JP2021034746A - 電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサ - Google Patents

電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサ Download PDF

Info

Publication number
JP2021034746A
JP2021034746A JP2019148578A JP2019148578A JP2021034746A JP 2021034746 A JP2021034746 A JP 2021034746A JP 2019148578 A JP2019148578 A JP 2019148578A JP 2019148578 A JP2019148578 A JP 2019148578A JP 2021034746 A JP2021034746 A JP 2021034746A
Authority
JP
Japan
Prior art keywords
metal layer
support substrate
substrate
hole
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019148578A
Other languages
English (en)
Inventor
晴彦 吉竹
Haruhiko Yoshitake
晴彦 吉竹
友 栗原
Tomo Kurihara
友 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2019148578A priority Critical patent/JP2021034746A/ja
Publication of JP2021034746A publication Critical patent/JP2021034746A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】小型化すること。【解決手段】第1面と前記第1面に向かい合う第2面とを有する単一の支持基板10と、前記支持基板の前記第1面上に設けられた機能素子と、前記機能素子との間が導電可能に接続され、前記支持基板に埋め込まれ前記第1面側に露出し前記第1面から前記第2面に向かうにしたがい幅が狭くなる第1金属層16aと、平面視において前記第1金属層と重なり、前記支持基板内において前記第1金属層と接し、前記支持基板に埋め込まれ前記第2面に露出し、平面視における最小の断面積が前記第1金属層と接する接触面における前記第1金属層の断面積より大きい第2金属層16bと、を備える電子デバイス。【選択図】図1

Description

本発明は、電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサに関し、例えば基板を貫通する配線を有する電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサに関する。
支持基板の上面に圧電基板を接合した複合基板を用いる弾性波デバイスが知られている(例えば特許文献1から3)。複合基板の上面から圧電基板を貫通する第1の貫通孔を形成し、第1の貫通孔内に第1の接続電極を形成し、複合基板の下面から支持基板を貫通する第2の貫通孔を形成し、第2の貫通孔内に第1の接続電極に接続する第2の接続電極を形成することが知られている(例えば特許文献3)。
特開2017−157922号公報 特開2017−169139号公報 特開2011−130385号公報
支持基板に貫通孔を形成すると、貫通孔は先端に向かうにしたがい幅が狭くなる形状となる。このため、支持基板の一面における貫通孔の断面を所望の面積とすると、支持基板の他方の面における貫通孔の断面が大きくなる。このため、弾性波デバイスが大型化してしまう。
本発明は、上記課題に鑑みなされたものであり、小型化することを目的とする。
本発明は、第1面と前記第1面に向かい合う第2面とを有する単一の支持基板と、前記支持基板の前記第1面上に設けられた機能素子と、前記機能素子との間が導電可能に接続され、前記支持基板に埋め込まれ前記第1面側に露出し前記第1面から前記第2面に向かうにしたがい幅が狭くなる第1金属層と、平面視において前記第1金属層と重なり、前記支持基板内において前記第1金属層と接し、前記支持基板に埋め込まれ前記第2面に露出し、平面視における最小の断面積が前記第1金属層と接する接触面における前記第1金属層の断面積より大きい第2金属層と、を備える電子デバイスである。
上記構成において、前記機能素子が設けられた第3面と前記第3面に向かい合う第4面とを有し、前記第4面が前記支持基板の前記第1面に直接または間接的に接合された圧電基板と、平面視において前記第1金属層と重なり前記圧電基板を貫通する孔を介し、前記機能素子と前記第1金属層とを電気的に接続する配線と、を備え、前記機能素子は圧電素子である構成とすることができる。
上記構成において、前記接触面は前記支持基板の厚さ方向の中心より下に位置する構成とすることができる。
上記構成において、前記配線は、前記孔に埋め込まれ表面が前記第3面と略平坦な第3金属層と、前記第1金属層の表面と前記第3面に設けられ前記機能素子と接続する第4金属層と、を備える構成とすることができる。
上記構成において、前記機能素子は前記第1面に設けられた圧電薄膜共振器である構成とすることができる。
上記構成において、平面視において前記第2金属層と重なり前記第2金属層と接し前記第2面に設けられた端子を備える構成とすることができる。
上記構成において、前記第2金属層は前記第2面から前記第1面に向かうにしたがい幅が狭くなる構成とすることができる。
上記構成において、前記支持基板は、サファイア基板、スピネル基板、石英基板または水晶基板である構成とすることができる。
本発明は、上記電子デバイスを含むフィルタである。
本発明は、上記フィルタを含むマルチプレクサである。
本発明は、第1面と前記第1面に向かい合う第2面とを有し前記第1面上に機能素子が設けられた単一の支持基板に、前記第1面から前記支持基板を貫通せず前記第1面から前記第2面に向かうにしたがい幅が狭くなる第1穴を形成する工程と、前記第1穴内に埋め込まれる第1金属層を形成する工程と、前記第2面を前記第1金属層が露出しないように研磨または研削する工程と、前記研磨または研削する工程の後、前記第2面から前記第1金属層に達する第2穴を形成する工程と、前記第2穴に埋め込まれ、平面視における最小の断面積が前記第1金属層と接する接触面における前記第1金属層の断面積より大きい第2金属層を形成する工程と、を含む電子デバイスの製造方法である。
本発明によれば、小型化することができる。
図1(a)および図1(b)は、実施例1に係る弾性波デバイスの断面図および平面図である。 図2(a)は、実施例1における弾性波素子の平面図、図2(b)はビア配線の断面図である。 図3は、実施例1の変形例1に係る弾性波デバイスの断面図である。 図4(a)から図4(d)は、実施例1の変形例1に係る弾性波デバイスの製造方法を示す断面図(その1)である。 図5(a)から図5(d)は、実施例1の変形例1に係る弾性波デバイスの製造方法を示す断面図(その2)である。 図6(a)から図6(d)は、実施例1の変形例1に係る弾性波デバイスの製造方法を示す断面図(その3)である。 図7(a)から図7(c)は、比較例1におけるビア配線付近の製造方法を示す断面図である。 図8(a)から図8(d)は、実施例1におけるビア配線付近の製造方法を示す断面図である。 図9(a)および図9(b)は、実施例1の変形例2および3に係る弾性波デバイスの断面図である。 図10(a)は、実施例1の変形例4に係る弾性波デバイスの断面図、図10(b)は弾性波素子の断面図である。 図11は、実施例1の変形例5に係る弾性波デバイスの断面図である。 図12(a)は、実施例2に係るフィルタの回路図、図12(b)は、実施例2の変形例1に係るデュプレクサの回路図である。
以下、図面を参照し本発明の実施例について電子デバイスとして弾性波デバイスを例に説明する。
図1(a)および図1(b)は、実施例1に係る弾性波デバイスの断面図および平面図である。図1(b)は、支持基板10、圧電基板11および環状金属層30を主に示している。
図1(a)および図1(b)に示すように、支持基板10の上面51上に圧電基板11が接合されている。支持基板10は、例えばサファイア基板、アルミナ基板、スピネル基板、石英基板、水晶基板またはシリコン基板である。圧電基板11は、例えばタンタル酸リチウム基板またはニオブ酸リチウム基板である。支持基板10の線膨張係数は圧電基板11より小さい。
圧電基板11の上面53に弾性波素子12および配線14が設けられている。圧電基板11を貫通する孔15cが設けられている。孔15c内に金属層17が埋め込まれている。金属層17の上面と圧電基板11の上面53とはほぼ平坦である。金属層17の上面に配線14が接触する。支持基板10を貫通する貫通孔15が設けられている。貫通孔15は、穴15aおよび15bを含む。貫通孔15にビア配線16が埋め込まれている。ビア配線16は、穴15a内に埋め込まれた金属層16aと穴15b内に埋め込まれた金属層16bとを含む。
支持基板10の下面52に端子18が設けられている。端子18は、弾性波素子12を外部と接続するためのフットパッドである。ビア配線16および金属層17は端子18と配線14とを電気的に接続する。配線14、ビア配線16、金属層17および端子18は、例えば銅層、アルミニウム層、白金層、ニッケル層または金層等の金属層である。
支持基板10の周縁において圧電基板11が除去されている。圧電基板11を囲むように支持基板10上に環状金属層30が設けられている。環状金属層30上に環状接合層32が設けられている。環状接合層32上にリッド34が設けられている。環状接合層32は、環状金属層30とリッド34とを接合する。環状金属層30は、例えばニッケル層または銅層である。環状接合層32は、例えば錫銀または錫銀銅等の半田である。リッド34は例えばコバール等の金属板またはサファイア基板等の絶縁板である。環状金属層30、環状接合層32およびリッド34により、弾性波素子12が空隙26に封止される。
図2(a)は、実施例1における弾性波素子の平面図、図2(b)はビア配線の断面図である。図2(a)に示すように、弾性波素子12は弾性表面波共振器である。圧電基板11上にIDT(Interdigital Transducer)40と反射器42が形成されている。IDT40は、互いに対向する1対の櫛型電極40aを有する。櫛型電極40aは、複数の電極指40bと複数の電極指40bを接続するバスバー40cとを有する。反射器42は、IDT40の両側に設けられている。IDT40が圧電基板11に弾性表面波を励振する。弾性波の波長は一対の櫛型電極40aの一方の櫛型電極40aの電極指40bのピッチにほぼ等しい。すなわち、弾性波の波長は一対の櫛型電極40aの電極指40bのピッチの2倍にほぼ等しい。IDT40および反射器42は例えばアルミニウム膜、銅膜またはモリブデン膜により形成される。圧電基板11上にIDT40および反射器42を覆うように保護膜または温度補償膜が設けられていてもよい。
図2(b)に示すように、金属層17の側面はテーパ状であり、金属層17の断面は圧電基板11の上面53から支持基板10の上面51に向かうにしたがい小さくなる。金属層17の上面と側面とのなす内角の角度θ3は鋭角である。これにより、金属層17の下面における幅D6は金属層17の上面における幅D5より小さい。
金属層16aは、テーパであり、支持基板10の上面51から下面52に向かうにしたがい断面が小さくなる。金属層16aの上面と側面とのなす内角の角度θ1は鋭角である。金属層16aの下面における幅D2は金属層16aの上面における幅D1より小さい。金属層16bの側面はテーパ状であり、金属層16bは、支持基板10の下面52から上面51に向かうにしたがい断面が小さくなる。金属層16bの下面と側面とのなす内角の角度θ2は鋭角である。金属層16bの上面における幅D4は金属層16bの下面における幅D3より小さい。幅D6はD1より大きく、幅D4はD2より大きい。
支持基板10および圧電基板11は例えばそれぞれサファイア基板および42°回転YカットX伝搬タンタル酸リチウム基板である。支持基板10の厚さT0は圧電基板11の厚さT1より大きい。支持基板10および圧電基板11の厚さT0およびT1は例えばそれぞれ50μmから120μmおよび0.1μmから20μmである。
金属層16a、16bおよび17は例えば銅層である。金属層16bの高さH2は例えば金属層16aの高さH1より小さく、例えば5μmから20μmである。金属層17の上面の幅D5は例えば金属層16aの上面の幅D1より大きい。金属層16bの下面の幅D3は例えば金属層16aの下面の幅D2より大きい。金属層16aと16bとの接合性および接触性のため幅D2は10μm以上が好ましい。幅D1、D2およびD5は、例えばそれぞれ30μm、15μmおよび74μmである。角度θ1は、例えば88°から80°である。角度θ2およびθ3は例えば各々45°から80°である。
[実施例1の変形例1]
図3は、実施例1の変形例1に係る弾性波デバイスの断面図である。図3に示すように、実施例1の変形例1では、孔15cに金属層17が埋め込まれていない。配線14は孔15cの側面および底面に設けられ、底面において金属層16aと接触する。その他の構成は実施例1と同じであり説明を省略する。
[実施例1の変形例1の製造方法]
図4(a)から図6(d)は、実施例1の変形例1に係る弾性波デバイスの製造方法を示す断面図である。図4(a)に示すように、支持基板10の上面51にレーザ光を照射し穴15aを形成する。レーザ光を照射し穴15aを形成すると、穴15aの側面はテーパ状となる。
図4(b)に示すように、穴15aの内面および支持基板10の上面に例えばスパッタリング法を用いシード層16cを形成する。シード層16c上に例えばめっき法を用いめっき層16dを形成する。シード層16cおよびめっき層16dは同じ金属材料からなり例えば銅層である。シード層16cと支持基板10との間にチタン層等の密着層を設けてもよい。支持基板10の上面51が露出するように上面51上のめっき層16dおよびシード層16cを例えばCMP(Chemical Mechanical Polishing)法を用い平坦化する。これにより、シード層16cおよびめっき層16dから穴15aに埋め込まれた金属層16aが形成される。以下の図面ではシード層16cおよびめっき層16dの図示を省略し金属層16aとして図示する。
図4(c)に示すように、支持基板10の上面51と圧電基板11の下面を例えば表面活性化法を用い常温接合する。支持基板10と圧電基板11とは数nmのアモルファス層等を介し直接接合されていてもよい。また、例えば、酸化アルミニウム、酸化シリコン、フッ素を添加した酸化シリコンなどの絶縁層を介し間接的に接合されていてもよい。圧電基板11の上面53を例えばCMP法により平坦化する。これにより、圧電基板11を所望の厚さとする。図4(d)に示すように、圧電基板11の上面53に弾性波素子12を例えばスパッタリング法または真空蒸着法を用い形成する。
図5(a)に示すように、圧電基板11を貫通する孔15cおよび開口15dを例えばウエットまたはドライエッチング法を用い形成する。このとき、支持基板10はほとんどエッチングされない。孔15cは金属層16aと重なるように形成され、孔15cから金属層16aが露出する。開口15dは支持基板10の周縁に弾性波素子12を囲むように形成される。孔15cおよび開口15dの側面はテーパ状となる。
図5(b)に示すように、孔15cの内面および圧電基板11の上面53に配線14を例えばスパッタリング法または真空蒸着法を用い形成する。配線14は弾性波素子12と金属層16aとを電気的に接続する。孔15cの側面がテーパ状のため、配線14は孔15cにおいて断線しない。
図5(c)に示すように、開口15d内の支持基板10の上面51に環状金属層30および環状接合層32を例えばめっき法を用い形成する。図5(d)に示すように、環状接合層32上にリッド34を搭載し、加熱することで、環状接合層32とリッド34とが接合する。これにより、弾性波素子12が空隙26に封止される。
図6(a)に示すように、支持基板10の下面52を例えば研磨または研削する。これにより、支持基板10を薄膜化する。金属層16aは下面52から露出しない。
図6(b)に示すように、支持基板10の下面52に穴15bを例えばウエットもしくはドライエッチング法、またはレーザ光を用い形成する。穴15bは金属層16aと重なるように形成され、穴15bから金属層16aが露出する。穴15bの側面はテーパ状となる。
図6(c)に示すように、穴15bの内面および支持基板10の下面に例えばスパッタリング法を用いシード層16cを形成する。シード層16c下に例えばめっき法を用いめっき層16dを形成する。シード層16cおよびめっき層16dは同じ金属材料からなり例えば銅層である。シード層16cと支持基板10との間にチタン層等の密着層を設けてもよい。支持基板10の下面52が露出するように下面52下のめっき層16dおよびシード層16cを例えばCMP法を用い平坦化する。これにより、シード層16cおよびめっき層16dから穴15bに埋め込まれた金属層16bが形成される。以下の図面ではシード層16cおよびめっき層16dの図示を省略し金属層16bとして図示する。
図6(d)に示すように、支持基板10の下面52に端子18を例えばスパッタリング法または真空蒸着法を用い形成する。端子18は、例えば支持基板10側からチタン層、銅層、ニッケル層および金層である。支持基板10およびリッド34を例えばダイシング法を用い切断する。以上により実施例1の変形例1に係る弾性波デバイスが製造される。
図7(a)から図7(c)は、比較例1におけるビア配線付近の製造方法を示す断面図である。図7(a)に示すように、支持基板10の厚さT0´は例えば400μmから500μmである。圧電基板11の孔15c内に金属層17を形成し、支持基板10の穴15a内に金属層16aを形成する。金属層16aは支持基板10を貫通していない。金属層16aの高さH1´は例えば125μmである。金属層16aの上面の幅はD1である。
図7(b)に示すように、支持基板10の下面52を研磨または研削する。これにより、支持基板10の厚さT0は約75μmとなる。支持基板10の下面52に金属層16aが露出する。金属層16aの下面の幅はD2である。図7(c)に示すように、支持基板10の下面52に金属層16aに接触する端子18を形成する。
穴15aは上面51から下面52に向かうにしたがい断面が小さくなる。これは、穴15aを上面51から形成するためである。例えば穴15aをレーザ光を用い形成すると、金属層16aの上面と側面とのなす角度θ1は80°から85°となる。穴15aをエッチング法を用い形成すると、角度θ1はより小さくなる。金属層16aの下面の幅D2が小さくなると金属層16aと端子18との接合性が低下する。また金属層16aと端子18との接触抵抗が小さくなる。そこで、幅D2は例えば10μm以上が好ましい。
支持基板10の厚さT0は支持基板10の反りの抑制および/または強度の確保のため、所望の厚さ以上とすることが求められる。例えば厚さT0を75μm、幅D2を15μm、角度θ1を84°とすると、幅D1は40μmとなる。幅D5は幅D2より大きく例えば84μmとなる。このように、弾性波デバイスが大型化してしまう。
また、図7(b)において、金属層16a近傍の支持基板10にクラック64が形成されることがある。これは、支持基板10が硬く金属層16aが柔らかいためである。
図8(a)から図8(d)は、実施例1におけるビア配線付近の製造方法を示す断面図である。図8(a)に示すように、支持基板10の厚さT0´は例えば400μmから500μmである。圧電基板11の孔15c内に金属層17を形成し、支持基板10の穴15a内に金属層16aを形成する。金属層16aの高さH1は例えば65μmである。金属層16aの下面の幅はD2である。
図8(b)に示すように、支持基板10の下面52を研磨または研削する。これにより、支持基板10の厚さT0´´は例えば76μmとなる。支持基板10の下面52に金属層16aは露出しない。図8(c)に示すように、支持基板10の下面52から穴15bを形成する。穴15bの高さH2´は例えば11μmである。穴15bの内面および支持基板10の下面52下に金属層16b´を例えばめっき法を用い形成する。
図8(d)に示すように、支持基板10の下面52の金属層16b´を研磨または研削する。これにより、支持基板10の下面52が露出し、穴15b内に金属層16bが埋め込まれる。このとき、支持基板10の下面52が研磨または研削され、支持基板10の厚さT0は例えば75μmとなり、金属層16bの高さH2は10μmとなる。このとき、支持基板10の下面52はほとんど研磨または研削されなくてもよい。金属層16aと16bからビア配線16が形成される。支持基板10の下面52に金属層16bに接触する端子18を形成する。
実施例1では、金属層16aと16bとの接触する接触面における幅D2を15μm、高さH1を65μm、角度θ1を84°とすると、幅D1は30μmとなる。幅D1とD5との差を比較例1と同程度とすると幅D5は74μmとなる。このように、比較例1に比べ幅D5を小さくでき、弾性波デバイスの小型化が可能となる。端子18に接触する金属層16bの幅D3を比較例1より大きくできるため、金属層16bと端子18との接合強度を高くし、金属層16bと端子18との接触抵抗を低くできる。
図8(b)において、金属層16a近傍の支持基板10にクラック64が形成される可能性がある。図8(c)のように、穴15bを金属層16aの幅D2より大きく形成することで、支持基板10のクラック64を除去できる。
支持基板10と圧電基板11との界面は熱応力に起因するせん断応力が最も大きくなる。このため、特許文献3のように、ビア配線の最も細くかつ金属層が接合する界面が支持基板10と圧電基板11との界面と近傍に位置すると、せん断応力により金属層が剥がれる可能性がある。
実施例1では、ビア配線16の最も細くかつ金属層16aと16bとが接合する接触面が支持基板10と圧電基板11との界面から十分離れている。よって、せん断応力に起因する剥がれを抑制できる。金属層16aの高さH1は金属層16bの高さH2以上であることが好ましい。これにより、せん断応力に起因する金属層16aと16bの剥がれを抑制できる。高さH1は高さH2の2倍以上が好ましく、3倍以上がより好ましい。
[実施例1の変形例2]
図9(a)は、実施例1の変形例2に係る弾性波デバイスの断面図である。図9(a)に示すように、実施例1の変形例2では、圧電基板11は支持基板10の上面に接合層13を介し間接的に接合されている。接合層13は例えば酸化シリコン膜等の絶縁膜である。接合層13の厚さは例えば1μmである。圧電基板11は接合層13上に常温接合されている。接合層13と圧電基板11との間に厚さが数10nmの酸化アルミニウム膜が設けられていてもよい。接合層13と支持基板10との間に窒化シリコン膜が設けられていてもよい。接合層13が酸化シリコン膜等の絶縁膜のとき、酸化シリコン膜内にチタン膜等の金属膜が設けられていてもよい。チタン膜は酸化シリコン膜同士を接合する。チタン膜等の金属膜が設けられているとき、孔15cの側面と配線14との間に酸化シリコン膜等の絶縁膜が設けられていることが好ましい。これにより、金属膜と配線14との電気的短絡を抑制できる。その他の構成は実施例1の変形例1と同じであり説明を省略する。
[実施例1の変形例3]
図9(b)は、実施例1の変形例3に係る弾性波デバイスの断面図である。図9(b)に示すように、実施例1の変形例3では、金属層16bが設けられておらず、端子18が穴15bに埋め込まれている。その他の構成は実施例1と同じであり説明を省略する。実施例1の変形例1および2において端子18が穴15bに埋め込まれていてもよい。
[実施例1の変形例4]
図10(a)は、実施例1の変形例4に係る弾性波デバイスの断面図、図10(b)は弾性波素子の断面図である。図10(a)に示すように、実施例1の変形例4では、支持基板10の上面51に圧電基板11が接合されていない。支持基板10の上面51に弾性波素子12および配線14が設けられている。その他の構成は実施例1およびその変形例1および2と同じであり説明を省略する。
図10(b)に示すように、弾性波素子12は圧電薄膜共振器である。支持基板10上に圧電膜46が設けられている。圧電膜46を挟むように下部電極44および上部電極48が設けられている。下部電極44と支持基板10との間に空隙45が形成されている。圧電膜46の少なくとも一部を挟み下部電極44と上部電極48とが対向する領域が共振領域47である。共振領域47において、下部電極44および上部電極48は圧電膜46内に、厚み縦振動モードの弾性波を励振する。支持基板10は、例えばサファイア基板、スピネル基板、アルミナ基板、ガラス基板、水晶基板またはシリコン基板である。下部電極44および上部電極48は例えばルテニウム膜等の金属膜である。圧電膜46は例えば窒化アルミニウム膜である。空隙45の代わりに弾性波を反射する音響反射膜が設けられていてもよい。
実施例1の変形例4では、実施例1において説明した圧電基板11と支持基板10との線膨張係数の差に起因したせん断応力が小さい。よって、金属層16aの高さは金属層16bの高さより小さくてもよい。
[実施例1の変形例5]
図11は、実施例1の変形例5に係る弾性波デバイスの断面図である。図11に示すように、実施例1の変形例5では、支持基板10上に基板20が搭載されている。基板20は、例えばサファイア基板、アルミナ基板、スピネル基板、石英基板、水晶基板またはシリコン基板である。基板20の下面に弾性波素子22および配線24が設けられている。配線24は例えば銅層、アルミニウム層、白金層または金層等の金属層である。基板20はバンプ28を介し圧電基板11にフリップチップ実装(フェースダウン実装)されている。バンプ28は、例えば金バンプ、半田バンプまたは銅バンプである。バンプ28は、配線14および24と接合する。
支持基板10の周縁の開口15dに環状金属層35が埋め込まれている。環状金属層35上に環状金属層36が設けられている。環状金属層35および36は例えばそれぞれ銅層およびニッケル層である。環状金属層36上に基板20を囲むように封止部37が設けられている。封止部37は、例えば半田(錫銀、錫または錫銀銅)等の金属層または樹脂等の絶縁層である。封止部37は、環状金属層36に接合されている。基板20の上面および封止部37の上面に平板状のリッド38が設けられている。リッド38は例えばコバール板等の金属板または絶縁板である。リッド38および封止部37を覆うように保護膜39が設けられている。保護膜39はニッケル膜等の金属膜または絶縁膜である。
弾性波素子12は空隙26を介し基板20に対向している。弾性波素子22は空隙26を介し圧電基板11に対向している。弾性波素子12および22は、封止部37、支持基板10、基板20およびリッド38により封止される。バンプ28は空隙26に囲まれている。端子18はビア配線16および配線14を介し弾性波素子12と電気的に接続され、さらに、バンプ28および配線24を介し弾性波素子22に電気的に接続されている。その他の構成は実施例1と同じであり説明を省略する。
実施例1の変形例5のように、実施例1およびその変形例1から4の支持基板10上に基板20を搭載してもよい。弾性波素子22として圧電薄膜共振器の例を説明したが、弾性波素子22は弾性表面波共振器でもよい。基板20の下面に設けられる機能素子として弾性波素子22の例を説明したが、機能素子は、インダクタまたはキャパシタ等の受動素子、トランジスタを含む能動素子、またはMEMS(Micro Electro Mechanical Systems)素子でもよい。
実施例1およびその変形例によれば、単一の支持基板10の上面51(第1面)上に弾性波素子12(機能素子)が設けられている。金属層16aまたは端子18(第1金属層)は、弾性波素子12との間が導電可能に接続され、支持基板10に埋め込まれ上面51側に露出し上面51から下面52(第1面に向かい合う第2面)に向かうにしたがい幅が狭くなる(例えば断面が徐々に小さくなる)。金属層16b(第2金属層)は、平面視において金属層16aと重なり,支持基板10内において金属層16aと接し、支持基板10に埋め込まれ下面52から露出する。平面視における金属層16bの最小の断面積は金属層16a(または端子18)と16bと接する接触面における金属層16aの断面積より大きい。
製造方法として、図4(a)のように、上面51(第1面)から支持基板10を貫通せず上面51から下面52(第2面)に向かうにしたがい幅が狭くなる(例えば断面が徐々に小さくなる)穴15a(第1穴)を形成する。図4(b)のように、穴15a内に埋め込まれる金属層16a(第1金属層)を形成する。図6(a)のように、下面52を金属層16aが露出しないように研磨または研削する。図6(b)のように、その後下面52から金属層16aに達する穴15b(第2穴)を形成する。図6(c)のように、穴15bに埋め込まれ、平面視における最小の断面積が金属層16aと接する接触面における金属層16aの断面積より大きい金属層16b(第2金属層)を形成する。
図7(c)の比較例1では、金属層16aの断面は下面52において最も小さい。支持基板10の厚さT0を所望の厚さとすると、弾性波デバイスが大型化する。実施例1およびその変形例では、図8(d)のように、ビア配線16の最小の断面は、金属層16aと16bが接触する面における金属層16aの断面である。これにより、支持基板10の厚さT0を比較例1と同じとしても弾性波デバイスを小型化できる。また、比較例1の図7(b)の金属層16aの近傍に形成される支持基板10のクラック64等を穴15bにより除去できる。
実施例1およびその変形例1から3および5のように、圧電基板11の上面53(第3面)に弾性波素子12が設けられ、圧電基板11の下面(第3面に向かい合う第4面)が支持基板10の上面51に直接または間接的に接合されている。配線14および金属層17(または配線14)は、平面視において金属層16aと重なり圧電基板11を貫通する孔15cを介し、弾性波素子12と金属層16a接続する。支持基板10上に圧電基板11が接合されている場合、特許文献3のように、支持基板10と圧電基板11との界面において金属層が接合すると、熱応力に起因するせん断応力により金属層が剥がれる可能性がある。実施例1およびその変形例1から3および5では、単一の支持基板10内で金属層16aと16bが接合する。これにより、金属層16aと16bとの接触面における支持基板10と圧電基板11の熱応力に起因するせん断応力が小さい。よって、金属層16aと16bの剥がれを抑制できる。
金属層16aと16bの接触面は支持基板10の厚さ方向の中心より下に位置する。これにより、接触面を支持基板10と圧電基板11との界面から遠ざけることができる。よって、接触面におけるせん断応力をより小さくできる。
金属層17(第3金属層)は、孔15cに埋め込まれ表面が上面53と略平坦である。配線14(第4金属層)は、金属層17の表面と上面53に設けられ弾性波素子12(圧電素子)と接続する。このような構造では、金属層17が孔15cに埋め込まれているため、金属層17と16aとの界面のせん断応力が大きくなる。最も小さい断面は支持基板10内に位置しているため、断面の小さい金属層16aと16bとの接触面におけるせん断応力が小さくなる。
実施例1の変形例4のように、圧電基板11が設けられておらず、弾性波素子12は支持基板10の上面51に設けられた圧電薄膜共振器でもよい。
実施例1の変形例1、2、4および5のように、端子18は、平面視において金属層16bと重なり金属層16bと接し下面52に設けられている。これにより、ビア配線16と端子18との界面におけるビア配線16の断面を比較例1より大きくできる。よって、ビア配線16と端子18との接合強度を高くし、接触抵抗を低くできる。
金属層16bは下面52から上面51に向かうにしたがい幅が狭くなる。これにより、金属層16bと端子18との接触面積を大きくできる。また、クラック64等をより除去できる。
支持基板は、サファイア基板、スピネル基板、石英基板または水晶基板である。サファイア基板は単結晶のAlを主成分とする基板である。スピネル基板は、単結晶または多結晶のMgAlを主成分とする基板である。石英基板は、アモルファスのSiOを主成分とする基板である。水晶基板は単結晶のSiOを主成分とする基板である。この場合、支持基板10が硬いため、図8(b)において、支持基板10の下面52にクラック64が形成される可能性が高くなる。よって、金属層16bを設けることでクラック64を除去できる。
実施例1およびその変形例では、機能素子として、弾性波素子12を例に説明したが、機能素子は、インダクタまたはキャパシタ等の受動素子、トランジスタを含む能動素子、またはMEMS素子等でもよい。
実施例2は、フィルタおよびデュプレクサの例である。図12(a)は、実施例2に係るフィルタの回路図である。図12(a)に示すように、入力端子Tinと出力端子Toutとの間に、1または複数の直列共振器S1からS4が直列に接続されている。入力端子Tinと出力端子Toutとの間に、1または複数の並列共振器P1からP4が並列に接続されている。実施例2のフィルタを弾性波素子12で形成してもよい。直列共振器および並列共振器の個数等は適宜設定できる。フィルタとしてラダー型フィルタを例に説明したが、フィルタは多重モード型フィルタでもよい。
図12(b)は、実施例2の変形例1に係るデュプレクサの回路図である。図12(b)に示すように、共通端子Antと送信端子Txとの間に送信フィルタ60が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ62が接続されている。送信フィルタ60は、送信端子Txから入力された高周波信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ62は、共通端子Antから入力された高周波信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ60および受信フィルタ62の少なくとも一方を実施例2のフィルタとすることができる。また、送信フィルタ60を弾性波素子12で形成し、受信フィルタ62を弾性波素子22で形成してもよい。
マルチプレクサとしてデュプレクサを例に説明したがトリプレクサまたはクワッドプレクサでもよい。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 支持基板
11 圧電基板
12、22 弾性波素子
14、24 配線
15a、15b 穴
15c 孔
16 ビア配線
16a、16b、17 金属層
18 端子
20 基板
26 空隙
30 環状金属層
32 環状接合層
34 リッド
60 送信フィルタ
62 受信フィルタ
51、53 上面
52 下面

Claims (11)

  1. 第1面と前記第1面に向かい合う第2面とを有する単一の支持基板と、
    前記支持基板の前記第1面上に設けられた機能素子と、
    前記機能素子との間が導電可能に接続され、前記支持基板に埋め込まれ前記第1面側に露出し前記第1面から前記第2面に向かうにしたがい幅が狭くなる第1金属層と、
    平面視において前記第1金属層と重なり、前記支持基板内において前記第1金属層と接し、前記支持基板に埋め込まれ前記第2面に露出し、平面視における最小の断面積が前記第1金属層と接する接触面における前記第1金属層の断面積より大きい第2金属層と、
    を備える電子デバイス。
  2. 前記機能素子が設けられた第3面と前記第3面に向かい合う第4面とを有し、前記第4面が前記支持基板の前記第1面に直接または間接的に接合された圧電基板と、
    平面視において前記第1金属層と重なり前記圧電基板を貫通する孔を介し、前記機能素子と前記第1金属層とを電気的に接続する配線と、を備え、
    前記機能素子は圧電素子である請求項1に記載の電子デバイス。
  3. 前記接触面は前記支持基板の厚さ方向の中心より下に位置する請求項2に記載の電子デバイス。
  4. 前記配線は、前記孔に埋め込まれ表面が前記第3面と略平坦な第3金属層と、前記第1金属層の表面と前記第3面に設けられ前記機能素子と接続する第4金属層と、を備える請求項2または3に記載の電子デバイス。
  5. 前記機能素子は前記第1面に設けられた圧電薄膜共振器である請求項1に記載の電子デバイス。
  6. 平面視において前記第2金属層と重なり前記第2金属層と接し前記第2面に設けられた端子を備える請求項1から5のいずれか一項に記載の電子デバイス。
  7. 前記第2金属層は前記第2面から前記第1面に向かうにしたがい幅が狭くなる請求項1から6のいずれか一項に記載の電子デバイス。
  8. 前記支持基板は、サファイア基板、スピネル基板、石英基板または水晶基板である請求項1から7のいずれか一項に記載の電子デバイス。
  9. 請求項1から8のいずれか一項に記載の電子デバイスを含むフィルタ。
  10. 請求項9に記載のフィルタを含むマルチプレクサ。
  11. 第1面と前記第1面に向かい合う第2面とを有し前記第1面上に機能素子が設けられた単一の支持基板に、前記第1面から前記支持基板を貫通せず前記第1面から前記第2面に向かうにしたがい幅が狭くなる第1穴を形成する工程と、
    前記第1穴内に埋め込まれる第1金属層を形成する工程と、
    前記第2面を前記第1金属層が露出しないように研磨または研削する工程と、
    前記研磨または研削する工程の後、前記第2面から前記第1金属層に達する第2穴を形成する工程と、
    前記第2穴に埋め込まれ、平面視における最小の断面積が前記第1金属層と接する接触面における前記第1金属層の断面積より大きい第2金属層を形成する工程と、
    を含む電子デバイスの製造方法。
JP2019148578A 2019-08-13 2019-08-13 電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサ Pending JP2021034746A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019148578A JP2021034746A (ja) 2019-08-13 2019-08-13 電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019148578A JP2021034746A (ja) 2019-08-13 2019-08-13 電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサ

Publications (1)

Publication Number Publication Date
JP2021034746A true JP2021034746A (ja) 2021-03-01

Family

ID=74677734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019148578A Pending JP2021034746A (ja) 2019-08-13 2019-08-13 電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサ

Country Status (1)

Country Link
JP (1) JP2021034746A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216547A (ja) * 2012-04-11 2013-10-24 Seiko Epson Corp セラミックス加工方法、電子デバイスおよび電子機器
JP2019021998A (ja) * 2017-07-12 2019-02-07 太陽誘電株式会社 電子部品
WO2019167918A1 (ja) * 2018-03-02 2019-09-06 京セラ株式会社 複合基板、および圧電素子
JP2019153902A (ja) * 2018-03-02 2019-09-12 京セラ株式会社 複合基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216547A (ja) * 2012-04-11 2013-10-24 Seiko Epson Corp セラミックス加工方法、電子デバイスおよび電子機器
JP2019021998A (ja) * 2017-07-12 2019-02-07 太陽誘電株式会社 電子部品
WO2019167918A1 (ja) * 2018-03-02 2019-09-06 京セラ株式会社 複合基板、および圧電素子
JP2019153902A (ja) * 2018-03-02 2019-09-12 京セラ株式会社 複合基板の製造方法

Similar Documents

Publication Publication Date Title
JP6934324B2 (ja) 弾性波デバイス
US10250219B2 (en) Acoustic wave device
JP7037336B2 (ja) 弾性波デバイスおよびその製造方法、フィルタ並びにマルチプレクサ
US9831850B2 (en) Acoustic wave device with a piezoelectric substrate that is not located in some regions
KR102062185B1 (ko) 전자 부품 및 그 제조 방법
JP2019021998A (ja) 電子部品
JP6653646B2 (ja) 電子部品およびその製造方法
JP2020145596A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7340344B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7426196B2 (ja) 弾性波デバイスおよびその製造方法、フィルタ及びマルチプレクサ
JP7347955B2 (ja) 弾性波デバイスおよびその製造方法、フィルタおよびマルチプレクサ
JP7231360B2 (ja) 弾性波デバイス
JP2020191597A (ja) 弾性波デバイスおよびその製造方法
US20220416757A1 (en) Acoustic wave device, filter and multiplexer
JP7340348B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7373301B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
CN110957988B (zh) 声波装置
JP2021034746A (ja) 電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサ
JP7406341B2 (ja) 電子部品、フィルタおよびマルチプレクサ
JP7480462B2 (ja) 圧電デバイスおよびその製造方法
JP7406331B2 (ja) 電子デバイス、モジュールおよびウエハ
JP2020184652A (ja) 電子デバイス、フィルタおよびマルチプレクサ
JP2022137818A (ja) 弾性波デバイスおよびその製造方法、フィルタおよびマルチプレクサ
JP2022102099A (ja) 電子部品
JP2022167077A (ja) 電子部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240315

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240621