JP2687683B2 - Composite material and method for producing the same - Google Patents

Composite material and method for producing the same

Info

Publication number
JP2687683B2
JP2687683B2 JP2150990A JP15099090A JP2687683B2 JP 2687683 B2 JP2687683 B2 JP 2687683B2 JP 2150990 A JP2150990 A JP 2150990A JP 15099090 A JP15099090 A JP 15099090A JP 2687683 B2 JP2687683 B2 JP 2687683B2
Authority
JP
Japan
Prior art keywords
substance
composite material
composite
producing
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2150990A
Other languages
Japanese (ja)
Other versions
JPH0421739A (en
Inventor
公一 釘宮
康博 菅谷
修 井上
健 廣田
三男 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPH0421739A publication Critical patent/JPH0421739A/en
Application granted granted Critical
Publication of JP2687683B2 publication Critical patent/JP2687683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合材料及びその製造方法に関し、特に構
成材料の内の少なくとも1つの厚みが非常に薄い連続し
た相で形成された所謂ナノコンポジット材料であり、電
子材料や構造材料等の産業分野に広く応用出来る材料に
関する。
Description: FIELD OF THE INVENTION The present invention relates to a composite material and a method for producing the same, and in particular to a so-called nanocomposite material formed of continuous phases of which at least one of the constituent materials is very thin. Yes, it relates to materials that can be widely applied to industrial fields such as electronic materials and structural materials.

従来の技術 従来より材質が相異なる2種以上の粒子を混合又は粒
子と結着材とを混合して結着させ複合体を形成する技術
が知られており、連続相中に異質の粒子の含まれた複合
体が知られている。即ち例えばセラミックスもしくは金
属と樹脂、又はセラミックスと金属との複合体は、耐熱
性,熱伝導性,燃焼性,強度あるいは比重等を改良する
手法として提案されたものである。
2. Description of the Related Art Conventionally, there has been known a technique of forming a composite by mixing two or more kinds of particles having different materials or mixing the particles and a binder to form a composite. The complex involved is known. That is, for example, ceramics or metal and resin, or composite of ceramics and metal has been proposed as a method for improving heat resistance, thermal conductivity, flammability, strength, specific gravity and the like.

これらの複合体に於て、前者は剛性の低い複合体であ
り、後者は高剛性複合体が報告されている。
Among these composites, the former is a composite with low rigidity, and the latter is a composite with high rigidity.

即ち第7図に示したように、金属粒子101とセラミッ
クス層102とを、均一に混合しただけの複合体である。
That is, as shown in FIG. 7, it is a composite body in which the metal particles 101 and the ceramic layer 102 are simply mixed uniformly.

発明が解決しようとする課題 しかし樹脂とセラミックスとを用いた複合体で最も一
般的な樹脂を結着材として用いセラミックスもしくは金
属粒子を充填材として用いた複合体の場合では、複合体
としての特性は改善されるが、結着層(連続相)が樹脂
であるため剛性が不足すると言う課題があった。
SUMMARY OF THE INVENTION However, in the case of a composite using a resin and ceramics, which is the most general resin as a binder, and ceramics or metal particles as a filler, the characteristics of the composite are However, since the binder layer (continuous phase) is a resin, there is a problem that rigidity is insufficient.

一方第7図に示したような金属粒子101とセラミック
ス層102とで構成された従来の複合体では、連続層(即
ちセラミックス層102)の量が圧倒的に多く、連続層に
よって隔離された粒子間の距離が大きいため、強度が低
いという課題があると同時に、3個以上の粒子が合う三
角点103では気孔などの量が非常に多くなり、例えば三
角点103から腐食が始まり、複合体の耐食性を低下させ
たり、キレツが生じる起点となったりするため、機械的
強度、加工精度、耐久性もしくは耐環境特性の低下につ
ながると言った問題を起こしている。
On the other hand, in the conventional composite composed of the metal particles 101 and the ceramic layer 102 as shown in FIG. 7, the amount of the continuous layer (that is, the ceramic layer 102) is overwhelmingly large, and the particles separated by the continuous layer. Since the distance between them is large, there is a problem that the strength is low, and at the same time, the amount of pores and the like becomes extremely large at the triangular points 103 where three or more particles meet, and for example, corrosion starts at the triangular points 103 and Since it lowers the corrosion resistance and becomes the starting point of cracks, it causes problems such as deterioration of mechanical strength, processing accuracy, durability or environmental resistance.

上述では金属を充填剤としセラミックスを結着材とし
た場合であったが、どちらを充填材としても、従来の技
術では連続相の量が圧倒的に多い点と、三角点103が複
合体の劣化の原因となる点の課題があった。
In the above, the case where the metal is used as the filler and the ceramic is used as the binder, however, whichever is used as the filler, in the conventional technique, the amount of the continuous phase is overwhelmingly large and the triangular point 103 is the composite. There was a problem in terms of causing deterioration.

従来の複合体では連続相によって隔離された粒子間の
距離が大きく、複合体の種々の特性の改善の為には、複
合体中に占める連続相の量を減少し、この様な課題を解
決しようとしている。しかし従来の技術だけを用いた複
合体では、連続相の量はたかだか1/2程度にしか減少で
きなかった。
In conventional composites, the distance between particles separated by the continuous phase is large, and in order to improve various properties of the composite, the amount of the continuous phase occupying in the composite is reduced, and such problems are solved. Trying to. However, the amount of continuous phase could be reduced to only about 1/2 in the composite using only the conventional technique.

従って従来の複合体では連続相と充填材材料との比を
下げることよりも、より連続相中に充填材を均一に分散
させて、均一複合体化を計っていたため、複合体の特性
は構成材料同士の欠点を互いに補う程度でしか引き出さ
れていなく、互いの長所を積極的に引き出せていなかっ
た。即ち従来の複合体は、例えば圧縮に強いが引っ張り
には弱いセラミックス(コンクリート)の性質を是正す
るため、逆の性質を有する鉄(鉄筋)を混入した鉄筋コ
ンクリートのようなものでしかなく、複合体化により新
たな特別な機能を発現させるまでには至っていなかっ
た。
Therefore, in the conventional composite, rather than lowering the ratio of the continuous phase and the filler material, the filler was more uniformly dispersed in the continuous phase to form a uniform composite, and the characteristics of the composite They were drawn out only to the extent of compensating for the defects of the materials, and they could not bring out the advantages of each other positively. That is, the conventional composite is, for example, reinforced concrete mixed with iron (reinforcing bar) having the opposite property because it corrects the property of ceramics (concrete) that is strong against compression but weak against pulling, and the composite is not a composite. However, it has not been possible to develop a new special function by the conversion.

本発明は、かかる従来の課題に対してなされたもの
で、加工性、機械的強度、耐久性及び耐環境性に優れた
新規な複合材料とその製造方法とを提供することを目的
とする。
The present invention has been made to solve the conventional problems, and an object of the present invention is to provide a novel composite material excellent in workability, mechanical strength, durability and environment resistance, and a method for producing the same.

課題を解決するための手段 本発明は、無機質で粒子状の第1の物質と、この第1
の物質とは構成元素もしくは構成イオンの数,種類ある
いは価数又は結晶構造の内の何れかが異なる第1の物質
以外の無機質の物質との少なくとも2種の物質から構成
された微小粒径複合体であって、この第1の物質以外の
物質が第1の物質とは別の相でかつ連続相を形成し、微
小粒径複合体の気孔率が5%以下にした複合材料とその
製造方法によって、従来の課題を解決した。
Means for Solving the Problems The present invention relates to an inorganic and particulate first substance and the first substance.
Is a fine particle size composite composed of at least two kinds of substances other than the first substance, which is different in the number, kind, valence, or crystal structure of constituent elements or constituent ions A composite material in which a substance other than the first substance forms a continuous phase different from the first substance, and the porosity of the fine particle size composite is 5% or less, and its production The method solves the conventional problems.

作用 本発明の複合材料は、気孔率が低いため緻密な複合体
を形成し、素材が無機質が主体であることから耐熱性は
非常に高い。
Action The composite material of the present invention has a low porosity to form a dense composite material, and since the material is mainly an inorganic material, the heat resistance is very high.

気孔が少ないため、上述の三角点の量が大幅に減少す
る。
Due to the small number of pores, the amount of triangular points mentioned above is greatly reduced.

又、気孔率を5%以下にする事により、複合体の気孔
が全て閉気孔(即ち複合材料内部の気孔全てが、複合材
料の表面と直結していない)となり、機械的強度、耐環
境特性(耐食性)及び加工性等が向上する。
Further, by setting the porosity to 5% or less, all the pores of the composite become closed pores (that is, all the pores inside the composite material are not directly connected to the surface of the composite material), and the mechanical strength and the environmental resistance characteristics are improved. (Corrosion resistance) and workability are improved.

また平均的に混合分散されている従来の複合体の場合
では、構成材料の特性が得られるが、本発明の複合材料
は、第1の物質以外の物質の構成材料混合比を第1の物
質に比べて極端に少なくすることにより、複合材料自体
に例えば99.9%金属でありながら同時に電気的絶縁体で
ある複合材料や、絶縁特性を示しながら良熱伝導体であ
ると言ったような新たな機能を付加できる。
In addition, in the case of the conventional composite material that is mixed and dispersed on average, the characteristics of the constituent material can be obtained, but the composite material of the present invention has the constituent material mixing ratio of the material other than the first material to the first material. By making it extremely smaller than that of the composite material, the composite material itself is a composite material that is, for example, 99.9% metal and at the same time an electrical insulator, and a new material such as a good heat conductor that exhibits insulating properties. Functions can be added.

実施例 第1図に本発明の複合材料の基本的形態の断面概念図
を示す。粒子状の第1の物質1が、第1の物質1とは別
の相でしかも連続相を形成した第1の物質以外の物質2
で覆われた形状を有する。
Example FIG. 1 shows a conceptual cross-sectional view of the basic form of the composite material of the present invention. A substance 2 other than the first substance 1 in which the first substance 1 in the form of particles is a phase different from the first substance 1 and forms a continuous phase.
It has a shape covered with.

本発明の複合材料は、複合材料の気孔率を5%以下に
したものであるため、粒子状の第1の物質1が3個以上
集まる領域の三角点3の複合材料全体に占める割合も、
三角点3自体の気孔率も極めて少ない。
Since the composite material of the present invention has a porosity of 5% or less, the ratio of the triangular points 3 in the region where the three or more first particulate substances 1 gather to the whole composite material is also
The porosity of the triangular point 3 itself is also extremely small.

また本発明の複合材料に供される構成材料は、第1の
物質1も第1の物質以外の物質2も共に無機質である
が、この複合材料の用途分野によって具体的構成材料は
変わる。
Further, the constituent materials provided for the composite material of the present invention are both the first substance 1 and the substance 2 other than the first substance, which are inorganic, but the specific constituent material changes depending on the field of application of the composite material.

但し本発明で言う第1の物質以外の物質とは、第1の
物質の構成元素もしくは構成イオンの何れかの数,種類
あるいは価数又は結晶構造の内何れかが異なっていれば
よい。これらの何れかが異なることによって、第1の物
質とは物性が異なるものであればよい。具体的には第1
の物質が金属である場合には、金属酸化物や金属窒化物
が構成元素、構成元素数、構成元素の価数かつ結晶構造
等が異なる例である。また構成材料が金属とセラミック
スである場合も、これらが異なる。
However, any number, kind, valence, or crystal structure of any of the constituent elements or ions of the first substance may be different from the substance other than the first substance in the present invention. It suffices that the physical properties of the first substance differ from those of the first substance due to any of these being different. Specifically, the first
When the substance is a metal, the metal oxide or the metal nitride is an example in which the constituent elements, the number of constituent elements, the valence of the constituent elements, the crystal structure, and the like are different. Also, when the constituent materials are metal and ceramics, these are different.

例えば発明の複合材料を例えば磁気ヘッド,磁芯もし
くは永久磁石等の磁性材料に適応する場合の構成材料と
しては、例えばコバルト,ニッケルもしくは鉄等の磁性
金属やこれら金属を含有する合金を含むことが必要であ
る。
For example, when the composite material of the invention is applied to a magnetic material such as a magnetic head, a magnetic core or a permanent magnet, the constituent material may include a magnetic metal such as cobalt, nickel or iron, or an alloy containing these metals. is necessary.

また複合材料を磁性材料に適応し、第1の物質1が磁
性金属材料で形成されている場合では、第1の物質以外
の物質2に軟磁性材料特に、フェライト、Mn−Znフェラ
イトやNi−Znフェライト等のフェライト系を用いた複合
材料とすることにより、高い透磁率を得ることが出来
る。
Further, when the composite material is applied to a magnetic material and the first substance 1 is formed of a magnetic metal material, the substance 2 other than the first substance may be a soft magnetic material, especially ferrite, Mn-Zn ferrite or Ni-. High magnetic permeability can be obtained by using a composite material using a ferrite system such as Zn ferrite.

更に本発明の本発明の複合材料を構造材料として用い
る場合の構成材料には、剛性の高いセラミックス,金属
もしくは合金等が一般的であるが、逆に例えばカーボ
ン,グラファイト,MoS2,BN等の固体潤滑剤のような剛
性の低い材質も応用分野によっては用いられる。
Furthermore, when the composite material of the present invention of the present invention is used as a structural material, high rigidity ceramics, metals or alloys are generally used, but conversely, for example, carbon, graphite, MoS 2 , BN, etc. Materials with low rigidity such as solid lubricants are also used depending on the application field.

本発明の複合材料は、上述のように広い応用分野に適
応できるが、特に電気抵抗と他の特性値とで新たな効果
を発揮する分野の応用が好ましい。
Although the composite material of the present invention can be applied to a wide range of fields of application as described above, it is particularly preferably applied to a field of exerting a new effect on electric resistance and other characteristic values.

従って第1の物質1もしくは第1の物質以外の物質2
の何れかに、誘電特性か絶縁特性を有する材料を用いる
と良い。
Therefore, the first substance 1 or the substance 2 other than the first substance 2
It is preferable to use a material having a dielectric characteristic or an insulating characteristic for any of the above.

このような材料としては、例えばAl2O3,SiO2,TiO等
の金属酸化物,例えばAlN,Fe2N,Ni3N2,BN等の金属窒化
物等の金属化合物やセラミックス等が挙げられる。
Examples of such materials include metal oxides such as Al 2 O 3 , SiO 2 , and TiO, metal compounds such as metal nitrides such as AlN, Fe 2 N, Ni 3 N 2 , and BN, and ceramics. To be

本発明の複合材料は、基本構成として粒子状の第1の
物質1をほぼ取り囲む第1の物質以外の物質2があれば
良く、第1の物質1もしくは第1の物質以外の物質2の
種類は1種類である必要はない。特に第1の物質以外の
物質2が2種類以上の場合には、例えばAl2O3のような
塑性が劣る物質と、アパタイト,ZrO2,BiO2,MgOもしく
はUO2のような超塑性を有する物質とを組み合わせるこ
とにより、複合体形成時に加わる塑性変形時に超塑性物
質がその塑性変形量に追随する作用を有する等、それら
の物質の機能により好ましい複合材料ができ好ましい。
なお上述した場合だけでなく、例えば金属酸化物と金属
窒化物との混合体もしくは金属化合物とセラミックスと
の混合体であっても良いことは勿論である。
The composite material of the present invention has, as a basic configuration, a substance 2 other than the first substance that substantially surrounds the particulate first substance 1. The type of the first substance 1 or the substance 2 other than the first substance Need not be one type. Especially when there are two or more kinds of substances 2 other than the first substance, a substance having poor plasticity such as Al 2 O 3 and superplasticity such as apatite, ZrO 2 , BiO 2 , MgO or UO 2 It is preferable to combine with the substances that the composite material has, because a superplastic substance has an action of following the amount of plastic deformation during plastic deformation that is applied during formation of a composite, and a preferable composite material can be obtained due to the functions of these substances.
It is needless to say that not only the case described above but also a mixture of a metal oxide and a metal nitride or a mixture of a metal compound and ceramics may be used.

本発明の複合材料は、第1の物質1の粒径と第1の物
質以外の物質2が形成する連続相の厚みとを調整するこ
とによって、新たな機能を複合材料に付与することがで
きる。特に第1の物質以外の物質2が形成する連続相の
厚みが、重要となる場合が多い。
The composite material of the present invention can impart a new function to the composite material by adjusting the particle size of the first substance 1 and the thickness of the continuous phase formed by the substance 2 other than the first substance. . In particular, the thickness of the continuous phase formed by the substance 2 other than the first substance is often important.

第1の物質以外の物質2の連続相の厚みがナノメータ
ーオーダーの場合には、特にこのような複合材料はナノ
コンポジット材料と呼ばれ、その特異な物性に注目され
ている。本発明の複合材料もこのナノコンポジット材料
も当然含まれる。
When the thickness of the continuous phase of the substance 2 other than the first substance is on the order of nanometers, such a composite material is called a nanocomposite material, and attention is paid to its unique physical properties. Naturally, the composite material of the present invention and this nanocomposite material are also included.

例えば本発明の複合材料を磁性材料として用いる場合
には、この第1の物質1に磁性粉を用い第1の物質以外
に物質2に誘電性もしくは絶縁性材料を適応して形成さ
れた連続相の厚みを5〜50nmにすると、高周波数特性に
優れた磁気ヘッド等に応用できるため好ましい。
For example, when the composite material of the present invention is used as a magnetic material, a magnetic powder is used as the first substance 1 and a continuous phase formed by applying a dielectric or insulating material to the substance 2 in addition to the first substance. A thickness of 5 to 50 nm is preferable because it can be applied to a magnetic head having excellent high frequency characteristics.

このように連続相の厚みが薄いほど本発明の複合材料
に特異な特性が発現させるが、薄すぎる場合には第1の
物質以外の物質2の特性が出現しなくなる。例えば上述
した磁性材料の場合では、5nm未満の厚みになると、第
1の物質以外の物質2の電気絶縁性が損なわれ、通常の
磁性材料とほぼ特性が変わらなくなる。また連続相の厚
みが厚いと、第1の物質1の特性が損なわれる傾向があ
る。例えば上述した磁性材料の場合では、50nmを越える
と第1の物質1の磁性が損なわれ磁気特性が弱まる。
As described above, as the thickness of the continuous phase becomes thinner, the composite material of the present invention exhibits unique characteristics, but when it is too thin, the characteristics of the substance 2 other than the first substance do not appear. For example, in the case of the above-mentioned magnetic material, when the thickness is less than 5 nm, the electric insulation properties of the substance 2 other than the first substance are impaired, and the characteristics are almost the same as those of the ordinary magnetic material. Moreover, when the thickness of the continuous phase is large, the characteristics of the first substance 1 tend to be impaired. For example, in the case of the above-mentioned magnetic material, when it exceeds 50 nm, the magnetism of the first substance 1 is impaired and the magnetic characteristics are weakened.

また第1の物質1の粒子の粒径は、通常0.1〜100μm
程度の大きさであれば、ナノコンポジット材料に適応で
きる。
The particle size of the first substance 1 is usually 0.1 to 100 μm.
It can be applied to nanocomposite materials as long as it has a size.

なお本発明の複合材料は、第1図に示したような構成
だけでなく例えば第2図もしくは第3図に示したような
構成であってもよい。
The composite material of the present invention may have not only the structure shown in FIG. 1 but also the structure shown in FIG. 2 or FIG.

即ち第2図は本発明の複合材料の構成材料を、2段階
に分けて作成した複合材料である。つまり第1の物質11
と第1の物質以外の物質12とから構成された所謂本発明
の複合材料の一方の面上に、第1の物質11だけを更に積
層した構成である。
That is, FIG. 2 shows a composite material prepared by dividing the constituent material of the composite material of the present invention into two stages. That is, the first substance 11
This is a structure in which only the first substance 11 is further laminated on one surface of the so-called composite material of the present invention composed of the substance 12 other than the first substance.

また第3図に示したように、偏平な第1の物質21の偏
平面を揃えて構成すると、複合材料に特異な異方性を作
ることが出来好ましい。例えば偏平な第1の物質21に磁
性材料を適応し、第1の物質以外の物質22に誘電性もし
くは絶縁性材料を適応すると、高周波特性と磁気特性と
に非常に優れた磁気ヘッドが形成される。また三角点23
及び第1の物質以外の物質22で形成される連続相の気孔
率が低く力学的強度に優れているため、個のような優れ
た特性を示しながら加工性もよいと言った特性も示す。
Further, as shown in FIG. 3, it is preferable that the flat surfaces of the first substance 21 are made flat so that a unique anisotropy can be created in the composite material. For example, if a magnetic material is applied to the flat first substance 21 and a dielectric or insulating material is applied to the substance 22 other than the first substance, a magnetic head having excellent high frequency characteristics and magnetic characteristics is formed. It Also the triangular point 23
Further, since the continuous phase formed of the substance 22 other than the first substance has a low porosity and an excellent mechanical strength, it exhibits excellent properties such as individual pieces and also has good workability.

これら複合材料の製造方法の工程としては、粒子状の
第1の物質の周りを第1の物質以外の物質でほぼ覆う被
覆工程と、第1の物質と第1の物質以外の物質とを気孔
率5%以下の成形体を作成する成形工程との2つに主に
大別される。
The steps of the method for manufacturing these composite materials include a covering step of substantially covering the periphery of the particulate first substance with a substance other than the first substance, and a porosity of the first substance and the substance other than the first substance. The molding process is mainly divided into two processes, namely, a molding process for forming a molded product having a rate of 5% or less.

被覆工程の手法としては、酸素を含有する雰囲気中で
熱処理を行う酸化処理、もしくは窒素を含有する雰囲気
中で熱処理を行う窒化処理、更に例えば水素等の還元性
雰囲気中で熱処理を行う還元処理等のガスを第1の物質
に作用させる方法、第1の物質以外の物質をターゲット
として用い第1の物質をスパッター処理する方法もしく
は例えば振動ミルもしくはボールミル等の手段を用い第
1の物質と第1の物質以外の物質とをメカニカルに付着
させるメカニカルアロイング等が挙げられる。
As the method of the coating step, an oxidation treatment in which heat treatment is performed in an atmosphere containing oxygen, a nitriding treatment in which heat treatment is performed in an atmosphere containing nitrogen, or a reduction treatment in which heat treatment is performed in a reducing atmosphere such as hydrogen, etc. Of the first substance and the first substance by using a gas other than the first substance as a target, a method of sputtering the first substance by using a gas other than the first substance, or a means such as a vibration mill or a ball mill. Mechanical alloying and the like that mechanically attaches a substance other than the substance described above.

この被覆工程は、第1の物質の周りを第1の物質以外
の物質でほぼ覆う工程であることから、本発明の複合材
料の連続相の構成と厚みとをほぼ決定する重要な工程で
ある。
Since this coating step is a step of substantially covering the first substance with a substance other than the first substance, it is an important step for substantially determining the constitution and thickness of the continuous phase of the composite material of the present invention. .

次に成形工程の手法としては、高温高圧下で焼結する
通常の手法によって行うことができる。しかしこの成形
工程は、複合材料の気孔率を5%以下にし、本発明の複
合材料の構成,機械的強度並びに耐環境性等を決定す
る。この気孔率を5%以下にするためには、高温高圧下
で処理し高密度化する手法がとられ、通常第1の物質以
外の物質の溶融温度程度あるいはそれ以上に加熱し、静
水圧により等方的な加圧あるいは一軸方向にプレス加圧
して得られる。具体的には500℃以上に加熱し、300kg/c
m2以上の圧力印加で達成される。
Next, as a method of the molding step, a usual method of sintering under high temperature and high pressure can be performed. However, this molding step makes the porosity of the composite material 5% or less, and determines the constitution, mechanical strength, environment resistance, etc. of the composite material of the present invention. In order to reduce the porosity to 5% or less, a method of treating at a high temperature and a high pressure to densify the material is used. Usually, the material is heated to about the melting temperature of a substance other than the first substance or higher, and hydrostatic pressure is applied. It is obtained by isotropic pressing or uniaxial pressing. Specifically, it is heated to 500 ℃ or more, 300kg / c
It is achieved by applying a pressure of m 2 or more.

但し第1の物質に比べ第1の物質以外の物質の塑性変
形量が小さい場合には、この成形工程時の熱処理に第1
の物質以外の物質が追随できないため破壊し、結果的に
第1の物質同士が結合することにより、複合材料自体の
特性を損なってしまう。このような欠点を解消するた
め、第1の物質以外の物質が第1の物質の化合物である
場合には、第1の物質の化合物を作成する条件の元で成
形工程を行うことにより、第1の物質以外の物質を追加
形成させればよい。あるいは第1の物質以外の物質に塑
性変形量が異なる複数種の物質を用いることに依って
も、塑性変形量の大きい物質が小さい物質の切れ目に入
り込み、第1の物質を覆わせればよい。この塑性変形量
の大きい物質としては、例えば前述した超塑性材料があ
る。
However, when the amount of plastic deformation of the substance other than the first substance is smaller than that of the first substance, the first heat treatment during the molding process is performed.
Since substances other than the substance of 1) cannot follow, they are destroyed, and as a result, the first substances are bound to each other, and the characteristics of the composite material itself are impaired. In order to eliminate such a drawback, when the substance other than the first substance is the compound of the first substance, the molding step is performed under the condition of producing the compound of the first substance, A substance other than the substance 1 may be additionally formed. Alternatively, by using a plurality of types of substances having different plastic deformation amounts as the substances other than the first substance, the substance having a large plastic deformation amount may enter the gap of the small substance to cover the first substance. Examples of the substance having a large plastic deformation amount include the above-mentioned superplastic material.

更にこの成形工程中において、一軸プレスすることに
より第1の物質の形状を偏平化すると、特性に異方性を
有する複合材料ができ、この異方性を積極的に応用でき
好ましい。
Further, when the shape of the first substance is flattened by uniaxial pressing during this molding step, a composite material having anisotropic properties can be formed, and this anisotropy can be positively applied, which is preferable.

なおこの成形工程時に、第1の物質以外の物質に焼結
助剤を添加すると、複合材料の焼結をより促進する役目
を果たし、B203等のホウ素系化合物,Pb0等の鉛系化合
物,V205等のバナジウム系化合物もしくはBi203等のビス
マス系化合物等が挙げられ、必要に応じて適宜添加され
る。
When a sintering aid is added to a substance other than the first substance during this molding step, it plays a role of further promoting the sintering of the composite material, such as a boron-based compound such as B203, a lead-based compound such as Pb0, or V205. And vanadium-based compounds such as Bi203 and bismuth-based compounds such as Bi203, and the like, which are appropriately added as necessary.

更に本発明の複合材料の成形体を高温高圧下で熱処理
を行い、気孔率を3%以下にする高密度化工程を加える
と、複合材料の機械的強度,磁気特性,熱伝導性,耐久
性,耐環境性もしくは加工性等の複合体の特性が更に良
好となり、場合によってはこれら特性に異方性が現れる
ため好ましい。この高密度化工程と成形工程との違いは
気孔率の値であり、要は高温高圧下で処理することには
変わりはない。但し気孔率の値が異なると言うことは、
高密度化工程の方が一般により高圧下で行う。
Furthermore, when the molded body of the composite material of the present invention is subjected to heat treatment under high temperature and high pressure, and a densification step of making the porosity 3% or less is added, mechanical strength, magnetic characteristics, thermal conductivity and durability of the composite material are obtained. The properties of the composite such as environment resistance and workability are further improved, and in some cases, anisotropy appears in these properties, which is preferable. The difference between this densification step and the molding step is the porosity value, and the point is that processing is performed at high temperature and high pressure. However, different porosity values mean that
The densification process is generally performed under higher pressure.

なお前述した偏平化をこの高密度化工程で行ってもよ
い。
The flattening described above may be performed in this densification step.

以下、実施例をあげて説明する。 Hereinafter, an example will be described.

実施例1 第1の物質として平均粒径30μmのFe−Al(Al含有量
5%)合金の粉体を、800℃にて1時間空気中で加熱酸
化することによって、第1の物質以外の物質として酸化
アルミニウムの薄膜を、粉体表面に均一に形成した。酸
化アルミニウムは誘電体であり、上記被覆粉体は完全な
絶縁体であった。
Example 1 As a first substance, a powder of an Fe-Al (Al content 5%) alloy having an average particle size of 30 μm was heated and oxidized in air at 800 ° C. for 1 hour to obtain a substance other than the first substance. A thin film of aluminum oxide as a substance was uniformly formed on the powder surface. Aluminum oxide was a dielectric and the coated powder was a perfect insulator.

この被覆粉体に、結着剤として低温揮発性ワックスを
0.05重量%混ぜて成形し、この結着剤を加熱し除去した
後、空気中にて圧力50kg/cm2,135℃の条件で1時間焼成
した。得られた焼結体は約4.2%の気孔率を有してお
り、充分緻密であった。
A low temperature volatile wax as a binder is added to the coated powder.
The mixture was mixed with 0.05% by weight and molded, the binder was heated and removed, and then the mixture was fired in air at a pressure of 50 kg / cm 2 and 135 ° C. for 1 hour. The obtained sintered body had a porosity of about 4.2% and was sufficiently dense.

この試料を切断して研磨したところ、表面は鏡面とな
り、第1の物質であるFe−Al合金の特徴を反映した金属
光沢を有していた。
When this sample was cut and polished, the surface became a mirror surface and had a metallic luster reflecting the characteristics of the Fe-Al alloy as the first substance.

また複合材料中の三角点が占める面積率は、約3%で
あり、またその大きさは約1.2〜2μmで第1の物質の
粒径の約1/15以下であった。このように三角点の割合が
小さいのは、第1の物質が圧縮され塑性変形したためで
ある。
The area ratio occupied by the triangular points in the composite material was about 3%, and the size was about 1.2 to 2 μm, which was about 1/15 or less of the particle size of the first substance. The reason why the ratio of the triangular points is small is that the first substance is compressed and plastically deformed.

一方研磨面の電気抵抗を測定したところ、約15MΩで
あった。第1の物質として用いたFe−Al合金のみではせ
いぜい数Ω程度であり、導電性を示す。これに対して本
発明の複合材料は、一見第1の物質そのものに見える
が、電気抵抗はきわめて高いという相反した特性を有す
る。
On the other hand, when the electric resistance of the polished surface was measured, it was about 15 MΩ. Only the Fe-Al alloy used as the first substance has a conductivity of several Ω at most. On the other hand, the composite material of the present invention has the contradictory property that it looks like the first substance itself at first glance, but has an extremely high electric resistance.

また本発明の複合材料の硬度を測定したところ、第1
の物質の約30%増であり、大幅な改善が認められた。
When the hardness of the composite material of the present invention was measured,
This is an increase of about 30%, and a significant improvement was observed.

従って本発明の複合材料は、Fe−Al合金と同じ外観で
ありながら、抵抗値及び硬度が高く、高耐熱性という特
性があった。
Therefore, the composite material of the present invention had the same appearance as that of the Fe-Al alloy, but had high resistance and hardness and high heat resistance.

上記の複合材料を耐熱性の容器に充填し、酸素を常圧
で封入して、800℃に加熱し2000kg/cm2の圧力を2時間
かけたところ、気孔率は更に低下し0.1%以下の高密度
焼結複合材料を得た。
The above composite material was filled in a heat-resistant container, oxygen was sealed at normal pressure, and the mixture was heated to 800 ° C. and a pressure of 2000 kg / cm 2 was applied for 2 hours, and the porosity was further reduced to 0.1% or less. A high density sintered composite material was obtained.

高密度焼結複合材料の電気抵抗値は20MΩ以上であり
テスターでは測定限界を越えていた。また硬度は約125
%に改善され、三角点の面積率は0.1%以下であった。
The electric resistance of the high-density sintered composite material was 20 MΩ or more, which exceeded the measurement limit of the tester. The hardness is about 125
%, And the area ratio of triangular points was less than 0.1%.

なおこの高密度化工程を窒素中及び空気中でも行った
が、第1の物質が窒化又は酸窒化されたこと以外は何れ
の場合にも同様の特性を示した。
Although this densification step was performed in nitrogen and in air as well, the same characteristics were exhibited in all cases except that the first substance was nitrided or oxynitrided.

一方複合材料をアルゴン雰囲気中で再び耐熱性の容器
に封入し、上述した高密度化工程と同じ条件でホットプ
レスしたところ、気孔率は1.5%以下の高密度焼結複合
材料を得た。ところが電気抵抗値は1Ω以下であり、粒
界の誘電体膜が破壊されていることが電子顕微鏡で観察
された。
On the other hand, when the composite material was sealed again in a heat resistant container in an argon atmosphere and hot pressed under the same conditions as in the densification step described above, a high density sintered composite material having a porosity of 1.5% or less was obtained. However, the electric resistance value was 1 Ω or less, and it was observed with an electron microscope that the dielectric film at the grain boundary was destroyed.

このように本発明の高密度化工程は、酸素もしくは窒
素等の活性ガスを含む雰囲気で行う必要がある。
Thus, the densification step of the present invention needs to be performed in an atmosphere containing an active gas such as oxygen or nitrogen.

実施例2 次に平均粒径15μmの純鉄粉体を第1の物質として用
い、この純鉄粉体にアルミニウムをスパッターして約0.
05μm(約50nm)の薄いコーティング層を先ず形成し
た。
Example 2 Next, pure iron powder having an average particle size of 15 μm was used as a first substance, and aluminum was sputtered on this pure iron powder to a density of about 0.
A thin coating layer of 05 μm (about 50 nm) was first formed.

このアルミニウム薄膜を有した純鉄粉体を、実施例1
で述べた活性なガスを用いるプロセスによって得た複合
材料は、やはり上記と同じ高い抵抗を示すなど所望の特
性を得た。
A pure iron powder having this aluminum thin film was prepared as in Example 1.
The composite material obtained by the process using the active gas described in 1. obtained desired properties such as the same high resistance as described above.

実施例3 Fe−Al−Siよりなる平均粒径3μmの合金粉体を第1
の物質とし、これに0.1%のポリビニールアルコール液
を加え、5000kg/cm2の高圧で成形した。この成形体を1
時間空気中800℃で加熱して、第1の物質以外の物質と
して主に酸化アルミニウムよりなる薄い酸化膜を形成さ
せた後、ホットプレス装置にいれ、空気中で800℃に加
熱し200kg/cm2の圧力で3時間加圧焼成した。
Example 3 First, an alloy powder made of Fe-Al-Si having an average particle size of 3 μm was used.
0.1% polyvinyl alcohol solution was added to this substance and molded at a high pressure of 5000 kg / cm 2 . This molded body 1
After heating in air at 800 ° C for a period of time to form a thin oxide film consisting mainly of aluminum oxide as a substance other than the first substance, put it in a hot press machine and heat it to 800 ° C in air to 200kg / cm It was pressure baked at a pressure of 2 for 3 hours.

得られた複合材料は、5%以下の気孔率を有していた
が、金属光沢の鏡面に研磨され、抵抗値は20MΩ以上を
示した。
Although the obtained composite material had a porosity of 5% or less, it was polished to a mirror surface of metallic luster and showed a resistance value of 20 MΩ or more.

なおホットプレス時の重量増加は、別のモデル実験の
結果より0.1%であり、従って99.9%金属であることが
示されているが、高抵抗値を示した。
The increase in weight during hot pressing was 0.1% from the results of another model experiment, and thus it was shown to be 99.9% metal, but showed a high resistance value.

即ち、焼結の過程に於いても第1の物質以外の物質相
の形成が為されることが判明した。この場合には、第1
の物質の構成要素のアルミニウムが、空気という活性ガ
スによって、電気絶縁性の高い誘電体膜である酸窒化ア
ルミニウムを形成し、これが第1の物質以外の物質の機
能をしている。
That is, it was found that a material phase other than the first material was formed even during the sintering process. In this case, the first
Aluminum, which is a component of the substance, forms aluminum oxynitride, which is a dielectric film having high electric insulation, by the active gas of air, and this functions as a substance other than the first substance.

また本実施例の複合材料のビッカース硬度は、従来材
の500〜550に対して700以上の非常に高い値を示した。
Further, the Vickers hardness of the composite material of this example showed a very high value of 700 or more, compared with the conventional material of 500 to 550.

更に三角点に相応する面積率は、2.5%以下と非常に
小さいものであり、その平均粒径は第1の物質の平均粒
径の1/20と小さなものであった。
Further, the area ratio corresponding to the triangular points was 2.5% or less, which was extremely small, and the average particle size was as small as 1/20 of the average particle size of the first substance.

なおホットプレス圧力を400kg/cm2に増圧した結果、
3%以下の気孔率を得、抵抗値20MΩ以上、ビッカース
硬度720を得た。800kg/cm2の圧力ではさらに高い750以
上の硬度を得た。
In addition, as a result of increasing the hot press pressure to 400 kg / cm 2 ,
A porosity of 3% or less was obtained, a resistance value of 20 MΩ or more and a Vickers hardness of 720 were obtained. At a pressure of 800 kg / cm 2 , a hardness of 750 or higher was obtained.

実施例7 第1の物質としてSiが10wt%、Alが6wt%、Feが84wt
%の組成のSi−Al−Fe合金の球状粉末(#250メッシュ
篩以下、平均粒子径約30μm)に、第1の物質以外の物
質として超塑性を示すB12O3、MgO、UO2を各々別々にSi
−Al−Fe合金粉体の重量に対して1wt%添加混合し、各
々別々にトルエンを溶媒としてボールミルにて均一に混
合した。
Example 7 Si as a first material is 10 wt%, Al is 6 wt%, Fe is 84 wt%
% Of spherical powder of Si-Al-Fe alloy (# 250 mesh sieve or less, average particle size of about 30 μm) with B1 2 O 3 , MgO and UO 2 showing superplasticity as a substance other than the first substance. Si separately
1 wt% was added to and mixed with the weight of the -Al-Fe alloy powder, and each was uniformly mixed with toluene as a solvent in a ball mill.

このスラリーを窒素ガス気流中にて混合乾燥させ、こ
れに昇華性の有機バインダーである樟脳を5wt%添加
し、乳鉢にて更に混合した。
This slurry was mixed and dried in a nitrogen gas stream, and 5 wt% of camphor, which was a sublimable organic binder, was added to the slurry and further mixed in a mortar.

この混合粉を1000kg/cm2の静水圧下で等方的に加圧成
形(直径30mm厚さ30mm)し、この成形体を800℃の温度
の不活性雰囲気中でホットプレスし、複合材料を作製し
た。プレス圧力は1000〜2000kg/cm2で、プレス時間は2
時間加圧した。
This mixed powder is isotropically pressure-molded (diameter 30 mm, thickness 30 mm) under hydrostatic pressure of 1000 kg / cm 2 , and this molded body is hot-pressed in an inert atmosphere at a temperature of 800 ° C. It was made. Pressing pressure is 1000-2000kg / cm 2 , pressing time is 2
Pressurized for hours.

これらの複合材料の焼結密度および、電気抵抗を以下
の手法で測定した。
The sintered density and electric resistance of these composite materials were measured by the following methods.

各焼結体の断面を研磨し、光学顕微鏡にて観察及び焼
結体の密度を測定した結果、気孔率で1%以下の緻密な
材料であった。また各焼結体から3×5×10mm3棒状試
料を切り出し、その両端にIn−Gaの電極を形成し、これ
らの試料の電気抵抗を測定したところ、電気抵抗は101
〜102Ωcmを示した。
As a result of polishing the cross section of each sintered body, observing with an optical microscope and measuring the density of the sintered body, it was a dense material having a porosity of 1% or less. The cut out 3 × 5 × 10mm 3 rod-shaped samples from each of the sintered bodies, the electrodes of In-Ga formed on both ends, the measured electrical resistance of these samples, the electrical resistance of 10 1
It showed ~ 10 2 Ωcm.

実施例8 第1の物質として実施例7のSi−Al−Fe合金の球状粉
末に、第1の物質以外の物質として超塑性絶縁材料のY2
O3を3mol%含む正方晶ジルコニア多結晶体(以下Y−TZ
Pと記す)をSi−Al−Fe合金粉体の重量に対して1wt%添
加し、トルエンを溶媒としてボールミルにて均一に混合
した。
Example 8 The spherical powder of the Si—Al—Fe alloy of Example 7 was used as the first substance, and Y 2 of the superplastic insulating material was used as the substance other than the first substance.
Tetragonal zirconia polycrystal containing 3 mol% of O 3 (hereinafter Y-TZ
P) was added to the Si-Al-Fe alloy powder in an amount of 1 wt% with respect to the weight of the powder, and the mixture was uniformly mixed in a ball mill using toluene as a solvent.

このスラリーを窒素ガス気流中にて混合乾燥させ、こ
れに昇華性の有機バインダーである樟脳を5wt%添加
し、乳鉢にて更に混合した。
This slurry was mixed and dried in a nitrogen gas stream, and 5 wt% of camphor, which was a sublimable organic binder, was added to the slurry and further mixed in a mortar.

この混合粉を1000kg/cm2の静水圧下で等方的に加圧成
形(直径30mm厚さ30mmの円盤形状)し、この成形体を80
0℃の温度の不活性雰囲気中でホットプレスし、複合材
料を得た。プレス圧力は1000〜2000kg/cm2で、プレス時
間は2時間加圧した。
This mixed powder is isotropically pressure-molded under a hydrostatic pressure of 1000 kg / cm 2 (a disk shape with a diameter of 30 mm and a thickness of 30 mm).
Hot pressing was performed in an inert atmosphere at a temperature of 0 ° C. to obtain a composite material. The pressing pressure was 1000 to 2000 kg / cm 2 , and the pressing time was 2 hours.

その焼結体の焼結密度および、電気抵抗を実施例7と
同様な手法で測定した。
The sintered density and electric resistance of the sintered body were measured by the same method as in Example 7.

その結果焼結密度は気孔率で1%以下の緻密な材料
で、電気抵抗は1010Ωcmであった。
As a result, the sintered density was a dense material having a porosity of 1% or less, and the electric resistance was 10 10 Ωcm.

実施例9 実施例7のSi−Al−Fe合金の球状粉末に、第1の物質
以外の物質のY−TZPの代わりに、同じく超塑性絶縁材
料のアパタイト(Ga5(PO4)3OH)を同量添加し、後は実施
例2と同様にして複合材料を得た。
Example 9 Instead of Y-TZP which is a substance other than the first substance, a spherical powder of the Si-Al-Fe alloy of Example 7 was replaced by apatite (Ga 5 (PO 4 ) 3 OH) which was also a superplastic insulating material. Was added in the same amount, and thereafter a composite material was obtained in the same manner as in Example 2.

この複合材料の焼結密度および、電気抵抗を実施例7
と同様な手法で測定した。
The sintered density and electric resistance of this composite material were measured in Example 7.
The measurement was performed in the same manner as in.

その結果焼結密度は気孔率で1%以下の稠密な材料
で、電気抵抗はやはり1010Ωcmであった。
As a result, the sintered density was a dense material having a porosity of 1% or less, and the electric resistance was also 10 10 Ωcm.

このように実施例7では電気抵抗は101〜102Ωcmであ
ったが、実施例8及び9では電気抵抗が1010Ωcmであっ
たのは、第1の物質以外の物質として用いたY−TZPも
しくはアパタイトが各々低温から超塑性を示すため、Si
−Al−Fe粉末粒子の塑性変形に応じて充分に塑性変形す
るためである。
As described above, in Example 7, the electric resistance was 10 1 to 10 2 Ωcm, but in Examples 8 and 9, the electric resistance was 10 10 Ωcm. −Since TZP or apatite shows superplasticity at low temperatures,
This is because the Al-Fe powder particles are sufficiently plastically deformed according to the plastic deformation.

この様に超塑性を示すY−TZPやアパタイトを絶縁材
料として使用した場合には、気孔率が5%以下の高密度
で、高電気抵抗の複合材料が得られる効果が顕著であ
る。
Thus, when Y-TZP or apatite showing superplasticity is used as an insulating material, the effect of obtaining a composite material having a high density with a porosity of 5% or less and a high electric resistance is remarkable.

比較例1 実施例7のSi−Al−Fe合金粉体を使用し、超塑性絶縁
材料のY−TZPを添加しないで、これに樟脳を5wt%添加
し、実施例7と同様に成形体を作製し、同一の条件でホ
ットプレスした。
Comparative Example 1 Using the Si-Al-Fe alloy powder of Example 7, 5 wt% of camphor was added to this without adding Y-TZP, which is a superplastic insulating material, and a compact was formed in the same manner as in Example 7. It was produced and hot pressed under the same conditions.

その焼結体の焼結密度および、電気抵抗を実施例7と
同様な手法で測定した。
The sintered density and electric resistance of the sintered body were measured by the same method as in Example 7.

その結果焼結密度は気孔率で1%以下の稠密な材料で
あったが、電気抵抗は10-4Ωcm程度と金属材料と同程度
の低抵抗であった。
As a result, the sintered density was a dense material having a porosity of 1% or less, but the electric resistance was about 10 −4 Ωcm, which was a low resistance comparable to that of metal materials.

比較例2 実施例7のSi−Al−Fe合金に対して、高電気抵抗材料
のAl2O3粉末を重量比で1%の割合(体積比で1wt%)で
添加し、更に実施例7と同様にY−TZPを追加し、実施
例7と同一な方法で複合焼結体を作製し、その焼結密
度、電気抵抗を測定した。
Comparative Example 2 To the Si-Al-Fe alloy of Example 7, Al 2 O 3 powder, which is a high electric resistance material, was added at a weight ratio of 1% (volume ratio of 1 wt%). Similarly to the above, Y-TZP was added, and a composite sintered body was produced in the same manner as in Example 7, and the sintered density and electric resistance thereof were measured.

その結果、複合体の気孔率は1%以下と高密度であっ
たが、その電気抵抗はやはり10-4Ωcm程度と金属材料と
同程度の低抵抗であった。
As a result, the porosity of the composite was as high as 1% or less, but its electrical resistance was about 10 −4 Ωcm, which was as low as that of a metal material.

その他Y−TZP以外にもSiO2又はCaO等の高電気抵抗材
料(絶縁材料)について、Y−TZPと同様にSi−Al−Fe
合金に添加して複合焼結体を作製し、その気孔率(焼結
密度)、電気抵抗を測定したが、気孔率が5%以上の比
較的低密度のものでは、その電気抵抗が高い(>103Ωc
m)試料が作製できたが、気孔率が5%以下の高密度複
合体では、高密度になるほど、絶縁層が破れ易くなるた
め、電気抵抗が低下し、ほぼ金属なみの10-4Ωcm程度の
抵抗のものからせいぜい101Ωcm程度のものまで作製で
きたが、抵抗値のばらつきがあり、高抵抗の複合材料が
再現性よく得られなかった。
For high electrical resistance material such as SiO 2 or CaO in addition to other Y-TZP (insulating material), as in the Y-TZP Si-Al-Fe
A composite sintered body was prepared by adding it to the alloy, and its porosity (sintered density) and electric resistance were measured. The electric resistance is high when the porosity is 5% or more and the density is relatively low ( > 10 3 Ωc
m) A sample could be prepared, but in a high-density composite with a porosity of 5% or less, the higher the density, the easier the insulating layer is torn, and the electrical resistance decreases, which is approximately 10 -4 Ωcm, which is almost like a metal. Although could be produced from those of resistance to at best about 10 1 [Omega] cm, there is a variation in resistance, a composite material of high resistance is not obtained with good reproducibility.

すなわち実施例7の各超塑性の絶縁材料をただ単に添
加複合しただけでは、101Ωcmの抵抗値がせいぜいであ
り、それ以上の抵抗は得られなく、まして実施例8もし
くは9のY−TZPもしくはアパタイトを添加複合化した
ときのように、103Ωcm以上の電気抵抗を有するものは
得られなかった。
That is, the resistance value of 10 1 Ωcm was at most obtained by simply adding and compounding the respective superplastic insulating materials of Example 7, and no more resistance was obtained, let alone the Y-TZP of Example 8 or 9. Alternatively, it was not possible to obtain a material having an electric resistance of 10 3 Ωcm or more as in the case of adding and compounding apatite.

本発明によれば、上述した実施例7〜9のように金属
材料を多く含有するが、電気抵抗の高い複合材料が得ら
れる。
According to the present invention, a composite material containing a large amount of metal material as in Examples 7 to 9 described above but having high electric resistance can be obtained.

このように金属材料の電気抵抗を高く出来ると、従来
の金属材料では出来なかった特性を引き出せる。例えば
一般に金属磁性体は、高飽和磁束密度であるが、その電
気抵抗が10-4Ωcm程度と低いため、渦電流損失のため、
高周波領域では使用出来なかったが、本発明のように1w
t%程度の超塑性の絶縁材料と複合化することにより、
飽和磁束密度を低下させずに、電気抵抗を103Ωcm以上
に大きく出来るので、従来使用出来なかった高周波領域
(例えば1MHz以上)で使用出来る磁芯材料が得られる。
If the electric resistance of the metal material can be increased in this way, it is possible to bring out characteristics that cannot be achieved by the conventional metal material. For example, a metal magnetic material generally has a high saturation magnetic flux density, but its electrical resistance is as low as 10 −4 Ωcm, which causes eddy current loss.
It could not be used in the high frequency range, but like the present invention, 1w
By combining with a superplastic insulating material of about t%,
Since the electric resistance can be increased to 10 3 Ωcm or more without lowering the saturation magnetic flux density, a magnetic core material that can be used in a high frequency range (for example, 1 MHz or more) that could not be used conventionally can be obtained.

実施例7〜9では、Fe−Si−Al合金に超塑性の絶縁材
料を添加複合体化した例を示したが、Fe−Si−Al合金に
限らず、他の金属例えば、Fe−Co系合金や、Fe−Si系合
金、Fe−Ni系、Fe−Al系合金等、あらゆる金属及び金属
系化合物にたいしても、超塑性の絶縁材料を添加複合
し、高密度に焼結若しくは固体化したときに、電気抵抗
を絶縁体程度にまで高くすることが出来る。又、超塑性
を示す物質の添加量も1wt%に限定されるものではな
い。
Examples 7 to 9 show examples in which a superplastic insulating material is added to the Fe-Si-Al alloy to form a composite, but not limited to the Fe-Si-Al alloy, other metals such as Fe-Co alloys are used. Alloys, Fe-Si alloys, Fe-Ni alloys, Fe-Al alloys, and all other metals and metal-based compounds, when a superplastic insulating material is added and composited and sintered or solidified at high density. In addition, the electric resistance can be increased to the level of an insulator. Further, the addition amount of the substance exhibiting superplasticity is not limited to 1% by weight.

更に実施例7〜9では、成形体を作成するための結着
材として樟脳を用いたが、結着材はこれに限定されるも
のではなく、例えばポリメタクリル酸メチル等のような
高温高圧下で昇華する結着材であれば適応できるし、
又、容器に封入すれば結着材を必ずしも必要としないと
いえる。
Furthermore, in Examples 7 to 9, camphor was used as the binder for forming the molded body, but the binder is not limited to this, for example, under high temperature and high pressure such as polymethylmethacrylate. It can be applied if it is a binder that sublimes at
Further, it can be said that the binder is not necessarily required if it is sealed in the container.

実施例11 第1の物質として組成が重量比でNi:Fe=78.5:21.5の
Ni−Fe合金の球状粒子粉末(#250メッシュ,平均粒径
約30μm)を準備した。この粉末粒子表面に窒素雰囲気
下、Alをターゲットとしてスパッタリングを5分間行
い、AlNを主成分とする厚さ数nmの絶縁膜を形成し、第
1の物質以外の物質とした。
Example 11 As a first substance, the composition was Ni: Fe = 78.5: 21.5 by weight.
Spherical particle powder of Ni-Fe alloy (# 250 mesh, average particle size of about 30 μm) was prepared. Sputtering was performed on the surface of the powder particles in a nitrogen atmosphere with Al as a target for 5 minutes to form an insulating film containing AlN as a main component and having a thickness of several nm, and used as a substance other than the first substance.

この被覆粒子粉体を500kg/cm2で加圧成形して、成形
体を作製後、Ar雰囲気中800℃に加熱し1000kg/cm2の圧
力で2時間ホットプレスし、高密度(相対密度98〜99
%)複合材料を作製した。
This coated particle powder is pressure-molded at 500 kg / cm 2 to form a molded body, which is then heated at 800 ° C. in an Ar atmosphere and hot-pressed at a pressure of 1000 kg / cm 2 for 2 hours to obtain a high density (relative density 98 ~ 99
%) A composite material was made.

この複合材料の周波数と実効透磁率の磁気特性を、第
6図に示す。
The magnetic characteristics of frequency and effective magnetic permeability of this composite material are shown in FIG.

上記複合材料の電気抵抗率は、107〜108(Ωcm)と高
抵抗であるため、透磁率は周波数に殆ど依存せず、10kH
z〜1MHzの範囲に於てμ=1300〜1400の値を示し、膜厚
の増加にともない減少することが示している。
Since the electric resistivity of the above composite material is as high as 10 7 to 10 8 (Ωcm), the magnetic permeability hardly depends on the frequency and is 10 kH
It shows a value of μ = 1300 to 1400 in the range of z to 1 MHz, and shows that it decreases as the film thickness increases.

なお、焼結助材の添加物としてB2O3を被覆粒子粉末に
対して0.05〜0.10重量の割合で加えて加圧成形して、同
様のホットプレス条件で焼結を行った。高密度焼結(相
対密度99.5%)が達成され、より薄い絶縁膜(7nm)で
も高電気抵抗が得られた。さらにこの複合材料は、高周
波数領域でもμ=1700〜1800の値を示した。
In addition, B 2 O 3 was added as an additive of a sintering aid at a ratio of 0.05 to 0.10 weight to the coated particle powder, pressure molding was performed, and sintering was performed under the same hot press conditions. High density sintering (relative density 99.5%) was achieved and high electric resistance was obtained even with thinner insulating film (7 nm). Furthermore, this composite material showed a value of μ = 1700 to 1800 even in the high frequency region.

実施例12 重量比で組成がNi:Al:Fe=10:6:84のNi−Al−Fe合金
の球状粒子粉末(#250メッシュ、平均粒径約30μm)
を第1の物質として準備した。これを流量200cc/minの
窒素雰囲気下で800℃に加熱し1時間熱処理を行ない、A
lNを主成分とする厚さ30nmの絶縁膜を第1の物質以外の
物質として形成した。
Example 12 Spherical particle powder of Ni—Al—Fe alloy having a composition of Ni: Al: Fe = 10: 6: 84 by weight (# 250 mesh, average particle size of about 30 μm)
Was prepared as the first substance. This is heated to 800 ° C in a nitrogen atmosphere with a flow rate of 200cc / min and heat-treated for 1 hour.
An insulating film having a thickness of 30 nm and containing lN as a main component was formed as a substance other than the first substance.

この被覆合金粉体を500kg/cm2で加圧成形して、成形
体を作製後、Ar雰囲気中で900℃に加熱し100kg/cm2の圧
力で2時間ホットプレスし、相対密度98〜99%の高密度
複合材料を作製した。
This coated alloy powder is pressure-molded at 500 kg / cm 2 to form a molded body, which is then heated to 900 ° C. in an Ar atmosphere and hot-pressed at a pressure of 100 kg / cm 2 for 2 hours to obtain a relative density of 98 to 99. % High density composite material was made.

この複合材料は、ρ=108〜109Ωcmの高電気抵抗率を
示し、その磁気特性は、周波数1MHzで透磁率μ=1470、
飽和磁束密度は9500Gの値を示した。
This composite material exhibits a high electrical resistivity of ρ = 10 8 to 10 9 Ωcm, and its magnetic characteristics are such that the magnetic permeability at a frequency of 1 MHz is μ = 1470,
The saturation magnetic flux density showed a value of 9500G.

この実施例より、アルミニウムを成分として含む金属
粒子を使うことにより、N2ガス雰囲気中で熱処理すると
いう量産に適した簡易な方法で、AlNを主成分とする絶
縁膜を均一に形成することができ、さらにこの被覆膜は
高温高圧時に破壊されない強度を持つことが確認され
た。
From this example, by using metal particles containing aluminum as a component, it is possible to uniformly form an insulating film containing AlN as a main component by a simple method suitable for mass production, that is, heat treatment in an N 2 gas atmosphere. It was confirmed that this coating film had a strength that was not destroyed at high temperature and high pressure.

実施例13 実施例12と同じのNi−Al−Fe合金の球状粉末を用い、
実施例12と同様の手法でAlNを主成分とする厚さ5〜10n
mの絶縁膜を球状粉末粒子の表面に形成した。
Example 13 Using the same spherical powder of Ni-Al-Fe alloy as in Example 12,
A thickness of 5 to 10 n containing AlN as a main component was obtained in the same manner as in Example 12.
An insulating film of m was formed on the surface of the spherical powder particles.

この合金粉体に、添加物としてB2O3を0.01wt%〜0.50
wt%の割合で加え、B2O3として2nm〜100nmの膜厚換算と
して添加した。
This alloy powder, a B 2 O 3 as additives 0.01 wt% to 0.50
It was added in the proportion of wt% and added as B 2 O 3 in terms of film thickness of 2 nm to 100 nm.

又比較のためPbO,Bi2O3,V2O5,SiO2をそれぞれ2〜100
nmの膜厚になるように添加した。
For comparison, PbO, Bi 2 O 3 , V 2 O 5 , and SiO 2 are 2 to 100
It was added so as to have a film thickness of nm.

これらそれを500kg/cm2で加圧して成形体を作製後、A
r雰囲気中で900℃に加熱し1000kg/cm2の圧力で2時間ホ
ットプレスし、相対密度99%の高密度複合材料を作製し
た。
After pressurizing these with 500 kg / cm 2 to make a molded body,
It was heated to 900 ° C. in an r atmosphere and hot pressed at a pressure of 1000 kg / cm 2 for 2 hours to produce a high density composite material with a relative density of 99%.

このB2O3,PbO,Bi2O3,V2O5を添加したAlNとの合計膜厚
5〜50nmのナノコンポジット磁性材料は、ρ=108〜109
Ωcmの高電気抵抗率を示し、第6図に示すようにその磁
気特性は、周波数1MHzで透磁率μ=2000、飽和磁束密度
は9600Gの値を示した。またB2O3の代わりにPbO,Bi2O3,V
2O5を用いた場合も、同様の結果が得られた。
The B 2 O 3, PbO, Bi 2 O 3, V 2 nanocomposite magnetic material of the total thickness 5~50nm the O 5 AlN with added is, ρ = 10 8 ~10 9
It showed a high electrical resistivity of Ωcm, and as shown in FIG. 6, its magnetic characteristics showed a magnetic permeability μ = 2000 at a frequency of 1 MHz and a saturation magnetic flux density of 9600G. Also, instead of B 2 O 3 , PbO, Bi 2 O 3 , V
Similar results were obtained with 2 O 5 .

しかし、他の添加物MgOでは、μが1000〜1500であっ
た。なお、膜厚が50nmを越えるとμは1000以下となっ
た。
However, with other additives MgO, μ was 1000-1500. When the film thickness exceeds 50 nm, μ becomes 1000 or less.

実施例12と比較すると、PbO,Bi2O3,V2O5,B2O3の添加
により、より薄い絶縁膜での高電気抵抗率を実現したた
め、磁気抵抗によるμの低下を最小限に抑えることがで
き、高周波数領域で高い透磁率を得られることがわか
る。
Compared to Example 12, the addition of PbO, Bi 2 O 3 , V 2 O 5 , and B 2 O 3 realized a high electrical resistivity in a thinner insulating film, so that the decrease in μ due to the magnetic resistance was minimized. It can be seen that the high magnetic permeability can be obtained in the high frequency region.

次に、Si−Al−Fe系合金粉体の表面にAl2O3の絶縁膜
を5nm〜30nmの厚みに形成し、更にB2O3を10〜20nm皮膜
が形成され得る量だけ添加した。これを前述のようにホ
ットプレスし、高密度複合材料を作製した。この複合材
料は、ρ=108〜109Ωcmでμ=2500という高い磁気特性
を示した。しかしながら他のBi2O3,V2O5,PbOでは、同一
膜厚でもμ=2000であり、B2O3が特に優れていることが
わかった。他の磁性合金でも、Alをその成分として含む
Fe系合金においてのみ、酸化アルミニウム−B2O3,窒化
アルミニウム−B2O3,酸窒化アルミニウム−B2O3の組み
合せで、高透磁率が得られた。
Next, an insulating film of Al 2 O 3 was formed on the surface of the Si-Al-Fe alloy powder to a thickness of 5 nm to 30 nm, and further B 2 O 3 was added in an amount capable of forming a film of 10 to 20 nm. . This was hot pressed as described above to produce a high density composite material. This composite material showed high magnetic properties of μ = 2500 at ρ = 10 8 to 10 9 Ωcm. However, with other Bi 2 O 3 , V 2 O 5 and PbO, μ = 2000 even with the same film thickness, and it was found that B 2 O 3 was particularly excellent. Other magnetic alloys also contain Al as its component
In Fe-based alloy only, aluminum oxide -B 2 O 3, aluminum nitride -B 2 O 3, a combination of aluminum oxynitride -B 2 O 3, high permeability is obtained.

実施例15 本実施例では、磁芯として使用される複合材料に付い
て述べる。
Example 15 In this example, a composite material used as a magnetic core will be described.

ガスアトマイズ法により作製した、ほぼ球形粒子から
成る平均粒径約20μmのセンダスト合金(Fe−Si−Al合
金)を、各種酸素濃度雰囲気中で850℃〜950℃にて、1
〜10時間熱処理した。この時の重量変化を測定した。ま
たこれら粉末の表面をオージェ分析したところ、いずれ
も主としてAl2O3が形成していることが分かった。
A sendust alloy (Fe-Si-Al alloy) having an average particle size of about 20 μm, which is composed of substantially spherical particles, is prepared by a gas atomization method at 850 ° C to 950 ° C in various oxygen concentration atmospheres.
Heat treated for ~ 10 hours. The change in weight at this time was measured. Further, Auger analysis of the surface of these powders revealed that Al 2 O 3 was mainly formed in each case.

次にこの粉末を気密容器中に酸素置換して封入した
後、熱間静水圧プレス装置により800℃の加熱下で2000k
g/cm2の圧力で3時間焼結し複合材料を得た。得られた
複合材料の表面が鏡面となるように研磨して、約10ミリ
間の表面抵抗をテスターで測定した。又0.5ミリ厚みの
試料を作製し、1MHzに於ける透磁率も測定した。以上の
結果を第2表に示す。
Next, after substituting this powder in an airtight container with oxygen substitution and sealing it, a hot isostatic press machine was used to heat it at 800 ° C to 2000k
A composite material was obtained by sintering at a pressure of g / cm 2 for 3 hours. The surface of the obtained composite material was polished so as to be a mirror surface, and the surface resistance for about 10 mm was measured with a tester. A 0.5 mm thick sample was also prepared and the magnetic permeability at 1 MHz was also measured. Table 2 shows the above results.

なお参考のために、熱処理をしていない粉末の焼結体
での結果についても併せて示す。
For reference, the results of the sintered body of the powder that has not been heat treated are also shown.

第2表より明らかなように熱処理による重量増加が大
きいほど抵抗値が大きくなり、1.8%以上でバルクは金
属でありながらほぼ絶縁体に近い抵抗値を示す。
As is clear from Table 2, the larger the weight increase due to the heat treatment, the larger the resistance value. At 1.8% or more, the bulk shows a resistance value close to that of an insulator although it is a metal.

又0.5ミリ厚みの1MHzでの透磁率は、無処理のものは
渦電流損の為70と低い値となっているが、熱処理による
重量増加が0.10〜0.5%で透磁率はほぼ極大を示し、更
に重量増加するとむしろ低下し3%では80と低い値とな
る。これは酸化層は非磁性層であり、この非磁性層の厚
みが厚いために磁束が通りにくくなるためと、酸化の影
響で磁性層自身の特性が損なわれるためである。
In addition, the magnetic permeability at 1 MHz of 0.5 mm thickness is as low as 70 due to eddy current loss in the untreated one, but the magnetic permeability shows a maximum when the weight increase due to heat treatment is 0.10 to 0.5%, When the weight is further increased, it is rather lowered, and at 3%, the value is as low as 80. This is because the oxide layer is a non-magnetic layer, and since the thickness of the non-magnetic layer is large, it is difficult for magnetic flux to pass through, and the characteristics of the magnetic layer itself are impaired due to the influence of oxidation.

本実施例で得られる複合材料は、第1図に模式断面図
で示したように、第1の物質1の周辺が第1の物質以外
の物質2の絶縁相(Al2O3)で被われた形となってい
る。この絶縁相の厚みは実際には数nmないし数10nmであ
る。
The composite material obtained in this example is covered with the insulating phase (Al 2 O 3 ) of the substance 2 other than the first substance 1 around the first substance 1 as shown in the schematic sectional view of FIG. It has a broken shape. The thickness of this insulating phase is actually several nm to several tens of nm.

なお粒子状の第1の物質の大きさは、実際に磁芯とし
て使われる周波数帯即ち、渦電流損失に応じて適宜選択
すればよい。
The size of the particulate first substance may be appropriately selected according to the frequency band actually used as the magnetic core, that is, the eddy current loss.

また、熱間静水圧プレス時に気密容器中に酸素を含ん
だ状態で封入するのは、焼結するときの塑性変形時に絶
縁層が破れても、その部分に酸素を供給して金属磁性層
の導通を抑制するためである。本実施例では、酸素ガス
につてい述べたが、第1の物質と反応して誘電性もしく
は絶縁性の第1の物質以外の物質を形成させる活性ガス
ならばよいのであって、特に酸素に限定するものではな
い。
Further, when hot isostatic pressing is performed in an airtight container containing oxygen, even if the insulating layer is broken during plastic deformation during sintering, oxygen is supplied to that part to supply the oxygen to the metal magnetic layer. This is to suppress conduction. Although the oxygen gas is described in this embodiment, any active gas that reacts with the first substance to form a substance other than the dielectric or insulating first substance may be used. It is not limited.

更に本実施例で使用した熱間静水圧により焼結するの
は、等方向に塑性変形をおこさせるため、絶縁層を破れ
にくくするのに有用である。
Further, sintering by hot isostatic pressure used in this example is useful for making the insulating layer hard to break because it causes plastic deformation in the same direction.

また活性ガスによる第1の物質の重量増加を0.01%以
上2.5%以下としたのは、0.01%以下では絶縁が不十分
であることが多く、また2.5%以上では磁気特性が劣化
する傾向が現れるためである。
The reason why the weight increase of the first substance by the active gas is 0.01% or more and 2.5% or less is that insulation is often insufficient at 0.01% or less, and magnetic properties tend to deteriorate at 2.5% or more. This is because.

得られた複合材料の気孔率は3%以下が好ましい。気
孔率が3%以下の複合材料は充分な機械的強度を有し、
磁気ヘッドへの応用を考えた場合テープ摺動面にこれ以
上気孔があると強度不足となり問題となるからである。
The porosity of the obtained composite material is preferably 3% or less. A composite material with a porosity of 3% or less has sufficient mechanical strength,
This is because, considering the application to a magnetic head, if there are more pores on the tape sliding surface, the strength will be insufficient and this will be a problem.

なお本実施例では、第1の物質としてFe−Si−Al合金
について述べたが、他の合金、例えばAl,Siを含む合金
についても同様の効果が考えられること勿論である。
In this example, the Fe-Si-Al alloy was described as the first substance, but it is needless to say that the same effect can be considered for other alloys, for example, alloys containing Al and Si.

実施例16 重量比で組成がSi:Al:Fe=10:6:84の平均粒子径約30
μmのSi−Al−Fe合金の球状粉末を第1の物質とし、60
0℃にて5分間空気中で熱処理し、その表面に第1の物
質以外に物質として酸化膜を形成した。膜の厚さを、熱
処理時の重量増加,オージェ分光分析及びArスパッター
によるデプスプロファイルにより評価したところ、約9n
mであった。
Example 16 The weight average composition of Si: Al: Fe = 10: 6: 84 is about 30.
Spherical powder of Si-Al-Fe alloy of μm was used as the first substance, and 60
Heat treatment was performed in air at 0 ° C. for 5 minutes to form an oxide film on the surface as a substance other than the first substance. The thickness of the film was evaluated by weight increase during heat treatment, Auger spectroscopic analysis and depth profile by Ar sputtering.
m.

この粉末を成形し、1000kg/cm2の圧力でArガス雰囲気
下、800℃で5分〜2時間ホットプレスし、複数個の一
次試料を作製した。一次試料の密度を測定したところ、
真密度6.89g/cm3に対して、ホットプレス時間が5分の
ものは相対密度78%、20分ものは90%、2時間のものは
98%であった。それぞれの試料をNo1〜3とした。これ
らの試料(重量約3g)について、それぞれ次の3種類の
処理を行い、処理後の試料を各々No4〜6,7〜9及び10〜
12とした。
This powder was molded and hot pressed at a pressure of 1000 kg / cm 2 in an Ar gas atmosphere at 800 ° C. for 5 minutes to 2 hours to prepare a plurality of primary samples. When the density of the primary sample was measured,
For the true density of 6.89 g / cm 3 , the hot press time of 5 minutes has a relative density of 78%, and the hot press time of 20 minutes has a 90% relative density.
98%. Each sample was No. 1 to 3. Each of these samples (weight of about 3 g) was subjected to the following three types of treatment, and the treated samples were respectively No 4-6, 7-9 and 10-
It was set to 12.

試料No4〜6:試料No1〜3を各々空気中にて700℃で約1
0分熱処理した後、気密性容器に真空封入した。
Sample Nos. 4 to 6: Sample Nos. 1 to 3 in air at 700 ° C for about 1
After heat treatment for 0 minutes, it was vacuum-sealed in an airtight container.

試料No7〜9:試料No1〜3を各々気密性容器に酸素約10
ccとともに封じ込めた。
Sample Nos. 7 to 9: Sample Nos. 1 to 3 were each placed in an airtight container with about 10 oxygen.
Contained with cc.

試料No10〜12:チタンエトキシドの0.01モルエタノー
ル溶液100mlを3個準備し、この溶液に試料No1〜3を各
々投入し、70℃で加熱還流しながら、水/エタノール=
1/3混合溶液を、水の量が0.002モルとなるまで滴下し、
3時間加熱還流した。終了後、生成物をろ過し、得られ
た粉末を150℃で乾燥させた後、空気中にて400℃で1時
間熱処理した。得られたものを気密性容器に真空封入し
た。
Sample Nos. 10 to 12: Three 100 ml of 0.01 molar ethanol solutions of titanium ethoxide were prepared, and Sample Nos. 1 to 3 were added to this solution, respectively.
1/3 mixed solution was added dropwise until the amount of water became 0.002 mol,
The mixture was heated under reflux for 3 hours. After the completion, the product was filtered, the obtained powder was dried at 150 ° C., and then heat-treated in air at 400 ° C. for 1 hour. The obtained product was vacuum-sealed in an airtight container.

上記1番目の処理法は、一次試料気孔部分の絶縁膜厚
を増加させる目的で行った。2番目の処理法はガスを一
次試料の気孔部に充填することにより、後述する2度目
の高圧成形時にこのガスと空孔部分の金属とを反応させ
て絶縁膜厚を増加させる目的で行った。3番目の処理法
は、TiO2の皮膜を一次試料の空孔部分の表面に形成させ
る目的で行った。
The first treatment method was performed for the purpose of increasing the insulating film thickness in the pores of the primary sample. The second treatment method was performed for the purpose of increasing the insulating film thickness by filling the gas in the pores of the primary sample so that the gas reacts with the metal in the pores during the second high-pressure molding described later. . The third treatment method was carried out for the purpose of forming a TiO 2 film on the surface of the pores of the primary sample.

これら合計9種類の試料を、Ar雰囲気中で、800℃に
て2000kg/cm2の圧力で1時間等方加圧して、2次試料を
作製した。得られた高密度複合材料より、同様2×1×
12mmの柱状試料を切り出し、その比重、電気抵抗(テス
ターによる)、磁気特性を測定した。その結果を第3表
に示した。
A total of 9 kinds of samples were isostatically pressed at a pressure of 2000 kg / cm 2 at 800 ° C. for 1 hour in an Ar atmosphere to prepare secondary samples. From the high-density composite material obtained, the same 2 × 1 ×
A 12 mm columnar sample was cut out and its specific gravity, electric resistance (by a tester), and magnetic characteristics were measured. The results are shown in Table 3.

第3より明らかなように、2度目の加圧処理を行わな
い試料No1〜3では、高密度とする事により電気抵抗が
低下し、より高密度である98パーセントの試料No3で
は、1kHzの透磁率は高いが、1MHzの透磁率は1kHzの時の
1/2以下に低下した。密度の低い試料No1及び2は、高抵
抗であるため透磁率の周波数依存性は弱くなるが、低密
度であるために飽和磁束密度及び透磁率の何れもが低か
った。
As is clear from the third, in Sample Nos. 1 to 3 which are not subjected to the second pressure treatment, the electrical resistance is lowered by increasing the density, and in the sample No. 3 having a higher density of 98%, the transmission rate of 1kHz is reduced. Magnetic permeability is high, but magnetic permeability of 1MHz is 1kHz
It fell to less than 1/2. Samples 1 and 2 having low densities had high resistance, so the frequency dependency of magnetic permeability was weak, but because of low density, both saturation magnetic flux density and magnetic permeability were low.

これらの一次試料に対して、前述した3種類の処理を
行った後、再度高圧焼結した試料は、いずれもより高密
度化したが、一次成形密度が90%のもの以外は絶縁抵抗
が低下した。その結果透磁率の周波数依存性が顕著にな
った。ところが、一次焼結密度が90パーセントのもので
は、高密度化しても抵抗低下が認められず、そのために
高周波数まで高い透磁率を示した。
After subjecting these primary samples to the above-mentioned three kinds of treatments and then high-pressure sintering again, all the samples became higher in density, but the insulation resistance decreased except for those having a primary compaction density of 90%. did. As a result, the frequency dependence of magnetic permeability became remarkable. However, when the primary sintering density was 90%, no resistance decrease was observed even if the density was increased, and as a result, high magnetic permeability was exhibited up to high frequencies.

比較のため、3種類の一次試料を無処理のまま気密性
容器に真空封入した後、上記と同一条件でAr雰囲気下で
1時間等方加圧して得た複合材料の特性を測定した。い
ずれも電気抵抗が低下し、透磁率の周波数依存性が顕緒
であった。
For comparison, three types of primary samples were vacuum-sealed in an airtight container without treatment, and then the properties of the composite material obtained by isostatically pressing for 1 hour under Ar atmosphere under the same conditions as above were measured. In all cases, the electric resistance decreased, and the frequency dependence of the magnetic permeability was obvious.

一般に金属粉体の表面が完全に絶縁体で覆われていて
も、これを加圧してほぼ100%密度の成形体とする場
合、金属粉体粒子の変形のため表面積の変化が生じて一
部絶縁体膜が存在しない部分が生じる。その結果金属粒
子同士が直接接触して電気抵抗が低下すると考えられる
が、試料No1〜3の結果より明らかなように、絶縁破壊
はかなり高密度にならないと生じない。本実施例の方法
では、絶縁破壊が起こり易い部分のみの絶縁体の量を増
加させることにより、絶縁体の絶対量をそれほど増加さ
せることなく、高密度化と高絶縁性を保持する事が可能
となったものと考えられる。
Generally, even if the surface of the metal powder is completely covered with an insulator, if it is pressed to form a compact with almost 100% density, the surface area will change due to the deformation of the metal powder particles. A part where the insulator film does not exist occurs. As a result, it is considered that the metal particles come into direct contact with each other to lower the electric resistance, but as is clear from the results of Sample Nos. 1 to 3, the dielectric breakdown does not occur unless the density becomes considerably high. In the method of this embodiment, by increasing the amount of the insulator only in the portion where dielectric breakdown easily occurs, it is possible to maintain high density and high insulation without increasing the absolute amount of the insulator so much. It is thought that it became.

発明者等は、本実施例に示した以外にも、いろいろな
一次焼結体密度で試料作製を行ったが、その相対密度が
80%以上95%未満である場合が、最も効果的であること
がわかった。一次焼結体の密度が高すぎた時に効果が認
められないのは、気孔部が閉気孔となって絶縁物質,そ
の前駆体あるいおは反応により絶縁物質となる化合物等
を充填する事が不可能となるためと考えられる。また、
一次焼結体の密度が低すぎる場合、後で添加する絶縁体
物質の量が多いと絶縁体の絶対量が多くなりすぎて透磁
率が低下し易く、また逆に添加する絶縁体物質の量が少
ないと絶縁抵抗が低下し易いために望ましくない。
The inventors made samples with various primary sintered body densities other than those shown in this example, but the relative density was
It was found that the most effective case was 80% or more and less than 95%. The effect is not recognized when the density of the primary sintered body is too high because the pores become closed pores and the insulating material, its precursor or a compound which becomes an insulating material by the reaction is filled. It is thought to be impossible. Also,
If the density of the primary sintered body is too low and the amount of the insulator material added later is too large, the absolute amount of the insulator becomes too large and the magnetic permeability tends to decrease, and conversely the amount of the insulator material added. If it is small, the insulation resistance is likely to decrease, which is not desirable.

発明者等は、上記実施例以外にも種々の粉末粒径・粉
末組成・膜厚・膜質で同様の実験を行ったが、やはり本
発明の方法をとる事により、従来得られていなかった優
れた特性の複合材料を合成することが可能であった。
The inventors conducted similar experiments with various powder particle sizes, powder compositions, film thicknesses, and film qualities in addition to the above-mentioned examples. It was possible to synthesize composite materials with different properties.

なお、本発明の材料及びその製造方法は広く各種の材
料に適用できることは云うまでもない。
Needless to say, the material of the present invention and the manufacturing method thereof can be widely applied to various materials.

発明の効果 本発明は、無機質で粒子状の第1の物質と、第1の物
質とは構成元素もしくは構成イオンの数,種類あるいは
価数又は結晶構造の内の何れかが異なる第1の物質以外
に物質との少なくとも2種類だ構成され、この第1の物
質以外の物質が第1の物質とは別の相でかつ連続相を形
成し、しかも全体の気孔率が5%以下である複合材料で
あるので、気孔率が小さいことから強度は大幅に向上
し、無機質が主体であることから耐熱性は非常に高い材
料が得られる。
EFFECTS OF THE INVENTION The present invention relates to a first substance, which is an inorganic particle, and the first substance is different from the first substance in the number, kind, valence, or crystal structure of constituent elements or constituent ions. Other than the first substance, the substance other than the first substance forms a continuous phase and a phase different from the first substance, and the total porosity is 5% or less. Since it is a material, its strength is greatly improved due to its low porosity, and a material with extremely high heat resistance can be obtained because it is mainly composed of inorganic substances.

また第1の物質と第1の物質以外の物質とが平均的に
混合分散されている場合には両者の平均の様な特性が得
られるが、本発明では、その特殊な構成により両者を掛
け合わせた様な特性や、予想外の特異な性質が得られ
る。例えば99.9%金属でありながら絶縁体である特異な
材料が合成されている。
Further, when the first substance and the substance other than the first substance are mixed and dispersed on average, characteristics similar to the average of both are obtained. However, in the present invention, both are multiplied by the special configuration. Combined properties and unexpected and unique properties can be obtained. For example, a peculiar material that is an insulator while being a 99.9% metal has been synthesized.

更に第1の物質以外の物質を複数種用いるか、追加し
て形成することにより、粒界の誘電体層などを緻密に形
成でき、さらに完全な第1の物質以外の物質の層が完成
する。
Further, by using a plurality of kinds of substances other than the first substance or by additionally forming them, the dielectric layer of the grain boundary can be densely formed, and a complete layer of the substance other than the first substance is completed. .

また、アルミの様に軽く、熱伝導性が良く、且つ、電
気絶縁体である特異な性質を持つ材料、又、高飽和磁束
密度、高透磁率であり、耐摩耗性に優れた複合金属材料
等の従来実現されなかった材料が製造される。
In addition, it is a material such as aluminum that is light and has good thermal conductivity, and has a unique property of being an electrical insulator, and also a composite metal material that has a high saturation magnetic flux density, high magnetic permeability, and excellent wear resistance. Etc., which have been heretofore unrealized, are manufactured.

さらに、粒子状の第1の物質の量が多く、三角点の面
積が少ないために強度は非常に高く、樹脂などの有機物
を使用しない為に耐熱性も非常に高い、耐摩耗性の高い
有用な材料が提供されている。
In addition, the amount of the first particulate material is large and the area of the triangular points is small, so the strength is very high, and since no organic material such as resin is used, the heat resistance is also very high and the wear resistance is high. Various materials are provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図及び第3図は本発明の複合材料の一例を
示す断面部分拡大図、第4図及び第6図は本発明の複合
材料の磁気特性図、第5図は本発明の複合材料の電気特
性図、第7図は従来の複合材料の構成を示す断面部分拡
大図である。 1,11……第1の物質、2,12,22……第1の物質以外の物
質、3,13,23……三角点、21……偏平な第1の物質。
FIGS. 1, 2 and 3 are enlarged sectional views showing an example of the composite material of the present invention, FIGS. 4 and 6 are magnetic characteristic diagrams of the composite material of the present invention, and FIG. 5 is the present invention. FIG. 7 is an enlarged partial sectional view showing the structure of a conventional composite material. 1,11 …… The first substance, 2,12,22 …… The substance other than the first substance, 3,13,23 …… Triangular point, 21 …… The flat first substance.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 1/10 C22C 33/02 G 33/02 38/00 304 38/00 304 B22F 3/14 A H01F 1/24 H01F 1/24 (31)優先権主張番号 特願平1−280554 (32)優先日 平1(1989)10月26日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平1−288356 (32)優先日 平1(1989)11月6日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平1−288358 (32)優先日 平1(1989)11月6日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平1−288359 (32)優先日 平1(1989)11月6日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平1−288360 (32)優先日 平1(1989)11月6日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平2−4980 (32)優先日 平2(1990)1月12日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平2−76062 (32)優先日 平2(1990)3月26日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平2−101934 (32)優先日 平2(1990)4月18日 (33)優先権主張国 日本(JP) (72)発明者 廣田 健 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 里見 三男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭56−38402(JP,A) 特開 昭58−171501(JP,A) 特開 昭61−154111(JP,A) 特開 昭59−28556(JP,A) 特開 昭61−104036(JP,A) 特開 昭63−60245(JP,A) 特開 昭54−46211(JP,A) 特開 昭57−500788(JP,A) 特開 昭62−282418(JP,A) 特開 昭62−112704(JP,A) 国際公開89/1706(WO,A1)Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C22C 1/10 C22C 33/02 G 33/02 38/00 304 38/00 304 B22F 3/14 A H01F 1 / 24 H01F 1/24 (31) Priority claim number Japanese Patent Application No. 1-280554 (32) Priority date Hei 1 (1989) October 26 (33) Priority claim country Japan (JP) (31) Priority claim number Japanese Patent Application 1-288356 (32) Priority Date 1 (1989) November 6 (33) Priority claiming country Japan (JP) (31) Priority claim number Japanese Patent Application 1-288358 (32) Priority Date 1 (1989) November 6 (33) Priority claiming country Japan (JP) (31) Priority claim number Japanese Patent Application No. 1-288359 (32) Priority Date Hei 1 (1989) November 6 (33) Priority Claiming country Japan (JP) (31) Priority claim number Japanese Patent Application No. 1-288360 (32) Priority date Hei 1 (1989) November 6 (33) Priority claiming country Japan (JP) (31) Priority Claim Number Japanese Patent Application No. 2-4980 (32) Priority Date 2 (1990) January 12 (33) Country of priority claim Japan (JP) (31) Excellent Patent claim number Japanese patent application No. 2-76062 (32) Priority date No. 2 (1990) March 26 (33) Country of priority claim Japan (JP) (31) Priority claim number Japanese patent application No. 2-101934 (32) Priority Hihei 2 (1990) April 18 (33) Priority claiming country Japan (JP) (72) Inventor Takeshi Hirota 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Satomi Mitsuo 1006, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-56-38402 (JP, A) JP-A-58-171501 (JP, A) JP-A-61-154111 ( JP, A) JP 59-28556 (JP, A) JP 61-104036 (JP, A) JP 63-60245 (JP, A) JP 54-46211 (JP, A) JP 57-500788 (JP, A) JP 62-282418 (JP, A) JP 62-112704 (JP, A) International publication 89/1706 (WO, A1)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄を含む磁性金属合金材料で粒子状の第1
の物質と、前記第1の物質とは構成元素もしくは構成イ
オンの数、種類あるいは価数叉は結晶構造の内の何れか
が異なる誘電性ないしは絶縁性材料で鉄をほとんど含ま
ない第2の物質との少なくとも2種の物質から構成され
た微小粒径複合体であって、前記第2の物質が前記第1
の物質とは別の相でかつ連続相を形成し、前記微小粒径
複合体の気孔率が5%以下であることを特徴とする複合
材料。
1. A first magnetic metal alloy material containing iron, which is in the form of particles.
And the first substance are different in the number, kind or valence or crystal structure of constituent elements or constituent ions, and are second dielectric or insulating materials containing almost no iron. A fine particle size composite body composed of at least two kinds of substances, wherein the second substance is the first substance.
A composite material which is different from the substance of (1) and forms a continuous phase, and the porosity of the fine particle size composite is 5% or less.
【請求項2】第1の物質以外の物質の平均厚さが、5nm
以上50nm以下であることを特徴とする請求項1記載の複
合材料。
2. The average thickness of substances other than the first substance is 5 nm.
The composite material according to claim 1, which has a thickness of 50 nm or more.
【請求項3】鉄を含む磁性金属材料で粒子状の第1の物
質と、前記第1の物質とは構成元素もしくは構成イオン
の数、種類あるいは価数叉は結晶構造の内の何れかが異
なる誘電性ないしは絶縁性材料で鉄をほとんど含まない
第2の物質でほぼ覆う被覆工程と、前記被覆工程の後、
前記第1の物質と前記第2の物質の少なくとも2種以上
の物質を含む微小粒径複合体を、気孔率5%以下の成形
体を得る成形工程を経ることを特徴とする複合材料の製
造方法。
3. A magnetic metal material containing iron, which is a particulate first substance, and the first substance is any one of the number, kind or valence or crystal structure of constituent elements or constituent ions. A coating step of substantially covering with a second substance having a different dielectric or insulating material and containing almost no iron, and after the coating step,
Manufacturing of a composite material, characterized by undergoing a molding step for obtaining a compact having a porosity of 5% or less from a fine particle size composite containing at least two or more substances of the first substance and the second substance. Method.
【請求項4】第1の物質以外の物質が、超塑性を示す材
料を含有することを特徴とする請求項3記載の複合材料
の製造方法。
4. The method for producing a composite material according to claim 3, wherein the substance other than the first substance contains a material exhibiting superplasticity.
【請求項5】第1の物質以外の物質が焼結助剤を含有す
ることを特徴とする請求項3記載の複合材料の製造方
法。
5. The method for producing a composite material according to claim 3, wherein the substance other than the first substance contains a sintering aid.
【請求項6】焼結助剤が、ほう素、鉛、バナジウム、ビ
スマス及びそれらの化合物のうちから選ばれる少なくと
も一種以上であることを特徴とした請求項3記載の複合
材料の製造方法。
6. The method for producing a composite material according to claim 3, wherein the sintering aid is at least one selected from the group consisting of boron, lead, vanadium, bismuth and compounds thereof.
【請求項7】被覆工程が、第1の物質を活性ガス中で処
理する工程であることを特徴とする請求項3記載の複合
材料の製造方法。
7. The method for producing a composite material according to claim 3, wherein the coating step is a step of treating the first substance in an active gas.
【請求項8】活性ガスが、窒素を含有することを特徴と
する請求項7記載の複合材料の製造方法。
8. The method for producing a composite material according to claim 7, wherein the active gas contains nitrogen.
【請求項9】活性ガスが、酸素を含有することを特徴と
する請求項7記載の複合材料の製造方法。
9. The method for producing a composite material according to claim 7, wherein the active gas contains oxygen.
【請求項10】被覆工程が、第1の物質をスパッター処
理する工程であることを特徴とする請求項3記載の複合
材料の製造方法。
10. The method for producing a composite material according to claim 3, wherein the coating step is a step of subjecting the first substance to a sputtering treatment.
【請求項11】成形体工程の後、前記成形体を高温高圧
下で熱処理し、気孔率を3%以下に高密度化する工程を
行うことを特徴とする請求項3記載の複合材料の製造方
法。
11. The method for producing a composite material according to claim 3, wherein after the molding step, the molding is subjected to a heat treatment under high temperature and high pressure to densify the porosity to 3% or less. Method.
JP2150990A 1989-06-09 1990-06-08 Composite material and method for producing the same Expired - Fee Related JP2687683B2 (en)

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP14790289 1989-06-09
JP17590189 1989-07-07
JP18648889 1989-07-19
JP25332189 1989-09-28
JP28055489 1989-10-26
JP28835889 1989-11-06
JP28836089 1989-11-06
JP28835989 1989-11-06
JP28835689 1989-11-06
JP498090 1990-01-12
JP7606290 1990-03-26
JP2-101934 1990-04-18
JP1-147902 1990-04-18
JP1-175901 1990-04-18
JP1-280554 1990-04-18
JP1-288359 1990-04-18
JP1-288358 1990-04-18
JP1-288360 1990-04-18
JP1-253321 1990-04-18
JP2-76062 1990-04-18
JP2-4980 1990-04-18
JP10193490 1990-04-18
JP1-186488 1990-04-18
JP1-288356 1990-04-18

Publications (2)

Publication Number Publication Date
JPH0421739A JPH0421739A (en) 1992-01-24
JP2687683B2 true JP2687683B2 (en) 1997-12-08

Family

ID=27583126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150990A Expired - Fee Related JP2687683B2 (en) 1989-06-09 1990-06-08 Composite material and method for producing the same

Country Status (4)

Country Link
US (2) US5183631A (en)
EP (1) EP0406580B1 (en)
JP (1) JP2687683B2 (en)
DE (1) DE69028360T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896300B (en) * 2007-12-10 2012-08-22 日立化成工业株式会社 Powder and method for producing the same

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127405A (en) * 1990-09-18 1992-04-28 Kanegafuchi Chem Ind Co Ltd Highly corrosion-resistant permanent magnet and its manufacture; manufacture of highly corrosion-resistant bonded magnet
US5820721A (en) * 1991-07-17 1998-10-13 Beane; Alan F. Manufacturing particles and articles having engineered properties
JPH05109520A (en) * 1991-08-19 1993-04-30 Tdk Corp Composite soft magnetic material
DE69210954T2 (en) * 1991-08-19 1997-01-16 Tdk Corp Process for producing a soft magnetic composite material and soft magnetic composite material
US5312648A (en) * 1991-09-05 1994-05-17 Technalum Research, Inc. Method for coating particles using counter-rotating disks
EP0532000B1 (en) * 1991-09-13 1997-07-23 Tsuyoshi Masumoto High strength structural member and process for producing the same
US5318746A (en) * 1991-12-04 1994-06-07 The United States Of America As Represented By The Secretary Of Commerce Process for forming alloys in situ in absence of liquid-phase sintering
US6042781A (en) * 1991-12-04 2000-03-28 Materials Innovation, Inc. Ambient temperature method for increasing the green strength of parts
US6001289A (en) * 1991-12-04 1999-12-14 Materials Innovation, Inc. Acid assisted cold welding and intermetallic formation
JPH05325135A (en) * 1992-05-25 1993-12-10 Matsushita Electric Ind Co Ltd Thin film magnetic head
JPH07144920A (en) * 1993-09-08 1995-06-06 Takeshi Masumoto Nitride composite superfine particles, its production and sintered compact of superfine particles
KR100260368B1 (en) * 1993-09-24 2000-07-01 에브게니 에이. 레바쇼브 Composite material and process for producing the same
AUPN317095A0 (en) * 1995-05-24 1995-06-22 Unisearch Limited Manufacture of intermetallic compounds
US5679297A (en) * 1995-06-23 1997-10-21 Hwang; Chii-Shyang Method of making reinforced intermetallic-matrix composites containing ceramics
US5842107A (en) * 1995-08-31 1998-11-24 National Science Council Sintering process for AIN powder coated with Al film
US5798439A (en) * 1996-07-26 1998-08-25 National Research Council Of Canada Composite insulating coatings for powders, especially for magnetic applications
JP3742153B2 (en) 1996-08-29 2006-02-01 日鉄鉱業株式会社 Coated powder consolidated product and method for producing the same
WO1998038655A1 (en) * 1997-02-28 1998-09-03 Materials Innovation, Inc. Method for making soft magnetic parts from particulate ferrous material, and parts made therefrom
EP1021264A1 (en) * 1997-03-24 2000-07-26 Materials Innovation Inc. Method for making parts from particulate ferrous material
US20040052984A1 (en) * 1997-05-13 2004-03-18 Toth Richard E. Apparatus and method of treating fine powders
HU222859B1 (en) 1997-05-13 2003-12-29 Richard Edmund Toth Sintered material and powder metallurgy powder for making sintered articles
WO1998054734A1 (en) * 1997-05-26 1998-12-03 Kureha Kagaku Kogyo K.K. Resin composition
DE19735271C2 (en) * 1997-08-14 2000-05-04 Bosch Gmbh Robert Soft magnetic, mouldable composite material and process for its production
US6051324A (en) * 1997-09-15 2000-04-18 Lockheed Martin Energy Research Corporation Composite of ceramic-coated magnetic alloy particles
JP4457425B2 (en) * 1998-09-08 2010-04-28 アイシン精機株式会社 Motor armature core and brushed DC motor using the armature core
JP3344346B2 (en) * 1999-01-06 2002-11-11 株式会社村田製作所 Method of firing magnetic core
DE60006594T2 (en) 1999-01-18 2004-09-23 Matsushita Electric Industrial Co., Ltd., Kadoma Magnetic film with high electrical resistance
US6193903B1 (en) * 1999-05-14 2001-02-27 Delphi Technologies, Inc. Method of forming high-temperature magnetic articles and articles formed thereby
DE19945592A1 (en) * 1999-09-23 2001-04-12 Bosch Gmbh Robert Soft magnetic material and process for its production
US6410086B1 (en) 1999-11-26 2002-06-25 Cerel (Ceramic Technologies) Ltd. Method for forming high performance surface coatings and compositions of same
US6179894B1 (en) * 1999-11-29 2001-01-30 Delphi Technologies, Inc. Method of improving compressibility of a powder and articles formed thereby
DE19960095A1 (en) * 1999-12-14 2001-07-05 Bosch Gmbh Robert Sintered soft magnetic composite and method for its production
DE10020083A1 (en) * 2000-04-22 2001-10-31 Bosch Gmbh Robert Sintered soft magnetic material and process for its production
WO2002081130A1 (en) * 2001-04-02 2002-10-17 Mitsubishi Materials Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
US20040238796A1 (en) * 2001-08-09 2004-12-02 Masanori Abe Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
DE10225154B4 (en) * 2002-06-06 2012-06-06 Robert Bosch Gmbh Soft magnetic powder composite, process for its preparation and its use
US6863862B2 (en) * 2002-09-04 2005-03-08 Philip Morris Usa Inc. Methods for modifying oxygen content of atomized intermetallic aluminide powders and for forming articles from the modified powders
US20040086708A1 (en) * 2002-11-04 2004-05-06 General Electric Company High permeability soft magnetic composites
US20040084112A1 (en) * 2002-11-05 2004-05-06 General Electric Company Insulating coating with ferromagnetic particles
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9682425B2 (en) * 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
CA2418497A1 (en) 2003-02-05 2004-08-05 Patrick Lemieux High performance soft magnetic parts made by powder metallurgy for ac applications
US20080199701A1 (en) * 2003-02-25 2008-08-21 Kuehnle Manfred R Encapsulated nanoparticles for the absorption of electromagnetic energy
US7041148B2 (en) * 2003-03-03 2006-05-09 General Electric Company Coated ferromagnetic particles and compositions containing the same
KR100753275B1 (en) * 2003-06-05 2007-08-29 미쓰비시덴키 가부시키가이샤 Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
US20050019558A1 (en) * 2003-07-24 2005-01-27 Amitabh Verma Coated ferromagnetic particles, method of manufacturing and composite magnetic articles derived therefrom
US20050016658A1 (en) * 2003-07-24 2005-01-27 Thangavelu Asokan Composite coatings for ground wall insulation in motors, method of manufacture thereof and articles derived therefrom
JP2005079509A (en) * 2003-09-03 2005-03-24 Sumitomo Electric Ind Ltd Soft magnetic material and its manufacturing method
US7297310B1 (en) * 2003-12-16 2007-11-20 Dwa Technologies, Inc. Manufacturing method for aluminum matrix nanocomposite
US7803457B2 (en) * 2003-12-29 2010-09-28 General Electric Company Composite coatings for groundwall insulation, method of manufacture thereof and articles derived therefrom
JP4418765B2 (en) * 2005-03-17 2010-02-24 スミダコーポレーション株式会社 Composite magnetic core and method of manufacturing the same
EP1868213A4 (en) * 2005-03-29 2011-01-26 Sumitomo Electric Industries Soft magnetic material and process for producing green compact
JP4585493B2 (en) 2006-08-07 2010-11-24 株式会社東芝 Method for producing insulating magnetic material
US20080090079A1 (en) * 2006-09-28 2008-04-17 Fajardo Arnel M High-resistivity magnetic film from nano-particle plating
US20080157910A1 (en) * 2006-12-29 2008-07-03 Park Chang-Min Amorphous soft magnetic layer for on-die inductively coupled wires
US20080157911A1 (en) * 2006-12-29 2008-07-03 Fajardo Arnel M Soft magnetic layer for on-die inductively coupled wires with high electrical resistance
JP2008270368A (en) * 2007-04-17 2008-11-06 Fuji Electric Device Technology Co Ltd Dust core and method of manufacturing the same
JP4845800B2 (en) * 2007-04-26 2011-12-28 東邦亜鉛株式会社 Wire wound inductor and manufacturing method thereof
US8609206B2 (en) * 2008-05-01 2013-12-17 Maxim Seleznev Continuous or discrete metallization layer on a ceramic substrate
DE102008023059B4 (en) * 2008-05-09 2010-06-10 Eto Magnetic Gmbh Method for producing a magnetizable metallic shaped body
JP5368281B2 (en) 2009-03-27 2013-12-18 株式会社東芝 Core-shell magnetic material, core-shell magnetic material manufacturing method, device apparatus, and antenna apparatus
US20110008201A1 (en) 2009-07-07 2011-01-13 H.C. Starck Inc. Niobium based alloy that is resistant to aqueous corrosion
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9243475B2 (en) * 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
JP5175884B2 (en) * 2010-03-05 2013-04-03 株式会社東芝 Nanoparticle composite material, antenna device using the same, and electromagnetic wave absorber
WO2011123404A1 (en) * 2010-04-01 2011-10-06 Hoeganes Corporation Magnetic powder metallurgy materials
JP4866971B2 (en) 2010-04-30 2012-02-01 太陽誘電株式会社 Coil-type electronic component and manufacturing method thereof
US8999075B2 (en) * 2010-06-30 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic material and process for production
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
JP6081051B2 (en) 2011-01-20 2017-02-15 太陽誘電株式会社 Coil parts
CN103477705B (en) * 2011-04-12 2016-05-11 法国圣戈班玻璃厂 Plate type heating body and preparation method thereof
JP2012238841A (en) 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Magnetic material and coil component
JP4906972B1 (en) 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
KR101903212B1 (en) * 2011-05-09 2018-10-01 메타마그네틱스, 인코포레이티드. Magnetic grain boundary engineered ferrite core materials
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
JP5032711B1 (en) 2011-07-05 2012-09-26 太陽誘電株式会社 Magnetic material and coil component using the same
US20130010914A1 (en) * 2011-07-08 2013-01-10 Battelle Energy Alliance, Llc Composite materials, bodies and nuclear fuels including metal oxide and silicon carbide and methods of forming same
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
JP5048155B1 (en) 2011-08-05 2012-10-17 太陽誘電株式会社 Multilayer inductor
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
JP5082002B1 (en) * 2011-08-26 2012-11-28 太陽誘電株式会社 Magnetic materials and coil parts
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
JP6091744B2 (en) 2011-10-28 2017-03-08 太陽誘電株式会社 Coil type electronic components
JP5960971B2 (en) 2011-11-17 2016-08-02 太陽誘電株式会社 Multilayer inductor
JP6012960B2 (en) 2011-12-15 2016-10-25 太陽誘電株式会社 Coil type electronic components
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
KR20150008652A (en) * 2013-07-15 2015-01-23 삼성전기주식회사 Soft magnetic composite, method for preparing thereof, and electronic elements comprising core material the same
WO2015025589A1 (en) * 2013-08-22 2015-02-26 株式会社村田製作所 Oxide ceramic material and ceramic electronic component
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
KR102078013B1 (en) * 2014-02-06 2020-02-17 삼성전기주식회사 Multi-layered ceramic electronic part, manufacturing method thereof and board having the same mounted thereon
WO2015127174A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
JP6308376B2 (en) * 2014-05-21 2018-04-11 株式会社村田製作所 Oxide ceramics and ceramic electronic parts
JP6232359B2 (en) * 2014-09-08 2017-11-15 株式会社豊田中央研究所 Powder magnetic core, powder for magnetic core, and production method thereof
US10269544B2 (en) * 2014-11-24 2019-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Gas ring for plasma system and method of manufacturing the same
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
KR102183425B1 (en) * 2015-07-22 2020-11-27 삼성전기주식회사 multilayer ceramic electronic component
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CA3012511A1 (en) 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite
EP3765282A4 (en) 2018-03-14 2021-12-15 Helicon Chemical Company Dielectric composite containing dispersed primary nanoparticles of aluminum or aluminum oxide
JP7227737B2 (en) * 2018-11-07 2023-02-22 日本特殊陶業株式会社 dust core
JP7227736B2 (en) * 2018-11-07 2023-02-22 日本特殊陶業株式会社 dust core
JP7222664B2 (en) * 2018-11-07 2023-02-15 日本特殊陶業株式会社 dust core
JP7277194B2 (en) * 2019-03-22 2023-05-18 日本特殊陶業株式会社 dust core
JP7291506B2 (en) * 2019-03-22 2023-06-15 日本特殊陶業株式会社 dust core
JP7277193B2 (en) * 2019-03-22 2023-05-18 日本特殊陶業株式会社 dust core
JP7269045B2 (en) * 2019-03-22 2023-05-08 日本特殊陶業株式会社 dust core
JP7291508B2 (en) * 2019-03-22 2023-06-15 日本特殊陶業株式会社 dust core
JP7291507B2 (en) * 2019-03-22 2023-06-15 日本特殊陶業株式会社 dust core
EP4058225A1 (en) * 2019-11-11 2022-09-21 Carpenter Technology Corporation Soft magnetic composite materials and methods and powders for producing the same
KR20230112415A (en) * 2022-01-20 2023-07-27 삼성전기주식회사 Ceramic electronic component

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1159823A (en) * 1965-08-06 1969-07-30 Montedison Spa Protective Coatings
US3999216A (en) * 1970-07-30 1976-12-21 Eastman Kodak Company Material for magnetic transducer heads
US3739445A (en) * 1970-12-29 1973-06-19 Chromalloy American Corp Powder metal magnetic pole piece
US3926567A (en) * 1973-04-05 1975-12-16 Nasa Cermet composition and method of fabrication
US4177089A (en) * 1976-04-27 1979-12-04 The Arnold Engineering Company Magnetic particles and compacts thereof
JPS5446211A (en) * 1977-09-21 1979-04-12 Sumitomo Electric Industries Sintered body for cutting tool and method of making same
JPS53128507A (en) * 1977-04-14 1978-11-09 Inoue Japax Res Inc Sintered alloy
JPS5638402A (en) * 1979-09-05 1981-04-13 Tdk Corp High density sintered magnetic body and its manufacture
JPS5832767B2 (en) * 1980-01-24 1983-07-15 ヤマハ株式会社 Manufacturing method for hard magnetic materials
US4323395A (en) * 1980-05-08 1982-04-06 Li Chou H Powder metallurgy process and product
SE8201678L (en) * 1982-03-17 1983-09-18 Asea Ab SET TO MAKE FORMS OF SOFT MAGNETIC MATERIAL
JPS5928556A (en) * 1982-07-28 1984-02-15 リ−ド・ロツク・ビツト・カンパニ− Composite metal member and manufacture
JPS6115411A (en) * 1984-06-29 1986-01-23 Matsushita Electric Ind Co Ltd Dial device
US4594181A (en) * 1984-09-17 1986-06-10 E. I. Du Pont De Nemours And Company Metal oxide-coated copper powder
DE3587906T2 (en) * 1984-09-29 1995-01-12 Toshiba Kawasaki Kk Process for producing a coated magnetic powder and pressed magnetic powder core.
JPS61104036A (en) * 1984-10-24 1986-05-22 Hitachi Ltd Manufacture of composite sintered body consisting of ceramic and metal
DE3603061A1 (en) * 1985-03-01 1986-09-04 Bbc Brown Boveri Ag, Baden, Aargau Process for the production of a low-retentivity composite material with low eddy current losses based on a low-retentivity, metallic material, and a composite material produced by this process
DE3610528A1 (en) * 1985-06-14 1986-12-18 Agency of Industrial Science & Technology, Ministry of International Trade & Industry, Tokio/Tokyo METHOD FOR SUPERPLASTIC MOLDING OF CERAMIC MATERIAL
JPS62112704A (en) * 1985-11-13 1987-05-23 Toyo Soda Mfg Co Ltd Production of composite powder
JPS62282418A (en) * 1986-05-07 1987-12-08 Tohoku Metal Ind Ltd Manufacture of composite magnet
JPS6360245A (en) * 1986-08-29 1988-03-16 Nabeya:Kk Casting having high damping capacity and its production
DE3741119A1 (en) * 1987-12-04 1989-06-15 Krupp Gmbh PRODUCTION OF SECONDARY POWDER PARTICLES WITH NANOCRISTALLINE STRUCTURE AND WITH SEALED SURFACES
US4961778A (en) * 1988-01-13 1990-10-09 The Dow Chemical Company Densification of ceramic-metal composites
JPH0312809A (en) * 1989-06-09 1991-01-21 Matsushita Electric Ind Co Ltd Nanocomposite substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896300B (en) * 2007-12-10 2012-08-22 日立化成工业株式会社 Powder and method for producing the same

Also Published As

Publication number Publication date
JPH0421739A (en) 1992-01-24
EP0406580B1 (en) 1996-09-04
EP0406580A1 (en) 1991-01-09
DE69028360T2 (en) 1997-01-23
US5183631A (en) 1993-02-02
DE69028360D1 (en) 1996-10-10
US5352522A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
JP2687683B2 (en) Composite material and method for producing the same
TWI294321B (en) Method for manufacturing of insulated soft magnetic metal powder formed body
US5238507A (en) Magnetic material
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
US3999216A (en) Material for magnetic transducer heads
JPH05109520A (en) Composite soft magnetic material
JP4534523B2 (en) Method for producing composite sintered magnetic material
JP6582745B2 (en) Composite soft magnetic material and manufacturing method thereof
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP2812152B2 (en) Magnetic body and method of manufacturing the same
JP2001085211A (en) Soft magnetic particle, soft magnetic molded body, and their manufacture
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
EP0541887B1 (en) Method of making a composite soft magnetic material and composite soft magnetic material
JPH06236808A (en) Composite magnetic material and its manufacture
JPH03278501A (en) Soft magnetic core material and manufacture thereof
JPH06204021A (en) Composite magnetic material and its manufacture
JP4480628B2 (en) Composite soft magnetic powder and method for producing the same
JP2006339356A (en) Compound soft magnetic powder and its production process
JP2002275505A (en) Method for producing soft magnetic compact and soft magnetic compact
JPH02118056A (en) Magnetic material and magnetic head by using it
JP2008091413A (en) Composite soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP6836106B2 (en) Method for manufacturing iron-based soft magnetic material
JP3946150B2 (en) Method for producing composite soft magnetic material having high density, high resistance and high magnetic flux density
JPH0590019A (en) Soft magnetic material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees