次に本実施例に係るMEA804の作製方法を示す。
FIG. 8 is a schematic cross-sectional view of the MEA 804 according to the present embodiment. In FIG. 8, the thickness of the electrode and the membrane is drawn large for the sake of simplicity. Thickness 50 ~ 300
μm), and the MEA according to the present example is 100 μm. The MEA according to the present embodiment includes an anode electrode 801, a cathode electrode 802, and an electrolyte membrane 803 located therebetween. Next, a method for manufacturing the MEA 804 according to this embodiment will be described.

実施例3の電極をアノード電極、実施例1の電極をカソード電極とし、両電極が電解質膜803として用いるパーフルオロスルホン酸膜に接するように両側に配置し、これをホットプレスにより熱圧着,転写することでMEA804を作製する。   The electrode of the third embodiment is an anode electrode, the electrode of the first embodiment is a cathode electrode, and both electrodes are arranged on both sides so as to be in contact with a perfluorosulfonic acid film used as the electrolyte film 803. Then, the MEA 804 is manufactured.

比較例3に係るMEAの作製法であるが、比較例2の電極をアノード電極、比較例1の電極をカソード電極とする以外は、実施例4と同様である。   The method of manufacturing the MEA according to Comparative Example 3 is the same as that of Example 4 except that the electrode of Comparative Example 2 is an anode electrode and the electrode of Comparative Example 1 is a cathode electrode.

図7に本実施例に係るDMFCの模式図を示す。前記DMFCは、アノード電極701と、カソード電極703と、その中間に位置するプロトン伝導性を備えた電解質膜702と、からなるMEAを中心に構成され、アノード電極701側には、メタノールと水とを主成分とする燃料705が供給され、二酸化炭素と水706が排出される。カソード電極703側には、空気等の酸素を含む気体707が供給され、導入した気体中の未反応気体と水とを含む排ガス708が排出される。またアノード電極701と、カソード電極703は外部回路704へ接続される。   FIG. 7 shows a schematic diagram of the DMFC according to the present embodiment. The DMFC mainly includes an MEA including an anode electrode 701, a cathode electrode 703, and an electrolyte membrane 702 having proton conductivity located between the anode electrode 701, a cathode electrode 703, and methanol and water on the anode electrode 701 side. Is supplied, and carbon dioxide and water 706 are discharged. A gas 707 containing oxygen such as air is supplied to the cathode electrode 703 side, and an exhaust gas 708 containing unreacted gas and water in the introduced gas is discharged. The anode electrode 701 and the cathode electrode 703 are connected to an external circuit 704.

前述のような構成のDMFCに本実施例のMEAと比較例4のMEAを用い、出力密度を比較した。比較例4のMEAを用いたDMFCの出力密度に比べ、本実施例のMEAを用いたDMFCの出力密度は約2倍程度であると考えられる。   The output density was compared by using the MEA of the present example and the MEA of Comparative Example 4 for the DMFC having the above-described configuration. It is considered that the output density of the DMFC using the MEA of this example is about twice that of the DMFC using the MEA of Comparative Example 4.

窒素原子による触媒束縛効果は、主として触媒担体の表面に存在する窒素原子に依存する為、カーボンブラックの表面を、窒素原子を含んだ炭素で覆うような構造をもったものを触媒担体に用いることで同様の効果がある。この場合、触媒担体の形状は用いたカーボンブラックの形状にある程度依存する為、カーボンブラックの形状を選択することで触媒担体の最終的な形状を選択できるという利点がある。   Since the catalyst binding effect of nitrogen atoms depends mainly on the nitrogen atoms present on the surface of the catalyst carrier, use a catalyst carrier with a structure that covers the surface of carbon black with carbon containing nitrogen atoms. Has the same effect. In this case, since the shape of the catalyst carrier depends to some extent on the shape of the carbon black used, there is an advantage that the final shape of the catalyst carrier can be selected by selecting the shape of the carbon black.

以下に作成方法を示す。カーボンブラックとヘキサメトキシメチルメラミンとを重量比にして1:4にてエタノール中で1時間混合し、大気中、80℃で24時間乾燥させた。得られた物体をアルゴン雰囲気中、800℃で1時間焼成し、カーボンブラックの表面が、窒素原子を含んだ炭素で被覆された触媒担体を得た。   The creation method is described below. Carbon black and hexamethoxymethyl melamine were mixed in ethanol at a weight ratio of 1: 4 in ethanol for 1 hour, and dried in air at 80 ° C. for 24 hours. The obtained object was baked at 800 ° C. for 1 hour in an argon atmosphere to obtain a catalyst carrier having a carbon black surface coated with nitrogen-containing carbon.

得られた触媒担体をXPSで分析した結果、窒素原子の含有濃度は5原子%であった。これを、窒素を5原子%含んだ炭素のかわりに用いる以外は実施例3と同様とし、触媒材料を得た。   As a result of analyzing the obtained catalyst carrier by XPS, the nitrogen atom content was 5 atom%. A catalyst material was obtained in the same manner as in Example 3 except that this was used instead of carbon containing 5 atomic% of nitrogen.

本実施例の触媒材料と比較例2の触媒材料とを透過型電子顕微鏡で観察した結果、本実施例で得られた触媒材料に担持された触媒金属の平均粒径は約2nmであり、本実施例の触媒金属の方がより微細に担持されていた。   As a result of observing the catalyst material of this example and the catalyst material of Comparative Example 2 with a transmission electron microscope, the average particle size of the catalyst metal supported on the catalyst material obtained in this example was about 2 nm. The catalyst metal of the example was more finely supported.

窒素原子を含んだ炭素の前駆体と触媒金属塩とを事前に混合し、その後焼成を行うことでも窒素原子を含んだ炭素に触媒が担持された触媒材料を得ることができる。フェニレンジアミン0.3g とポリアミック酸0.7g とN−メチル−2−ピロリジノン100mlと塩化白金酸0.2g と塩化ルテニウム0.1g とを混合し、1時間攪拌を行う。これを200℃で2時間真空乾燥する。得られた固形物をアルゴン雰囲気中、800℃で1時間焼成する。   A catalyst material in which a catalyst is supported on carbon containing nitrogen atoms can also be obtained by preliminarily mixing a carbon precursor containing nitrogen atoms and a catalyst metal salt and then performing calcination. 0.3 g of phenylenediamine, 0.7 g of polyamic acid, 100 ml of N-methyl-2-pyrrolidinone, 0.2 g of chloroplatinic acid and 0.1 g of ruthenium chloride are mixed and stirred for 1 hour. This is vacuum dried at 200 ° C. for 2 hours. The obtained solid is fired at 800 ° C. for 1 hour in an argon atmosphere.

実施例6の触媒材料と比較例2の触媒材料とを透過型電子顕微鏡で観察した結果、触媒の大きさはほぼ同等(約5nm)であったが、実施例6の触媒の方が均一に分散していると考えられる。   As a result of observing the catalyst material of Example 6 and the catalyst material of Comparative Example 2 with a transmission electron microscope, the size of the catalyst was almost the same (about 5 nm), but the catalyst of Example 6 was more uniform. It is thought to be dispersed.

触媒金属と共有結合可能な原子として硫黄原子を用い、窒素原子を5原子%含んだカーボンブラックの代わりに硫黄原子を5原子%含んだカーボンブラックを用いること以外は実施例3と同様とする。   Example 3 is the same as Example 3 except that a sulfur atom is used as an atom that can be covalently bonded to the catalyst metal, and a carbon black containing 5 atomic% of sulfur is used instead of a carbon black containing 5 atomic% of nitrogen.

実施例1と同様の手法で本実施例の電極と比較例2の電極とを単極測定により測定する。ここで参照電極には飽和カロメル電極、対極には金板を用いる。その結果、比較例2の電極に比べ、本実施例の電極は同一電位で約3倍程度の電流密度が得られ、電極性能が高いと考えられる。   The electrode of this example and the electrode of Comparative Example 2 are measured by monopolar measurement in the same manner as in Example 1. Here, a saturated calomel electrode is used as a reference electrode, and a gold plate is used as a counter electrode. As a result, compared to the electrode of Comparative Example 2, the electrode of this example can obtain about three times the current density at the same potential, and is considered to have higher electrode performance.

本実施例の触媒材料と比較例2の触媒材料を透過型電子顕微鏡で観察した結果、本実施例の触媒粒子の方がより微細に担持されている。   As a result of observing the catalyst material of this example and the catalyst material of Comparative Example 2 with a transmission electron microscope, the catalyst particles of this example are more finely supported.

硫黄原子を含んだ触媒担体の代わりに酸素原子を含んだ触媒担体を用いる以外は、実施例7と同様とする。   Example 7 is the same as Example 7 except that a catalyst carrier containing an oxygen atom is used instead of a catalyst carrier containing a sulfur atom.

実施例1と同様な手法で本実施例の電極と比較例2の電極について、単極測定を行う。その結果、比較例2の電極に比べ、本実施例の電極は同一電位で約3倍の電流密度が得られ、電極性能が高いと考えられる。したがって硫黄原子を含む触媒担体の他に酸素原子を含む触媒担体を用いても効果があることがわかる。その他、燐原子を含む触媒担体を用いても同様であると考えられる。   The unipolar measurement is performed on the electrode of this example and the electrode of Comparative Example 2 in the same manner as in Example 1. As a result, compared to the electrode of Comparative Example 2, the electrode of this example can obtain about three times the current density at the same potential, and is considered to have higher electrode performance. Therefore, it can be seen that the use of a catalyst carrier containing an oxygen atom in addition to the catalyst carrier containing a sulfur atom is also effective. In addition, it is considered that the same applies even when a catalyst carrier containing a phosphorus atom is used.

実施例に係る窒素を含んだ炭素の模式図。FIG. 4 is a schematic view of nitrogen-containing carbon according to an example. 実施例に係る窒素を含んだ炭素の模式図。FIG. 4 is a schematic view of nitrogen-containing carbon according to an example. 単層カーボンナノチューブの模式図。The schematic diagram of a single-walled carbon nanotube. 多層カーボンナノチューブの模式図。FIG. 2 is a schematic diagram of a multi-walled carbon nanotube. 実施例に係る窒素を含んだカーボンナノチューブの模式図。FIG. 2 is a schematic view of a carbon nanotube containing nitrogen according to an example. 実施例に係る触媒材料の模式図。FIG. 2 is a schematic diagram of a catalyst material according to an example. 実施例に係る電極を用いた直接メタノール型燃料電池の模式図。FIG. 1 is a schematic diagram of a direct methanol fuel cell using an electrode according to an example. 実施例に係るMEAの断面模式図。FIG. 3 is a schematic cross-sectional view of the MEA according to the example. 実施例に係る触媒材料のTEM写真。4 is a TEM photograph of a catalyst material according to an example.

符号の説明Explanation of reference numerals

101,201,501…炭素原子、102,202,502…窒素原子、301…グラフェンシート、401…外側グラフェンシート、402…内側グラフェンシート、601…窒素原子を含んだCNT、602…触媒金属、701,801…アノード電極、702,803…電解質膜、703,802…カソード電極、704…外部回路、705…燃料、706…二酸化炭素と水、707…酸素を含む気体、708…排ガス、804…MEA。

101, 201, 501: carbon atom, 102, 202, 502: nitrogen atom, 301: graphene sheet, 401: outer graphene sheet, 402: inner graphene sheet, 601: CNT containing nitrogen atom, 602: catalytic metal, 701 801: anode electrode, 702, 803: electrolyte membrane, 703, 802: cathode electrode, 704: external circuit, 705: fuel, 706: carbon dioxide and water, 707: gas containing oxygen, 708: exhaust gas, 804: MEA .

Claims (11)

触媒金属と前記触媒金属を担持する触媒担体とを含む触媒材料において、前記触媒担体は触媒金属と共有結合可能な原子を含むことを特徴とする触媒材料。   A catalyst material comprising a catalyst metal and a catalyst carrier supporting the catalyst metal, wherein the catalyst carrier contains atoms capable of covalently bonding to the catalyst metal. 前記触媒担体が炭素原子を含むことを特徴とする請求項1記載の触媒材料。   The catalyst material according to claim 1, wherein the catalyst carrier contains carbon atoms. 炭素原子を有する触媒担体と触媒金属とを含む触媒材料において、前記触媒担体は炭素原子の一部を前記触媒金属と共有結合可能な原子で置換した構造を有することを特徴とする触媒材料。   A catalyst material comprising a catalyst carrier having a carbon atom and a catalyst metal, wherein the catalyst carrier has a structure in which a part of carbon atoms is replaced by an atom which can be covalently bonded to the catalyst metal. 請求項1に記載の触媒材料において、前記触媒金属が白金あるいは白金化合物であることを特徴とする触媒材料。   The catalyst material according to claim 1, wherein the catalyst metal is platinum or a platinum compound. 請求項1に記載の触媒材料において、前記触媒金属が白金,ルテニウムから選ばれる1種以上の金属あるいはその化合物からなることを特徴とする触媒材料。   2. The catalyst material according to claim 1, wherein the catalyst metal comprises at least one metal selected from platinum and ruthenium or a compound thereof. 請求項1に記載の触媒材料において、前記触媒金属が白金,ルテニウム,マンガン,鉄,コバルト,ニッケル,ロジウム,パラジウム,レ二ウム,イリジウムから選ばれる1種以上の金属あるいはその化合物からなることを特徴とする触媒材料。   2. The catalyst material according to claim 1, wherein the catalyst metal comprises at least one metal selected from platinum, ruthenium, manganese, iron, cobalt, nickel, rhodium, palladium, rhenium and iridium, or a compound thereof. Characteristic catalyst material. 触媒金属と前記触媒金属を担持する触媒担体とを含む触媒材料において、前記触媒担体は触媒金属と窒素原子,酸素原子,リン原子,硫黄原子から選ばれる少なくとも1種類の原子を含むことを特徴とする触媒材料。   A catalyst material comprising a catalyst metal and a catalyst carrier supporting the catalyst metal, wherein the catalyst carrier contains the catalyst metal and at least one atom selected from a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom. Catalyst material. 燃料を酸化するアノード電極と酸素を還元するカソード電極との少なくとも一方が、請求項1記載の触媒材料とプロトン伝導性材料とを有し、前記アノード電極と前記カソード電極との間にプロトン伝導性を備えた電解質膜を形成した膜/電極接合体。   At least one of an anode electrode for oxidizing fuel and a cathode electrode for reducing oxygen has the catalyst material and the proton conductive material according to claim 1, and a proton conductive material is provided between the anode electrode and the cathode electrode. A membrane / electrode assembly formed with an electrolyte membrane comprising: アノード電極とカソード電極とが電解質膜を介して形成される燃料電池において、請求項8に記載の膜/電極接合体を備えることを特徴とする燃料電池。   A fuel cell comprising an anode electrode and a cathode electrode formed through an electrolyte membrane, comprising the membrane / electrode assembly according to claim 8. 液体燃料を酸化するアノード電極と酸素を還元するカソード電極と、前記アノード電極と前記カソード電極との間に形成された電解質膜とを有する燃料電池において、前記アノード電極とカソード電極とのいずれか一方または両方が触媒金属を担持する触媒担体と前記触媒金属とを含む触媒材料を有し、前記触媒担体は前記触媒金属と共有結合可能な原子を含むことを特徴とする燃料電池。   In a fuel cell including an anode electrode for oxidizing a liquid fuel, a cathode electrode for reducing oxygen, and an electrolyte membrane formed between the anode electrode and the cathode electrode, any one of the anode electrode and the cathode electrode Alternatively, a fuel cell includes a catalyst carrier containing a catalyst metal that carries a catalyst metal and a catalyst material containing the catalyst metal, wherein the catalyst carrier includes an atom that can be covalently bonded to the catalyst metal. 液体燃料を酸化するアノード電極と酸素を還元するカソード電極と、前記アノード電極と前記カソード電極との間に形成された電解質膜とを有する燃料電池において、前記アノード電極とカソード電極との少なくとも一方が炭素を有する触媒担体と触媒金属とを含む触媒材料を有し、前記触媒担体は窒素原子,硫黄原子,酸素原子,リン原子の少なくとも一つの原子を含むことを特徴とする燃料電池。
In a fuel cell having an anode electrode for oxidizing a liquid fuel, a cathode electrode for reducing oxygen, and an electrolyte membrane formed between the anode electrode and the cathode electrode, at least one of the anode electrode and the cathode electrode is A fuel cell comprising a catalyst material containing a catalyst carrier having carbon and a catalyst metal, wherein the catalyst carrier contains at least one of a nitrogen atom, a sulfur atom, an oxygen atom, and a phosphorus atom.
JP2003394873A 2002-12-12 2003-11-26 Catalyst material, electrode, and fuel cell using this Pending JP2004207228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394873A JP2004207228A (en) 2002-12-12 2003-11-26 Catalyst material, electrode, and fuel cell using this

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002360100 2002-12-12
JP2003394873A JP2004207228A (en) 2002-12-12 2003-11-26 Catalyst material, electrode, and fuel cell using this

Publications (1)

Publication Number Publication Date
JP2004207228A true JP2004207228A (en) 2004-07-22

Family

ID=32828592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394873A Pending JP2004207228A (en) 2002-12-12 2003-11-26 Catalyst material, electrode, and fuel cell using this

Country Status (1)

Country Link
JP (1) JP2004207228A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129369A (en) * 2003-10-24 2005-05-19 Hitachi Ltd Catalyst material and fuel cell using the same
JP2007136283A (en) * 2005-11-15 2007-06-07 Toyota Central Res & Dev Lab Inc Nitrogen-containing carbon type electrode catalyst
JP2008523565A (en) * 2004-12-09 2008-07-03 ナノシス・インク. Nanowire-based membrane electrode assemblies for fuel cells
JP2009277360A (en) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method for them
US7892701B2 (en) 2008-09-03 2011-02-22 Kabushiki Kaisha Toshiba Fuel cell
US8034513B2 (en) 2009-11-16 2011-10-11 Kabushiki Kaisha Toshiba Direct-methanol fuel cell
US8318374B2 (en) 2008-04-14 2012-11-27 Panasonic Corporation Fuel cell comprising oxygen electrode with surface nanostructure
WO2013035741A1 (en) * 2011-09-06 2013-03-14 住友化学株式会社 Method for producing dispersion liquid of electrode catalyst, dispersion liquid of electrode catalyst, method for producing electrode catalyst, electrode catalyst, electrode structure, membrane electrode assembly, fuel cell, and air cell
JP2013514457A (en) * 2009-12-18 2013-04-25 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Electrochemical oxygen reduction method in alkaline medium
JP2013514164A (en) * 2009-12-18 2013-04-25 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Nitrogen-doped carbon nanotubes with metal nanoparticles
CN103337642A (en) * 2013-07-10 2013-10-02 中国科学院金属研究所 Oxygen reduction catalyst for zinc-air battery and preparation method thereof
WO2014123213A1 (en) * 2013-02-07 2014-08-14 株式会社Ihi Oxygen reduction catalyst, oxygen reduction electrode, and fuel cell
WO2017022900A1 (en) * 2015-08-06 2017-02-09 서울과학기술대학교 산학협력단 Catalyst for oxygen reduction electrode and method for manufacturing same
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
WO2022172571A1 (en) * 2021-02-15 2022-08-18 日産化学株式会社 Fired body and fuel cell using said fired body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166646A (en) * 1982-03-27 1983-10-01 Hitachi Ltd Fuel cell
JPH08162133A (en) * 1994-12-05 1996-06-21 Agency Of Ind Science & Technol Manufacture of platinum catalyst
JPH09248464A (en) * 1996-03-12 1997-09-22 Toshiba Corp Production of catalyst
JP2001325964A (en) * 2000-05-19 2001-11-22 Ne Chemcat Corp Electrode catalyst for solid polymer electrolyte fuel cell
JP2002083604A (en) * 2000-06-30 2002-03-22 Toshiba Corp Manufacturing method of catalyst carrying carbon nanofiber, slurry composition for fuel cell electrode, and fuel cell
JP2002170574A (en) * 2000-09-21 2002-06-14 Ube Ind Ltd Electrode substrate for fuel cell
JP2002329500A (en) * 2001-03-02 2002-11-15 National Institute Of Advanced Industrial & Technology Electrode catalyst for fuel electrode of low temperature fuel cell
JP2004079244A (en) * 2002-08-12 2004-03-11 Toshiba Corp Catalyst for fuel cell and fuel cell
JP2005129369A (en) * 2003-10-24 2005-05-19 Hitachi Ltd Catalyst material and fuel cell using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166646A (en) * 1982-03-27 1983-10-01 Hitachi Ltd Fuel cell
JPH08162133A (en) * 1994-12-05 1996-06-21 Agency Of Ind Science & Technol Manufacture of platinum catalyst
JPH09248464A (en) * 1996-03-12 1997-09-22 Toshiba Corp Production of catalyst
JP2001325964A (en) * 2000-05-19 2001-11-22 Ne Chemcat Corp Electrode catalyst for solid polymer electrolyte fuel cell
JP2002083604A (en) * 2000-06-30 2002-03-22 Toshiba Corp Manufacturing method of catalyst carrying carbon nanofiber, slurry composition for fuel cell electrode, and fuel cell
JP2002170574A (en) * 2000-09-21 2002-06-14 Ube Ind Ltd Electrode substrate for fuel cell
JP2002329500A (en) * 2001-03-02 2002-11-15 National Institute Of Advanced Industrial & Technology Electrode catalyst for fuel electrode of low temperature fuel cell
JP2004079244A (en) * 2002-08-12 2004-03-11 Toshiba Corp Catalyst for fuel cell and fuel cell
JP2005129369A (en) * 2003-10-24 2005-05-19 Hitachi Ltd Catalyst material and fuel cell using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645015B2 (en) * 2003-10-24 2011-03-09 株式会社日立製作所 Catalyst material and fuel cell using the same
JP2005129369A (en) * 2003-10-24 2005-05-19 Hitachi Ltd Catalyst material and fuel cell using the same
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
JP2008523565A (en) * 2004-12-09 2008-07-03 ナノシス・インク. Nanowire-based membrane electrode assemblies for fuel cells
JP2007136283A (en) * 2005-11-15 2007-06-07 Toyota Central Res & Dev Lab Inc Nitrogen-containing carbon type electrode catalyst
US8318374B2 (en) 2008-04-14 2012-11-27 Panasonic Corporation Fuel cell comprising oxygen electrode with surface nanostructure
JP2009277360A (en) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method for them
US7892701B2 (en) 2008-09-03 2011-02-22 Kabushiki Kaisha Toshiba Fuel cell
US8034513B2 (en) 2009-11-16 2011-10-11 Kabushiki Kaisha Toshiba Direct-methanol fuel cell
JP2013514457A (en) * 2009-12-18 2013-04-25 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Electrochemical oxygen reduction method in alkaline medium
JP2013514164A (en) * 2009-12-18 2013-04-25 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Nitrogen-doped carbon nanotubes with metal nanoparticles
WO2013035741A1 (en) * 2011-09-06 2013-03-14 住友化学株式会社 Method for producing dispersion liquid of electrode catalyst, dispersion liquid of electrode catalyst, method for producing electrode catalyst, electrode catalyst, electrode structure, membrane electrode assembly, fuel cell, and air cell
JPWO2013035741A1 (en) * 2011-09-06 2015-03-23 住友化学株式会社 Electrocatalyst dispersion manufacturing method, electrode catalyst dispersion, electrode catalyst manufacturing method, electrode catalyst, electrode structure, membrane electrode assembly, fuel cell and air cell
WO2014123213A1 (en) * 2013-02-07 2014-08-14 株式会社Ihi Oxygen reduction catalyst, oxygen reduction electrode, and fuel cell
CN103337642A (en) * 2013-07-10 2013-10-02 中国科学院金属研究所 Oxygen reduction catalyst for zinc-air battery and preparation method thereof
WO2017022900A1 (en) * 2015-08-06 2017-02-09 서울과학기술대학교 산학협력단 Catalyst for oxygen reduction electrode and method for manufacturing same
US11018349B2 (en) 2015-08-06 2021-05-25 Foundation For Research And Business, Seoul National University Of Science And Technology Catalyst for oxygen reduction electrode and method for manufacturing same
WO2022172571A1 (en) * 2021-02-15 2022-08-18 日産化学株式会社 Fired body and fuel cell using said fired body

Similar Documents

Publication Publication Date Title
Samad et al. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells
US7105246B2 (en) Catalytic material, electrode, and fuel cell using the same
Liu et al. FeCo alloy entrapped in N-doped graphitic carbon nanotubes-on-nanosheets prepared by coordination-induced pyrolysis for oxygen reduction reaction and rechargeable Zn-air battery
Wang et al. Strongly coupled molybdenum carbide on carbon sheets as a bifunctional electrocatalyst for overall water splitting
Centi et al. The role of nanostructure in improving the performance of electrodes for energy storage and conversion
Huang et al. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries
Ahmadi et al. Synthesis and characterization of Pt nanoparticles on sulfur-modified carbon nanotubes for methanol oxidation
Chen et al. PtCo nanoparticles supported on expanded graphite as electrocatalyst for direct methanol fuel cell
Leela Mohana Reddy et al. Pt/SWNT− Pt/C nanocomposite electrocatalysts for proton-exchange membrane fuel cells
Zhang et al. Design and preparation of CNT@ SnO2 core-shell composites with thin shell and its application for ethanol oxidation
JP2007526616A (en) Fuel cell with less platinum, catalyst and method for producing the same
CN104716333B (en) Ordered gas diffusion electrode, and production method and application thereof
JP6598159B2 (en) ELECTRODE MATERIAL FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
JP2010129385A (en) Platinum cluster for electrode and method for producing the same
JP2004207228A (en) Catalyst material, electrode, and fuel cell using this
Thomas et al. Carbon nanotubes as catalyst supports for ethanol oxidation
JP2008021609A (en) Direct methanol fuel cell and catalyst
JP2008183508A (en) Composite material and its manufacturing method
Kakaei High efficiency platinum nanoparticles based on carbon quantum dot and its application for oxygen reduction reaction
Hameed Microwave irradiated Ni–MnOx/C as an electrocatalyst for methanol oxidation in KOH solution for fuel cell application
Chandran et al. 1D-2D integrated hybrid carbon nanostructure supported bimetallic alloy catalyst for ethanol oxidation and oxygen reduction reactions
Mehrpooya et al. Fabrication of nano-platinum alloy electrocatalysts and their performance in a micro-direct methanol fuel cell
Gayathri et al. Evaluation of iron-based alloy nanocatalysts for the electrooxidation of ethylene glycol in membraneless fuel cells
JP4645015B2 (en) Catalyst material and fuel cell using the same
Patel et al. Carbon nanotube based anodes and cathodes for microbial fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110907

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111118