WO1998054734A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO1998054734A1
WO1998054734A1 PCT/JP1998/002296 JP9802296W WO9854734A1 WO 1998054734 A1 WO1998054734 A1 WO 1998054734A1 JP 9802296 W JP9802296 W JP 9802296W WO 9854734 A1 WO9854734 A1 WO 9854734A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
resin composition
soft
filler
weight
Prior art date
Application number
PCT/JP1998/002296
Other languages
French (fr)
Japanese (ja)
Inventor
Masahito Tada
Keiichiro Suzuki
Original Assignee
Kureha Kagaku Kogyo K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP15285897A external-priority patent/JPH10326707A/en
Priority claimed from JP20219197A external-priority patent/JP3838749B2/en
Application filed by Kureha Kagaku Kogyo K.K. filed Critical Kureha Kagaku Kogyo K.K.
Publication of WO1998054734A1 publication Critical patent/WO1998054734A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent

Definitions

  • the present invention relates to a resin composition containing a synthetic resin and a soft magnetic filler, and more particularly, to a resin having high magnetic permeability and electric insulation and excellent in withstand voltage. Composition.
  • the present invention also relates to a resin composition having a high magnetic permeability and a high level of balance between withstand voltage and saturation magnetic flux density.
  • the compounds of the ferric and divalent metal oxide, (M 0 ⁇ F e .0 3 ) is Ri large soft magnetic material der permeability, soft (Seo oice) off; t Rye Doo and call Have been broken.
  • the soft filler is manufactured by powder metallurgy and has the characteristics of being hard and lightweight.
  • the soft ferrites Ni-Zn ferrite, Mg-Zn ferrite, and Cu ferrite have high electric resistivity, so that high-frequency It has the characteristic of high magnetic permeability in the band, and its sintered body is used as a material for deflection yokes, high-frequency trans- formers, and magnetic heads.
  • Soft filaments have the disadvantage of being brittle, but taking advantage of their high electrical resistance, the soft magnetic resin composition in which the powder is dispersed as a filler in a synthetic resin is used. New applications are being developed for such applications as ark coils, oral transformers, line filters, and electromagnetic wave shielding materials (EMI shielded materials).
  • the soft magnetic resin composition is a resin composition in which a soft fly powder is dispersed in a synthetic resin.
  • Various molding methods generally used in the field of synthetic resins for example, injection molding, extrusion molding, and compression molding can be used to form a molded article having a desired shape.
  • methods for increasing the electrical resistance of a resin composition containing a synthetic resin and a soft ferrite powder include, for example, 1) Ni ferrite powder or Mg ferrite powder.
  • a method of heat-treating a molded article molded from a resin composition containing an it powder and a crystalline thermoplastic resin at a temperature equal to or higher than the glass transition point of the thermoplastic resin and lower than the melting point Japanese Patent Application Laid-Open No. 8-1-1). No. 9 901), (2) A method using a magnetic powder having an oxide layer formed on the surface (Japanese Patent Laid-Open Publication No. Hei 8-2-1326, 26), (3) A magnetic material having a specific particle size distribution A method using a powder (Japanese Patent Application Laid-Open No. Hei 9-63687) has been proposed.
  • the withstand voltage of the resin composition containing the magnetic powder can be improved from the conventional level.
  • the method (1) since the molded body is heat-treated at a high temperature for a long time, thermal deformation occurs. In some cases, the dimensional accuracy of the molded product became a problem.
  • the method (2) when the synthetic resin and the magnetic powder are melt-kneaded or molded, the magnetic powder is crushed, and the oxide layer (insulating layer) formed on the surface is destroyed. There was a problem. Therefore, it is difficult to achieve a high withstand voltage by the method (2) alone.
  • the soft magnetic resin composition in which soft ferrite powder, which is an oxide-based soft magnetic material, is dispersed in a synthetic resin does not have a sufficiently high saturation magnetic flux density. When applied, it was necessary to keep the operable current low or the operable magnetic field low.
  • a metal soft magnetic material made of a metal or an alloy generally has a high saturation magnetic flux density, but has a problem that its electric resistance is considerably lower than that of an oxide soft magnetic material.
  • gay steel sheet is widely used as a transcore, but cannot be used as it is because of its low electrical resistance, and is used with an insulating plate sandwiched between its thin plates.
  • carbonyl iron powder is used as a dust core in high-frequency inductors, its low electrical resistance makes it unsuitable for components to which high voltages are applied.
  • the Fe-Si-B alloy is mainly used in the form of a ribbon, but because of its low electrical resistance, it had to be placed in an insulating case. Therefore, a resin composition in which such a metal-based soft magnetic material is dispersed in a synthetic resin has a high dielectric strength. There was a problem that the pressure was low and the permeability was low.
  • An object of the present invention is to provide a resin composition containing a synthetic resin and a soft magnetic filler, which has high magnetic permeability and electric insulation, and is excellent in withstand voltage. To do that.
  • Another object of the present invention is a resin composition containing a synthetic resin and a soft magnetic filler, which has a high magnetic permeability, a withstand voltage (electric resistance) and a saturation magnetic flux.
  • An object of the present invention is to provide a resin composition in which the density is balanced at a high level.
  • the present inventors have conducted intensive studies to overcome the problems of the prior art, and as a result, in a resin composition containing a synthetic resin and a soft magnetic filler, the soft magnetic filler and the soft magnetic filler And at least one kind selected from the group consisting of Ni—Zn-based ferrite, Mg—Zn-based ferrite, and Cu-based ferrite.
  • a soft bright powder By using a soft bright powder and controlling the porosity of the soft bright powder within a small range, it has a moderately high magnetic permeability and a high electric insulation, and It has been found that a resin composition having a significantly improved withstand voltage can be obtained.
  • the magnetic permeability can be increased to a high level. It was found that a resin composition having both high withstand voltage and high saturation magnetic flux density can be obtained while maintaining the above conditions. Furthermore, it has been found that with this resin composition, when a low-modulus agent such as silicone oil is mixed, the withstand voltage can be maintained at a particularly high level.
  • the present invention has been completed based on these findings. You.
  • the soft magnetic filer (B) is composed of a Ni—Zn-based resin. At least one kind of soft filler powder selected from the group consisting of light, Mg—Zn-based ferrite, and Cu-based ferrite; and Further, there is provided a resin composition characterized by containing a soft ferrite powder (B1) having a porosity in the range of 0.01 to 5%.
  • the soft magnetic filler (B) in the resin composition containing the soft filler powder (B 1), may be a metal having an electrically insulating layer formed on the surface.
  • the present invention provides a resin composition further containing a magnetic powder (B 2).
  • the resin composition preferably contains a low-modulus agent (C) in order to increase both the withstand voltage and the saturation magnetic flux density to high levels.
  • polyolefins such as polyethylene and polypropylene
  • polyamides such as polyamides
  • polyolefins such as polyolefins
  • Allylene sulfide and epoxy resin are particularly preferred in view of moldability and physical properties. Heat resistance, chemical resistance, dimensional stability, machinery From the viewpoint of the target strength and the like, a polylens sulfide such as a polylens sulfide is particularly preferable.
  • a specific soft filler powder (B 1) may be used alone as the soft magnetic filler (B), or may be used as the soft magnetic filler (B 1). Use in combination with a specific metal magnetic powder (B 2).
  • Soft Fuwerai DOO is a ferric oxide (F e.0 o) and divalent metal oxide compounds of (MO) (MO ⁇ F e 2 0 3), the type of divalent metal oxides Therefore, M n —Zn system, M g —Zn system, Ni-Zn system, Cu system, Cu—Zn system, Cu—Zn—Mg system, Cu—Ni — Classified into various ferrites such as Zn-based.
  • the soft ferrite powder is selected from the group consisting of Ni—Zn ferrite, Mg—Zn ferrite, and Cu ferrite. Use at least one.
  • N i - A Z n system Fuwerai DOO refers to having the general formula (N i O) x (Z n O) y 'F e 9 ⁇ 3 represented by the composition, but a part of the N i It may be substituted with another divalent metal such as Cu, Mg, Co and Mn.
  • the Ni—Zn ferrite may be one to which other additives are added as long as the original properties are not impaired.
  • a Ni-Zn ferrite in which the content of iron oxide is adjusted is particularly preferable.
  • Mg- Z n system ferrite Bok and the general formula (Mg O) ⁇ (Z nO ) y - F e 2 ⁇ 3 refers to those having a composition represented by, but a part of M g N i, C It may be substituted with another divalent metal such as u, Co, and Mn.
  • the Mg-Zn ferrite may contain other additives as long as the original properties are not impaired.
  • Mg-Zn type fillers in which the content of iron oxide is adjusted to suppress the precipitation of hematite are particularly preferred.
  • the Cu-based filler may be one to which other additives are added as long as the original properties are not impaired.
  • a Cu-based filler in which the content of iron oxide is adjusted is particularly preferable.
  • Ni—Zn-based ferrite, Mg—Zn-based light, and Cu-based light can be synthesized by a known method.
  • Metal oxides or metal carbonates such as CuO, NiO, MgO, and ZnO.
  • Typical examples of the method for producing a soft fly include a dry method, a coprecipitation method, and a spray pyrolysis method.
  • each raw material such as a metal oxide or a metal carbonate is calculated so as to have a predetermined mixing ratio, mechanically mixed, fired, and pulverized.
  • the raw material mixture is preferably calcined, pulverized into fine particles, granulated into granules, further calcined, and then pulverized again to obtain a soft flour powder.
  • hydroxide is precipitated by adding strong force to an aqueous solution of a metal salt, and this is oxidized to obtain a fine soft powder powder.
  • the soft ferrite powder is granulated, fired, and then ground.
  • an aqueous solution of a metal salt is thermally decomposed to obtain a particulate oxide.
  • the oxide powder is granulated, fired, and then ground.
  • the baked fine powder is pulverized by a hammer mill, rod mill, ball mill, or the like, and is made into a soft ferrite powder having a desired particle size.
  • Firing at a high temperature exceeding ° C is preferred. Firing temperature is preferred Is 1200 to 135 ° C.
  • an additive that promotes the solid phase reaction is used in combination. Examples of such additives include copper compounds such as copper oxide.
  • At least one kind of soft filler selected from the group consisting of Ni—Zn ferrite, Mg—Zn ferrite, and Cu ferrite Use a soft filler powder with a porosity of 0.01 to 5%.
  • a soft ferrite powder having a porosity of more than 5% is mixed with a synthetic resin, it is difficult to obtain a resin composition having excellent withstand voltage.
  • a soft fly powder having a porosity of less than 0.01% and having substantially no voids is mixed with the synthetic resin, various additives added to the soft fly powder are lost and the It is not preferable because the synthetic resin is considered to be partially decomposed and is decomposed.
  • a soft ferrite powder whose porosity is adjusted within a limited range is used.
  • the porosity is 0.01 to 5%, preferably 0.03 to 4%, more preferably 0.05 to 3%, particularly preferred.
  • Use soft flour powder in the range of 0.1 to 2%. In many cases, the desired result can be obtained by using a soft filler powder having a porosity of 0.5 to 5%.
  • the withstand voltage of the resin composition is generally set to 250 V or more, preferably to 300 V or more. Can be done.
  • the withstand voltage of the resin composition is more preferably 350 V or more, and particularly preferably 500 V The above can be said. When the porosity is 1% or less, an excellent withstand voltage exceeding 500 V can be obtained.
  • the average particle size of the soft ferrite powder is 1 ⁇ or more and lmm or less. I prefer it. If the average particle diameter of the soft ferrite powder is too small, it is not preferable because it is difficult to obtain a sufficient magnetic permeability and the withstand voltage also decreases. On the other hand, if the average particle size of the soft filler powder is too large, the molding machine wears extremely and molding becomes difficult, which is not preferable.
  • the average particle size of the soft ferrite powder is preferably 15
  • the metal magnetic powder (B 2) used in the present invention is obtained by forming an electric insulating layer on the surface of a powdery metal soft magnetic material.
  • a powdery metal soft magnetic material As the metal-based soft magnetic material, pure iron-based and iron-based alloy-based soft magnetic materials are preferable. Examples of the pure iron-based soft magnetic material include metal powder and iron nitride powder.
  • Fe-based alloy soft magnetic materials include Fe—Si—A1 alloy (sendust) powder, super-sendust powder, Ni—Fe alloy (palmalloy) powder, and Co — Fe alloy powder, carbonyl iron powder, and 6-31-8 alloy powder. Among these, carbonyl iron powder, sendust powder, and Fe—Si—B-based alloy powder are particularly preferred from the viewpoint of productivity in producing the metal-based magnetic powder (B2).
  • the powdered metallic soft magnetic material has too low an electric resistance as it is, a resin composition having a sufficiently high electric insulating property can be obtained even when used in combination with the soft briquette powder (B1). Is difficult. Therefore, in the present invention, a metal-based magnetic powder (B 2) having an electric insulating layer formed on the surface of a powdery metal-based soft magnetic material is used.
  • a method of forming the electric insulating layer for example, (1) placing a powdery metal soft magnetic material under reduced pressure or an inert gas atmosphere, supplying a trace amount of oxygen, and heating the material; A method of forming a metal oxide film on the surface thereof, and (2) adding a small amount of silane to a powdery metal-based soft magnetic material.
  • a layer of the silane capping agent is formed on the surface thereof, and then heated under reduced pressure to decompose the silane capping agent.
  • a method of forming a gay oxide film is exemplified.
  • silane coupling agents examples include vinyltrimethoxysilane, vinylinoletriethoxysilane, vinylinoletrichlorosilane, and the like. .
  • the silane coupling agent is usually used in the range of 0.1 to 5 parts by weight based on 100 parts by weight of the powdery metal-based soft magnetic material. After a metal oxide film is formed on the surface of a powdery metal-based soft magnetic material, a gay oxide film may be further formed thereon. It should be noted that it is difficult to obtain a sufficient withstand voltage by a method of performing a surface treatment with a simple silane coupling agent or a method of forming a dye layer on the surface.
  • the metal-based magnetic powder (B2) having an electric insulating layer formed on the surface preferably has an average particle diameter of 1 ⁇ m or more and 1 mm or less, and a range of 2 ⁇ m to 500 // m is preferable. More preferred. If the average particle size of the metal magnetic powder (B 2) is too small, the resulting soft magnetic resin composition tends to have low electric resistance. If the average particle diameter of the metal magnetic powder (B 2) is too large, the synthetic resin and the metal magnetic powder tend to separate.
  • the soft magnetic powder (B 1) and the metallic magnetic powder (B 2) are used in combination as the soft magnetic filler (B), a low elastic modulus reducing agent is used. It is preferable to add it. By adding a low-modulus agent, the withstand voltage of the obtained resin composition can be stably increased to a high level. If the electric insulating layer formed on the surface of the metallic magnetic powder (B 2) is broken when kneading the synthetic resin and each soft magnetic filler component, the resulting resin composition has a high resistance. Voltage drops. In addition, soft magnetic filters with high electrical resistance When the resin composition containing the filler is molded, a decrease in electric resistance, which is presumed to be due to residual stress in the molded body, is observed.
  • a low-modulus agent suppresses the destruction of the electrical insulating layer of the metallic magnetic powder (B2) and reduces the residual stress, so that the withstand voltage can be stably set at a high level. It is estimated that this can be done.
  • Silicone oil is preferred as a low-modulus agent.
  • silicone oils epoxy-modified silicone oil is particularly preferred in that it increases the withstand voltage of the resin composition.
  • the resin composition of the present invention is a resin composition containing a synthetic resin (A) and a soft magnetic filler (B), wherein the soft magnetic filler (B) is a Ni-Zn based resin.
  • the soft magnetic filler (B) is a Ni-Zn based resin.
  • At least one kind of soft ferrite powder selected from the group consisting of ferrite, Mg—Zn-based ferrite, and Cu-based ferrite; and It is a resin composition containing a soft finish powder (B1) having a porosity in the range of 0.01 to 5%.
  • the mixing ratio of the soft magnetic filler (B) is usually 100 to 2000 parts by weight, preferably 200 to 150 parts by weight, based on 100 parts by weight of the synthetic resin (A). Parts by weight, more preferably 250 to 100 parts by weight. Therefore, as the soft magnetic filler (B), the soft filler powder (B1) can be used within the above range.
  • the synthetic resin (A) The mixing ratio of the soft fly powder (B1) to 100 parts by weight is preferably in the range of 300 to 200 parts by weight, and 400 to 15 parts by weight. The content is more preferably in the range of 500 parts by weight, and particularly preferably in the range of 500 to 100 parts by weight. If the proportion of the soft fly powder (B 1) is too small, it is difficult to obtain a resin composition having a sufficient magnetic permeability, and if it is too large, the fluidity of the resin composition decreases. Molding becomes difficult.
  • a soft magnetic filler (B) in order to obtain a resin composition having a high magnetic permeability and a high level of withstand voltage (electrical resistance) and saturation magnetic flux density, a soft magnetic filler (B) is used.
  • the soft ferrite powder (B1) and the metal magnetic powder (B2) can be used in combination.
  • the soft magnetic filler (B) is composed of 10 to 90% by weight of the soft magnetic powder (Bl) and 90 to 10% by weight of the metallic magnetic powder (B2). It is preferable that they contain If the proportion of the soft powder (B 1) is too small, the withstand voltage may be insufficient. If the proportion is too large, the effect of improving the saturation magnetic flux density will be reduced.
  • the soft magnetic powder (B 1) and the metallic magnetic powder (B 2) are used in combination as the soft magnetic filler (B), the soft magnetic powder (B 1)
  • Ni—Zn type fine powder and / or Mg—Zn type fine powder are preferable.
  • the proportion of the soft briquette powder (B1) is more preferably from 20 to 80% by weight, and even more preferably from 25 to 75% by weight.
  • the proportion of the metal-based magnetic powder (B 2) is more preferably 80 to 20% by weight, and further preferably 75 to 25% by weight. By using both of them within these ranges, it is possible to obtain a resin composition having an appropriately high magnetic permeability and a high level of withstand voltage and saturation magnetic flux density. Can be done.
  • the soft magnetic filler is used with respect to 100 parts by weight of the synthetic resin (A).
  • Component (B 1 + B 2) is usually 100 to 2000 parts by weight, preferably 200 to 1500 parts by weight, more preferably 250 to 100 parts by weight. It is desirable to mix at a ratio of 0 parts by weight.
  • 0.1 to 1 part by weight of the total amount of the synthetic resin and the soft magnetic filler (B1 + B2) is 100 parts by weight. It is used in a proportion of 0 parts by weight, preferably 0.5 to 5 parts by weight. If the blending ratio of the low elastic modulus agent (C) is too small, the effect of stably maintaining the withstand voltage at a high level is not sufficient, and if it is too large, the mechanical properties and magnetic properties of the resin composition deteriorate. May occur.
  • the resin composition of the present invention contains various fillers such as a fibrous filler and a non-fibrous (plate, granular, powder, spherical) filler in order to improve mechanical properties, heat resistance, and the like. Can be contained.
  • the resin composition of the present invention may contain various additives such as a flame retardant, an antioxidant, and a coloring agent, if necessary.
  • the resin composition of the present invention can be produced by uniformly mixing the components. For example, a predetermined amount of each of a synthetic resin component, a soft magnetic filler component, and other optional components is mixed by a mixer such as a Henschel mixer and melt-kneaded to obtain a resin composition. Can be manufactured.
  • the resin composition of the present invention can be molded into a molded article having a desired shape by various molding methods such as injection molding, extrusion molding, and compression molding. The compact obtained in this way has excellent magnetic permeability and withstand voltage, and further has a high saturation magnetic flux density.
  • the withstand voltage of the resin composition of the present invention is usually 250 V or more, preferably 300 V or more, more preferably 350 V or more, and the porosity is 1 % Or less, the withstand voltage can be increased to 500 V or more. However, if the porosity is If a soft fly powder having substantially no voids is used when the content is less than 0.01%, decomposition of the synthetic resin occurs during melt-kneading or molding.
  • the upper limit of the withstand voltage is about 600 V, and in many cases, about 550 V.
  • the magnetic permeability of the resin composition of the present invention is usually 10 or more, preferably about 10 to 30 and most often about 10 to 20.
  • the resin composition of the present invention generally has a withstand voltage when the soft magnetic powder (B 1) and the metal magnetic powder (B 2) are used in combination as the soft magnetic filler (B). Above 3000 V, preferably above 350 V, often between 300 and 550 V, permeability is usually above 10 and preferably between 10 and 3 0, in most cases about 10 to 20 and the saturation magnetic flux density is usually more than 300 gauss, preferably about 300 to 600 gauss, more It is possible to obtain a resin composition of about 3,000 to 5,000 gauze.
  • the resin composition of the present invention can be applied to a wide range of uses such as coils, transformers, line filters, and electromagnetic wave shielding materials.
  • a disk-shaped electrode is brought into contact with both sides of a 0.8 mm-thick plate-like molded product, and cut at a measurement temperature of 23 ° C using a Kikusui Electronics pressure tester TOS 550.
  • the cutoff current was 1 mA, and the maximum AC voltage that could be applied for 60 seconds was determined.
  • the measurement was performed according to JISC-25661.
  • a 0.8 mm thick plate-like molded product was polished until the cross section of the soft fly powder was seen.
  • a scanning electron microscope JSM-630F manufactured by JEOL the cross section of the soft bright powder was observed.
  • a cross section of 10 soft fly powders was observed, and the porosity in the soft fly powders was calculated using an image processing apparatus JED-2100 manufactured by JEOL Ltd. based on the area.
  • the sintered body was pulverized with a hammer mill to obtain a powder having an average particle diameter of 47 m, and the specific gravity of the obtained powder was 4.6. 17.2 kg of the Mg-Zn-based fine powder obtained above, and polyphenylene sulfide (Kureha Chemical Co., Ltd .; 310 ° C, shear rate 100000)
  • the melt viscosity at Z second was about 20 Pa ⁇ s) 2.8 kg was weighed and mixed with a 20 L Hensyl mixer. Further, the obtained mixture was supplied to a twin-screw extruder set at 280 to 330 ° C. and melt-kneaded to obtain a pellet-like composition.
  • the obtained composition is supplied to an injection molding machine (manufactured by Nippon Steel Works: 1 W / 75 E), and the cylinder temperature is 280 to 310 ° C, and the injection pressure is about 1 OOO kgf / cm. 2.
  • a mold temperature of about 160 ° C. a plate-shaped molded product of 10 mm ⁇ l30 mm ⁇ 0.8 mm was obtained.
  • the withstand voltage of the obtained molded product was measured, it was more than 500 V. Further, the saturation magnetic flux density was 222 gauss.
  • the obtained plate-like molded product was polished, and the porosity in the magnetic powder was measured by a scanning electron microscope. As a result, the porosity in the magnetic material was 1%.
  • the obtained composition is supplied to an injection molding machine (PS-10E made by Nissei Resin), and the cylinder temperature is 280 to 310 ° C, the injection pressure is about 100 kgf / cm 2 , and the gold is At a mold temperature of about 160 ° C., a toroidal core was formed.
  • PS-10E made by Nissei Resin
  • Example 3 A raw material mixture having the same composition as in Example 1 was fired at a temperature of 125 ° C. for 3 hours and gradually cooled to room temperature over 8 hours to obtain a sintered body of Mg—Zn-based filler. .
  • a Mg—Zn-based ferrite powder was obtained from the obtained sintered body in the same manner as in Example 1. The average particle size of the obtained powder was 5 Om. Thereafter, the same operation as in Example 1 was performed. Table 1 shows the obtained results. [Example 3]
  • Example 1 shows the obtained results.
  • Example 1 A mixture having the same composition as in Example 1 was fired at a temperature of 1200 ° C. for 3 hours, and gradually cooled to room temperature over 8 hours to obtain a Mg—Zn-based sintered body. This sintered body was pulverized with a hammer mill to obtain a powder having an average particle diameter of 40 m. Thereafter, the same operation as in Example 1 was performed. Table 1 shows the results.
  • Example 3 A mixture having the same composition as in Example 3 was calcined at a temperature of 125 ° C. for 3 hours and gradually cooled to room temperature over 8 hours to obtain a Mg—Zn-based sintered body. .
  • This sintered body was pulverized with a hammer mill to obtain a powder having an average particle diameter of 45 ⁇ m. Thereafter, the same operation as in Example 1 was performed. Table 1 shows the results. table 1
  • Example 2 In the same manner as in Example 1, an Mg—Zn-based powder having an average particle diameter of 47 / m and a specific gravity of 4.6 was prepared.
  • a commercially available spherical carbonyl iron powder (manufactured by BASF, EN; average particle diameter: 4.3 m) was put into a vacuum dryer, and after depressurizing once, it was filled with argon gas. Next, after introducing a very small amount of air, the mixture was heated to 100 ° C. to form a metal oxide film on the surface of the carbonyl iron powder. To 100 parts by weight of the magnetic powder thus obtained, 2 parts by weight of a silane coupling agent (vinyl trimethoxysilane) was added []. Then, the mixture was stirred with a Hensyl mixer to form a layer of a silane coupling agent on the surface.
  • a silane coupling agent vinyl trimethoxysilane
  • the magnetic powder was transferred to a vacuum vessel and heated to 450 ° C. under reduced pressure to decompose the silane coupling agent, thereby forming a silicon oxide film on the surface.
  • carbonyl iron powder average particle diameter 4.3 / m having an electric insulating layer formed on the surface was obtained.
  • the pellet-like composition obtained in this manner is supplied to an injection molding machine (J-175E, manufactured by Nippon Steel Works, Ltd.), and the cylinder temperature is 280 to 310.
  • an injection pressure of about 1000 kgf / cm 2 , and a mold temperature of about 160 ° C a plate-shaped molded product of 10 mm x 13 0 mm x 0.8 mm was obtained.
  • the withstand voltage of the obtained molded product was measured, it was 400 V.
  • the porosity of the Mg—Zn ferrite powder was determined to be 1%.
  • the pellet-like composition obtained above was supplied to an injection molding machine (PS-10E manufactured by Nissei Plastics Co., Ltd.), and a cylinder temperature of 280 to 310 ° C and an injection pressure of about 1
  • a cylindrical sample (diameter 20 mm, height 7 mm) and a toroidal core were formed at a temperature of 0.000 kgf / cm 2 and a mold temperature of about 160 ° C.
  • the saturation magnetic flux density was measured using a cylindrical sample, it was found to be 540 Gauss.
  • the magnetic permeability was measured using the obtained toroidal core, it was 13.0. Table 2 shows the obtained results.
  • Example 4 Comparing the resin composition of Example 4 with the resin composition of Example 1, the withstand voltage decreased from 50,000 V to 400 V, but maintained a high level. In the case of the composition of Example 1, the composition was improved by more than double compared to the case of the composition of Example 2 which was 236 gauss. Also, in Example 4, instead of the luponyl iron powder having an electric insulating layer formed on its surface, spherical carbonyl iron powder (BASF, EN), which had not been subjected to surface insulation treatment, was used. It dropped to 0.000 V. Therefore, it is clear that the use of metal-based magnetic powder having an electric insulating layer formed on the surface makes it possible to obtain a resin composition in which the withstand voltage and the saturation magnetic flux density are balanced at a high level. is there. In Example 4, Epoki When the modified silicone oil was not added, the withstand voltage tended to decrease considerably. Therefore, the effect of holding the withstand voltage by the combined use of the low elastic modulus agent is apparent.
  • BASF, EN s
  • Example 4 8.5 kg of Mg-Zn-based fine powder was added to 5.
  • Example 4 The same operation as in Example 4 was performed, except that 0 kg and 8.5 kg of carbonyl iron powder having an electric insulating layer formed on the surface were changed to 12.0 kg, respectively.
  • the results are shown in Table 2.
  • Example 4 8.5 kg of Mg-Zn based powder was added to 12.
  • Example 4 The same operation as in Example 4 was performed, except that the powder was changed to 0 kg, and 8.5 kg of the luponyl iron powder having an electric insulating layer formed on the surface was changed to 5.0 kg.
  • Table 2 The results are shown in Table 2.
  • Example 4 17.0 kg of carbonyl iron powder having an electric insulating layer formed on the surface was used instead of using the Mg—Zn-based graphite powder as the magnetic substance powder. Other than the above, the same operation as in Example 4 was performed. The results are shown in Table 2.
  • N i 0 (6.7% by weight), Z n 0 (20.2% by weight), Cu 0 (.
  • a commercially available spherical carbonyl iron powder (manufactured by BASF, EN) was placed in a vacuum dryer, and the pressure was once reduced, and then argon gas was charged. Next, after introducing a very small amount of air, the mixture was heated to 100 ° C. to form a metal oxide film on the surface of the carbonyl iron powder.
  • a silane coupling agent vinyl trimethoxysilane
  • the mixture was stirred with a sir mixer to form a silane coupling agent layer on the surface.
  • the magnetic powder was transferred to a vacuum vessel, and heated to 450 ° C. under reduced pressure to decompose the silane coupling agent and form a gay oxide film on the surface.
  • carbonyl iron powder having an electric insulating layer formed on the surface was obtained.
  • Example 7 8.5 kg of the Ni—Zn-based powder was changed to 7.5 kg, 8.5 kg of the iron luponyl powder having an electric insulating layer formed on the surface was changed to 7.5 kg, and The same operation as in Example 7 was performed, except that the polyolefin sulfide was changed from 3.0 kg to 5.0 kg. Table 2 shows the obtained results.
  • a resin composition having a moderately high magnetic permeability and a remarkably improved withstand voltage is provided.
  • a soft magnetic resin composition having a high magnetic permeability and a high level of balance between electric resistance and saturation magnetic flux density is provided.
  • the resin composition of the present invention can be used, for example, in the field of molded articles requiring a high withstand voltage such as a coil, a transformer, and a line filter, or a high withstand voltage and a high saturation magnetic flux density. It can be applied to These molded articles can be used under conditions where their use has been restricted in the past.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A resin composition comprising a synthetic resin and a soft magnetic filler and having high permeability and withstand voltage, wherein the filler comprises at least one soft ferrite powder selected from the group consisting of Ni-Zn ferrite, Mg-Zn ferrite and Cu ferrite and has a void ratio ranging from 0.01 to 5 %.

Description

明細 樹脂組成物 <技術分野〉  Description Resin composition <Technical field>
本発明は、 合成樹脂と軟磁性フ イ ラ—とを含有する樹脂組成物に 関 し、 さ らに詳し く は、 高い透磁率と電気絶縁性とを有し、 しかも 耐電圧に優れた樹脂組成物に関する。 また、 本発明は、 高い透磁率 を有する と と もに、 耐電圧と飽和磁束密度とが高水準でバラ ンス し た樹脂組成物に関する。  The present invention relates to a resin composition containing a synthetic resin and a soft magnetic filler, and more particularly, to a resin having high magnetic permeability and electric insulation and excellent in withstand voltage. Composition. The present invention also relates to a resin composition having a high magnetic permeability and a high level of balance between withstand voltage and saturation magnetic flux density.
<背景技術 > <Background technology>
酸化第二鉄と二価の金属酸化物との化合物 (M 0 · F e 。0 3) は、 透磁率の大きな軟磁性材料であ り、 軟質 (ソ フ ト) フ ; t ライ ト と呼 ばれている。 軟質フ ヱ ライ 卜 は、 粉末冶金の手法で製造され、 硬く て軽量である という特徴を有している。 軟質フ ヱ ライ 卜の中でも、 N i 一 Z n系フ ヱ ラ イ ト、 M g — Z n系フ ェ ラ イ ト、 及び C u系フ ェ ライ トは、 電気抵抗率が高いので、 高周波帯で高透磁率である と いう特徴を有しており、 その焼結体は、 偏向ヨーク、 高周波 ト ラ ン ス、 磁気へッ ドなどの材料と して使用されている。 The compounds of the ferric and divalent metal oxide, (M 0 · F e .0 3 ) is Ri large soft magnetic material der permeability, soft (Seo oice) off; t Rye Doo and call Have been broken. The soft filler is manufactured by powder metallurgy and has the characteristics of being hard and lightweight. Among the soft ferrites, Ni-Zn ferrite, Mg-Zn ferrite, and Cu ferrite have high electric resistivity, so that high-frequency It has the characteristic of high magnetic permeability in the band, and its sintered body is used as a material for deflection yokes, high-frequency trans- formers, and magnetic heads.
軟質フ ヱ ライ トは、 脆いという欠点を持っているが、 電気抵抗が 高いという特徴を活かして、 その粉末をフ イ ラ一と して合成樹脂中 に分散した軟磁性樹脂組成物がチ ヨ ーク コイル、 口 一タ リ 一 ト ラ ン ス、 ラ イ ン フ ィ ルタ 一、 電磁波遮蔽材料 ( E M I シール ド材料) な どと して、 新たな用途展開が図られている。 軟磁性樹脂組成物は、 軟質フ ライ ト粉末を合成樹脂中に分散させた樹脂組成物であ り、 合成樹脂の分野で一般に適用されている各種成形法 (例えば、 射出 成形、 押出成形、 圧縮成形) によ り、 所望の形状の成形体に成形す る こ とができ る。 Soft filaments have the disadvantage of being brittle, but taking advantage of their high electrical resistance, the soft magnetic resin composition in which the powder is dispersed as a filler in a synthetic resin is used. New applications are being developed for such applications as ark coils, oral transformers, line filters, and electromagnetic wave shielding materials (EMI shielded materials). The soft magnetic resin composition is a resin composition in which a soft fly powder is dispersed in a synthetic resin, Various molding methods generally used in the field of synthetic resins (for example, injection molding, extrusion molding, and compression molding) can be used to form a molded article having a desired shape.
と こ ろが、 軟質フ ヱ ラ イ ト は、 燒結 した状態では高い電気抵抗を 示すに もかかわ らず、 それを粉砕した粉末を電気絶縁性の高い合成 樹脂中に分散した樹脂組成物は、 両者の電気的性質から期待される 程の高い電気抵抗 (電気絶縁性) を示さないと い う問題がある。 す なわち、 合成樹脂と軟質フ ラ イ 卜粉末とを含有する樹脂組成物を 用いて成形した成形体は、 電気絶縁性が低く 、 軟質フ ニ ライ 卜本来 の電気絶縁性が著し く 損なわれる という問題があつた。  On the other hand, although soft fillers have a high electrical resistance in a sintered state, a resin composition obtained by dispersing a powder obtained by pulverizing the powder into a synthetic resin having a high electrical insulation property has a problem. There is a problem that they do not exhibit high electrical resistance (electrical insulation) as expected from their electrical properties. That is, a molded article molded using a resin composition containing a synthetic resin and a soft fly powder has a low electrical insulation property, and the original electrical insulation property of the soft finish is significantly impaired. Problem.
したがっ て、 当該樹脂組成物を用いて、 1 5 0 0 V以上、 多 く の 場合 2 0 0 0 Vを越える高い耐電圧が求められる ライ ン フ ィ ルタ ー など電源機器部品へ適用する と、 使用中または試験中に発熱し、 使 用不能となる問題があった。  Therefore, when the resin composition is applied to power supply equipment parts such as line filters that require a high withstand voltage of 150 V or more, and in many cases more than 200 V, There was a problem that it became unusable due to heat generation during use or testing.
従来、 合成樹脂と軟質フ ェ ラ イ ト粉末とを含有する樹脂組成物の 電気抵抗を高める方法と して、 例えば、 ① N i 系フ ェ ラ イ ト粉末ま たは M g系フ ェ ラ イ ト粉末と、 結晶性熱可塑性樹脂とを含有する樹 脂組成物から成形した成形体を、 該熱可塑性樹脂のガラス転移点以 上、 融点未満の温度で熱処理する方法 (特開平 8 - 1 9 9 0 0 1号 公報) 、 ②酸化層を表面に形成した磁性体粉末を使用する方法 (特 開平 8 - 2 1 3 2 2 6号公報) 、 ③特定の粒径分布を持った磁性体 粉末を使用する方法 (特開平 9 一 6 3 8 2 7号公報) などが提案さ れている。  Conventionally, methods for increasing the electrical resistance of a resin composition containing a synthetic resin and a soft ferrite powder include, for example, 1) Ni ferrite powder or Mg ferrite powder. A method of heat-treating a molded article molded from a resin composition containing an it powder and a crystalline thermoplastic resin at a temperature equal to or higher than the glass transition point of the thermoplastic resin and lower than the melting point (Japanese Patent Application Laid-Open No. 8-1-1). No. 9 901), (2) A method using a magnetic powder having an oxide layer formed on the surface (Japanese Patent Laid-Open Publication No. Hei 8-2-1326, 26), (3) A magnetic material having a specific particle size distribution A method using a powder (Japanese Patent Application Laid-Open No. Hei 9-63687) has been proposed.
これら①〜③の方法によ り、 磁性体粉末含有樹脂組成物の耐電圧 を従来水準よ り も改善する こ とができ る。 しかしながら、 ①の方法 では、 成形体を高温で長時間熱処理するため、 熱変形が生じる こ と があ り、 成形体の寸法精度が問題となる場合があった。 ②の方法で は、 合成樹脂と磁性体粉末とを溶融混練した り、 成形したりする際 に、 磁性体粉末の破砕が発生し、 その表面に形成した酸化層 (絶縁 層) が破壊される という 問題があった。 したが っ て、 ②の方法単独 では、 高度の耐電圧を達成する こ とが難しい。 ③の方法では、 特定 の粒径分布を持つた磁性体粉末を使用するため、 用途によ っ ては、 樹脂組成物の弾性率を低下させる低弾性率化剤を多量に使用する必 要があ り、 機械的物性や耐熱性が低下する場合があった。 したがつ て、 ③の方法単独では、 諸物性のバラ ンスに優れた樹脂組成物を得 る こ とが難しい。 By these methods (1) to (3), the withstand voltage of the resin composition containing the magnetic powder can be improved from the conventional level. However, in the method (1), since the molded body is heat-treated at a high temperature for a long time, thermal deformation occurs. In some cases, the dimensional accuracy of the molded product became a problem. In the method (2), when the synthetic resin and the magnetic powder are melt-kneaded or molded, the magnetic powder is crushed, and the oxide layer (insulating layer) formed on the surface is destroyed. There was a problem. Therefore, it is difficult to achieve a high withstand voltage by the method (2) alone. In the method (3), since a magnetic powder having a specific particle size distribution is used, it is necessary to use a large amount of a low-modulus agent that lowers the modulus of the resin composition depending on the application. In some cases, mechanical properties and heat resistance were reduced. Therefore, it is difficult to obtain a resin composition having an excellent balance of various physical properties by the method (3) alone.
また、 酸化物系軟磁性材料である軟質フ ェ ラ イ ト粉末を合成樹脂 中に分散させた軟磁性樹脂組成物は、 飽和磁束密度が充分に高く な いため、 成形体を上記の如き用途に適用する場合、 動作可能な電流 を低く抑えるか、 あるいは動作可能な磁場を低く抑える必要があつ た。  In addition, the soft magnetic resin composition in which soft ferrite powder, which is an oxide-based soft magnetic material, is dispersed in a synthetic resin does not have a sufficiently high saturation magnetic flux density. When applied, it was necessary to keep the operable current low or the operable magnetic field low.
一方、 金属または合金からなる金属系軟磁性材料は、 一般に飽和 磁束密度が高いという特徴を持つ反面、 酸化物系軟磁性材料に較べ て電気抵抗がかな り低いという問題があった。 例えば、 ゲイ素鋼板 は、 ト ラ ンスコアと して広く使用されているが、 電気抵抗が低いた め、 そのままでは使用できず、 その薄板の間に絶縁板を挟んだ状態 で使用されている。 カルボニル鉄粉末は、 圧粉磁芯と して高周波用 イ ンダクタに使用されているが、 電気抵抗が低いため、 高い電圧が 印加される部品には適さないという 問題があった。 F e — S i - B 合金は、 主と して リ ボン状に して使用されているが、 電気抵抗が低 いため、 絶縁ケースに入れる必要があ っ た。 したがって、 こ のよ う な金属系軟磁性材料を合成樹脂中に分散させた樹脂組成物は、 耐電 圧が低く 、 透磁率も低いという問題があった。 On the other hand, a metal soft magnetic material made of a metal or an alloy generally has a high saturation magnetic flux density, but has a problem that its electric resistance is considerably lower than that of an oxide soft magnetic material. For example, gay steel sheet is widely used as a transcore, but cannot be used as it is because of its low electrical resistance, and is used with an insulating plate sandwiched between its thin plates. Although carbonyl iron powder is used as a dust core in high-frequency inductors, its low electrical resistance makes it unsuitable for components to which high voltages are applied. The Fe-Si-B alloy is mainly used in the form of a ribbon, but because of its low electrical resistance, it had to be placed in an insulating case. Therefore, a resin composition in which such a metal-based soft magnetic material is dispersed in a synthetic resin has a high dielectric strength. There was a problem that the pressure was low and the permeability was low.
<発明の開示 > <Disclosure of Invention>
本発明の目的は、 合成樹脂と軟磁性フ イ ラ — とを含有する樹脂組 成物であって、 高い透磁率と電気絶縁性とを有し、 しかも耐電圧に 優れた樹脂組成物を提供する こ と にある。  An object of the present invention is to provide a resin composition containing a synthetic resin and a soft magnetic filler, which has high magnetic permeability and electric insulation, and is excellent in withstand voltage. To do that.
本発明の他の目的は、 合成樹脂と軟磁性フ イ ラ—とを含有する樹 脂組成物であ っ て、 高い透磁率を有する と と も に、 耐電圧 (電気抵 抗) と飽和磁束密度が高水準でバラ ンス した樹脂組成物を提供する こ と にある。  Another object of the present invention is a resin composition containing a synthetic resin and a soft magnetic filler, which has a high magnetic permeability, a withstand voltage (electric resistance) and a saturation magnetic flux. An object of the present invention is to provide a resin composition in which the density is balanced at a high level.
本発明者らは、 前記従来技術の問題点を克服するために鋭意研究 した結果、 合成樹脂と軟磁性フ イ ラ一とを含有する樹脂組成物にお いて、 該軟磁性フ イ ラ 一 と して、 N i — Z n系フ ヱ ラ イ ト、 M g — Z n系フ ェ ラ イ 卜、 及び C u系フ ェ ラ イ 卜からなる群よ り選ばれた 少な く と も一種の軟質フ ヱ ライ ト粉末を使用 し、 かつ、 該軟質フ ヱ ライ ト粉末の空隙率を小さい範囲内に制御する こ とによ り、 適度に 高い透磁率と高い電気絶縁性を有し、 しかも耐電圧が顕著に向上し た樹脂組成物の得られる こ とを見いだ した。  The present inventors have conducted intensive studies to overcome the problems of the prior art, and as a result, in a resin composition containing a synthetic resin and a soft magnetic filler, the soft magnetic filler and the soft magnetic filler And at least one kind selected from the group consisting of Ni—Zn-based ferrite, Mg—Zn-based ferrite, and Cu-based ferrite. By using a soft bright powder and controlling the porosity of the soft bright powder within a small range, it has a moderately high magnetic permeability and a high electric insulation, and It has been found that a resin composition having a significantly improved withstand voltage can be obtained.
また、 このような空隙率の小さな特定の軟質フ ヱ ライ ト粉末と、 表面に電気絶縁層を形成した金属系磁性体粉末とを組み合わせて使 用する こ と によ り 、 透磁率を高水準で保持しつつ、 耐電圧と飽和磁 束密度とが共に高い樹脂組成物の得られる こ とを見いだした。 さ ら に、 こ の樹脂組成物は、 シ リ コ ー ンオイ ルなどの低弾性率化剤を配 合する と、 耐電圧を特に高水準に維持する こ とができ る こ とが判明 した。  In addition, by using a combination of a specific soft bright powder having such a small porosity and a metal-based magnetic powder having an electric insulating layer formed on the surface thereof, the magnetic permeability can be increased to a high level. It was found that a resin composition having both high withstand voltage and high saturation magnetic flux density can be obtained while maintaining the above conditions. Furthermore, it has been found that with this resin composition, when a low-modulus agent such as silicone oil is mixed, the withstand voltage can be maintained at a particularly high level.
本発明は、 これ らの知見に基づいて、 完成するに至ったものであ る。 The present invention has been completed based on these findings. You.
本発明によれば、 合成樹脂 ( A ) と軟磁性フ イ ラ— ( B ) とを含 有する樹脂組成物において、 該軟磁性フ イ ラ— (B) が、 N i — Z n 系フ ヱ ラ イ 卜、 M g— Z n系フ ェ ラ イ ト、 及び C u系フ ェ ラ イ ト か らなる群よ り選ばれる少な く と も一種の軟質フ ヱ ライ 卜粉末であつ て、 かつ、 その空隙率が 0. 0 1 〜 5 %の範囲内にある軟質フ ェ ラ ィ ト粉末 ( B 1 ) を含有する こ とを特徴とする樹脂組成物が提供さ れる。  According to the present invention, in a resin composition containing a synthetic resin (A) and a soft magnetic filer (B), the soft magnetic filer (B) is composed of a Ni—Zn-based resin. At least one kind of soft filler powder selected from the group consisting of light, Mg—Zn-based ferrite, and Cu-based ferrite; and Further, there is provided a resin composition characterized by containing a soft ferrite powder (B1) having a porosity in the range of 0.01 to 5%.
また、 本発明によれば、 前記軟質フ ヱ ライ ト粉末 ( B 1 ) を含有 する樹脂組成物において、 軟磁性フ イ ラ— ( B ) と して、 表面に電 気絶縁層を形成した金属系磁性体粉末 ( B 2 ) を更に含有する樹脂 組成物が提供される。 こ の樹脂組成物は、 低弾性率化剤 ( C ) を含 有させる こ とが、 耐電圧と飽和磁束密度を共に高水準とする上で好 ま しい。 く発明を実施するための最良の形態〉  Further, according to the present invention, in the resin composition containing the soft filler powder (B 1), the soft magnetic filler (B) may be a metal having an electrically insulating layer formed on the surface. The present invention provides a resin composition further containing a magnetic powder (B 2). The resin composition preferably contains a low-modulus agent (C) in order to increase both the withstand voltage and the saturation magnetic flux density to high levels. BEST MODE FOR CARRYING OUT THE INVENTION>
合成樹脂 (A) Synthetic resin (A)
本発明で使用する合成樹脂 (A) と しては、 例えば、 ポ リ エチ レ ン、 ポ リ プロ ピレ ン、 エチ レ ン一酢酸ビニル共重合体、 アイオノ マ 一 な どのポ リ オ レ フ イ ン ; ナイ ロ ン 6、 ナイ ロ ン 6 6、 ナイ ロ ン 6 6 6、 ナイ ロ ン 4 6、 ナイ ロ ン 1 2な どのポ リ ア ミ ド ; ポ リ フ エ二 レ ン ス ノレ フ ィ ド、 ポ リ フ エ二ノレエ ン ス ノレ フ ィ ドケ ト ン 、 ポ リ フ エ二 レ ンスルフ ィ ドスルホ ンな どのポ リ ア リ 一 レ ンスルフ ィ ド ; ポ リ エ チ レ ンテ レ フ タ レー ト、 ポ リ ブチ レ ンテ レ フ タ レー ト、 全芳香族ポ リ エステルなどのポ リ エステル ; ポ リ イ ミ ド、 ポ リ エーテルイ ミ ド、 ポ リ ア ミ ドイ ミ ドな どのポ リ イ ミ ド系樹脂 ; ポ リ スチ レ ン、 ァク リ ロニ 卜 リ ル一 スチ レ ン共重合体などのスチ レ ン系樹脂 ; ポ リ塩化ビ ニル、 ポリ塩化ビニリ デン、 塩化ビニル—塩化ビニリ デン共重合体、 塩素化ポ リ エチ レ ンな どの塩素含有ビニル系樹脂 ; ポ リ アク リ ル酸 メ チル、 ポ リ メ 夕 ク リ ル酸メ チルな どのポ リ (メ タ) ア ク リ ル酸ェ ステル ; ポ リ アク リ ロニ ト リ ノレ、 ポ リ メ タ ク リ ロニ ト リ ノレな どのァ ク リ ロニ ト リ ル系樹脂 ; テ ト ラ フノレォ ロエチ レ ン / 一 フ ルォ ロ ア ルキルビニルエーテル共重合体、 ポ リ テ ト ラ フノレォ ロエチ レ ン、 テ ト ラ フルォ ロェチ レ ン へキサフルォ ロ プロ ピ レ ン共重合体、 ポ リ フ ッィ匕ビ二 リ デ ンな どの フ ッ素樹脂 ; ポ リ ジメ チルシ ロ キサ ンな ど の シ リ コー ン樹脂、 ポ リ フ ヱ ニ レ ンォキ シ ド、 ポ リ エ一テルエ一テ ルケ ト ン、 ポ リ エーテルケ ト ン、 ポ リ ア リ レー ト、 ポ リ スルホ ン、 ポ リ エーテルスルホ ンな どの各種エンジニア リ ングプラ スチ ッ ク ス ; ポ リ アセタ ール、 ポ リ カ ーボネー ト 、 ポ リ酢酸ビニル、 ポ リ ビ二ル ホルマール、 ポ リ ビニルブチラ 一ル、 ポ リ ブチ レ ン、 ポ リ ィ ソ ブチ レ ン、 ポ リ メ チルペ ンテ ン、 ブタ ジエ ン樹脂、 ポ リ エチ レ ンォキ シ ド、 ォキシベ ンゾィ ルポ リ エステル、 ポ ラ キシ レ ン樹脂な どの 各種熱可塑性樹脂 ; ェポキシ樹脂、 フ X ノ —ル樹脂、 不飽和ポ リ ェ ステル樹脂などの熱硬化性樹脂 ; エチ レ ンプロ ピ レ ンゴム、 ポ リ ブ 夕 ジェ ンゴム、 スチ レ ンブタ ジエ ンゴム、 ク ロ ロ プレ ンゴムな どの エラ ス トマ一 ; スチ レ ン 一 ブタ ジエ ン一 スチ レ ンブロ ッ ク共重合体 などの熱可塑性エラス トマ一 ; 及びこれらの 2種以上の混合物が挙 げ られる。 The synthetic resin (A) used in the present invention includes, for example, polyolefins such as polyethylene, polypropylene, ethylene vinyl acetate copolymer, and ionomer. Nylon 6, Nylon 66, Nylon 66, Nylon 46, Nylon 12 and other polyamides; Polyolefins Polyolefins, such as polyolefins, polyolefins, polyolefins, etc .; polyethylene sulfides; polyethylene sulfides, etc .; Polyesters such as polybutylene terephthalate and wholly aromatic polyesters; Polyimides such as polyimid, polyetherimid, and polyimidimide Resin: Polystyrene, acrylic Polystyrene resins such as lonitolyl-styrene copolymers; chlorines such as polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinylidene chloride copolymer, and chlorinated polyethylene Polyvinyl resin containing; Poly (methyl) acrylate, such as methyl polyacrylate, methyl methacrylate, etc .; Polyacrylonitrile Acrylonitrile resins such as Limetacrylonitrile resin; Tetrafluoroethylene / monofluoroalkylvinyl ether copolymer, Polytetrafluoroethylene resin, Polytetrafluoroethylene resin, Fluororesins such as tetrafluoroethylene hexafluoropropylene copolymer, polysulfide vinylidene; silicones such as polymethylsiloxane Resin, poly Various engineering plastics such as lenoxide, polyether terketone, polyether ketone, poly acrylate, poly sulfone, poly ether sulfone; Polyacetyl, Polycarbonate, Polyvinyl acetate, Polyvinyl formal, Polyvinyl butyral, Polybutylene, Polyisobutylene, Polymethylpentene , Butadiene resin, polyethylenoxyside, oxybenzylpolyester, polaxylene resin, etc .; epoxy resin, phenol resin, unsaturated polyester resin Thermosetting resins such as ethylene; elastomers such as ethylene propylene rubber, polystyrene rubber, styrene butadiene rubber, and chloroprene rubber And thermoplastic elastomers such as styrene-butadiene-styrene block copolymers; and mixtures of two or more of these.
これ らの合成樹脂の中でも、 ポ リ エチ レ ン、 ポ リ プロ ピ レ ンな ど のポ リ オ レ フ イ ン、 ポ リ ア ミ ド、 ポ リ フ エ二 レ ンスノレフ ィ ドな どの ポ リ ア リ ー レ ンスルフ ィ ド、 及びェポキシ樹脂が、 成形性及び物性 の点からみて特に好ま しい。 耐熱性、 耐薬品性、 寸法安定性、 機械 的強度などの観点からは、 ポ リ フ ヱニ レ ンスルフ ィ ドな どのポ リ ア リ 一 レ ンスルフ ィ ドが特に好ま しい。 Among these synthetic resins, polyolefins such as polyethylene and polypropylene, polyamides, polyamides, and polyolefins such as polyolefins are available. Allylene sulfide and epoxy resin are particularly preferred in view of moldability and physical properties. Heat resistance, chemical resistance, dimensional stability, machinery From the viewpoint of the target strength and the like, a polylens sulfide such as a polylens sulfide is particularly preferable.
軟磁性フ イ ラ 一 ( B ) Soft magnetic filer (B)
本発明では、 軟磁性フ イ ラ一 ( B ) と して、 特定の軟質フ ヱ ライ ト粉末 ( B 1 ) を単独で使用するか、 あるいは、 該軟質フ ヱ ライ ト 粉末 ( B 1 ) と特定の金属系磁性体粉末 ( B 2 ) とを併用する。 ( 1 ) 軟質フ ヱ ライ ト粉末 ( B 1 )  In the present invention, a specific soft filler powder (B 1) may be used alone as the soft magnetic filler (B), or may be used as the soft magnetic filler (B 1). Use in combination with a specific metal magnetic powder (B 2). (1) Soft bright powder (B1)
軟質フヱライ トは、 酸化第二鉄 (F e。0o) と二価の金属酸化物 (MO) との化合物 (MO · F e 203) であり、 二価の金属酸化物の種類によ り、 M n — Z n系、 M g — Z n系、 N i - Z n系、 C u系、 C u — Z n系、 C u — Z n — M g系、 C u — N i — Z n系などの各種フ エ ライ 卜に分類される。 本発明では、 軟質フヱライ ト粉末と して、 N i — Z n系フ ェ ライ ト、 M g — Z n系フ ヱ ライ ト、 及び C u系フ ェ ラ ィ 卜からなる群よ り選ばれる少な く と も一種を使用する。 Soft Fuwerai DOO is a ferric oxide (F e.0 o) and divalent metal oxide compounds of (MO) (MO · F e 2 0 3), the type of divalent metal oxides Therefore, M n —Zn system, M g —Zn system, Ni-Zn system, Cu system, Cu—Zn system, Cu—Zn—Mg system, Cu—Ni — Classified into various ferrites such as Zn-based. In the present invention, the soft ferrite powder is selected from the group consisting of Ni—Zn ferrite, Mg—Zn ferrite, and Cu ferrite. Use at least one.
N i — Z n系フヱライ トとは、 一般式 (N i O) x (Z n O) y ' F e93 で表される組成物を持つものをいう が、 N i の一部を C u、 M g、 C o、 M n等の他の二価金属で置換したものであってもよい。 N i — Z n系フ ェ ライ トは、 本来の特性を損なわない範囲内で、 その他 の添加剤を加えたものでもよい。 へマタイ 卜の析出を抑えるため、 酸化鉄の含有量を調整した N i 一 Z n系フ ェ ライ 卜が特に好ま しい。 N i - A Z n system Fuwerai DOO, refers to having the general formula (N i O) x (Z n O) y 'F e 9 〇 3 represented by the composition, but a part of the N i It may be substituted with another divalent metal such as Cu, Mg, Co and Mn. The Ni—Zn ferrite may be one to which other additives are added as long as the original properties are not impaired. In order to suppress the precipitation of hematite, a Ni-Zn ferrite in which the content of iron oxide is adjusted is particularly preferable.
Mg— Z n系フェライ 卜とは、 一般式 (Mg O) χ (Z nO) y - F e23 で表される組成を持つものをいうが、 M gの一部を N i、 C u、 C o、 M n等の他の二価金属で置換したものであって もよい。 M g — Z n 系フ ェ ライ トは、 本来の特性を損なわない範囲内で、 その他の添加 剤を加えたものでもよい。 へマタイ 卜の析出を抑えるため、 酸化鉄 の含有量を調整した M g — Z n系フ ヱ ライ 卜が特に好ま しい。 C u系フ ヱライ 卜 とは、 一般式 ( C u O) . F e 203で表される組 成を持つものをいうが、 C uの一部を N i 、 Z n、 M g、 C o、 M n 等の他の二価金属で置換した ものであって もよい。 C u系フ ヱ ライ 卜 は、 本来の特性を損なわない範囲内で、 その他の添加剤を加えた ものでもよい。 へマタイ 卜の析出を抑えるため、 酸化鉄の含有量を 調整した C u系フ ヱ ライ 卜が特に好ま しい。 Mg- Z n system ferrite Bok and the general formula (Mg O) χ (Z nO ) y - F e 2 〇 3 refers to those having a composition represented by, but a part of M g N i, C It may be substituted with another divalent metal such as u, Co, and Mn. The Mg-Zn ferrite may contain other additives as long as the original properties are not impaired. Mg-Zn type fillers in which the content of iron oxide is adjusted to suppress the precipitation of hematite are particularly preferred. The C u based off Werai Bok, formula (C u O). Refers to having a set formed represented by F e 2 0 3, but a part of the C u N i, Z n, M g, It may be substituted with another divalent metal such as Co and Mn. The Cu-based filler may be one to which other additives are added as long as the original properties are not impaired. In order to suppress the precipitation of hematite, a Cu-based filler in which the content of iron oxide is adjusted is particularly preferable.
N i — Z n系フ ェ ラ イ ト、 M g— Z n系フ ヱ ライ ト、 及び C u系 フ ヱ ライ トは、 公知の方法で合成する こ とができる。 これら軟質フ エライ トの原料の代表的なものは、 F e 20。、 M n 02、 M n C O。、 C u O、 N i 0、 M g O、 Z n Oな どの金属酸化物ま たは金属炭酸 塩などである。 軟質フ ライ 卜の製造方法と しては、 乾式法、 共沈 法、 及び噴霧熱分解法が代表的な ものである。 Ni—Zn-based ferrite, Mg—Zn-based light, and Cu-based light can be synthesized by a known method. Typical ones of these soft off Elias DOO ingredients, F e 2 0. , M n 0 2, M n CO. Metal oxides or metal carbonates such as CuO, NiO, MgO, and ZnO. Typical examples of the method for producing a soft fly include a dry method, a coprecipitation method, and a spray pyrolysis method.
乾式法では、 金属酸化物または金属炭酸塩などの各原料を所定の 配合比となるよう に計算して機械的に混合し、 焼成後、 粉砕する。 乾式法では、 原料混合物を仮焼成し、 微粒子に粉砕した後、 顆粒状 に造粒し、 更に本焼成した後、 再度粉砕して軟質フ ライ 卜粉末を 得る こ とが好ま しい。 共沈法では、 金属塩の水溶液に強アル力 リ を 加えて水酸化物を沈殿させ、 これを酸化して微粒子の軟質フ ライ ト粉末を得る。 軟質フ ェ ライ ト粉末は、 造粒した後、 焼成され、 次 いで粉砕される。 噴霧熱分解法では、 金属塩の水溶液を熱分解して 微粒子状の酸化物を得る。 酸化物粉末は、 造粒した後、 焼成され、 次いで粉砕される。 焼成されたフ ヱ ライ トは、 ハ ンマー ミ ル、 ロ ッ ド ミ ル、 ボールミ ル等によって粉砕され、 目的の粒径を有する軟質 フ ェ ライ ト粉末と される。  In the dry method, each raw material such as a metal oxide or a metal carbonate is calculated so as to have a predetermined mixing ratio, mechanically mixed, fired, and pulverized. In the dry method, the raw material mixture is preferably calcined, pulverized into fine particles, granulated into granules, further calcined, and then pulverized again to obtain a soft flour powder. In the coprecipitation method, hydroxide is precipitated by adding strong force to an aqueous solution of a metal salt, and this is oxidized to obtain a fine soft powder powder. The soft ferrite powder is granulated, fired, and then ground. In the spray pyrolysis method, an aqueous solution of a metal salt is thermally decomposed to obtain a particulate oxide. The oxide powder is granulated, fired, and then ground. The baked fine powder is pulverized by a hammer mill, rod mill, ball mill, or the like, and is made into a soft ferrite powder having a desired particle size.
本発明では、 軟質フヱライ ト粉末の空隙率を低く抑えるため、 1 2 0 0 In the present invention, in order to keep the porosity of the soft graphite powder low,
°Cを越える高温で焼成する方法が好ま しい。 焼成温度は、 好ま し く は 1 2 0 0〜 1 3 5 0 °Cである。 また、 空隙率を低く抑えるために、 固相反応を促進させる添加剤を併用する方法がある。 こ のよ う な添 加剤と しては、 酸化銅などの銅化合物を挙げる こ とができ る。 Firing at a high temperature exceeding ° C is preferred. Firing temperature is preferred Is 1200 to 135 ° C. In addition, in order to keep the porosity low, there is a method in which an additive that promotes the solid phase reaction is used in combination. Examples of such additives include copper compounds such as copper oxide.
本発明では、 N i — Z n系フ ェライ 卜、 M g— Z n系フヱライ ト、 及び C u系フ ヱ ライ 卜からなる群よ り選ばれる少な く と も一種の軟 質フ ヱ ライ ト粉末であって、 空隙率が 0. 0 1 〜 5 %の軟質フ ヱ ラ ィ ト粉末を使用する。 空隙率が 5 %を越える軟質フ ェ ラ イ 卜粉末を 合成樹脂に配合する と、 耐電圧に優れた樹脂組成物を得る こ とが困 難である。 一方、 空隙率が 0. 0 1 %未満で実質的に空隙を持たな い軟質フ ラ イ ト粉末を合成樹脂に配合する と、 軟質フ ラ イ ト粉 末に添加した各種添加剤の消失及び一部析出に伴う と考えられる合 成樹脂の分解が発生するため好ま し く ない。 したがって、 本願発明 では、 空隙率が限定された範囲内に調整された軟質フ ェ ライ ト粉末 を使用する。 か く して、 本発明では、 空隙率が 0. 0 1 〜 5 %、 好 ま し く は 0. 0 3〜 4 %、 よ り好ま し く は 0. 0 5〜 3 %、 特に好 ま し く は 0. 1 〜 2 %の範囲内にある軟質フ ヱ ライ ト粉末を使用す る。 多く の場合、 空隙率が 0. 5〜 5 %の軟質フ ヱ ライ ト粉末を用 いる こ とによ り、 望ま しい結果を得る こ とができ る。  In the present invention, at least one kind of soft filler selected from the group consisting of Ni—Zn ferrite, Mg—Zn ferrite, and Cu ferrite Use a soft filler powder with a porosity of 0.01 to 5%. When a soft ferrite powder having a porosity of more than 5% is mixed with a synthetic resin, it is difficult to obtain a resin composition having excellent withstand voltage. On the other hand, if a soft fly powder having a porosity of less than 0.01% and having substantially no voids is mixed with the synthetic resin, various additives added to the soft fly powder are lost and the It is not preferable because the synthetic resin is considered to be partially decomposed and is decomposed. Therefore, in the present invention, a soft ferrite powder whose porosity is adjusted within a limited range is used. Thus, in the present invention, the porosity is 0.01 to 5%, preferably 0.03 to 4%, more preferably 0.05 to 3%, particularly preferred. Use soft flour powder in the range of 0.1 to 2%. In many cases, the desired result can be obtained by using a soft filler powder having a porosity of 0.5 to 5%.
軟質フ ェ ラ イ ト粉末の空隙率を低く する こ と によ り 、 樹脂組成物 の耐電圧を、 通常 2 5 0 0 V以上、 好ま し く は 3 0 0 0 V以上とす る こ とができ る。 軟質フ ヱ ライ ト粉末の空隙率を更に小さ く する こ とによ り、 樹脂組成物の耐電圧を、 よ り好ま しく は 3 5 0 0 V以上、 特に好ま し く は 5 0 0 0 V以上とする こ とができ る。 空隙率を 1 % 以下にする と、 5 0 0 0 Vを越える優れた耐電圧を得る こ とができ る。  By reducing the porosity of the soft ferrite powder, the withstand voltage of the resin composition is generally set to 250 V or more, preferably to 300 V or more. Can be done. By further reducing the porosity of the soft filler powder, the withstand voltage of the resin composition is more preferably 350 V or more, and particularly preferably 500 V The above can be said. When the porosity is 1% or less, an excellent withstand voltage exceeding 500 V can be obtained.
軟質フ ェ ラ イ 卜粉末の平均粒子径は、 1 Ο μ πι以上 l mm以下で ある こ とが好ま しい。 軟質フ ェ ラ イ 卜粉末の平均粒子径が小さすぎ る と、 充分な透磁率を得る こ とが困難となる と と もに、 耐電圧も低 下するため好ま し く ない。 一方、 軟質フ ヱ ライ ト粉末の平均粒径が 大きすぎる と、 成型機の磨耗が極端に進み、 成形が困難となるため 好ま しく ない。 軟質フ ェ ライ ト粉末の平均粒子径は、 好ま し く は 1 5The average particle size of the soft ferrite powder is 1 μμπι or more and lmm or less. I prefer it. If the average particle diameter of the soft ferrite powder is too small, it is not preferable because it is difficult to obtain a sufficient magnetic permeability and the withstand voltage also decreases. On the other hand, if the average particle size of the soft filler powder is too large, the molding machine wears extremely and molding becomes difficult, which is not preferable. The average particle size of the soft ferrite powder is preferably 15
〜 7 5 0 〃 m、 よ り 好ま し く は 2 0 ~ 1 0 0 / mである。 7750 5m, more preferably 20 ~ 100 / m.
( 2 ) 金属系磁性体粉末 ( B 2 )  (2) Metallic magnetic powder (B2)
本発明で使用する金属系磁性体粉末 ( B 2 ) は、 粉末状の金属系 軟磁性材料の表面に電気絶縁層を形成した ものである。 金属系軟磁 性材料と しては、 純鉄系及び鉄基合金系軟磁性材料が好ま しい。 純 鉄系軟磁性材料と しては、 メ タ ル粉、 窒化鉄粉などが挙げられる。 鉄基合金系軟磁性材料と しては、 F e — S i — A 1 合金 (セ ンダス ト ) 粉末、 スーパ一セ ンダス 卜粉末、 N i — F e合金 (パ一マロイ) 粉末、 C o — F e合金粉末、 カルボニル鉄粉末、 6 - 3 1 - 8系 合金粉末などが挙げられる。 これらの中でも、 金属系磁性体粉末 (B 2) の製造の際の生産性の点から、 カルボニル鉄粉末、 セ ンダス ト粉末、 及び F e — S i — B系合金粉末が特に好ま しい。  The metal magnetic powder (B 2) used in the present invention is obtained by forming an electric insulating layer on the surface of a powdery metal soft magnetic material. As the metal-based soft magnetic material, pure iron-based and iron-based alloy-based soft magnetic materials are preferable. Examples of the pure iron-based soft magnetic material include metal powder and iron nitride powder. Fe-based alloy soft magnetic materials include Fe—Si—A1 alloy (sendust) powder, super-sendust powder, Ni—Fe alloy (palmalloy) powder, and Co — Fe alloy powder, carbonyl iron powder, and 6-31-8 alloy powder. Among these, carbonyl iron powder, sendust powder, and Fe—Si—B-based alloy powder are particularly preferred from the viewpoint of productivity in producing the metal-based magnetic powder (B2).
粉末状の金属系軟磁性材料は、 そのままでは電気抵抗が低すぎる ため、 軟質フ ヱ ライ ト粉末 ( B 1 ) と併用 しても、 充分に高い電気 絶縁性を有する樹脂組成物を得るこ とが困難である。 そこで、 本発 明では、 粉末状の金属系軟磁性材料の表面に電気絶縁層を形成した 金属系磁性体粉末 ( B 2 ) を使用する。  Since the powdered metallic soft magnetic material has too low an electric resistance as it is, a resin composition having a sufficiently high electric insulating property can be obtained even when used in combination with the soft briquette powder (B1). Is difficult. Therefore, in the present invention, a metal-based magnetic powder (B 2) having an electric insulating layer formed on the surface of a powdery metal-based soft magnetic material is used.
電気絶縁層を形成する方法と しては、 例えば、 ( 1 ) 粉末状の金 属系軟磁性材料を減圧下または不活性ガス雰囲気下に置き、 極微量 の酸素を供給して、 加熱する こ と によ り 、 その表面に金属酸化物膜 を形成する方法、 ( 2 ) 粉末状の金属系軟磁性材料に少量のシ ラ ン カ ツ プリ ング剤を添加 ' 混合して、 その表面にシラ ンカ ツ プリ ング 剤の層を形成し、 次いで、 減圧下で加熱してシラ ンカ ッ プリ ング剤 を分解する こ とによ り、 ゲイ素酸化物膜を形成する方法などが挙げ られる。 As a method of forming the electric insulating layer, for example, (1) placing a powdery metal soft magnetic material under reduced pressure or an inert gas atmosphere, supplying a trace amount of oxygen, and heating the material; A method of forming a metal oxide film on the surface thereof, and (2) adding a small amount of silane to a powdery metal-based soft magnetic material. By adding and mixing the capping agent, a layer of the silane capping agent is formed on the surface thereof, and then heated under reduced pressure to decompose the silane capping agent. A method of forming a gay oxide film is exemplified.
シ ラ ンカ ッ プ リ ン グ剤と しては、 例えば、 ビニル ト リ メ ト キシ シ ラ ン、 ビニノレ ト リ エ ト キシ シ ラ ン、 ビニノレ ト リ ク ロ ロ シ ラ ンな どが 挙げられる。 シラ ンカ ッ プリ ング剤は、 粉末状の金属系軟磁性材料 1 0 0重量部に対して、 通常、 0 . 1 〜 5重量部の範囲内で使用す る。 粉末状の金属系軟磁性材料の表面に金属酸化物膜を形成した後、 さ らにその上に、 ゲイ素酸化物膜を形成して もよい。 なお、 単なる シ ラ ンカ ツ プ リ ング剤によ る表面処理を行う方法、 ある いは染料層 を表面に形成する方法では、 充分な耐電圧を得ることが困難である。 表面に電気絶縁層を形成した金属系磁性体粉末 ( B 2 ) は、 平均 粒子径が 1 β m以上 1 m m以下であることが好ま しく、 2 〃 m〜 5 0 0 // mの範囲がよ り好ま しい。 金属系磁性体粉末 ( B 2 ) の平均粒径 が小さすぎる と、 得られる軟磁性樹脂組成物の電気抵抗が低く なる 傾向を示す。 金属系磁性体粉末 (B 2 ) の平均粒径が大きすぎると、 合成樹脂と該金属系磁性体粉末が分離する傾向を示す。  Examples of silane coupling agents include vinyltrimethoxysilane, vinylinoletriethoxysilane, vinylinoletrichlorosilane, and the like. . The silane coupling agent is usually used in the range of 0.1 to 5 parts by weight based on 100 parts by weight of the powdery metal-based soft magnetic material. After a metal oxide film is formed on the surface of a powdery metal-based soft magnetic material, a gay oxide film may be further formed thereon. It should be noted that it is difficult to obtain a sufficient withstand voltage by a method of performing a surface treatment with a simple silane coupling agent or a method of forming a dye layer on the surface. The metal-based magnetic powder (B2) having an electric insulating layer formed on the surface preferably has an average particle diameter of 1 βm or more and 1 mm or less, and a range of 2 μm to 500 // m is preferable. More preferred. If the average particle size of the metal magnetic powder (B 2) is too small, the resulting soft magnetic resin composition tends to have low electric resistance. If the average particle diameter of the metal magnetic powder (B 2) is too large, the synthetic resin and the metal magnetic powder tend to separate.
低弾性率化剤 ( C ) Low elastic modulus agent (C)
本発明では、 軟磁性フ イ ラ 一 ( B ) と して、 軟質フ ヱ ラ イ ト粉末 ( B 1 ) と金属系磁性体粉末 ( B 2 ) とを併用する場合、 低弾性率 化剤を添加する こ とが好ま しい。 低弾性率化剤を添加する と、 得ら れる樹脂組成物の耐電圧を安定的に高水準とする こ とができ る。 合 成樹脂と各軟磁性フ イ ラ—成分とを混練する際に、 金属系磁性体粉 末 ( B 2 ) の表面に形成した電気絶縁層が破壊される と、 得られる 樹脂組成物の耐電圧が低下する。 また、 電気抵抗の高い軟磁性フ ィ ラーを配合した樹脂組成物を成形する と、 成形体中の残留応力によ る と推定される電気抵抗の低下がみられる。 低弾性率化剤を添加す る と、 金属系磁性体粉末 ( B 2 ) の電気絶縁層の破壊が抑制され、 残留応力も小さ く なるため、 耐電圧を安定的に高水準とする こ とが でき る もの と推定さ れる。 In the present invention, when the soft magnetic powder (B 1) and the metallic magnetic powder (B 2) are used in combination as the soft magnetic filler (B), a low elastic modulus reducing agent is used. It is preferable to add it. By adding a low-modulus agent, the withstand voltage of the obtained resin composition can be stably increased to a high level. If the electric insulating layer formed on the surface of the metallic magnetic powder (B 2) is broken when kneading the synthetic resin and each soft magnetic filler component, the resulting resin composition has a high resistance. Voltage drops. In addition, soft magnetic filters with high electrical resistance When the resin composition containing the filler is molded, a decrease in electric resistance, which is presumed to be due to residual stress in the molded body, is observed. The addition of a low-modulus agent suppresses the destruction of the electrical insulating layer of the metallic magnetic powder (B2) and reduces the residual stress, so that the withstand voltage can be stably set at a high level. It is estimated that this can be done.
低弾性率化剤と しては、 シ リ コーンオイ ルが好ま しい。 シ リ コ一 ンオイ ルの中でも、 エポキシ変性シ リ コ ー ンオイ ルが樹脂組成物の 耐電圧を高く する点で特に好ま しい。  Silicone oil is preferred as a low-modulus agent. Among silicone oils, epoxy-modified silicone oil is particularly preferred in that it increases the withstand voltage of the resin composition.
樹脂組成物 Resin composition
本発明の樹脂組成物は、 合成樹脂 ( A ) と軟磁性フ イ ラ— ( B ) とを含有する樹脂組成物において、 該軟磁性フイ ラ一 (B) が、 N i 一 Z n系フ ェ ライ ト、 M g— Z n系フ ヱ ライ ト、 及び C u系フ ェ ラ ィ 卜からなる群よ り選ばれる少な く と も一種の軟質フ ヱ ライ 卜粉末 であ っ て、 かつ、 その空隙率が 0. 0 1 〜 5 %の範囲内にあ る軟質 フ ニ ライ ト粉末 ( B 1 ) を含有する樹脂組成物である。  The resin composition of the present invention is a resin composition containing a synthetic resin (A) and a soft magnetic filler (B), wherein the soft magnetic filler (B) is a Ni-Zn based resin. At least one kind of soft ferrite powder selected from the group consisting of ferrite, Mg—Zn-based ferrite, and Cu-based ferrite; and It is a resin composition containing a soft finish powder (B1) having a porosity in the range of 0.01 to 5%.
軟磁性フ イ ラ — ( B ) の配合割合は、 合成樹脂 (A) 1 0 0重量 部に対して、 通常 1 0 0〜 2 0 0 0重量部、 好ましく は 2 0 0〜 1 5 0 0 重量部、 よ り好ま し く は 2 5 0〜 1 0 0 0重量部である。 したがつ て、 軟磁性フ ィ ラ ー ( B ) と して、 軟質フ ヱ ラ イ ト粉末 ( B 1 ) を 上記範囲内で使用する こ とができ る。  The mixing ratio of the soft magnetic filler (B) is usually 100 to 2000 parts by weight, preferably 200 to 150 parts by weight, based on 100 parts by weight of the synthetic resin (A). Parts by weight, more preferably 250 to 100 parts by weight. Therefore, as the soft magnetic filler (B), the soft filler powder (B1) can be used within the above range.
ただし、 軟磁性フ イ ラ一 (B) と して、 軟質フヱライ ト粉末 ( B 1 ) を単独で使用し、 かつ、 高度の耐電圧と透磁率を共に達成するには、 合成樹脂 ( A) 1 0 0重量部に対して、 軟質フ ライ ト粉末 (B 1 ) の配合割合を 3 0 0〜 2 0 0 0重量部の範囲内とする こ とが好ま し く 、 4 0 0〜 1 5 0 0重量部の範囲内とする こ とがよ り好ま し く 、 5 0 0〜 1 0 0 0重量部の範囲内とする こ とが特に好ま しい。 軟質フ ライ ト粉末 ( B 1 ) の配合割合が小さすぎる と、 充分な 透磁性を持つ樹脂組成物を得る こ とが困難であ り、 大きすぎる と、 樹脂組成物の流動性が低下して成形が困難になる。 However, in order to use the soft filler powder (B1) alone as the soft magnetic filler (B) and to achieve both high withstand voltage and magnetic permeability, the synthetic resin (A) The mixing ratio of the soft fly powder (B1) to 100 parts by weight is preferably in the range of 300 to 200 parts by weight, and 400 to 15 parts by weight. The content is more preferably in the range of 500 parts by weight, and particularly preferably in the range of 500 to 100 parts by weight. If the proportion of the soft fly powder (B 1) is too small, it is difficult to obtain a resin composition having a sufficient magnetic permeability, and if it is too large, the fluidity of the resin composition decreases. Molding becomes difficult.
本発明では、 高い透磁率を有する と と もに、 耐電圧 (電気抵抗) と飽和磁束密度が高水準でバラ ンス した樹脂組成物を得るために、 軟磁性フ イ ラ 一 ( B ) と して、 軟質フ ェ ライ ト粉末 ( B 1 ) と金属 系磁性体粉末 (B 2 ) を併用する こ とができ る。 こ の場合、 軟磁性 フ イ ラ 一 ( B ) は、 軟質フ ヱ ラ イ 卜粉末 (B l ) 1 0〜 9 0重量% と金属系磁性体粉末 ( B 2 ) 9 0〜 1 0重量%とを含有する もので ある こ とが好ま しい。 軟質フ ヱ ライ ト粉末 ( B 1 ) の割合が小さ過 ぎる と、 耐電圧が不充分となる こ とがあ り、 大き過ぎる と、 飽和磁 束密度の改善効果が小さ く なる。 金属系磁性体粉末 ( B 2 ) の割合 が小さ過ぎる と、 飽和磁束密度の改善効果が小さ く な り、 大き過ぎ る と、 耐電圧が低下する。 軟磁性フ イ ラ一 (B ) と して、 軟質フ ヱ ライ ト粉末 ( B 1 ) と金属系磁性体粉末 ( B 2 ) を併用する場合、 軟質フ ヱ ラ イ ト粉末 ( B 1 ) と しては、 N i — Z n系フ ヱ ラ イ ト粉 末及び/または M g— Z n系フ ヱ ライ 卜粉末が好ま しい。  In the present invention, in order to obtain a resin composition having a high magnetic permeability and a high level of withstand voltage (electrical resistance) and saturation magnetic flux density, a soft magnetic filler (B) is used. Thus, the soft ferrite powder (B1) and the metal magnetic powder (B2) can be used in combination. In this case, the soft magnetic filler (B) is composed of 10 to 90% by weight of the soft magnetic powder (Bl) and 90 to 10% by weight of the metallic magnetic powder (B2). It is preferable that they contain If the proportion of the soft powder (B 1) is too small, the withstand voltage may be insufficient. If the proportion is too large, the effect of improving the saturation magnetic flux density will be reduced. If the proportion of the metallic magnetic powder (B 2) is too small, the effect of improving the saturation magnetic flux density will be small, and if it is too large, the withstand voltage will decrease. When the soft magnetic powder (B 1) and the metallic magnetic powder (B 2) are used in combination as the soft magnetic filler (B), the soft magnetic powder (B 1) For this purpose, Ni—Zn type fine powder and / or Mg—Zn type fine powder are preferable.
軟質フ ヱ ライ ト粉末 (B 1 ) の割合は、 よ り好ま し く は 2 0〜 8 0 重量%、 さ らに好ま し く は 2 5〜 7 5重量%である。 金属系磁性体 粉末 ( B 2 ) の割合は、 よ り好ま し く は 8 0〜 2 0重量%、 さ らに 好ま し く は 7 5〜 2 5重量%である。 両者をこれ らの範囲内で併用 する こ とによ り 、 適度に高い透磁率を有する と と もに、 耐電圧と飽 和磁束密度とが高水準でバラ ンス した樹脂組成物を得る こ とができ る。  The proportion of the soft briquette powder (B1) is more preferably from 20 to 80% by weight, and even more preferably from 25 to 75% by weight. The proportion of the metal-based magnetic powder (B 2) is more preferably 80 to 20% by weight, and further preferably 75 to 25% by weight. By using both of them within these ranges, it is possible to obtain a resin composition having an appropriately high magnetic permeability and a high level of withstand voltage and saturation magnetic flux density. Can be done.
軟質フ ェ ライ 卜粉末 (B 1 ) と金属系磁性体粉末 (B 2 ) を併用 する場合、 合成樹脂 (A) 1 0 0重量部に対して、 軟磁性フ イ ラ— 成分 ( B 1 + B 2 ) を、 通常 1 0 0〜 2 0 0 0重量部、 好ま し く は 2 0 0〜 1 5 0 0重量部、 よ り好ま し く は 2 5 0〜 1 0 0 0重量部 の割合で配合する こ とが望ま しい。 When the soft ferrite powder (B 1) and the metal magnetic powder (B 2) are used in combination, the soft magnetic filler is used with respect to 100 parts by weight of the synthetic resin (A). Component (B 1 + B 2) is usually 100 to 2000 parts by weight, preferably 200 to 1500 parts by weight, more preferably 250 to 100 parts by weight. It is desirable to mix at a ratio of 0 parts by weight.
低弾性率化剤 ( C ) を配合する場合には、 合成樹脂と軟磁性フ ィ ラ一 ( B 1 + B 2 ) との合計量 1 0 0重量部に対して、 通常 0. 1 〜 1 0重量部、 好ま し く は 0. 5 〜 5重量部の割合で使用する。 低 弾性率化剤 ( C ) の配合割合が小さ過ぎる と、 耐電圧を安定して高 水準に保持する効果が充分ではな く 、 大き過ぎる と、 樹脂組成物の 機械的物性や磁気特性が低下するおそれが生じる。  When blending the low-modulus agent (C), 0.1 to 1 part by weight of the total amount of the synthetic resin and the soft magnetic filler (B1 + B2) is 100 parts by weight. It is used in a proportion of 0 parts by weight, preferably 0.5 to 5 parts by weight. If the blending ratio of the low elastic modulus agent (C) is too small, the effect of stably maintaining the withstand voltage at a high level is not sufficient, and if it is too large, the mechanical properties and magnetic properties of the resin composition deteriorate. May occur.
本発明の樹脂組成物には、 機械的特性、 耐熱性などを改善するた めに、 繊維状充填材、 非繊維状 (板状、 粒状、 粉末状、 球状) 充填 材などの各種充填材を含有させる こ とができ る。 本発明の樹脂組成 物には、 必要に応じて、 難燃化剤、 酸化防止剤、 着色剤などの各種 添加剤を配合する こ とができ る。  The resin composition of the present invention contains various fillers such as a fibrous filler and a non-fibrous (plate, granular, powder, spherical) filler in order to improve mechanical properties, heat resistance, and the like. Can be contained. The resin composition of the present invention may contain various additives such as a flame retardant, an antioxidant, and a coloring agent, if necessary.
本発明の樹脂組成物は、 各成分を均一に混合する こ とによ り製造 する こ とができる。 例えば、 合成樹脂成分と軟磁性フ ィ ラ一成分と その他の任意成分の各所定量をヘン シ ェル ミ キサーな どの混合機に よ り混合し、 溶融混練する こ とによ り 、 樹脂組成物を製造する こ と ができる。 本発明の樹脂組成物は、 射出成形、 押出成形、 圧縮成形 などの各種成形方法によ り、 所望の形状の成形体に成形する こ とが できる。 このよう に して得られた成形体は、 優れた透磁性と耐電圧 を有し、 さ らには、 高い飽和磁束密度を有する ものである。  The resin composition of the present invention can be produced by uniformly mixing the components. For example, a predetermined amount of each of a synthetic resin component, a soft magnetic filler component, and other optional components is mixed by a mixer such as a Henschel mixer and melt-kneaded to obtain a resin composition. Can be manufactured. The resin composition of the present invention can be molded into a molded article having a desired shape by various molding methods such as injection molding, extrusion molding, and compression molding. The compact obtained in this way has excellent magnetic permeability and withstand voltage, and further has a high saturation magnetic flux density.
本発明の樹脂組成物の耐電圧は、 通常、 2 5 0 0 V以上、 好ま し く は 3 0 0 0 V以上、 よ り好ま し く は 3 5 0 0 V以上であり、 空隙 率が 1 %以下と小さな軟質フ ヱ ライ ト粉末を使用する と、 耐電圧を 5 0 0 0 Vまたはそれ以上にする こ と もできる。 ただし、 空隙率が 0. 0 1 %未満と実質的に空隙のない軟質フ ライ ト粉末を使用す る と、 溶融混練や成形の際に合成樹脂の分解が発生する。 耐電圧の 上限は、 6 0 0 0 V程度であ り、 多 く の場合、 5 5 0 0 V程度であ る。 The withstand voltage of the resin composition of the present invention is usually 250 V or more, preferably 300 V or more, more preferably 350 V or more, and the porosity is 1 % Or less, the withstand voltage can be increased to 500 V or more. However, if the porosity is If a soft fly powder having substantially no voids is used when the content is less than 0.01%, decomposition of the synthetic resin occurs during melt-kneading or molding. The upper limit of the withstand voltage is about 600 V, and in many cases, about 550 V.
本発明の樹脂組成物の透磁率は、 通常 1 0以上であ り、 好ま し く は 1 0〜 3 0程度であ り、 多 く の場合、 1 0〜 2 0程度である。 本発明の樹脂組成物は、 軟磁性フ イ ラ一 ( B ) と して、 軟質フ エ ラィ 卜粉末 ( B 1 ) と金属系磁性体粉末 ( B 2 ) を併用 した場合、 耐電圧が通常 3 0 0 0 V以上、 好ま し く は 3 5 0 0 V以上、 多く の 場合、 3 0 0 0〜 5 5 0 0 Vで、 透磁率が通常 1 0以上、 好ま し く は 1 0〜 3 0、 多 く の場合 1 0〜 2 0程度で、 かつ、 飽和磁束密度 が通常 3 0 0 0 ガウ ス以上、 好ま し く は 3 0 0 0〜 6 0 0 0 ガウ ス 程度、 多 く の場合 3 0 0 0〜 5 5 0 0 ガウ ス程度の樹脂組成物を得 る こ とができ る。  The magnetic permeability of the resin composition of the present invention is usually 10 or more, preferably about 10 to 30 and most often about 10 to 20. The resin composition of the present invention generally has a withstand voltage when the soft magnetic powder (B 1) and the metal magnetic powder (B 2) are used in combination as the soft magnetic filler (B). Above 3000 V, preferably above 350 V, often between 300 and 550 V, permeability is usually above 10 and preferably between 10 and 3 0, in most cases about 10 to 20 and the saturation magnetic flux density is usually more than 300 gauss, preferably about 300 to 600 gauss, more It is possible to obtain a resin composition of about 3,000 to 5,000 gauze.
本発明の樹脂組成物は、 例えば、 コイル、 ト ラ ンス、 ライ ンフ ィ ルタ一、 電磁波遮断材などの広範な用途に適用する こ とができ る。  The resin composition of the present invention can be applied to a wide range of uses such as coils, transformers, line filters, and electromagnetic wave shielding materials.
<実施例 > <Example>
以下に実施例及び比較例を挙げて、 本発明をさ らに詳細に説明す る。 ただ し、 本発明は、 これ らの実施例のみに限定される ものでは ない。 各種物性の測定方法は、 次のとおりである。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to only these examples. The methods for measuring various physical properties are as follows.
( 1 ) 耐電圧の測定方法  (1) Measurement method of withstand voltage
厚さ 0. 8 m mの板状成形品の両側に円盤型電極を接触させ、 菊 水電子工業製耐圧試験器 T O S 5 0 5 0を使用 して、 測定温度 2 3 °Cにおいて、 カ ツ 卜 オフ ( c u t o f f ) 電流を 1 mAと し、 6 0 秒間印加可能な最大の交流電圧を求めた。 ( 2 ) 透磁率及び飽和磁束密度の測定方法 A disk-shaped electrode is brought into contact with both sides of a 0.8 mm-thick plate-like molded product, and cut at a measurement temperature of 23 ° C using a Kikusui Electronics pressure tester TOS 550. The cutoff current was 1 mA, and the maximum AC voltage that could be applied for 60 seconds was determined. (2) Measurement method of permeability and saturation magnetic flux density
J I S C - 2 5 6 1 に準拠して測定した。  The measurement was performed according to JISC-25661.
( 3 ) 軟磁性フ イ ラ 一の平均粒子径  (3) Average particle size of soft magnetic filer
粉末試料を ミ ク ロスパーテルで 2杯取り、 ビーカ ーに入れ、 ァニ オ ン系界面活性剤 ( S Nディ スパ—サ ッ ト 5 4 6 8 ) を 1 〜 2滴加 えた後、 粉末試料が潰れないよう に先端が丸い棒で練った。 こ の試 料を用いて、 日機装社製マイ ク ロ ト ラ ッ ク F R A粒度分析計 9 2 2 0 型で平均粒子径を測定した。  Take two cups of the powder sample with a microspar, put it in a beaker, add one or two drops of anionic surfactant (SN Dispersant 548), and then the powder sample is crushed. It was kneaded with a stick with a round tip so as not to have it. Using this sample, the average particle size was measured with a Nikkiso Co., Ltd. Microtrack FRA particle size analyzer Model 922.
( 4 ) 軟質フ ェ ラ イ ト粉末の空隙率の測定方法  (4) Method of measuring porosity of soft ferrite powder
厚さ 0. 8 m mの板状成形品を、 軟質フ ライ ト粉末の断面が見 えるまで研磨した。 日本電子製走査型電子顕微鏡 J S M - 6 3 0 F を使用 し、 軟質フ ヱ ライ ト粉末の断面を観察した。 1 0個の軟質フ ライ 卜粉末の断面観察を行い、 軟質フ ライ ト粉末内の空隙率を 日本電子製画像処理装置 J E D - 2 1 0 0を使用 し、 面積を基準と して算出 した。  A 0.8 mm thick plate-like molded product was polished until the cross section of the soft fly powder was seen. Using a scanning electron microscope JSM-630F manufactured by JEOL, the cross section of the soft bright powder was observed. A cross section of 10 soft fly powders was observed, and the porosity in the soft fly powders was calculated using an image processing apparatus JED-2100 manufactured by JEOL Ltd. based on the area.
[実施例 1 ]  [Example 1]
M g 0 ( 1 0. 9重量%) 、 Z n 0 ( 1 4. 8重量%) 、 C u 0 ( 1. 2重量%) 、 M n 0 ( 3. 2重量%) 、 C a 0 ( 0. 1 6重 量%) 、 S i 02 ( 0. 0 7重量%) 、 N i 0 ( 0. 0 6重量%) 、 B i „03 ( 0. 3重量%) 、 P b 0 ( 0. 0 1重量%) 、 F e 203 ( 6 9. 3重量% ) からなる混合物を 1 0 0 0 °Cで仮焼し、 次いで、 粉砕した後、 常法に従ってスプレー ドライ ャを用いて造粒した。 得 られた顆粒状物を 1 3 5 0 °Cで約 3時間焼成し、 約 8時間かけて室 温まで除冷し、 M g— Z n系フ ヱ ライ 卜の焼結体を得た。 この焼結 体をハ ンマ— ミ ルで粉砕し、 平均粒子径 4 7 mの粉末を得た。 得 られた粉末の比重は、 4. 6であ っ た。 上記で得られた M g — Z n系フ ヱ ライ ト粉末 1 7. 2 k g、 及び ポ リ フ ヱ ニ レ ンスルフ ィ ド (呉羽化学工業製 ; 3 1 0 °C、 剪断速度 1 0 0 0 Z秒における溶融粘度が約 2 0 P a · s ) 2. 8 k gを秤 量し、 2 0 Lヘンシルミ キサーで混合した。 さ らに、 得られた混合 物を 2 8 0〜 3 3 0 °Cに設定した 2軸押出機へ供給し、 溶融混練を 行い、 ペ レ ツ ト状組成物を得た。 Mg0 (10.9% by weight), Zn0 (14.8% by weight), Cu0 (1.2% by weight), Mn0 (3.2% by weight), Ca0 ( 0.1 6 by weight%), S i 0 2 ( 0. 0 7 wt%), N i 0 (0. 0 6 wt%), B i "0 3 (0. 3 wt%), P b 0 (0.0 1 wt%), the F e 2 0 3 consists of (6 9.3 wt%) mixture was calcined at 1 0 0 0 ° C, then, after grinding, spray drying turbocharger according to a conventional method The obtained granules were calcined at 135 ° C. for about 3 hours, cooled to room temperature over about 8 hours, and calcined Mg—Zn-based plate. The sintered body was pulverized with a hammer mill to obtain a powder having an average particle diameter of 47 m, and the specific gravity of the obtained powder was 4.6. 17.2 kg of the Mg-Zn-based fine powder obtained above, and polyphenylene sulfide (Kureha Chemical Co., Ltd .; 310 ° C, shear rate 100000) The melt viscosity at Z second was about 20 Pa · s) 2.8 kg was weighed and mixed with a 20 L Hensyl mixer. Further, the obtained mixture was supplied to a twin-screw extruder set at 280 to 330 ° C. and melt-kneaded to obtain a pellet-like composition.
得られた組成物を射出成型機 (日本製鋼所製: 1 W/ 7 5 E ) へ供 給し、 シ リ ンダ一温度 2 8 0〜 3 1 0 °C、 射出圧力約 1 O O O k g f / c m2、 金型温度約 1 6 0 °Cにて、 1 0 mmx l 3 0 mmx 0. 8 mm の板状成形品を得た。 得られた成形品の耐電圧を測定したと こ ろ、 5 0 0 0 V超過であった。 また、 飽和磁束密度は、 2 2 3 6ガウス であった。 The obtained composition is supplied to an injection molding machine (manufactured by Nippon Steel Works: 1 W / 75 E), and the cylinder temperature is 280 to 310 ° C, and the injection pressure is about 1 OOO kgf / cm. 2. At a mold temperature of about 160 ° C., a plate-shaped molded product of 10 mm × l30 mm × 0.8 mm was obtained. When the withstand voltage of the obtained molded product was measured, it was more than 500 V. Further, the saturation magnetic flux density was 222 gauss.
得られた板状成形品を研磨し、 走査型電子顕微鏡で磁性体粉末中 の空隙率を測定したと ころ、 磁性体中 1 %の空隙率であった。  The obtained plate-like molded product was polished, and the porosity in the magnetic powder was measured by a scanning electron microscope. As a result, the porosity in the magnetic material was 1%.
また、 得られた組成物を射出成型機 (日精樹脂製 P S - 1 0 E ) へ供給し、 シリ ンダ—温度 28 0〜 3 1 0 °C、 射出圧力約 1 00 0 k g f / c m2, 金型温度約 1 6 0 °Cにて、 ト ロイダルコアを成形した。 得 られた ト ロイ ダルコアを用いて透磁率を測定したと ころ、 1 7. 5 であった。 In addition, the obtained composition is supplied to an injection molding machine (PS-10E made by Nissei Resin), and the cylinder temperature is 280 to 310 ° C, the injection pressure is about 100 kgf / cm 2 , and the gold is At a mold temperature of about 160 ° C., a toroidal core was formed. When the magnetic permeability was measured using the obtained toroidal core, it was 17.5.
[実施例 2 ]  [Example 2]
実施例 1 と同じ組成の原料混合物を 1 2 5 0 °Cの温度で 3時間焼 成し、 8時間かけて室温まで徐冷し M g— Z n系フ ヱライ 卜の焼結 体を得た。 得られた焼結体から実施例 1 と同様に して M g— Z n系 フ ェ ライ 卜の粉末を得た。 得られた粉末の平均粒径は 5 O mであ つた。 以下、 実施例 1 と同様の操作を行った。 得られた結果を表 1 に示す。 [実施例 3 ] A raw material mixture having the same composition as in Example 1 was fired at a temperature of 125 ° C. for 3 hours and gradually cooled to room temperature over 8 hours to obtain a sintered body of Mg—Zn-based filler. . A Mg—Zn-based ferrite powder was obtained from the obtained sintered body in the same manner as in Example 1. The average particle size of the obtained powder was 5 Om. Thereafter, the same operation as in Example 1 was performed. Table 1 shows the obtained results. [Example 3]
M g 0 ( 1 1. 0重量%) 、 Z n O ( 1 5. 2重量%) 、 C u 0 ( 0. 4 5重量%) 、 M n 0 ( 3. 0重量%) 、 C a 0 ( 0. 1 6 重量%) 、 S i 02 ( 0. 1 5重量%) 、 N i 0 ( 0. 2重量%) 、 WO。 ( 0. 03重量%) 、 P b 0 ( 0. 0 1重量%) 、 F e 203 ( 6 9. 8重量% ) からなる混合物を 1 0 0 0 °Cで仮焼し、 次いで、 粉砕し た後、 常法に従ってスプレー ドライ ヤを用いて造粒した。 得られた 顆粒状物を 1 3 5 0 °Cで約 3時間焼成し、 約 8時間かけて室温まで 除冷して M g— Z n系フ ェ ラ イ 卜の焼結体を得た。 この焼結体をハ ンマー ミ ルで粉砕し、 平均粒子径 4 4 mの粉末を得た。 以下、 実 施例 1 と同様の操作を行った。 得られた結果を表 1 に示す。 Mg0 (11.0% by weight), ZnO (15.2% by weight), Cu0 (0.45% by weight), Mn0 (3.0% by weight), Ca0 (0.1 6 wt%), S i 0 2 ( 0. 1 5 wt%), N i 0 (0. 2 wt%), WO. (0.03 wt%), P b 0 (0. 0 1 % by weight), the F e 2 0 3 mixture of (6 9.8% by weight) was calcined at 1 0 0 0 ° C, then, After pulverization, the mixture was granulated using a spray dryer according to a conventional method. The obtained granules were calcined at 135 ° C. for about 3 hours, and were cooled to room temperature over about 8 hours to obtain a sintered body of Mg—Zn ferrite. This sintered body was pulverized with a hammer mill to obtain a powder having an average particle diameter of 44 m. Thereafter, the same operation as in Example 1 was performed. Table 1 shows the obtained results.
[比較例 1 ]  [Comparative Example 1]
実施例 1 と同様の組成の混合物を 1 2 0 0 °Cの温度で 3時間焼成 し、 室温まで 8時間かけて徐冷して M g— Z n系フ ヱライ 卜焼結体 を得た。 この焼結体をハ ンマー ミ ルで粉砕し、 平均粒子径 4 0 m の粉末を得た。 以下、 実施例 1 と同様の操作を行った。 得られた結 果を表 1 に示す。  A mixture having the same composition as in Example 1 was fired at a temperature of 1200 ° C. for 3 hours, and gradually cooled to room temperature over 8 hours to obtain a Mg—Zn-based sintered body. This sintered body was pulverized with a hammer mill to obtain a powder having an average particle diameter of 40 m. Thereafter, the same operation as in Example 1 was performed. Table 1 shows the results.
[比較例 2 ]  [Comparative Example 2]
実施例 3 と同様の組成の混合物を 1 2 5 0 °Cの温度で 3時間焼成 し、 室温まで 8時間かけて徐冷して M g— Z n系フ ヱ ライ ト焼結体 を得た。 こ の焼結体をハンマ一 ミ ルで粉砕し、 平均粒子径 4 5 ^ m の粉末を得た。 以下、 実施例 1 と同様の操作を行った。 得られた結 果を表 1 に示す。 表 1 A mixture having the same composition as in Example 3 was calcined at a temperature of 125 ° C. for 3 hours and gradually cooled to room temperature over 8 hours to obtain a Mg—Zn-based sintered body. . This sintered body was pulverized with a hammer mill to obtain a powder having an average particle diameter of 45 ^ m. Thereafter, the same operation as in Example 1 was performed. Table 1 shows the results. table 1
Figure imgf000021_0001
Figure imgf000021_0001
[比較例 3 ] [Comparative Example 3]
実施例 1 と同様の顆粒状物を 1 3 5 0 °Cで約 8時間焼成し、 約 8 時間かけて室温間で徐冷し燒結体を得た。 この燒結体を用いたこ と 以外は実施例 1 と同様の操作を行った。 得られた M g - Z n系フ エ ラィ ト粉末の平均粒径は 5 5 mで、 比重は 4. 7 gであった。 た だし、 2軸押出機での溶融混合の際、 樹脂の分解と考え られるガス が発生した。 また、 耐電圧測定のための板状成形品の成形の際に も ガスが発生し、 満足な測定用試料を得るこ とができなかった。 なお、 測定に用いる こ とができなかつた試料の一部を実施例 1 と同様に研 摩し、 軟質フ ェ ライ ト粉末中の空隙率を測定したと ころ、 空隙は見 られなかった (空隙率 = 0. 0 1 %未満) 。 The same granular material as in Example 1 was fired at 135 ° C. for about 8 hours, and gradually cooled to room temperature over about 8 hours to obtain a sintered body. The same operation as in Example 1 was performed except that this sintered body was used. Obtained Mg-Zn system The average particle size of the light powder was 55 m, and the specific gravity was 4.7 g. However, during melt-mixing in the twin-screw extruder, a gas was generated that was considered to decompose the resin. Also, gas was generated during the molding of the plate-like molded product for withstand voltage measurement, and a satisfactory measurement sample could not be obtained. When a portion of the sample that could not be used for measurement was polished in the same manner as in Example 1 and the porosity in the soft ferrite powder was measured, no porosity was found. Rate = less than 0.01%).
[実施例 4 ]  [Example 4]
実施例 1 と同じ方法によ り、 平均粒子径 4 7 / m、 比重 4. 6の M g — Z n系フ ヱ ライ ト粉末を調製した。  In the same manner as in Example 1, an Mg—Zn-based powder having an average particle diameter of 47 / m and a specific gravity of 4.6 was prepared.
一方、 市販の球状カルボニル鉄粉末 ( B A S F社製、 E N ; 平均 粒子径 4. 3 m) を真空乾燥機に入れ、 一旦減圧した後、 ァルゴ ンガスを充填した。 次いで、 極く 微量の空気を導入した後、 1 0 0 °Cまで加熱して、 カルボニル鉄粉末の表面に金属酸化物膜を形成し た。 このよ う に して得られた磁性体粉末 1 0 0重量部に対して、 2 重量部の シ ラ ンカ ッ プ リ ン グ剤 ( ビニル ト リ メ ト キシ シ ラ ン) を添 力 []し、 ヘンシルミ キサーで攪拌して、 表面にシラ ンカ ッ プリ ング剤 の層を形成した。 さ らに、 磁性体粉末を真空容器へ移し、 減圧下で 4 5 0 °Cまで加熱しシラ ンカ ツ プリ ング剤を分解して、 表面にゲイ 素酸化物膜を形成した。 こ のよ う に して、 表面に電気絶縁層を形成 したカルボニル鉄粉末 (平均粒子径 4. 3 / m) を得た。  On the other hand, a commercially available spherical carbonyl iron powder (manufactured by BASF, EN; average particle diameter: 4.3 m) was put into a vacuum dryer, and after depressurizing once, it was filled with argon gas. Next, after introducing a very small amount of air, the mixture was heated to 100 ° C. to form a metal oxide film on the surface of the carbonyl iron powder. To 100 parts by weight of the magnetic powder thus obtained, 2 parts by weight of a silane coupling agent (vinyl trimethoxysilane) was added []. Then, the mixture was stirred with a Hensyl mixer to form a layer of a silane coupling agent on the surface. Further, the magnetic powder was transferred to a vacuum vessel and heated to 450 ° C. under reduced pressure to decompose the silane coupling agent, thereby forming a silicon oxide film on the surface. In this way, carbonyl iron powder (average particle diameter 4.3 / m) having an electric insulating layer formed on the surface was obtained.
前記で得られた M g— Z n系フ ヱライ ト粉末 8. 5 k g、 表面に 電気絶縁層を形成した力ルポニル鉄粉末 8. 5 k g、 及びポ リ フ エ 二レ ンスルフ ィ ド (呉羽化学工業社製 ; 3 1 0 °C、 剪断速度 1 0 0 0 秒—1における溶融粘度が約 2 0 P a · s ) 3. 0 k gを秤量し、 2 0 L ヘンシル ミ キサーで混合した。 次いで、 エポキシ変性シ リ コー ンォ ィノレ 4 0 0 gを添加した。 得られた混合物を 2 8 0〜 3 3 0 °Cの温 度に設定した 2軸押出機へ供給して、 溶融混練を行い、 ペレ ツ ト状 組成物を得た。 8.5 kg of the Mg—Zn-based ferrite powder obtained above, 8.5 kg of force-rubonil iron powder having an electric insulating layer formed on the surface, and polyphenylenesulfide (Kureha Chemical Co., Ltd.) A melt viscosity of about 20 Pa · s) at 3100 ° C. and a shear rate of 100 seconds- 1 manufactured by Kogyosha Co., Ltd. was weighed and mixed with 20 L Hensyl mixer. Next, epoxy-modified silicone 400 g of Inore were added. The obtained mixture was supplied to a twin-screw extruder set at a temperature of 280 to 330 ° C., and was melt-kneaded to obtain a pellet-like composition.
こ のよ う に して得られたペ レ ツ ト状組成物を射出成型機 (日本製 鋼所社製 J 一 7 5 E ) へ供給し、 シ リ ンダ―温度 2 8 0〜 3 1 0 °C、 射出圧力約 1 0 0 0 k g f / c m2、 金型温度約 1 6 0 °Cにて、 1 0 mm x 1 3 0 m m x 0. 8 mmの板状成形品を得た。 得られた成形品の 耐電圧を測定したと ころ 4 0 0 0 Vであった。 M g— Z n系フ ェ ラ イ ト粉末の空隙率を求めたと ころ、 1 %であった。 The pellet-like composition obtained in this manner is supplied to an injection molding machine (J-175E, manufactured by Nippon Steel Works, Ltd.), and the cylinder temperature is 280 to 310. At 10 ° C, an injection pressure of about 1000 kgf / cm 2 , and a mold temperature of about 160 ° C, a plate-shaped molded product of 10 mm x 13 0 mm x 0.8 mm was obtained. When the withstand voltage of the obtained molded product was measured, it was 400 V. The porosity of the Mg—Zn ferrite powder was determined to be 1%.
また、 前記で得られたペレ ツ 卜状組成物を射出成型機 (日精樹脂 社製 P S— 1 0 E ) へ供給し、 シ リ ンダー温度 2 8 0〜 3 1 0 °C、 射出圧力約 1 0 0 0 k g f / c m2、 金型温度約 1 6 0 °Cにて、 円柱 状サ ンプル (直径 2 0 mm、 高さ 7 mm) 及び ト ロイ ダルコアを成 形した。 円柱状サンプルを使用し、 飽和磁束密度を測定したところ、 5 1 4 0ガウ スであ っ た。 得られた ト ロイ ダルコアを用いて透磁率 を測定したところ、 1 3. 0であった。 得られた結果を表 2に示す。 実施例 4の樹脂組成物を実施例 1 の樹脂組成物と対比する と、 耐 電圧は 5 0 0 0 Vから 4 0 0 0 Vへ低下したものの高水準を維持し ており、 飽和磁束密度については、 実施例 1 の組成物が 2 2 3 6ガ ウ スであ つ たのに対して、 2倍以上に改善されている。 また、 実施 例 4 において、 表面に電気絶縁層を形成した力ルポニル鉄粉末に代 えて、 表面絶縁処理を行っていない球状カルボニル鉄粉末 (B A S F 社製、 E N) を用いたと ころ、 耐電圧が 1 0 0 0 Vに低下した。 し たがっ て、 表面に電気絶縁層を形成した金属系磁性体粉末を用いる こ とによ り、 耐電圧と飽和磁束密度を高水準でバラ ンスさせた樹脂 組成物の得られる こ とが明らかである。 実施例 4において、 ェポキ シ変性シ リ コ ー ンオイ ルを添加しなかった場合には、 耐電圧がかな り低下する傾向を示した。 したがっ て、 低弾性率化剤の併用による 耐電圧保持効果が明らかである。 In addition, the pellet-like composition obtained above was supplied to an injection molding machine (PS-10E manufactured by Nissei Plastics Co., Ltd.), and a cylinder temperature of 280 to 310 ° C and an injection pressure of about 1 A cylindrical sample (diameter 20 mm, height 7 mm) and a toroidal core were formed at a temperature of 0.000 kgf / cm 2 and a mold temperature of about 160 ° C. When the saturation magnetic flux density was measured using a cylindrical sample, it was found to be 540 Gauss. When the magnetic permeability was measured using the obtained toroidal core, it was 13.0. Table 2 shows the obtained results. Comparing the resin composition of Example 4 with the resin composition of Example 1, the withstand voltage decreased from 50,000 V to 400 V, but maintained a high level. In the case of the composition of Example 1, the composition was improved by more than double compared to the case of the composition of Example 2 which was 236 gauss. Also, in Example 4, instead of the luponyl iron powder having an electric insulating layer formed on its surface, spherical carbonyl iron powder (BASF, EN), which had not been subjected to surface insulation treatment, was used. It dropped to 0.000 V. Therefore, it is clear that the use of metal-based magnetic powder having an electric insulating layer formed on the surface makes it possible to obtain a resin composition in which the withstand voltage and the saturation magnetic flux density are balanced at a high level. is there. In Example 4, Epoki When the modified silicone oil was not added, the withstand voltage tended to decrease considerably. Therefore, the effect of holding the withstand voltage by the combined use of the low elastic modulus agent is apparent.
[実施例 5 ]  [Example 5]
実施例 4において、 M g— Z n系フヱ ライ ト粉末 8. 5 k gを 5. In Example 4, 8.5 kg of Mg-Zn-based fine powder was added to 5.
0 k gに、 表面に電気絶縁層を形成したカルボニル鉄粉末 8. 5 k g を 1 2. 0 k gに、 それぞれ変更したこ と以外は、 実施例 4 と同様 の操作を行った。 その結果を表 2に示す。 The same operation as in Example 4 was performed, except that 0 kg and 8.5 kg of carbonyl iron powder having an electric insulating layer formed on the surface were changed to 12.0 kg, respectively. The results are shown in Table 2.
[実施例 6 ]  [Example 6]
実施例 4において、 M g— Z n系フヱライ ト粉末 8. 5 k gを 1 2. In Example 4, 8.5 kg of Mg-Zn based powder was added to 12.
0 k gに、 表面に電気絶縁層を形成した力ルポニル鉄粉末 8. 5 k g を 5. O k gに、 それぞれ変更したこ と以外は、 実施例 4 と同様の 操作を行った。 その結果を表 2に示す。 The same operation as in Example 4 was performed, except that the powder was changed to 0 kg, and 8.5 kg of the luponyl iron powder having an electric insulating layer formed on the surface was changed to 5.0 kg. The results are shown in Table 2.
[比較例 4 ]  [Comparative Example 4]
実施例 4 において、 磁性体粉末と して、 M g— Z n系フ ヱ ラ イ ト 粉末を使用する こ とな く 、 表面に電気絶縁層を形成したカルボニル 鉄粉末 1 7. 0 k gを用いたこ と以外は、 実施例 4 と同様の操作を 行った。 その結果を表 2に示す。  In Example 4, 17.0 kg of carbonyl iron powder having an electric insulating layer formed on the surface was used instead of using the Mg—Zn-based graphite powder as the magnetic substance powder. Other than the above, the same operation as in Example 4 was performed. The results are shown in Table 2.
[実施例 7 ]  [Example 7]
N i 0 ( 6. 7重量%) 、 Z n 0 ( 2 0. 2重量%) 、 C u 0 ( 6. N i 0 (6.7% by weight), Z n 0 (20.2% by weight), Cu 0 (6.
6重量%) 、 M n 0 ( 0. 2重量%) 、 及び F e 203 ( 6 6. 3重量 %) からなる混合物を約 1 0 0 0 °cで仮焼成し、 次いで粉砕した後、 常法に従ってスプレー ドライ ヤを用いて造粒した。 得られた顆粒状 物を 1 3 0 0 °Cで約 2時間焼成し、 N i — Z n系フ ヱ ライ トの燒結 体を得た。 こ の燒結体をハ ンマ— ミ ルで粉砕し、 平均粒径 5 0 m の粉末を得た。 得られた粉末の比重は、 5. 2であった。 一方、 市販の球状カルボニル鉄粉末 ( B A S F社製、 E N) を真 空乾燥機に入れ、 一旦減圧した後、 アルゴンガスを充填した。 次い で、 極く微量の空気を導入した後、 1 0 0 °Cまで加熱して、 カルボ ニル鉄粉末の表面に金属酸化物膜を形成した。 こ のよ う に して得ら れた磁性体粉末 1 0 0重量部に対して、 2重量部のシ ラ ンカ ツ プリ ング剤 (ビニル ト リ メ ト キシ シ ラ ン) を添加し、 ヘン シル ミ キサー で攪拌して、 表面にシラ ンカ ップリ ング剤の層を形成した。 さ らに、 磁性体粉末を真空容器へ移し、 減圧下で 4 5 0 °Cまで加熱してシ ラ ンカ ッ プリ ング剤を分解し、 表面にゲイ素酸化物膜を形成した。 こ のよう に して、 表面に電気絶縁層を形成したカルボニル鉄粉末を得 た。 6 wt%), M n 0 (0. 2 wt%), and F e 2 0 3 (6 6. calcined a mixture consisting of 3 wt%) at about 1 0 0 0 ° c, then was pulverized Granulation was performed using a spray dryer according to a conventional method. The obtained granules were calcined at 130 ° C. for about 2 hours to obtain a sintered body of Ni—Zn-based fine particles. The sintered body was pulverized with a hammer mill to obtain a powder having an average particle size of 50 m. The specific gravity of the obtained powder was 5.2. On the other hand, a commercially available spherical carbonyl iron powder (manufactured by BASF, EN) was placed in a vacuum dryer, and the pressure was once reduced, and then argon gas was charged. Next, after introducing a very small amount of air, the mixture was heated to 100 ° C. to form a metal oxide film on the surface of the carbonyl iron powder. To 100 parts by weight of the magnetic powder obtained in this way, 2 parts by weight of a silane coupling agent (vinyl trimethoxysilane) was added, and The mixture was stirred with a sir mixer to form a silane coupling agent layer on the surface. Further, the magnetic powder was transferred to a vacuum vessel, and heated to 450 ° C. under reduced pressure to decompose the silane coupling agent and form a gay oxide film on the surface. Thus, carbonyl iron powder having an electric insulating layer formed on the surface was obtained.
このよう に して得られた N i — Z n系フヱライ ト粉末 8. 5 k g、 表面に電気絶縁層を形成した力ルポニル鉄粉末 8. 5 k g、 及びポ リ フ ヱ二 レ ンスルフ ィ ド (呉羽化学工業社製 ; 3 1 0 °C、 剪断速度 1 0 0 0秒—1における溶融粘度約 2 0 P a ' s ) 3. 0 k gを秤量し、 以下実施例 4 と同様の操作を行った。 軟質フ ライ 卜粉末中の空隙 率は、 3 %であった。 得られた結果を表 2 に示す。 8.5 kg of the Ni—Zn-based ferrite powder obtained in this way, 8.5 kg of iron-on-iron powder with an electric insulating layer formed on the surface, and polyphenylenesulfide ( Made by Kureha Chemical Industry Co., Ltd .; melt viscosity at 310 ° C, shear rate 100 s-- 1約 20 Pas') weighed 3.0 kg, and then performed the same operation as in Example 4. Was. The porosity in the soft fly powder was 3%. Table 2 shows the obtained results.
[実施例 8 ]  [Example 8]
実施例 7において、 N i — Z n系フヱライ ト粉末 8. 5 k gを 7. 5 k gに、 表面に電気絶縁層を形成した力ルポニル鉄粉末 8. 5 k g を 7. 5 k gに、 そ してポ リ フ エ二レ ンスルフ イ ド 3. 0 k gを 5. 0 k gに、 それぞれ変更したこ と以外は、 実施例 7 と同様の操作を 行った。 得られた結果を表 2 に示す。
Figure imgf000026_0001
In Example 7, 8.5 kg of the Ni—Zn-based powder was changed to 7.5 kg, 8.5 kg of the iron luponyl powder having an electric insulating layer formed on the surface was changed to 7.5 kg, and The same operation as in Example 7 was performed, except that the polyolefin sulfide was changed from 3.0 kg to 5.0 kg. Table 2 shows the obtained results.
Figure imgf000026_0001
(脚注)  (Footnote)
( * 1 ) 表面に電気絶縁層を形成した力ルポニル鉄粉末  (* 1) Luponyl iron powder with electric insulating layer formed on the surface
( * 2 ) ェポキシ変性シ リ コ 一 ンオイ ル ; その重量部は、 (樹脂 + 軟磁性フ イ ラ—) 1 0 0重量部に対する値である。 <産業上の利用可能性 > (* 2) Epoxy-modified silicone oil; parts by weight are based on 100 parts by weight of (resin + soft magnetic filer). <Industrial applicability>
本発明によれば、 適度に高い透磁率を有する と と もに、 耐電圧が 顕著に改善された樹脂組成物が提供される。 また、 本発明によれば、 高い透磁率を有する と と もに、 電気抵抗と飽和磁束密度が高水準で バラ ンス した軟磁性樹脂組成物が提供される。 したがっ て、 本発明 の樹脂組成物は、 例えば、 コ イ ル、 ト ラ ンス、 ラ イ ン フ ィ ルタ 一等 の高い耐電圧または高い耐電圧と高い飽和磁束密度が要求される成 形体の分野に適用する こ とができ る。 これらの成形体は、 従来使用 が制限されていた条件下での使用が可能である。  According to the present invention, a resin composition having a moderately high magnetic permeability and a remarkably improved withstand voltage is provided. Further, according to the present invention, there is provided a soft magnetic resin composition having a high magnetic permeability and a high level of balance between electric resistance and saturation magnetic flux density. Accordingly, the resin composition of the present invention can be used, for example, in the field of molded articles requiring a high withstand voltage such as a coil, a transformer, and a line filter, or a high withstand voltage and a high saturation magnetic flux density. It can be applied to These molded articles can be used under conditions where their use has been restricted in the past.

Claims

請求の範囲 The scope of the claims
1. 合成樹脂 (A) と軟磁性フ イ ラ— ( B ) とを含有する樹脂 組成物において、 該軟磁性フ ィ ラ ー ( B ) が、 N i — Z n系フ ヱ ラ ィ ト、 M g — Z n系フ ェ ラ イ ト、 及び C u系フ ェ ラ イ トカ、らなる群 より選ばれる少な く と も一種の軟質フ ヱライ 卜粉末であって、 かつ、 その空隙率が 0. 0 1〜 5 %の範囲内にある軟質フヱライ ト粉末 (B 1 ) を含有する こ とを特徴とする樹脂組成物。 1. A resin composition containing a synthetic resin (A) and a soft magnetic filler (B), wherein the soft magnetic filler (B) is a Ni—Zn-based filler, Mg—Zn ferrite, and Cu ferriteka, at least one kind of soft filler powder selected from the group consisting of: A resin composition characterized by containing a soft fiber powder (B 1) in a range of 0.1 to 5%.
2. 合成樹脂 (A) 1 0 0重量部に対して、 軟磁性フイ ラ一 (B) を 1 0 0〜 2 0 0 0重量部の割合で含有する請求項 1記載の樹脂組 成物。 2. The resin composition according to claim 1, wherein the soft magnetic filler (B) is contained in a proportion of 100 to 200 parts by weight based on 100 parts by weight of the synthetic resin (A).
3. 合成樹脂 (A) 1 0 0重量部に対して、 軟磁性フイ ラ— (B) と して、 軟質フ ヱ ラ イ ト粉末 ( B 1 ) を 3 0 0〜 2 0 0 0重量部の 割合で含有する請求項 1記載の樹脂組成物。 3. To 100 parts by weight of synthetic resin (A), 300 to 200 parts by weight of soft filler powder (B1) as soft magnetic filler (B) The resin composition according to claim 1, which is contained at a ratio of:
4. 軟質フ ヱ ライ ト粉末 ( B 1 ) の平均粒子径が 1 0 / m以上 l mm以下である請求項 1記載の樹脂組成物。 4. The resin composition according to claim 1, wherein the soft filler powder (B1) has an average particle size of 10 / m or more and lmm or less.
5. 合成樹脂 ( A ) が、 ポ リ オ レ フ イ ン、 ポ リ ア ミ ド、 ポ リ ア リ 一 レンスルフ ィ ド、 またはエポキシ樹脂である請求項 1記載の樹 脂組成物。 5. The resin composition according to claim 1, wherein the synthetic resin (A) is a polyolefin, a polyamide, a polyolefin sulfide, or an epoxy resin.
6. 耐電圧が 3 0 0 0 V以上である請求項 1記載の樹脂組成物。 6. The resin composition according to claim 1, having a withstand voltage of at least 300 V.
7. 透磁率が 1 0以上である請求項 1記載の樹脂組成物。 7. The resin composition according to claim 1, wherein the magnetic permeability is 10 or more.
8. 軟磁性フ イ ラ一 ( B ) と して、 表面に電気絶縁層を形成し た金属系磁性体粉末 ( B 2 ) を更に含有する請求項 1記載の樹脂組 成物。 8. The resin composition according to claim 1, further comprising, as the soft magnetic filer (B), a metal-based magnetic powder (B2) having an electric insulating layer formed on a surface thereof.
9. 軟磁性フ イ ラ一 ( B ) 力、'、 軟質フ ヱ ライ ト粉末 (B 1 ) 1 0 〜 9 0重量%と金属系磁性体粉末 ( B 2 ) 9 0〜 1 0重量%とを含 有する ものである請求項 8記載の樹脂組成物。 9. Soft magnetic filler (B) force, soft filler powder (B1) 10 to 90% by weight and metallic magnetic powder (B2) 90 to 10% by weight 9. The resin composition according to claim 8, which comprises:
1 0. 合成樹脂 ( A) 1 0 0重量部に対して、 軟磁性フ イ ラ— ( B ) を 1 0 0〜 2 0 0 0重量部の割合で含有する請求項 9記載の 樹脂組成物。 10. The resin composition according to claim 9, wherein the soft magnetic filler (B) is contained in a proportion of 100 to 200 parts by weight based on 100 parts by weight of the synthetic resin (A). .
1 1. 金属系磁性体粉末 ( B 2 ) が、 純鉄系ま たは鉄基合金系 の磁性体粉末の表面に電気絶縁層を形成したものである請求項 8記 載の樹脂組成物。 1 1. The resin composition according to claim 8, wherein the metal-based magnetic powder (B2) is obtained by forming an electric insulating layer on a surface of a pure iron-based or iron-based alloy-based magnetic powder.
1 2. 金属系磁性体粉末 ( B 2 ) が、 その表面に、 電気絶縁層 と して金属酸化物膜及びゲイ素酸化物膜からなる群よ り選ばれる少 な く と も一種の酸化物膜が形成された ものである請求項 8記載の樹 脂組成物。 1 2. A metal-based magnetic powder (B 2) is coated on its surface with at least one oxide selected from the group consisting of a metal oxide film and a gay oxide film as an electrical insulating layer. 9. The resin composition according to claim 8, wherein a film is formed.
1 3. 合成樹脂 (A) と軟磁性フ イ ラ— ( B ) 成分との合計量 1 0 0重量部に対して、 低弾性率化剤 ( C ) を 0. 1 〜 : 1 0重量部 の配合割合で更に含有する請求項 8記載の樹脂組成物。 1 3. Based on 100 parts by weight of the total amount of the synthetic resin (A) and the soft magnetic filler (B), 0.1 to 10 parts by weight of the low elastic modulus agent (C). 9. The resin composition according to claim 8, further comprising a compounding ratio of:
1 4. 軟質フ ェ ラ イ 卜粉末 ( B 1 ) が、 N i — Z n系フ ェ ラ イ ト及び M g — Z n系フ ェ ラ イ トからなる群よ り選ばれる少な く と も 一種の軟質フ ライ ト粉末である請求項 8記載の樹脂組成物。 1 4. The soft ferrite powder (B1) is at least selected from the group consisting of Ni—Zn ferrite and Mg—Zn ferrite. 9. The resin composition according to claim 8, which is a kind of soft fly powder.
1 5. 耐電圧が 3 0 0 0 V以上、 透磁率が 1 0以上、 かつ、 飽 和磁束密度が 3 0 0 0ガウス以上である請求項 8記載の樹脂組成物。 10. The resin composition according to claim 8, having a withstand voltage of at least 300 V, a magnetic permeability of at least 10 and a saturation magnetic flux density of at least 300 Gauss.
PCT/JP1998/002296 1997-05-26 1998-05-26 Resin composition WO1998054734A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/152858 1997-05-26
JP15285897A JPH10326707A (en) 1997-05-26 1997-05-26 Resin composition
JP20219197A JP3838749B2 (en) 1997-07-11 1997-07-11 Soft magnetic resin composition
JP9/202191 1997-07-11

Publications (1)

Publication Number Publication Date
WO1998054734A1 true WO1998054734A1 (en) 1998-12-03

Family

ID=26481649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002296 WO1998054734A1 (en) 1997-05-26 1998-05-26 Resin composition

Country Status (1)

Country Link
WO (1) WO1998054734A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174687A2 (en) * 2000-06-30 2002-01-23 Mitutoyo Corporation Induced current position transducer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421739A (en) * 1989-06-09 1992-01-24 Matsushita Electric Ind Co Ltd Composite and its manufacture
JPH08236329A (en) * 1994-12-16 1996-09-13 General Motors Corp <Gm> Lubricity ferromagnetic particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421739A (en) * 1989-06-09 1992-01-24 Matsushita Electric Ind Co Ltd Composite and its manufacture
JPH08236329A (en) * 1994-12-16 1996-09-13 General Motors Corp <Gm> Lubricity ferromagnetic particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174687A2 (en) * 2000-06-30 2002-01-23 Mitutoyo Corporation Induced current position transducer
EP1174687A3 (en) * 2000-06-30 2006-04-19 Mitutoyo Corporation Induced current position transducer

Similar Documents

Publication Publication Date Title
JP3838730B2 (en) Soft magnetic composite material
US6872325B2 (en) Polymeric resin bonded magnets
KR101935671B1 (en) Metal powder, method of fabricating the same, and method of fabricating molded article using the same
US5225459A (en) Method of making an iron/polymer powder composition
US8070974B2 (en) Soft-magnetic material and process for producing articles composed of this soft-magnetic material
US5767426A (en) Ferromagnetic powder compositions formulated with thermoplastic materials and fluoric resins and compacted articles made from the same
EP0986074B1 (en) Resinous magnetic composition and manufacturing process
KR900001377B1 (en) Plastic magnet composition
JP2003209010A (en) Soft magnetic resin composition, its manufacturing method and molded body
JP3838749B2 (en) Soft magnetic resin composition
TW201943455A (en) Resin powder, sealing material, electronic component, and method for producing resin powder
WO1998054734A1 (en) Resin composition
JPH05315116A (en) Rare earth magnetic material resin composite material
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2005240138A (en) Soft magnetic metal powder, composite insulating magnetic composition and electronic component
JPH10326707A (en) Resin composition
JP3614525B2 (en) Magnetic resin composition
US5529603A (en) Alloy powders for bond magnet and bond magnet
WO2023058565A1 (en) Resin composition for bonded magnets and molded body using same
JP2005104785A (en) Ferrite powder, composite insulating magnetic composition and electronic component
JP2967827B2 (en) Hard ferrite powder for composite magnet, compound using the same, and composite magnet
JPS62234302A (en) Fireretardant resin magnet
Anantharaman et al. Magnetic and processability studies of nitrile rubber vulcanisates containing barium ferrite and carbon black
WO2023120184A1 (en) Resin composition for bonded magnets and bonded magnets using same
KR20210038119A (en) POLYAMIDE RESIN COMPOSITION FOR EMI SHIELDING AT Low FREQUENCY, AND MOLDED ARTICLE MANUFACTURED THEREOF

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase