JP4480628B2 - Composite soft magnetic powder and method for producing the same - Google Patents

Composite soft magnetic powder and method for producing the same Download PDF

Info

Publication number
JP4480628B2
JP4480628B2 JP2005161480A JP2005161480A JP4480628B2 JP 4480628 B2 JP4480628 B2 JP 4480628B2 JP 2005161480 A JP2005161480 A JP 2005161480A JP 2005161480 A JP2005161480 A JP 2005161480A JP 4480628 B2 JP4480628 B2 JP 4480628B2
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
composite soft
iron
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005161480A
Other languages
Japanese (ja)
Other versions
JP2006339357A (en
Inventor
学司 魚住
宗明 渡辺
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005161480A priority Critical patent/JP4480628B2/en
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to PCT/JP2005/020204 priority patent/WO2006080121A1/en
Priority to CN2005800491939A priority patent/CN101142044B/en
Priority to EP05805498A priority patent/EP1852199B1/en
Priority to EP10172637.0A priority patent/EP2248617B1/en
Priority to US11/814,603 priority patent/US9269481B2/en
Priority to CA002598842A priority patent/CA2598842A1/en
Priority to EP12172935.4A priority patent/EP2502689B8/en
Publication of JP2006339357A publication Critical patent/JP2006339357A/en
Application granted granted Critical
Publication of JP4480628B2 publication Critical patent/JP4480628B2/en
Priority to US13/228,139 priority patent/US8481178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されてなるMg含有酸化鉄膜被覆鉄粉末の表面にさらにMgO−SiO系複合酸化物膜(好ましくはモル比でMgO/SiOの値が2のフォレストライト)を被覆してなる複合軟磁性粉末に関するものであり、この複合軟磁性粉末を使用して作製した高強度、高磁束密度および高抵抗を有する鉄損の少ない複合軟磁性材に関するものであり、そして、この高強度、高磁束密度および高抵抗を有する鉄損の少ない複合軟磁性材は、低鉄損を必要とする各種電磁気回路部品、例えば、磁心、電動機コア,発電機コア,ソレノイドコア,イグニッションコア,リアクトル,トランス,チョークコイルコア、磁気センサコアなどの各種電磁気回路部品の素材として使用することができるものである。 According to the present invention, Mg-Fe-O ternary oxide deposited film in which metal Fe fine particles are dispersed in a substrate is coated on the surface of the iron powder containing Mg-containing iron oxide film. The present invention relates to a composite soft magnetic powder formed by coating a SiO 2 -based composite oxide film (preferably forestlite having a molar ratio of MgO / SiO 2 of 2), and produced using this composite soft magnetic powder The present invention relates to a low iron loss composite soft magnetic material having high strength, high magnetic flux density and high resistance, and this low strength soft composite material having high strength, high magnetic flux density and high resistance is low in Various electromagnetic circuit components that require iron loss, such as magnetic core, motor core, generator core, solenoid core, ignition core, reactor, transformer, choke coil core, magnetic sensor core, etc. Those which can be used as a material for an electromagnetic circuit components.

一般に、各種電磁気回路部品に使用される軟磁性材は、鉄損が小さいことが要求されるため、電気抵抗を高くして渦電流損を低減させ、保磁力を小さくしてヒステリシス損を低減させることは一般に知られている。さらに、近年、電磁気回路の小型化、高応答化が求められているところから、磁束密度がより高いことも重要視されている。   In general, soft magnetic materials used in various electromagnetic circuit components are required to have low iron loss. Therefore, electrical resistance is increased to reduce eddy current loss, and coercive force is reduced to reduce hysteresis loss. It is generally known. Further, in recent years, since the miniaturization and high response of the electromagnetic circuit are demanded, it is important to have a higher magnetic flux density.

かかる高比抵抗を有する軟磁性材料を製造するための原料粉末の一例として鉄粉末の表面に化学的な方法によりMg含有フェライト膜を被覆したMg含有酸化鉄膜被覆鉄粉末が知られており(特許文献1参照)、また一般に軟磁性粉末を低融点ガラス粉末と共に混合して得られた混合粉末を圧縮成形し熱処理して圧粉磁性材料などを製造する方法も知られている(特許文献2または3参照)。
特開平11−1702号公報 特開2004−253787号公報 特開2004−297036号公報
As an example of a raw material powder for producing a soft magnetic material having such a high specific resistance, an iron powder coated with an Mg-containing iron oxide film in which the surface of the iron powder is coated with an Mg-containing ferrite film by a chemical method is known ( In addition, there is also known a method of producing a powder magnetic material or the like by compression-molding a mixed powder obtained by mixing soft magnetic powder together with a low melting glass powder and heat-treating the powder (see Patent Document 2). Or see 3).
Japanese Patent Laid-Open No. 11-1702 JP 2004-253787 A JP 2004-297036 A

しかし、従来のMg含有フェライト膜を被覆したMg含有酸化鉄膜被覆鉄粉末は、鉄粉末の表面にMg含有フェライト膜を化学的方法により被覆するために、プレス成形した圧粉体に高温歪取り焼成を行って得られた複合軟磁性材は、Mg含有フェライト膜が不安定となり変化して絶縁性が低下すると共に、鉄粉末の表面に対するMg含有フェライト膜の密着性が十分でなく、従来のMg含有フェライト膜を被覆したMg含有酸化鉄膜被覆鉄粉末を低融点ガラス粉末と混合して得られた混合粉末をプレス成形し熱処理することにより作製した複合軟磁性材は、プレス成形中にMg含有フェライト膜が剥離したり破れるなどして十分な絶縁効果が発揮できず、したがって、十分な高比抵抗が得られないという問題点があった。   However, the conventional iron powder coated with Mg-containing iron oxide film coated with Mg-containing ferrite film has a high-temperature strain-relief effect on press-molded green compacts to coat the Mg-containing ferrite film on the surface of the iron powder by a chemical method. In the composite soft magnetic material obtained by firing, the Mg-containing ferrite film becomes unstable and changes, resulting in a decrease in insulation, and the adhesion of the Mg-containing ferrite film to the surface of the iron powder is not sufficient. The composite soft magnetic material produced by press-molding and heat-treating the mixed powder obtained by mixing the Mg-containing iron oxide film-coated iron powder coated with the Mg-containing ferrite film and the low melting point glass powder There is a problem in that a sufficient insulating effect cannot be exhibited due to peeling or tearing of the contained ferrite film, and therefore a sufficient high specific resistance cannot be obtained.

本発明者らは、かかる問題点を解決するために、先に、
(a)金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化鉄膜被覆鉄粉末、
(b)金属Fe微粒子が素地中に分散しており、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有するMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化膜被覆鉄粉末、
(c)前記(a)および(b)記載のMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化鉄膜被覆鉄粉末であって、前記鉄粉末と前記Mg−Fe−O三元系酸化物堆積膜との界面領域に、鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有するMg含有酸化鉄膜被覆鉄粉末、
(d)前記金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、素地中に結晶質のMgO固溶ウスタイト相を有する前記(a),(b),(c)または(d)記載のMg含有酸化膜被覆鉄粉末、
(e)前記金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、結晶粒径:200nm以下の微細結晶組織を有する前記(a)、(b)、(c)、(d)または(e)記載のMg含有酸化膜被覆鉄粉末、
(f)前記金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜の最表面は、実質的にMgOで構成されている前記(a)、(b)、(c)、(d)または(e)記載のMg含有酸化膜被覆鉄粉末、などを発明した。
In order to solve such problems, the present inventors firstly
(A) a Mg-containing iron oxide film-coated iron powder in which an Mg-Fe-O ternary oxide deposition film in which metal Fe fine particles are dispersed in the substrate is coated on the surface of the iron powder;
(B) Mg—Fe—O 3 having a concentration gradient in which metallic Fe fine particles are dispersed in the substrate, Mg and O decrease from the surface toward the inside, and Fe increases toward the inside. Mg-containing oxide film-coated iron powder in which the base oxide film is coated on the surface of the iron powder,
(C) The Mg-containing iron oxide film-coated iron powder in which the Mg—Fe—O ternary oxide deposited film described in (a) and (b) is coated on the surface of the iron powder, the iron powder Mg-containing iron oxide film-coated iron having a sulfur-concentrated layer containing sulfur at a higher concentration than sulfur contained in the center of the iron powder in the interface region between the Mg-Fe-O ternary oxide deposited film and the Mg-Fe-O ternary oxide deposited film Powder,
(D) The Mg—Fe—O ternary oxide deposited film in which the metallic Fe ultrafine particles are dispersed in the substrate has a crystalline MgO solid solution wustite phase in the substrate. ), (C) or (d) Mg-containing oxide film-coated iron powder,
(E) The Mg—Fe—O ternary oxide deposited film in which the metal Fe ultrafine particles are dispersed in the substrate has the crystal grain size: 200 nm or less (a), (b) , (C), (d) or (e) described Mg-containing oxide film-coated iron powder,
(F) The outermost surface of the Mg—Fe—O ternary oxide deposited film in which the metal Fe ultrafine particles are dispersed in the substrate is substantially composed of MgO (a), (b) , (C), (d) or (e) described invented Mg-containing oxide film-coated iron powder.

かかる先に発明した前記(a)、(b)、(c)、(d)、(e)または(f)記載のMg含有酸化鉄膜被覆鉄粉末は、鉄粉末を予め酸化雰囲気中で加熱するなどして酸化処理を施すことにより鉄粉末の表面に酸化鉄膜を形成した鉄粉末(以下、酸化処理鉄粉末という)を作製し、この酸化処理鉄粉末にMg粉末を添加し混合して得られた混合粉末を不活性ガス雰囲気または真空雰囲気中で転動しながら加熱した後さらに酸化性雰囲気中で加熱する酸化処理を施すことにより得られるものである。
このようにして得られた先に発明したMg含有酸化鉄膜被覆鉄粉末におけるMg−Fe−O三元系酸化物堆積膜は、
(イ)従来の鉄粉末の表面にMg含有フェライト膜を化学的に形成したMg含有酸化鉄膜に比べて鉄粉末に対する密着性が格段に優れることから、プレス成形中に絶縁皮膜である酸化鉄膜が破壊されて鉄粉末同士が接触することが少なく、プレス成形後に焼成を行ってもMg含有酸化鉄膜の絶縁性が低下することなく高抵抗を維持することができるところから渦電流損失が低くなり、さらに焼成を行った場合に、より保磁力が低減できることからヒステリシス損失を低く抑えることができ、したがって、低鉄損を有する複合軟磁性材料が得られること、
(ロ)前記Mg−Fe−O三元系酸化物堆積膜は金属Fe微粒子が素地中に分散しており、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有すること、
(ハ)前記Mg含有酸化鉄膜被覆鉄粉末は、鉄粉末と金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜との界面領域には、鉄粉末の中心部に不可避不純物として含まれている硫黄よりも高濃度の硫黄を含む硫黄濃化層が形成されること、
(ニ)前記金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、MgO固溶ウスタイト相(MgOがウスタイト(FeO)に固溶している物質)を含有していること、
(ホ)前記Mg−Fe−O三元系酸化物堆積膜は結晶粒径:200nm以下の微細結晶組織を有すること、
(ヘ)前記Mg−Fe−O三元系酸化物堆積膜は、その最表面に含まれるMgOの量が多いほど好ましく、その最表面は実質的にMgOで構成されていることが最も好ましい、ことなどの知見に基づいて成されたものである。
The Mg-containing iron oxide film-coated iron powder described in (a), (b), (c), (d), (e) or (f) previously invented is obtained by heating the iron powder in an oxidizing atmosphere in advance. An iron powder having an iron oxide film formed on the surface of the iron powder (hereinafter referred to as an “oxidized iron powder”) is prepared by performing an oxidation process, and the Mg powder is added to the oxidized iron powder and mixed. The obtained mixed powder is obtained by heating while rolling in an inert gas atmosphere or a vacuum atmosphere, and then subjecting it to an oxidation treatment in which it is further heated in an oxidizing atmosphere.
The Mg—Fe—O ternary oxide deposited film in the Mg-containing iron oxide film-coated iron powder previously invented in this way is:
(I) Compared to the Mg-containing iron oxide film in which the Mg-containing ferrite film is chemically formed on the surface of the conventional iron powder, the adhesion to the iron powder is remarkably superior. Since the film is broken and the iron powders do not come into contact with each other, and the eddy current loss can be maintained even when firing after press forming without maintaining the insulation of the Mg-containing iron oxide film. When the firing is further reduced, the coercive force can be further reduced, so that the hysteresis loss can be kept low, and thus a composite soft magnetic material having a low iron loss can be obtained,
(B) In the Mg—Fe—O ternary oxide deposited film, metal Fe fine particles are dispersed in the substrate, Mg and O are decreased from the surface toward the inside, and Fe is directed toward the inside. Having an increasing concentration gradient,
(C) The Mg-containing iron oxide film-coated iron powder is composed of an iron powder and an Mg-Fe-O ternary oxide deposited film in which metal Fe fine particles are dispersed in the substrate. A sulfur-concentrated layer containing sulfur at a higher concentration than sulfur contained as an inevitable impurity in the center,
(D) The Mg—Fe—O ternary oxide deposited film in which the metal Fe ultrafine particles are dispersed in the substrate has an MgO solid solution wustite phase (a substance in which MgO is dissolved in wustite (FeO)). Containing
(E) the Mg—Fe—O ternary oxide deposited film has a crystal grain size: a fine crystal structure of 200 nm or less;
(F) The Mg-Fe-O ternary oxide deposited film is preferably as the amount of MgO contained in the outermost surface is larger, and the outermost surface is most preferably substantially composed of MgO. It was made based on such knowledge.

これら先に発明した前記(a)〜(e)記載のMg含有酸化鉄膜被覆鉄粉末の製造方法を一層具体的に説明すると、まず、鉄粉末を予め酸化雰囲気中、温度:50〜500℃に加熱して酸化処理することにより鉄粉末の表面に酸化鉄膜を形成した酸化処理鉄粉末を作製し、これらの粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で転動しながら加熱した後、必要に応じてさらに酸化性雰囲気中、温度:50〜350℃で加熱する酸化処理を施すことにより作製することができる。 The production method of the Mg-containing iron oxide film-coated iron powder according to the above-described inventions (a) to (e) will be more specifically described. The oxidized powder is formed by forming an iron oxide film on the surface of the iron powder by heating and oxidizing the powder, and the mixed powder obtained by adding and mixing the Mg powder to these powders has a temperature of 150 to After heating while rolling in an inert gas atmosphere or vacuum atmosphere of 1100 ° C. and pressure: 1 × 10 −12 to 1 × 10 −1 MPa, if necessary, in an oxidizing atmosphere, temperature: 50 to 350 It can produce by performing the oxidation process heated at degreeC.

また、先に発明した前記(f)記載の金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜の最表面が実質的にMgOで構成されているMg−Fe−O三元系酸化物堆積膜は、鉄粉末を予め酸化雰囲気中、温度:50〜500℃に加熱して酸化処理することにより鉄粉末の表面に酸化鉄膜を形成した酸化処理鉄粉末を作製し、これらの粉末にMg粉末を一層多く添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で転動しながら加熱した後、さらに酸化性雰囲気中、温度:50〜350℃で一層長時間加熱保持する酸化処理を施すことにより得られる。 In addition, the Mg—Fe—O ternary oxide deposited film in which the metal Fe fine particles described in (f) described above are dispersed in the substrate is substantially composed of MgO. The Fe-O ternary oxide deposited film is an oxidized iron powder in which an iron oxide film is formed on the surface of the iron powder by previously oxidizing the iron powder in an oxidizing atmosphere at a temperature of 50 to 500 ° C. An inert gas atmosphere at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −1 MPa is obtained by adding more Mg powder to these powders and mixing them. Alternatively, after heating while rolling in a vacuum atmosphere, it is further obtained by subjecting it to an oxidation treatment in which it is heated and held at a temperature of 50 to 350 ° C. for a longer time in an oxidizing atmosphere.

一般に、「堆積膜」という用語は、通常、真空蒸発やスパッタされた皮膜構成原子が例えば基板上に堆積した皮膜を示すが、この発明において、この発明の鉄粉末の表面に形成されている金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、酸化処理鉄粉末表面の酸化鉄(Fe−O)とMgが反応を伴って当該鉄粉末表面に堆積した皮膜を示す。そして、この発明の金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は金属Fe極微粒子がMg−Fe−O三元系酸化物のMg含有酸化膜素地中に分散していることから高度の靭性を有する。このためプレス成形時の鉄粉末の変形に充分に追従すると共に酸化膜の鉄粉末に対する密着性が格段に優れたものとなっている。さらに、この発明の金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜はMgO固溶ウスタイトを含むことが好ましく、このMgO固溶ウスタイトは結晶質であることが一層好ましい。
この発明の鉄粉末の表面に形成されている金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜の膜厚は、圧粉成形した複合軟磁性材の高磁束密度と高比抵抗を得るために5〜500nmの範囲内にあるのが好ましい。膜厚が5nmより薄いと圧粉成形した複合軟磁性材の比抵抗が充分でなく渦電流損が増加するので好ましくなく、一方、膜厚が500nmより厚いと圧粉成形した複合軟磁性材の磁束密度が低下し好ましくないからである。さらに好ましい膜厚は5〜200nmである。
In general, the term “deposited film” usually indicates a film in which film-constituting atoms deposited by vacuum evaporation or sputtering are deposited on a substrate, for example. In the present invention, a metal formed on the surface of the iron powder of the present invention. The Mg—Fe—O ternary oxide deposited film in which Fe ultrafine particles are dispersed in the substrate is formed on the iron powder surface by the reaction of iron oxide (Fe—O) and Mg on the surface of the oxidized iron powder. Indicates the deposited film. The Mg—Fe—O ternary oxide deposited film in which the metal Fe ultrafine particles of the present invention are dispersed in the substrate is an Mg-containing oxide film in which the metal Fe ultrafine particles are Mg—Fe—O ternary oxide. It has high toughness because it is dispersed in the substrate. For this reason, the deformation of the iron powder at the time of press molding is sufficiently followed and the adhesion of the oxide film to the iron powder is remarkably excellent. Further, the Mg—Fe—O ternary oxide deposited film in which the metal Fe ultrafine particles of the present invention are dispersed in the substrate preferably contains MgO solid solution wustite, and this MgO solid solution wustite is crystalline. More preferably.
The film thickness of the Mg-Fe-O ternary oxide deposited film in which the metal Fe ultrafine particles formed on the surface of the iron powder of the present invention are dispersed in the substrate is the same as that of the compacted composite soft magnetic material. In order to obtain a high magnetic flux density and a high specific resistance, it is preferably in the range of 5 to 500 nm. If the film thickness is less than 5 nm, the specific resistance of the powder-molded composite soft magnetic material is not sufficient and the eddy current loss increases. On the other hand, if the film thickness is thicker than 500 nm, it is not preferable. This is because the magnetic flux density is lowered, which is not preferable. A more preferable film thickness is 5 to 200 nm.

前記(a)〜(f)記載の先に発明したMg含有酸化鉄膜被覆鉄粉末の表面に形成されているMg−Fe−O三元系酸化物堆積膜は、前記金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜と鉄粉末との界面領域に、鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有する。この硫黄濃化層を有することはオージェ電子分光法により硫黄濃度を測定し、これをグラフに表すと、硫黄濃度ピークを示すことから確認することができる。界面領域にこの様な硫黄濃化層を有することにより金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜の鉄粉末表面に対する密着性がより一層優れるようになり、圧粉成形時の粉末の変形に堆積膜が追従して被覆の破れを防止することができ、焼成時にも鉄粉末同士の接触結合を防止することができて高抵抗を維持することができ、したがって渦電流損失が低くなる。硫黄濃化層の硫黄は、鉄粉末には不可避不純物として硫黄が含まれており、大部分はこの鉄粉末の表面部分に含まれる硫黄から供給されると考えられる。
前記(a)〜(f)記載の先に発明したMg含有酸化鉄膜被覆鉄粉末の表面に形成されているMg−Fe−O三元系酸化物堆積膜は、その結晶粒が微細であるほど好ましく、結晶粒径が200nm以下の微細結晶組織を有する事が好ましい。この様な微細結晶組織を有することにより、圧粉成形時の粉末の変形に微結晶Mg−Fe−O三元系酸化物堆積膜が追従して被覆の破れを防止することができ、焼成時にも鉄粉末同士の接触結合を防止することができ、また、高温歪取り焼成を行っても酸化物が安定で絶縁性低下が防止でき高抵抗で渦電流損失が低くなる。結晶粒径が200nmより大きいとMg−Fe−O三元系酸化物堆積膜の膜厚が500nmよりも厚くなり圧粉成形した複合軟磁性材の磁束密度が低下するようになるので好ましくない。
さらに、前記(f)記載のMg含有酸化鉄膜被覆鉄粉末の表面に形成されているMg−Fe−O三元系酸化物堆積膜は、その最表面におけるMgOの含有量が多くなるほど好ましく、実質的にMgOで構成されていることが最も好ましい。最表面が実質的にMgOであると、プレス成形した圧粉体の焼成時にもFeの拡散が防止され鉄粉末同士の接触結合を防止することができ絶縁性低下が防止でき高抵抗で渦電流損失が低くなるからである。
In the Mg—Fe—O ternary oxide deposited film formed on the surface of the Mg-containing iron oxide film-coated iron powder previously invented in (a) to (f), the metal Fe fine particles are in the base. In the interface region between the Mg—Fe—O ternary oxide deposited film dispersed in the iron powder and the iron powder, there is a sulfur enriched layer containing a higher concentration of sulfur than the sulfur contained in the center of the iron powder. Having this sulfur-concentrated layer can be confirmed from the fact that the sulfur concentration is measured by Auger electron spectroscopy, and this is shown in a graph, showing a sulfur concentration peak. By having such a sulfur-concentrated layer in the interface region, the adhesion of the Mg-Fe-O ternary oxide deposited film in which the metal Fe fine particles are dispersed in the substrate to the iron powder surface is further improved. Therefore, the deposited film can follow the deformation of the powder during compacting to prevent the coating from being torn, and even during firing, contact bonding between the iron powders can be prevented and high resistance can be maintained. And therefore lower eddy current losses. The sulfur in the sulfur-concentrated layer is considered to be supplied from sulfur contained in the surface portion of the iron powder because the iron powder contains sulfur as an unavoidable impurity.
The Mg—Fe—O ternary oxide deposited film formed on the surface of the Mg-containing iron oxide film-coated iron powder previously invented in (a) to (f) has fine crystal grains. It is more preferable that the crystal grain size has a fine crystal structure of 200 nm or less. By having such a fine crystal structure, the microcrystalline Mg—Fe—O ternary oxide deposited film can follow the deformation of the powder during compacting and prevent the coating from being broken. In addition, contact bonding between iron powders can be prevented, and even when high-temperature strain relief firing is performed, the oxide is stable and insulation deterioration can be prevented, and eddy current loss is reduced with high resistance. If the crystal grain size is larger than 200 nm, the Mg—Fe—O ternary oxide deposited film becomes thicker than 500 nm, and the magnetic flux density of the compacted composite soft magnetic material is lowered.
Furthermore, the Mg-Fe-O ternary oxide deposited film formed on the surface of the Mg-containing iron oxide film-coated iron powder described in (f) is preferable as the content of MgO on the outermost surface increases. Most preferably, it is substantially composed of MgO. When the outermost surface is substantially MgO, the diffusion of Fe is prevented even during firing of the green compact that has been press-molded, and contact bonding between iron powders can be prevented. This is because loss is reduced.

この発明は、先に発明した(a)〜(f)記載のMg含有酸化鉄膜被覆鉄粉末の表面に、さらにモル比でMgO/SiOの値が1.0〜3.0の範囲内にあるMgO−SiO系複合酸化物膜を被覆してなる複合軟磁性粉末を提供することを目的とするものである。すなわち、この発明は、
(1)金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化鉄膜被覆鉄粉末の表面に、さらにモル比でMgO/SiOの値が1.0〜3.0の範囲内にあるMgO−SiO系複合酸化物膜を被覆してなる複合軟磁性粉末、
(2)金属Fe微粒子が素地中に分散しており、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有するMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化膜被覆鉄粉末の表面に、さらにモル比でMgO/SiOの値が1.0〜3.0の範囲内にあるMgO−SiO系複合酸化物膜を被覆してなる複合軟磁性粉末、
(3)前記Mg含有酸化膜被覆鉄粉末は、Mg−Fe−O三元系酸化物堆積膜と鉄粉末との界面領域に鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有するMg含有酸化鉄膜被覆鉄粉末である前記(1)または(2)記載の複合軟磁性粉末、
(4)前記金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、素地中に結晶質のMgO固溶ウスタイト相を有する前記(1)、(2)または(3)記載の複合軟磁性粉末、
(5)前記Mg−Fe−O三元系酸化物堆積膜は、結晶粒径:200nm以下の微細結晶組織を有する前記(1)、(2)、(3)または(4)記載の複合軟磁性粉末、
(6)前記Mg−Fe−O三元系酸化物堆積膜は、その最表面が実質的にMgOで構成されている前記(1)、(2)、(3)、(4)または(5)記載の複合軟磁性粉末、に特徴を有するものである。
In the present invention, the Mg-containing iron oxide film-coated iron powder described in (a) to (f) above is further provided with a MgO / SiO 2 value in the range of 1.0 to 3.0 by molar ratio. An object of the present invention is to provide a composite soft magnetic powder formed by coating the MgO—SiO 2 composite oxide film. That is, this invention
(1) An Mg-Fe-O ternary oxide deposition film in which metal Fe fine particles are dispersed in the substrate is coated on the surface of the iron powder. A composite soft magnetic powder obtained by coating an MgO-SiO 2 composite oxide film having a ratio of MgO / SiO 2 in the range of 1.0 to 3.0,
(2) Mg—Fe—O 3 having a concentration gradient in which metallic Fe fine particles are dispersed in the substrate, Mg and O decrease from the surface toward the inside, and Fe increases toward the inside. On the surface of the Mg-containing oxide film-coated iron powder on which the base oxide deposition film is coated on the surface of the iron powder, the value of MgO / SiO 2 in a molar ratio is in the range of 1.0 to 3.0. A composite soft magnetic powder formed by coating a MgO-SiO 2 composite oxide film;
(3) The Mg-containing oxide film-coated iron powder contains a higher concentration of sulfur than the sulfur contained in the center of the iron powder in the interface region between the Mg-Fe-O ternary oxide deposited film and the iron powder. The composite soft magnetic powder according to the above (1) or (2), which is an Mg-containing iron oxide film-coated iron powder having a sulfur-concentrated layer,
(4) The Mg—Fe—O ternary oxide deposited film in which the metal Fe ultrafine particles are dispersed in the substrate has a crystalline MgO solid solution wustite phase in the substrate (1), (2 ) Or (3) composite soft magnetic powder,
(5) The Mg—Fe—O ternary oxide deposited film has a crystal grain size: 200 nm or less, and the composite soft film according to (1), (2), (3) or (4) Magnetic powder,
(6) The (1), (2), (3), (4) or (5), wherein the outermost surface of the Mg—Fe—O ternary oxide deposited film is substantially composed of MgO. The composite soft magnetic powder as described above is characterized.

前記(1)、(2)、(3)、(4)、(5)または(6)記載のこの発明の複合軟磁性粉末は、先に発明したMg含有酸化鉄膜被覆鉄粉末を容量比でアルコキシシラン溶液:1に対してマグネシウムアルコキシド溶液:1〜3の範囲内の比率で混合して得られたMgOとSiOの混合酸化物ゾル溶液を前記(a)、(b)、(c)、(d)、(e)または(f)記載のMg含有酸化鉄膜被覆鉄粉末の表面に付着させたのち加熱乾燥することにより製造することができる。 The composite soft magnetic powder according to the present invention described in (1), (2), (3), (4), (5) or (6) described above is based on the Mg-containing iron oxide film-coated iron powder previously invented. The mixed oxide sol solution of MgO and SiO 2 obtained by mixing at a ratio within the range of 1 to 3 with the magnesium alkoxide solution to 1 with the alkoxysilane solution: (a), (b), (c ), (D), (e), or (f), the Mg-containing iron oxide film-coated iron powder may be attached to the surface and then dried by heating.

したがって、この発明は、
(7)容量比でアルコキシシラン溶液:1に対してマグネシウムアルコキシド溶液:1〜3の範囲内の比率で混合して得られたMgOとSiOの混合酸化物ゾル溶液を前記(1)、(2)、(3)、(4)、(5)または(6)記載のMg含有酸化鉄膜被覆鉄粉末の表面に付着させたのち加熱乾燥する複合軟磁性粉末の製造方法、に特徴を有するものである。
Therefore, the present invention
(7) Alkoxy silane solution by volume ratio: 1 Magnesium alkoxide solution: Mixed oxide sol solution of MgO and SiO 2 obtained by mixing at a ratio in the range of 1 to 3 (1), ( 2), (3), (4), (5) or (6), characterized in that it is attached to the surface of the Mg-containing iron oxide film-coated iron powder and then heated and dried to produce a composite soft magnetic powder. Is.

前記(1)、(2)、(3)、(4)、(5)または(6)記載の複合軟磁性粉末を圧縮成形したのち500〜1200℃で焼結することにより高強度、高磁束密度および高抵抗を有する鉄損の少ない複合軟磁性材を製造することができる。したがって、この発明は、
(8)前記(1)、(2)、(3)、(4)、(5)または(6)記載の複合軟磁性粉末を圧縮成形したのち500〜1200℃で焼成する高強度、高磁束密度および高抵抗を有する鉄損の少ない複合軟磁性材の製造方法、
(9)前記(8)記載の方法で製造した複合軟磁性材、に特徴を有するものである。
前記(8)記載の方法で作製した複合軟磁性材は、鉄粒子相とこの鉄粒子相を包囲する粒界相からなり、前記粒界相には結晶質のMgO固溶ウスタイト相を含有するMg−Fe−O三元系酸化物が含まれている。したがって、この発明は、
(10)鉄粒子相とこの鉄粒子相を包囲する粒界相からなり、前記粒界相には結晶質のMgO固溶ウスタイト相を含有するMg−Fe−O三元系酸化物が含まれている前記(9)記載の複合軟磁性材、に特徴を有するものである。
The composite soft magnetic powder described in the above (1), (2), (3), (4), (5) or (6) is compression molded and then sintered at 500 to 1200 ° C. to obtain high strength and high magnetic flux. It is possible to produce a composite soft magnetic material having a density and a high resistance and having a low iron loss. Therefore, the present invention
(8) High strength, high magnetic flux that is sintered at 500 to 1200 ° C. after compression molding the composite soft magnetic powder described in (1), (2), (3), (4), (5) or (6) A method for producing a composite soft magnetic material having low density and high resistance and having low iron loss,
(9) The composite soft magnetic material manufactured by the method described in (8) above is characterized.
The composite soft magnetic material produced by the method described in (8) above comprises an iron particle phase and a grain boundary phase surrounding the iron particle phase, and the grain boundary phase contains a crystalline MgO solid solution wustite phase. Mg—Fe—O ternary oxide is included. Therefore, the present invention
(10) An iron particle phase and a grain boundary phase surrounding the iron particle phase, and the grain boundary phase includes Mg—Fe—O ternary oxide containing crystalline MgO solid solution wustite phase. The composite soft magnetic material according to (9) is characterized.

この発明によると、高強度および高抵抗を有し、さらに高磁束密度の複合軟磁性材を提供することができ、電気および電子産業において優れた効果をもたらすものである。   According to the present invention, it is possible to provide a composite soft magnetic material having high strength and high resistance, and having a high magnetic flux density, which provides excellent effects in the electrical and electronic industries.

原料粉末として、平均粒径:70μmを有し不可避不純物として硫黄を含む純鉄粉末を用意し、前記純鉄粉末を大気中、温度:220℃、2時間保持の条件で酸化処理することにより表面に酸化鉄膜を有する酸化処理鉄粉末を作製した。さらに、平均粒径:50μmのMg粉末を用意した。この酸化処理鉄粉末に対し先に用意したMg粉末を、酸化処理鉄粉末:Mg粉末=99.8質量%:0.2質量%の割合で添加し混合して混合粉末を作製し、得られた混合粉末を温度:650℃、圧力:1×10−4MPa、1時間保持の条件で転動しながら加熱することにより鉄粉末の表面に堆積膜が被覆されているMg含有酸化鉄膜被覆鉄粉末を作製した。この鉄粉末の表面に形成されている堆積膜の断面組織を電子顕微鏡で観察し、その堆積膜の厚さと最大結晶粒径を求めところ、膜厚は40nm、最大結晶粒径は20nmであることがわかった。 As a raw material powder, a pure iron powder having an average particle diameter of 70 μm and containing sulfur as an inevitable impurity is prepared, and the pure iron powder is oxidized in the atmosphere at a temperature of 220 ° C. for 2 hours to obtain a surface. An oxidized iron powder having an iron oxide film was prepared. Furthermore, Mg powder having an average particle diameter of 50 μm was prepared. To this oxidized iron powder, the previously prepared Mg powder was added at a ratio of oxidized iron powder: Mg powder = 99.8 mass%: 0.2 mass% to prepare a mixed powder. Mg-containing iron oxide film coated with a deposited film on the surface of the iron powder by heating the mixed powder while rolling under conditions of temperature: 650 ° C., pressure: 1 × 10 −4 MPa, and holding for 1 hour Iron powder was produced. The cross-sectional structure of the deposited film formed on the surface of the iron powder is observed with an electron microscope, and the thickness and maximum crystal grain size of the deposited film are obtained. The film thickness is 40 nm and the maximum crystal grain size is 20 nm. I understood.

このMg含有酸化鉄膜被覆鉄粉末の表面に形成された堆積膜をX線光電子分光装置により分析を行ない、結合エネルギーを解析したところ、金属Fe微粒子が素地中に分散していることが解った。また、金属Fe微粒子が素地中に分散している堆積膜の最表面はMgOで構成されていることが解った。さらに、堆積膜の深さ方向のMg、OおよびFeの濃度分布をオージェ電子分光装置を用いて調べた結果、MgおよびOは表面から内部に向って減少しておりかつFeは内部に向って増加している濃度勾配を有することが解った。従って、Mg含有酸化鉄膜被覆鉄粉末の表面に形成された堆積膜は、金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜であること、このMg−Fe−O三元系酸化物堆積膜はMgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有すること、並びにその最表面はMgOで構成されている堆積膜であることが分かった。
さらに、鉄粉末とMg−Fe−O三元系酸化物堆積膜との界面領域をオージェ電子分光装置を用いて硫黄の分布を調べた結果、堆積膜と鉄粉末との界面領域に鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有することが解った。
The deposited film formed on the surface of the Mg-containing iron oxide film-coated iron powder was analyzed with an X-ray photoelectron spectrometer, and the binding energy was analyzed. As a result, it was found that metal Fe fine particles were dispersed in the substrate. . Further, it was found that the outermost surface of the deposited film in which the metal Fe fine particles are dispersed in the substrate is composed of MgO. Furthermore, as a result of examining the concentration distribution of Mg, O and Fe in the depth direction of the deposited film using an Auger electron spectrometer, Mg and O decreased from the surface toward the inside, and Fe toward the inside. It was found to have an increasing concentration gradient. Therefore, the deposited film formed on the surface of the Mg-containing iron oxide film-coated iron powder is a Mg—Fe—O ternary oxide deposited film in which metal Fe fine particles are dispersed in the substrate. The Fe—O ternary oxide deposited film has a concentration gradient in which Mg and O decrease from the surface toward the inside and Fe increases toward the inside, and the outermost surface is composed of MgO. It was found that this was a deposited film.
Furthermore, as a result of examining the distribution of sulfur in the interface region between the iron powder and the Mg—Fe—O ternary oxide deposited film using an Auger electron spectroscope, the iron powder was found in the interface region between the deposited film and the iron powder. It was found to have a sulfur enriched layer containing a higher concentration of sulfur than the sulfur contained in the center.

さらに、水と塩酸を添加した前加水分解アルコキシシラン溶液およびマグネシウムアルコキシド溶液を用意し、前加水分解アルコキシシラン溶液:1に対してマグネシウムアルコキシド溶液:2の容量比で混合してMgOとSiOの混合酸化物ゾル溶液を作製し、このMgOとSiOの混合酸化物ゾル溶液を先に用意したMg含有酸化鉄膜被覆鉄粉末に対してMgOとSiOの混合酸化物換算で0.2質量%添加し混合し、得られた混合粉末を温度:150℃で加熱乾燥することによりMg含有酸化鉄膜被覆鉄粉末の表面に2MgO・SiOからなるMgO−SiO系複合酸化物膜を被覆した本発明複合軟磁性粉末を作製した。 Further, a pre-hydrolyzed alkoxysilane solution and a magnesium alkoxide solution to which water and hydrochloric acid were added were prepared, and the pre-hydrolyzed alkoxysilane solution: 1 was mixed at a volume ratio of magnesium alkoxide solution: 2: MgO and SiO 2 . mixed oxide sol solution was prepared, 0.2 weight a mixed oxide in terms of MgO and SiO 2 with respect to Mg-containing iron oxide film-coated iron powder prepared mixed oxide sol solution of MgO and SiO 2 above The resulting mixed powder is heated and dried at a temperature of 150 ° C. to coat the Mg-containing iron oxide film-coated iron powder with a MgO—SiO 2 composite oxide film composed of 2MgO · SiO 2. The composite soft magnetic powder of the present invention was produced.

この本発明複合軟磁性粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた板状圧粉体およびリング状圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼結することにより板状およびリング状焼結体からなる複合軟磁性材を作製し、得られた板状焼結体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表1に示し、さらにリング状焼結体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表1に示した。   The composite soft magnetic powder of the present invention is placed in a mold and press-molded to form a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, outer diameter: 35 mm, inner diameter: 25 mm, height By molding a ring-shaped green compact having a dimension of 5 mm, and sintering the obtained plate-shaped green compact and the ring-shaped green compact in a nitrogen atmosphere at a temperature of 500 ° C. for 30 minutes. A composite soft magnetic material composed of a plate-shaped and ring-shaped sintered body was prepared, and the relative density, specific resistance, and bending strength of the obtained composite soft magnetic material composed of a plate-shaped sintered body were measured, and the results were displayed. 1 and further, the composite soft magnetic material made of a ring-shaped sintered body was wound, and the magnetic flux density was measured with a BH tracer. The results are shown in Table 1.

従来例1
純鉄粉末の表面にMg含有フェライト層を化学的方法で形成したMg含有フェライト被覆鉄粉末を用意し、このMg含有フェライト被覆鉄粉末にシリコーン樹脂およびMgO粉末をシリコーン樹脂:0.14、MgO:0.06、残部:Mg含有フェライト被覆鉄粉末の割合となるように混合して従来混合粉末を作製し、得られた従来混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼結することにより板状およびリング状焼結体からなる複合軟磁性粉末を作製した。得られた板状焼結体からなる複合軟磁性材の相対密度、比抵抗および抗折力を測定してその結果を表1に示し、さらにリング状焼結体からなる複合軟磁性材に巻き線を施し、BHトレーサで磁束密度を測定し、それらの結果を表1に示した。
Conventional Example 1
An Mg-containing ferrite-coated iron powder in which a Mg-containing ferrite layer is formed on the surface of pure iron powder by a chemical method is prepared, and a silicone resin and MgO powder are added to the Mg-containing ferrite-coated iron powder as a silicone resin: 0.14, MgO: 0.06, balance: Mg-containing ferrite-coated iron powder is mixed to obtain a conventional mixed powder, and the obtained conventional mixed powder is placed in a mold and press-molded to obtain a length of 55 mm and a width: A plate-shaped green compact having dimensions of 10 mm, thickness: 5 mm, and a ring-shaped green compact having dimensions of outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm, and forming the green compact into nitrogen A composite soft magnetic powder composed of a plate-shaped and ring-shaped sintered body was produced by sintering under conditions of temperature: 500 ° C. and holding for 30 minutes in an atmosphere. The composite soft magnetic material made of the plate-like sintered body was measured for the relative density, specific resistance and bending strength, and the results are shown in Table 1, and further wound on the composite soft magnetic material made of the ring-like sintered body. The magnetic flux density was measured with a BH tracer, and the results are shown in Table 1.

Figure 0004480628
Figure 0004480628

表1に示される結果から、本発明複合軟磁性粉末で作製した複合軟磁性材は複合軟磁性粉末で作製した複合軟磁性材と比べて、抗折強度、磁束密度および比抵抗が共に優れていることが分かる。   From the results shown in Table 1, the composite soft magnetic material produced with the composite soft magnetic powder of the present invention has superior bending strength, magnetic flux density and specific resistance compared to the composite soft magnetic material produced with the composite soft magnetic powder. I understand that.

Claims (13)

金属Fe微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化鉄膜被覆鉄粉末の表面に、さらにモル比でMgO/SiOの値が1.0〜3.0の範囲内にあるMgO−SiO系複合酸化物膜を被覆してなることを特徴とする複合軟磁性粉末。 Mg—Fe—O ternary oxide deposited film in which metal Fe fine particles are dispersed in the substrate is coated on the surface of the Mg-containing iron oxide film coated iron powder. A composite soft magnetic powder comprising a MgO—SiO 2 composite oxide film having a / SiO 2 value in the range of 1.0 to 3.0. 金属Fe微粒子が素地中に分散しており、MgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有するMg−Fe−O三元系酸化物堆積膜が鉄粉末の表面に被覆されているMg含有酸化膜被覆鉄粉末の表面に、さらにモル比でMgO/SiOの値が1.0〜3.0の範囲内にあるMgO−SiO系複合酸化物膜を被覆してなることを特徴とする複合軟磁性粉末。 Mg-Fe-O ternary oxidation having a concentration gradient in which metal Fe fine particles are dispersed in the substrate, Mg and O decrease from the surface toward the inside, and Fe increases toward the inside on the surface of the Mg-containing oxide film coated iron powder goods deposited film is coated on the surface of the iron powder, MgO-SiO the value of MgO / SiO 2 is within the range of 1.0 to 3.0 in yet molar ratio A composite soft magnetic powder comprising a two- system composite oxide film. 前記Mg含有酸化膜被覆鉄粉末は、Mg−Fe−O三元系酸化物堆積膜と鉄粉末との界面領域に鉄粉末の中心部に含まれる硫黄よりも高濃度の硫黄を含む硫黄濃化層を有するMg含有酸化鉄膜被覆鉄粉末であることを特徴とする請求項1または2記載の複合軟磁性粉末。 The Mg-containing oxide film-coated iron powder is enriched with sulfur containing a higher concentration of sulfur than the sulfur contained in the center of the iron powder in the interface region between the Mg-Fe-O ternary oxide deposited film and the iron powder. 3. The composite soft magnetic powder according to claim 1, wherein the composite soft magnetic powder is a Mg-containing iron oxide film-coated iron powder having a layer. 前記金属Fe極微粒子が素地中に分散しているMg−Fe−O三元系酸化物堆積膜は、素地中に結晶質のMgO固溶ウスタイト相を有することを特徴とする請求項1、2または3記載の複合軟磁性粉末。 The Mg-Fe-O ternary oxide deposited film in which the metal Fe ultrafine particles are dispersed in the substrate has a crystalline MgO solid solution wustite phase in the substrate. Or the composite soft-magnetic powder of 3. 前記Mg−Fe−O三元系酸化物堆積膜は、結晶粒径:200nm以下の微細結晶組織を有することを特徴とする請求項1、2、3または4記載の複合軟磁性粉末。 5. The composite soft magnetic powder according to claim 1, wherein the Mg—Fe—O ternary oxide deposited film has a fine crystal structure with a crystal grain size of 200 nm or less. 前記Mg−Fe−O三元系酸化物堆積膜は、その最表面が実質的にMgOで構成されていることを特徴とする請求項1、2、3、4または5記載の複合軟磁性粉末。 The composite soft magnetic powder according to claim 1, 2, 3, 4, or 5, wherein the Mg-Fe-O ternary oxide deposited film has an outermost surface substantially composed of MgO. . 容量比でアルコキシシラン溶液:1に対してマグネシウムアルコキシド溶液:1〜3の範囲内の比率で混合して得られたMgOとSiOの混合酸化物ゾル溶液を請求項1、2、3、4、5または6記載のMg含有酸化鉄膜被覆鉄粉末の表面に付着させたのち加熱乾燥することを特徴とする複合軟磁性粉末の製造方法。 A mixed oxide sol solution of MgO and SiO 2 obtained by mixing at a volume ratio of alkoxysilane solution: 1 to magnesium alkoxide solution: 1 to 3. A method for producing a composite soft magnetic powder, comprising: depositing the Mg-containing iron oxide film-coated iron powder on the surface of 5 or 6; 請求項1、2、3、4、5または6記載の複合軟磁性粉末を圧縮成形したのち500〜1200℃で焼結することを特徴とする高強度、高磁束密度および高抵抗を有する鉄損の少ない複合軟磁性焼結材の製造方法。 Iron loss having high strength, high magnetic flux density and high resistance, characterized in that the composite soft magnetic powder according to claim 1, 2, 3, 6, 5 or 6 is compressed and then sintered at 500 to 1200 ° C. Method for producing a composite soft magnetic sintered material with less content. 請求項8記載の方法で製造した複合軟磁性焼結材。 A composite soft magnetic sintered material produced by the method according to claim 8. 鉄粒子相とこの鉄粒子相を包囲する粒界相からなり、前記粒界相には結晶質のMgO固溶ウスタイト相を含有するMg−Fe−O三元系酸化物が含まれていることを特徴とする請求項9記載の複合軟磁性材。 It consists of an iron particle phase and a grain boundary phase surrounding the iron particle phase, and the grain boundary phase contains a Mg—Fe—O ternary oxide containing a crystalline MgO solid solution wustite phase. The composite soft magnetic material according to claim 9. 請求項9または10記載の複合軟磁性材からなる電磁気回路部品。 An electromagnetic circuit component comprising the composite soft magnetic material according to claim 9. 前記電磁気回路部品は、磁心、電動機コア,発電機コア,ソレノイドコア,イグニッションコア,リアクトル,トランス,チョークコイルコアまたは磁気センサコアであることを特徴とする請求項11記載の電磁気回路部品。 The electromagnetic circuit component according to claim 11, wherein the electromagnetic circuit component is a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor, a transformer, a choke coil core, or a magnetic sensor core. 請求項11または12記載の電磁気回路部品を組み込んだ電気機器。
An electric device incorporating the electromagnetic circuit component according to claim 11.
JP2005161480A 2005-01-25 2005-06-01 Composite soft magnetic powder and method for producing the same Expired - Fee Related JP4480628B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005161480A JP4480628B2 (en) 2005-06-01 2005-06-01 Composite soft magnetic powder and method for producing the same
CN2005800491939A CN101142044B (en) 2005-01-25 2005-11-02 Iron powder coated with mg-containing oxide film
EP05805498A EP1852199B1 (en) 2005-01-25 2005-11-02 Mg-CONTAINING OXIDE COATED IRON POWDER
EP10172637.0A EP2248617B1 (en) 2005-01-25 2005-11-02 Iron powder coated with Mg-containing oxide film
PCT/JP2005/020204 WO2006080121A1 (en) 2005-01-25 2005-11-02 Mg-CONTAINING OXIDE COATED IRON POWDER
US11/814,603 US9269481B2 (en) 2005-01-25 2005-11-02 Iron powder coated with Mg-containing oxide film
CA002598842A CA2598842A1 (en) 2005-01-25 2005-11-02 Iron powder coated with mg-containing oxide film
EP12172935.4A EP2502689B8 (en) 2005-01-25 2005-11-02 Iron powder coated with Mg-containing oxide film
US13/228,139 US8481178B2 (en) 2005-01-25 2011-09-08 Iron powder coated with Mg-containing oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161480A JP4480628B2 (en) 2005-06-01 2005-06-01 Composite soft magnetic powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006339357A JP2006339357A (en) 2006-12-14
JP4480628B2 true JP4480628B2 (en) 2010-06-16

Family

ID=37559657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161480A Expired - Fee Related JP4480628B2 (en) 2005-01-25 2005-06-01 Composite soft magnetic powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4480628B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650450B2 (en) * 2007-04-10 2011-03-16 株式会社日立製作所 Dust core, method for manufacturing dust core, and motor using the same
JP5227756B2 (en) * 2008-01-31 2013-07-03 本田技研工業株式会社 Method for producing soft magnetic material

Also Published As

Publication number Publication date
JP2006339357A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
JP4548035B2 (en) Method for producing soft magnetic material
JP2687683B2 (en) Composite material and method for producing the same
TWI294321B (en) Method for manufacturing of insulated soft magnetic metal powder formed body
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
WO2006080121A1 (en) Mg-CONTAINING OXIDE COATED IRON POWDER
WO2006028100A1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP2009117651A (en) High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2009060050A (en) High specific resistance and low loss composite soft magnetic material, and manufacturing method thereof
JP4480015B2 (en) Laminated oxide film coated iron powder
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP4480628B2 (en) Composite soft magnetic powder and method for producing the same
JP4480627B2 (en) Composite soft magnetic powder and method for producing the same
JP2006332524A (en) High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP4367709B2 (en) Laminated oxide film coated iron powder
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
JP2006332525A (en) High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
WO2005024859A1 (en) Soft magnetic material and method for producing same
JP2006324612A (en) Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder
JP4761836B2 (en) Mg-containing iron oxide coated iron powder
JP2008091414A (en) Composite soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees