JP2020513486A - Carbon fiber manufacturing equipment using microwave - Google Patents

Carbon fiber manufacturing equipment using microwave Download PDF

Info

Publication number
JP2020513486A
JP2020513486A JP2019530093A JP2019530093A JP2020513486A JP 2020513486 A JP2020513486 A JP 2020513486A JP 2019530093 A JP2019530093 A JP 2019530093A JP 2019530093 A JP2019530093 A JP 2019530093A JP 2020513486 A JP2020513486 A JP 2020513486A
Authority
JP
Japan
Prior art keywords
microwave
carbon fiber
precursor
carbonization
carbonization furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019530093A
Other languages
Japanese (ja)
Inventor
キム、スチン
イ、イルハ
チョ、チュン−ヒ
キム、キ−ファン
チャン、ミョンス
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Publication of JP2020513486A publication Critical patent/JP2020513486A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/322Apparatus therefor for manufacturing filaments from pitch
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/003Treatment with radio-waves or microwaves
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch

Abstract

本発明は、マイクロウェーブを用いた炭素繊維製造装置に関し、より詳細には、マイクロウェーブを用いて炭素繊維前駆体を直接又は間接加熱させ炭化させることで、炭化炉の全体を加熱しないためエネルギー効率が向上し、マイクロウェーブによってより単純化された方法で前駆体の物性を調節できるマイクロウェーブを用いた炭素繊維製造装置に関する。【選択図】図1TECHNICAL FIELD The present invention relates to a carbon fiber manufacturing apparatus using microwaves, and more specifically, by directly or indirectly heating and carbonizing a carbon fiber precursor using microwaves, the entire carbonization furnace is not heated, and therefore energy efficiency is improved. The present invention relates to an apparatus for producing a carbon fiber using a microwave, in which the physical properties of the precursor can be adjusted by a method that is improved by using a microwave and is simplified. [Selection diagram] Figure 1

Description

本明細書は、2016年12月19日付韓国特許庁に提出された韓国特許出願第10−2016−0173883号に基づいた優先権の利益を主張し、当該韓国特許出願の文献に開示された全ての内容は本明細書の一部として含まれる。   This specification claims the benefit of priority based on Korean Patent Application No. 10-2016-0173883 filed with the Korean Patent Office on December 19, 2016, and discloses all the documents disclosed in the Korean patent application. Are included as part of this specification.

本発明は、マイクロウェーブを用いた炭素繊維製造装置に関し、より詳細には、マイクロウェーブを用いて炭素繊維前駆体を直接又は間接加熱させ炭化させることで、炭化炉の全体を加熱しないためエネルギー効率が向上し、マイクロウェーブによってより単純化された方法で前駆体の物性を調節できるマイクロウェーブを用いた炭素繊維製造装置に関する。   TECHNICAL FIELD The present invention relates to a carbon fiber production apparatus using microwaves, and more specifically, by directly or indirectly heating and carbonizing a carbon fiber precursor by using microwaves, the entire carbonization furnace is not heated, resulting in energy efficiency. The present invention relates to a carbon fiber manufacturing apparatus using a microwave capable of adjusting the physical properties of the precursor by a microwave-simplified method.

炭素繊維とは、炭素元素の質量含有率が90%以上でなる繊維長の炭素材料であって、ポリアクリロニトリル(polyacrylonitrile、PAN)、石油系/石炭系の炭化水素残留物であるピッチ(Pitch)又はレーヨンから製造された繊維形態の有機前駆体物質を不活性雰囲気で熱分解し得られる繊維を意味する。   Carbon fiber is a carbon material having a fiber length of 90% or more by mass content of carbon element, and is a polyacrylonitrile (PAN), a petroleum-based / coal-based hydrocarbon residue, Pitch. Alternatively, it means a fiber obtained by pyrolyzing an organic precursor substance in the form of a fiber produced from rayon in an inert atmosphere.

炭素繊維は、鋼鉄より軽いながらも強度に優れているため、自動車分野、宇宙航空分野、風力発電分野、スポーツ分野等の多様な分野に広く適用されている。例えば、最近、環境問題によって自動車排気ガスと係わる環境規制が強化されており、高燃費の軽量化自動車に対する要求が増大されているが、構造的及び機械的強度を犠牲せずに自動車の重量を減少させることができる方法として、炭素繊維強化複合体を利用する技術が注目を浴びている。   Since carbon fiber is lighter than steel but has excellent strength, it is widely applied to various fields such as the automobile field, aerospace field, wind power generation field, and sports field. For example, recently, due to environmental problems, environmental regulations relating to automobile exhaust gas have been strengthened, and the demand for highly fuel-efficient and lightweight automobiles has increased, but the weight of automobiles has been reduced without sacrificing structural and mechanical strength. As a method that can reduce the amount of carbon fiber, a technique utilizing a carbon fiber reinforced composite has attracted attention.

しかし、炭素繊維は高価であるため、その応用及び商用化に限界があり、それによって高性能の炭素繊維を低い費用で大量生産できる技術の開発が切実に要求されている実情である。   However, since carbon fiber is expensive, its application and commercialization are limited, and the development of a technology capable of mass-producing high-performance carbon fiber at low cost is urgently required.

従来、炭素繊維の炭化工程は、電気方式の炭化炉を用いて1000℃から1500℃の高温で熱処理を介して進行される。電気方式の炭化炉は、一般的に低温用と高温用に最小2個以上のヒットゾーン(heat zone)に分かれて構成される。電気方式の炭化炉を用いた炭化工程の場合、炭化炉の内部温度によって炭素繊維に熱が伝達されるか、熱の移動方向が繊維の外側から内側へ伝達される方式であるため、エネルギー効率が高くない問題点があった。   Conventionally, the carbonization process of carbon fibers is performed through heat treatment at a high temperature of 1000 ° C to 1500 ° C using an electric carbonization furnace. An electric carbonization furnace is generally divided into two or more hit zones for low temperature and high temperature. In the case of the carbonization process using an electric carbonization furnace, heat is transferred to the carbon fiber depending on the internal temperature of the carbonization furnace, or the direction of heat transfer is transferred from the outside to the inside of the fiber, resulting in energy efficiency. There was a problem that is not high.

また、従来は、炭化炉の内部温度を増加させるために炭化炉の全体を加熱させる方式で、加熱炉の温度は前駆体の炭化温度より高温に維持されなければならないため、耐熱性が要求される問題点があった。   Further, conventionally, a method of heating the entire carbonization furnace in order to increase the internal temperature of the carbonization furnace, and since the temperature of the heating furnace must be maintained higher than the carbonization temperature of the precursor, heat resistance is required. There was a problem.

これと係わって、エネルギー効率が高い炭素繊維の炭化工程が必要な実情である。   In connection with this, the fact is that a carbon fiber carbonization process with high energy efficiency is required.

本発明は、上述の問題点を解決するために案出されたものであり、本発明の目的は、エネルギー効率を増加させるために、マイクロウェーブを用いて前駆体を直接加熱する炭化炉を含むマイクロウェーブを用いた炭化繊維製造装置を提供することにある。   The present invention has been devised to solve the above-mentioned problems, and an object of the present invention includes a carbonization furnace in which a precursor is directly heated by using a microwave in order to increase energy efficiency. It is to provide a carbonized fiber manufacturing apparatus using microwaves.

また、本発明の目的は、マイクロウェーブに反応度の低い安定化された繊維を炭化させ、炭化炉の全体を加熱する従来の炭化工程に比べ加熱のためのエネルギー効率を増加させるために、炭化炉の本体の内部にマイクロウェーブによって加熱される加熱体を含むマイクロウェーブを用いた炭化繊維製造装置を提供することにある。   Further, an object of the present invention is to carbonize the stabilized fiber having a low reactivity to microwaves and increase the energy efficiency for heating as compared with the conventional carbonization process of heating the entire carbonization furnace. An object of the present invention is to provide a carbonized fiber manufacturing apparatus using a microwave including a heating body heated by the microwave inside a main body of a furnace.

本発明によるマイクロウェーブを用いた炭化繊維製造装置は、前駆体を安定化させる熱処理炉と、前記熱処理炉の片側に配置され、前記安定化された前駆体を炭化させる炭化炉とを含み、前記炭化炉は、マイクロウェーブを熱源として前記前駆体を炭化させることを特徴とする。   A carbonized fiber manufacturing apparatus using a microwave according to the present invention includes a heat treatment furnace for stabilizing a precursor and a carbonization furnace arranged on one side of the heat treatment furnace for carbonizing the stabilized precursor, The carbonization furnace is characterized in that the precursor is carbonized by using a microwave as a heat source.

好ましくは、前記炭化炉は、本体と、前記本体の内部又は外部に配置され、前記安定化された前駆体にマイクロウェーブを照射するマイクロ波照射部と、前記本体の内部に配置され、前記マイクロウェーブによって加熱される加熱体とを含むことを特徴とする。   Preferably, the carbonization furnace is provided with a main body, a microwave irradiation unit disposed inside or outside the main body, for irradiating the stabilized precursor with microwaves, and arranged inside the main body. And a heating element heated by a wave.

好ましくは、前記加熱体は、本体の体積の0.1%から5%を占めることを特徴とする。   Preferably, the heating element occupies 0.1% to 5% of the volume of the main body.

好ましくは、前記炭化炉は、前記熱処理炉の片側に一つ以上配置されることを特徴とする。   Preferably, at least one carbonization furnace is arranged on one side of the heat treatment furnace.

好ましくは、前記マイクロウェーブを用いた炭素繊維製造装置は、前記熱処理炉及び前記炭化炉の片側及び他側に配置されたローラーによって連続的に工程が行われることを特徴とする。   Preferably, the carbon fiber manufacturing apparatus using the microwave is characterized in that the steps are continuously performed by rollers arranged on one side and the other side of the heat treatment furnace and the carbonization furnace.

好ましくは、前記炭化炉は、炭化温度が400℃から1500℃のことを特徴とする。   Preferably, the carbonization furnace has a carbonization temperature of 400 ° C to 1500 ° C.

本発明によれば、炭化炉の内部又は外部にマイクロウェーブを照射する照射部を含むことで、安定化工程を経た繊維を直/間接的に加熱し炭素繊維の炭化速度を高め、早い時間内に炭素繊維となりエネルギー効率が増加する効果が発生するようになる。   According to the present invention, by including an irradiation unit for irradiating a microwave inside or outside of a carbonization furnace, the fiber that has undergone the stabilization process is directly / indirectly heated to increase the carbonization rate of the carbon fiber, and thus the carbon fiber can be heated within a short time. The carbon fiber becomes carbon fiber and the energy efficiency is increased.

また、炭化炉の内部に加熱体を含むことで、炭化繊維を製造するために利用される前駆体の種類に制約がなく、前駆体が間接的に加熱され炭化炉の全体が加熱されないため、従来の炭化工程に比べ加熱のためのエネルギー効率が増加する効果が発生するようになる。   Further, by including a heating body inside the carbonization furnace, there is no restriction on the type of precursor used for producing carbonized fiber, since the precursor is indirectly heated and the entire carbonization furnace is not heated, As compared with the conventional carbonization process, the energy efficiency for heating increases.

本発明の一実施形態によるマイクロウェーブを用いた炭素繊維製造装置の断面図である。FIG. 3 is a cross-sectional view of a carbon fiber manufacturing apparatus using a microwave according to an embodiment of the present invention. 本発明の一実施形態による炭化炉の断面図である。1 is a cross-sectional view of a carbonization furnace according to an embodiment of the present invention. 本発明の一実施形態による加熱体の斜視図である。FIG. 3 is a perspective view of a heating body according to an exemplary embodiment of the present invention.

本発明を添付の図面を参照し詳しく説明する。ここで、繰り返される説明、本発明の要旨を不要に不明確にする公知機能及び構成に対する詳細な説明は省略する。本発明の実施形態は、当業界で平均的な知識を有する者に本発明を完全に説明するために提供されるものである。したがって、図面での要素の形状及び大きさ等は、より明確な説明のために誇張されてよい。   The present invention will be described in detail with reference to the accompanying drawings. Here, repeated description and detailed description of known functions and configurations that unnecessarily obscure the subject matter of the present invention will be omitted. Embodiments of the present invention are provided to fully explain the present invention to those of ordinary skill in the art. Therefore, the shapes and sizes of elements in the drawings may be exaggerated for clearer description.

明細書の全体において、ある部分がある構成要素を『含む』という時、これは、特別に反対される記載がない限り、他の構成要素を除外するのではなく、他の構成要素をさらに含んでよいことを意味する。   Throughout the specification, when a part "comprises" a certain element, this does not exclude the other element, but includes the other element, unless specifically stated otherwise. Means to be good.

以下、本発明の理解を深めるために好ましい実施例を提示する。しかし、下記の実施例は、本発明をより容易に理解するために提供されるだけのものであり、実施例によって本発明の内容が限定されるものではない。   Hereinafter, preferred embodiments will be presented in order to deepen the understanding of the present invention. However, the following examples are provided only for easier understanding of the present invention, and the contents of the present invention are not limited by the examples.

<マイクロウェーブを用いた炭素繊維製造装置>
図1は、本発明の一実施形態によるマイクロウェーブを用いた炭素繊維製造装置100の断面図である。マイクロウェーブを用いた炭素繊維製造装置100は、熱処理炉10及び炭化炉20を含んでよく、熱処理炉10及び炭化炉20の片側及び他側に配置されたローラーによって連続的に工程が行われてよい。
<Carbon fiber manufacturing equipment using microwave>
FIG. 1 is a sectional view of a carbon fiber manufacturing apparatus 100 using microwaves according to an embodiment of the present invention. The carbon fiber manufacturing apparatus 100 using a microwave may include a heat treatment furnace 10 and a carbonization furnace 20, and the process is continuously performed by rollers arranged on one side and the other side of the heat treatment furnace 10 and the carbonization furnace 20. Good.

熱処理炉10は、前駆体を安定化させる構成で、前駆体を空気と接触させ酸化させる役割ができる。前駆体を安定化させる工程は、前駆体を炭化する時に耐塩性を有するように不溶化させる工程である。前駆体の安定化は、熱処理炉10の内部を空気雰囲気で提供し、前駆体を200℃から300℃の温度で1時間から2時間熱処理し前駆体の繊維構造を安定化させることができる。この時、前駆体の安定化反応が行われる時、安定化が急激に行われ得るため、段階的に200℃から300℃の温度まで昇温させることに留意する。前駆体の安定化条件が200℃未満及び1時間未満の場合、酸化及び安定化が微々に起こる問題点が生じ、300℃超過及び2時間超過の場合、炭化繊維の物性に悪影響を及ぼし、エネルギー損失面で問題点が発生し得る。   The heat treatment furnace 10 is configured to stabilize the precursor, and can play a role of bringing the precursor into contact with air to oxidize it. The step of stabilizing the precursor is a step of insolubilizing the precursor so that it has salt resistance when carbonized. To stabilize the precursor, the inside of the heat treatment furnace 10 may be provided in an air atmosphere, and the precursor may be heat-treated at a temperature of 200 ° C. to 300 ° C. for 1 to 2 hours to stabilize the fiber structure of the precursor. At this time, when the stabilization reaction of the precursor is performed, the stabilization may be rapidly performed, and thus it should be noted that the temperature is gradually increased from 200 ° C to 300 ° C. When the stabilizing condition of the precursor is less than 200 ° C. and less than 1 hour, there is a problem that oxidation and stabilization slightly occur, and when it exceeds 300 ° C. and 2 hours, the physical properties of the carbonized fiber are adversely affected and Problems may occur in terms of loss.

ここで、前駆体は、レーヨン系列、ピッチ系列及びポリアクリロニトリル系列、セルロース系列のうち何れか一つの組成物でなってよい。   Here, the precursor may be a composition of any one of rayon series, pitch series, polyacrylonitrile series, and cellulose series.

炭化炉20は、安定化された前駆体を炭化させる構成で、マイクロウェーブを熱源として利用し前駆体を炭化させることができる。炭化工程時、炭化炉は400℃から1500℃の温度で前駆体を炭化させてよく、この時、炭化工程は低温炭化及び高温炭化に分かれてよい。低温炭化は、400℃から900℃の温度で前駆体を炭化させてよく、高温炭化工程は、900℃から1500℃の温度で前駆体を炭化させてよい。   The carbonization furnace 20 is configured to carbonize the stabilized precursor, and can utilize the microwave as a heat source to carbonize the precursor. During the carbonization process, the carbonization furnace may carbonize the precursor at a temperature of 400 ° C. to 1500 ° C., and the carbonization process may be divided into low temperature carbonization and high temperature carbonization. The low temperature carbonization may carbonize the precursor at a temperature of 400 ° C to 900 ° C, and the high temperature carbonization step may carbonize the precursor at a temperature of 900 ° C to 1500 ° C.

そして、炭化炉20は、熱処理炉10の片側に配置され、安定化された前駆体を炭化させるために、本体21及びマイクロ照射部22で構成されてよい。   The carbonization furnace 20 may be disposed on one side of the heat treatment furnace 10 and may include a main body 21 and a micro irradiation unit 22 for carbonizing the stabilized precursor.

本体21は、後述するマイクロ照射部22によって温度が昇温される空間を意味してよい。   The main body 21 may mean a space in which the temperature is raised by the micro irradiation unit 22 described later.

マイクロ照射部22は、本体21の外周面の外部又は内部に設置され、安定化された前駆体にマイクロウェーブを照射する役割ができる。本発明によるマイクロウェーブのエネルギーの大きさ(出力)及びエネルギーの照射時間等を調節することで、必要とする物性を有する弾性繊維をより短い反応時間に高い収率で照射できる。   The microwave irradiation unit 22 is installed outside or inside the outer peripheral surface of the main body 21, and may serve to irradiate the stabilized precursor with microwaves. By adjusting the magnitude (output) of the microwave energy and the irradiation time of the energy according to the present invention, elastic fibers having the required physical properties can be irradiated in a shorter reaction time with a high yield.

また、本発明による炭化炉20は、マイクロウェーブによって安定化された前駆体が直接加熱し前駆体を炭化させ炭素繊維が製造され得る。従来の炭化技術のように本体を加熱させず、マイクロウェーブが前駆体を直接加熱することで、従来の炭化工程対比エネルギー効率が増加する利点が発生し得る。   Further, in the carbonization furnace 20 according to the present invention, the precursor stabilized by microwave may be directly heated to carbonize the precursor to produce carbon fiber. Direct heating of the precursor by the microwave rather than heating the body as in conventional carbonization techniques may have the advantage of increasing the energy efficiency relative to conventional carbonization processes.

図2は、本発明の一実施形態による炭化炉20の断面図であり、図3は、本発明の一実施形態による加熱体23の斜視図である。本発明による炭化炉20は、加熱体23をさらに含んでよい。加熱体23は、本体21の内部に配置され、マイクロ照射部22から照射されるマイクロウェーブによって直接加熱され、前駆体を間接的に炭化させる役割ができる。また、加熱体は、炭化ケイ素、ケイ素、金属ケイ化物、炭素及び炭素繊維複合材料のうち何れか一つの組成物でなってよい。   FIG. 2 is a cross-sectional view of the carbonization furnace 20 according to the embodiment of the present invention, and FIG. 3 is a perspective view of the heating body 23 according to the embodiment of the present invention. The carbonization furnace 20 according to the present invention may further include a heating body 23. The heating body 23 is disposed inside the main body 21, is directly heated by microwaves emitted from the micro irradiation unit 22, and can indirectly carbonize the precursor. Further, the heating element may be composed of any one of silicon carbide, silicon, metal silicide, carbon and carbon fiber composite material.

この時、本体21は、マイクロ照射部22及び加熱体23のうち何れか一つ以上を含む構成で、炭化工程に追加的に構成され得る操作部、作動部等の構成は、本体21の内部に含まれないことに留意する。一部実施形態によれば、本体21は、加熱体23のみを含むことができる位置及び大きさに形成されてよい。   At this time, the main body 21 is configured to include any one or more of the micro irradiation unit 22 and the heating body 23, and the configuration of the operating unit, the operating unit, and the like that may be additionally configured in the carbonization process is as follows. Note that it is not included in. According to some embodiments, the body 21 may be formed in a position and size that can include only the heating body 23.

加熱体23は、前駆体が入る入口と前駆体が炭化され形成された炭素繊維の排出される出口が形成されてよい。加熱体23の内部は、窒素、アルゴン、ヘリウム等のガス又はそれらの混合ガス雰囲気で提供されてよく、好ましくは、窒素雰囲気で炭化工程が行われてよい。例えば、熱処理炉10で安定化された前駆体が窒素雰囲気の加熱体23の内部に挿入された後、マイクロ照射部22から照射されるマイクロウェーブによって加熱体23の温度を400℃から1500℃まで加熱させた後、加熱体23の放射熱によって前駆体を間接加熱させてよい。   The heating body 23 may have an inlet for the precursor and an outlet for the carbon fiber formed by carbonizing the precursor. The inside of the heating body 23 may be provided in a gas atmosphere of nitrogen, argon, helium or the like or a mixed gas atmosphere thereof, and preferably, the carbonization step may be performed in a nitrogen atmosphere. For example, after the precursor stabilized in the heat treatment furnace 10 is inserted into the heating body 23 in a nitrogen atmosphere, the temperature of the heating body 23 is changed from 400 ° C. to 1500 ° C. by the microwave irradiated from the micro irradiation unit 22. After heating, the precursor may be indirectly heated by the radiant heat of the heating body 23.

ここで、本発明による炭化炉20は、間接加熱を用いて前駆体を炭化させることで、マイクロウェーブに反応度の低い安定化繊維の炭化も可能な利点を得られ、加熱体23の構造及び体積によって製造される炭素繊維の物性及びエネルギー効率を改善できる効果が発生し得る。   Here, in the carbonization furnace 20 according to the present invention, by carbonizing the precursor by using indirect heating, it is possible to obtain an advantage that carbonization of the stabilized fiber having a low reactivity to microwaves is possible. An effect of improving the physical properties and energy efficiency of the carbon fiber produced by the volume may occur.

加熱体23は、本体21の体積の0.1%から5%の体積を有する限り、その形態は制限されないことに留意する。加熱体23の体積が5%超過の場合、加熱体23を加熱するために多くのマイクロウェーブを照射しなければならず、炭化炉20の内部温度が増加しないため炭素繊維の引張強度及びモデュラス(Modulus)が減少され、炭化工程のエネルギー効率が減少する問題点が発生し得る。   It is noted that the heating body 23 is not limited in its form as long as it has a volume of 0.1% to 5% of the volume of the main body 21. When the volume of the heating element 23 is more than 5%, a lot of microwaves have to be irradiated to heat the heating element 23, and the internal temperature of the carbonization furnace 20 does not increase, so that the tensile strength and the modulus of the carbon fiber ( However, the energy efficiency of the carbonization process may be reduced.

図3は、本発明による加熱体23の形態を例示的に示している。加熱体23の構造は、板型及び中の空いている柱構造のうち何れか一つの形状で提供されてよい。例えば、加熱体23の構造が板状で提供される場合、板状は一つ以上提供されてよく、片面のみでなるか、上/下の二つの面でなってよい。さらに、上/下/右側及び上/下/左側のうち何れか一つでなる三面で形成されてよい。加熱体23が板状で提供される場合、板状一部に一つ以上の孔が形成されてよく、孔の形態は、円形、多角形及び楕円形のうち何れか一つの形態であってよいが、その形態は制限されないことに留意する。また、一部実施形態によれば、網形状の板で提供されてよい。   FIG. 3 exemplarily shows a form of the heating body 23 according to the present invention. The structure of the heating body 23 may be provided in any one of a plate shape and an open pillar structure inside. For example, when the structure of the heating body 23 is provided in a plate shape, one or more plate shapes may be provided and may be only one side or two upper / lower sides. Further, it may be formed of three surfaces of any one of top / bottom / right side and top / bottom / left side. When the heating body 23 is provided in the shape of a plate, one or more holes may be formed in the plate-shaped portion, and the shape of the holes may be one of a circle, a polygon, and an ellipse. Note, however, that its form is not limited. Also, according to some embodiments, it may be provided as a net-shaped plate.

また、加熱体23が中の空いている柱の形態で、柱の断面は円、四角形及び多角形、楕円のうち何れか一つの形態であってよいが、その形態は制限されないことに留意する。ここで、加熱体23が3次元の形状で提供される場合、形状を成す面は一つ以上の孔が形成されてよく、孔の形態は、円形、多角形及び楕円形のうち何れか一つの形態であってよいが、その形態は制限されないことに留意する。この時、前駆体が収容される空間が2個以上分割されてよく、分割された空間にそれぞれ前駆体が引込及び引出し得る入口及び出口が形成されてよい。加熱体23に前駆体の収容空間が分割されることによって、前駆体の直接及び間接加熱が複合的に可能であり、前駆体の移動距離を増加させ長時間マイクロウェーブ又は加熱体の放射熱の照射を受け炭化及び黒鉛化されるため、外部及び内部の温度勾配が最小化され炭素繊維の亀裂発生が減少される効果が発生し得る。   In addition, it should be noted that the heating body 23 is in the form of a hollow column, and the cross section of the column may be any one of a circle, a quadrangle, a polygon, and an ellipse, but the form is not limited. .. Here, when the heating body 23 is provided in a three-dimensional shape, one or more holes may be formed in the surface forming the shape, and the shape of the hole may be one of a circle, a polygon, and an ellipse. Note that there may be three forms, but the form is not limited. At this time, the space for accommodating the precursor may be divided into two or more spaces, and an inlet and an outlet through which the precursor may be drawn and drawn may be formed in each of the divided spaces. Since the precursor accommodation space is divided into the heating body 23, direct and indirect heating of the precursor can be performed in a combined manner, and the moving distance of the precursor is increased to increase the microwave or the radiant heat of the heating body for a long time. Since the material is irradiated and carbonized and graphitized, an external temperature gradient and an internal temperature gradient may be minimized, and thus, carbon fiber cracking may be reduced.

また、炭化炉20は、本体21、マイクロ照射部22及び加熱体23を内側に全て含むチェンバー(図示省略)をさらに含んでよい。チェンバーは、本体21の外部に配置されてよく、本体21、マイクロ照射部22及び加熱体23以外に前駆体の炭化に必要な構成、例えば、操作部、作動部等の構成をさらに含むことができれば、模様及び大きさは限定されない。   The carbonization furnace 20 may further include a chamber (not shown) that includes the main body 21, the micro irradiation unit 22, and the heating body 23 inside. The chamber may be disposed outside the main body 21, and may further include, in addition to the main body 21, the micro irradiation unit 22 and the heating body 23, components necessary for carbonization of the precursor, for example, an operating unit and an operating unit. If possible, the pattern and size are not limited.

同時に、炭化炉20は、熱処理炉10の片側に一つ以上配置されてよい。一つ以上の炭化炉20を直列連結し、炭化炉20内で前駆体の移動距離を増加させ長期間マイクロウェーブの照射を受け炭化又は黒鉛化によって炭素繊維の製造が行われてよい。一つ以上の炭化炉20が直列連結されることで、高温のマイクロウェーブの放射熱によって前駆体の外面だけ一瞬間に加熱され内部は加熱が行われないため、内部と外部の大きい温度勾配が発生する問題点を解決できる。   At the same time, one or more carbonization furnaces 20 may be arranged on one side of the heat treatment furnace 10. One or more carbonization furnaces 20 may be connected in series to increase the migration distance of the precursor in the carbonization furnace 20 and receive microwave irradiation for a long period of time to carbonize or graphitize to produce carbon fibers. When one or more carbonization furnaces 20 are connected in series, only the outer surface of the precursor is instantaneously heated by the radiant heat of high-temperature microwaves, and the inside is not heated. Therefore, a large temperature gradient between the inside and the outside occurs. Can solve the problems that occur.

<実験例1>
本体の体積の約8%の体積を有する加熱体を含む炭化炉を介して製造された炭素繊維と、本発明の一実施形態による本体の体積の0.1%から5%の体積を有する加熱体を含む炭化炉を介して製造された炭素繊維を用い、引張強度及びモデュラスを比較した。
<Experimental example 1>
Carbon fiber produced through a carbonization furnace including a heating body having a volume of about 8% of the volume of the body, and heating having a volume of 0.1% to 5% of the volume of the body according to an embodiment of the present invention. Tensile strength and modulus were compared using carbon fiber produced through a carbonization furnace containing the body.

このために、体積の約8%の加熱体を含む炭化炉を介して製造された炭素繊維1個製品と、本発明の一実施形態による炭素繊維2個製品に対し実験を行った。   For this purpose, an experiment was performed on a single carbon fiber product manufactured through a carbonization furnace including a heating body having a volume of about 8% and a double carbon fiber product according to an embodiment of the present invention.

比較例1、実施例1及び実施例2は、前駆体としてポリアクリロニトリル繊維を準備し、エア雰囲気で280℃の温度で2時間熱処理をした。   In Comparative Example 1, Example 1 and Example 2, polyacrylonitrile fiber was prepared as a precursor and heat-treated at a temperature of 280 ° C. for 2 hours in an air atmosphere.

比較例1は、本体の体積の約8%に該当する体積を有する加熱体を含む炭化炉に安定化されたポリアクリロニトリル繊維を引込んだ後、窒素雰囲気で800℃から1500℃の温度で20分以上炭化工程を行った。この時、マイクロウェーブの印加パワーは1.2kWに設定した。   In Comparative Example 1, after the stabilized polyacrylonitrile fiber was drawn into a carbonization furnace including a heating body having a volume corresponding to about 8% of the volume of the main body, a temperature of 800 ° C. to 1500 ° C. was applied in a nitrogen atmosphere at a temperature of 20 ° C. The carbonization step was performed for more than a minute. At this time, the applied power of the microwave was set to 1.2 kW.

実施例1は、本体の体積の約0.13%に該当する体積を有する加熱体を含む炭化炉に安定化されたポリアクリロニトリル繊維を引込んだ後、窒素雰囲気で800℃から1500℃の温度で1分以内の炭化工程を行った。この時、マイクロウェーブの印加パワーは1kWに設定した。また、実施例2は、本体の体積の約1.8%に該当する体積を有する加熱体を含む炭化炉に安定化されたポリアクリロニトリル繊維を引込んだ後、窒素雰囲気で800℃から1500℃の温度で5分以内の炭化工程を行っており、マイクロウェーブの印加パワーは1.8kWに設定した。   In Example 1, after the stabilized polyacrylonitrile fiber was drawn into a carbonization furnace including a heating body having a volume corresponding to about 0.13% of the volume of the main body, a temperature of 800 ° C to 1500 ° C was applied in a nitrogen atmosphere. The carbonization process was performed within 1 minute. At this time, the applied power of the microwave was set to 1 kW. Also, in Example 2, after the stabilized polyacrylonitrile fiber was drawn into a carbonization furnace including a heating body having a volume corresponding to about 1.8% of the volume of the main body, 800 ° C to 1500 ° C in a nitrogen atmosphere. The carbonization step was performed for 5 minutes or less at the temperature of, and the applied power of the microwave was set to 1.8 kW.

炭化後、機械的な物性を比較するためにFavimat装備を用いて繊維一本の引張強度及び弾性を約50回反復測定し平均を算出した。   After carbonization, the tensile strength and elasticity of a single fiber were repeatedly measured about 50 times using Favimat equipment to compare the mechanical properties, and the average was calculated.

Figure 2020513486
Figure 2020513486

前記表を参照すれば、比較例1は、加熱体の温度が800℃から1500℃の温度まで昇温されるために20分以上の時間が必要であり、加熱体の大きい体積と長い昇温時間によって、炭素繊維の引張強度は1.5以下であり、モデュラスは90以下で測定された。これにより、加熱体の体積が大きい場合、製造される炭素繊維は弾性が微々であり、物性とエネルギー効率が減少されるということが分かる。   Referring to the above table, Comparative Example 1 requires a time of 20 minutes or more in order to increase the temperature of the heating element from 800 ° C. to 1500 ° C., and thus the heating element has a large volume and a long heating temperature. Over time, the tensile strength of the carbon fibers was less than 1.5 and the modulus was measured at less than 90. From this, it can be seen that when the volume of the heating body is large, the carbon fiber produced has a slight elasticity, and the physical properties and energy efficiency are reduced.

実施例1は、加熱体の温度が800℃から1500℃の温度まで昇温されるために1分の時間が必要であり、実施例2は、5分以内の時間が必要である。この時、実施例1及び実施例2の炭素繊維の引張強度とモデュラスは、2.5以上及び190以上であり、炭素繊維の弾性に優れ、物性とエネルギー効率が増加するということが分かる。   Example 1 requires 1 minute for the temperature of the heating element to rise from 800 ° C. to 1500 ° C., and Example 2 requires 5 minutes or less. At this time, the tensile strength and the modulus of the carbon fibers of Examples 1 and 2 are 2.5 or more and 190 or more, and it can be seen that the elasticity of the carbon fibers is excellent and the physical properties and energy efficiency are increased.

結果的に、これに基づいて判断すれば、加熱体の体積は炭素繊維の物性及びエネルギー効率と密接な関係があり、加熱体の体積が小さいほどマイクロウェーブの小さい出力にも短い時間に加熱体が加熱されることで、炭素繊維の引張強度及びモデュラスが増加することが分かる。   As a result, if judged based on this, the volume of the heating body is closely related to the physical properties and energy efficiency of the carbon fiber, and the smaller the volume of the heating body, the smaller the output of the microwave and the heating body in a short time. It can be seen that the tensile strength and the modulus of the carbon fiber are increased by heating the carbon fiber.

<実験例2>
加熱体を含まない炭化炉である比較例2と、本発明の一実施形態による本体の体積の0.1%から5%の体積を有する加熱体を含む炭化炉である実施例 3の温度を比較した。ここで、実施例3の加熱体は、本体の体積の約0.13%に該当する体積を有する炭化ケイ素(SiC)を含む。
<Experimental example 2>
The temperature of Comparative Example 2 which is a carbonization furnace not including a heating body and Example 3 which is a carbonization furnace including a heating body having a volume of 0.1% to 5% of the volume of the main body according to an embodiment of the present invention are compared. Compared. Here, the heating body of Example 3 includes silicon carbide (SiC) having a volume corresponding to about 0.13% of the volume of the main body.

比較例2及び実施例3の炭化炉の大きさは同一であり、1.2kWのマイクロウェーブを印加し内部温度が1,000℃に到逹する時間を測定した。   The sizes of the carbonization furnaces of Comparative Example 2 and Example 3 were the same, and the time for the internal temperature to reach 1,000 ° C. was measured by applying a microwave of 1.2 kW.

Figure 2020513486
Figure 2020513486

前記表を参照すれば、比較例2は、10分後にも300℃以下の温度を有するが、実施例3は、2分後1,000℃に到逹することが分かる。   Referring to the above table, it can be seen that Comparative Example 2 has a temperature of 300 ° C. or lower even after 10 minutes, while Example 3 reaches 1,000 ° C. after 2 minutes.

すなわち、比較例2は、安定化された繊維がマイクロウェーブの反応度の高い繊維になるための温度に到逹できず、実施例3は、加熱体だけで短い時間内に炭化炉の内部温度がマイクロウェーブの反応度の高い繊維が製造される温度領域に到逹するため、効果的に炭化繊維製造が可能になる。   That is, in Comparative Example 2, the temperature at which the stabilized fiber becomes a fiber having high microwave reactivity cannot be reached, and in Example 3, only the heating body is used and the internal temperature of the carbonization furnace is reduced within a short time. Reaches the temperature range where fibers with high microwave reactivity are produced, so that carbonized fibers can be effectively produced.

したがって、熱処理炉で安定化段階を経た安定化繊維が炭化炉に移動する時、加熱体の温度増加によってマイクロウェーブの反応度の高い領域に早い速度で進入するようになり、それによってエネルギー効率が向上し、マイクロウェーブによってより単純化された方法で炭素繊維の炭化物性を調節できる効果が発生し得る。   Therefore, when the stabilized fiber, which has undergone the stabilization step in the heat treatment furnace, moves to the carbonization furnace, the temperature increase of the heating element causes the microwave to enter the high reactivity area of the microwave at a high speed, thereby improving the energy efficiency. The effect of being able to improve and control the carbide properties of carbon fibers in a more simplified way by microwaves can occur.

前記の本発明の好ましい実施例を参照し説明したが、当業界において通常の知識を有する者であれば、以下の特許請求の範囲に記載された本発明の思想及び領域を外れない範囲内で本発明を多様に修正及び変更させることができることを理解できるはずである。   Although the preferred embodiment of the present invention has been described above, a person having ordinary skill in the art can use the invention within the scope and spirit of the invention described in the following claims. It should be understood that the present invention can be modified and changed in various ways.

Claims (6)

前駆体を安定化させる熱処理炉と、
前記熱処理炉の片側に配置され、前記安定化された前駆体を炭化させる炭化炉とを含み、
前記炭化炉は、
マイクロウェーブを熱源として前記前駆体を炭化させる、
マイクロウェーブを用いた炭素繊維製造装置。
A heat treatment furnace for stabilizing the precursor,
A carbonization furnace disposed on one side of the heat treatment furnace for carbonizing the stabilized precursor,
The carbonization furnace is
Carbonizing the precursor using microwave as a heat source,
Carbon fiber manufacturing equipment using microwave.
前記炭化炉は、
本体と、
前記本体の内部又は外部に配置され、前記安定化された前駆体にマイクロウェーブを照射するマイクロ波照射部と、
前記本体の内部に配置され、前記マイクロウェーブによって加熱される加熱体とを含む、請求項1に記載のマイクロウェーブを用いた炭素繊維製造装置。
The carbonization furnace is
Body,
A microwave irradiation unit disposed inside or outside the main body, for irradiating the stabilized precursor with microwaves,
The carbon fiber manufacturing apparatus using a microwave according to claim 1, further comprising a heating element that is disposed inside the main body and that is heated by the microwave.
前記加熱体は、
前記本体の体積の0.1%から5%を占める、請求項2に記載のマイクロウェーブを用いた炭素繊維製造装置。
The heating body is
The carbon fiber manufacturing apparatus using a microwave according to claim 2, which occupies 0.1% to 5% of the volume of the main body.
前記炭化炉は、
前記熱処理炉の片側に一つ以上配置される、請求項1に記載のマイクロウェーブを用いた炭素繊維製造装置。
The carbonization furnace is
The carbon fiber manufacturing apparatus using microwaves according to claim 1, wherein one or more are disposed on one side of the heat treatment furnace.
前記マイクロウェーブを用いた炭素繊維製造装置は、
前記熱処理炉及び前記炭化炉の片側及び他側に配置されたローラーによって連続的に工程が行われる、請求項1に記載のマイクロウェーブを用いた炭素繊維製造装置。
The carbon fiber manufacturing apparatus using the microwave,
The carbon fiber manufacturing apparatus using a microwave according to claim 1, wherein the steps are continuously performed by rollers arranged on one side and the other side of the heat treatment furnace and the carbonization furnace.
前記炭化炉は、
炭化温度が400℃から1500℃である、請求項1に記載のマイクロウェーブを用いた炭素繊維製造装置。
The carbonization furnace is
The carbon fiber manufacturing apparatus using a microwave according to claim 1, wherein the carbonization temperature is 400 ° C to 1500 ° C.
JP2019530093A 2016-12-19 2017-12-19 Carbon fiber manufacturing equipment using microwave Pending JP2020513486A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0173883 2016-12-19
KR20160173883 2016-12-19
PCT/KR2017/015018 WO2018117594A1 (en) 2016-12-19 2017-12-19 Apparatus for manufacturing carbon fiber by using microwaves

Publications (1)

Publication Number Publication Date
JP2020513486A true JP2020513486A (en) 2020-05-14

Family

ID=62626763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019530093A Pending JP2020513486A (en) 2016-12-19 2017-12-19 Carbon fiber manufacturing equipment using microwave

Country Status (6)

Country Link
US (1) US20200056306A1 (en)
EP (1) EP3556916B1 (en)
JP (1) JP2020513486A (en)
KR (1) KR102037843B1 (en)
CN (1) CN110073041B (en)
WO (1) WO2018117594A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665349B (en) * 2018-01-29 2019-07-11 永虹先進材料股份有限公司 Fiber pre-oxidation equipment
KR102405323B1 (en) 2018-07-23 2022-06-07 주식회사 엘지화학 Carbonated apparatus for cabon fiber using microwave
WO2020022724A1 (en) 2018-07-23 2020-01-30 주식회사 엘지화학 Carbon fiber carbonizing apparatus using microwave
TWI667339B (en) * 2018-09-06 2019-08-01 永虹先進材料股份有限公司 High-temperature carbonization furnace
KR102134628B1 (en) * 2020-01-08 2020-07-16 재단법인 철원플라즈마 산업기술연구원 Apparatus and method manufacturing carbon fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002767A (en) * 2011-06-20 2013-01-07 Micro Denshi Kk Heating device utilizing microwave
JP2013231244A (en) * 2012-04-27 2013-11-14 Applied Materials Inc Apparatus for producing carbon fiber
JP2014067575A (en) * 2012-09-26 2014-04-17 Micro Denshi Kk Heating device to which microwaves are applied
WO2015012349A1 (en) * 2013-07-26 2015-01-29 東邦テナックス株式会社 Carbonization method and carbon fiber production method
JP2016195021A (en) * 2015-03-31 2016-11-17 東邦テナックス株式会社 Heating method, method for producing carbon fiber, and carbon fiber and heating device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822966A (en) * 1987-02-20 1989-04-18 Yuzuru Matsubara Method of producing heat with microwaves
KR101219721B1 (en) * 2010-12-21 2013-01-08 한국에너지기술연구원 Continuous Hybrid Carbon Fiber Production Method
KR101395811B1 (en) * 2012-05-22 2014-05-16 한국과학기술연구원 Preparation method for carbon fiber with high performance using textile grade polyacrylonitrile fiber
KR101309730B1 (en) * 2012-05-25 2013-09-17 포항공과대학교 산학협력단 Method of manufacturing super strength carbon nanotube yarn
JP6469341B2 (en) 2013-09-25 2019-02-13 第一工業製薬株式会社 A curable resin composition and a coating composition containing the same.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002767A (en) * 2011-06-20 2013-01-07 Micro Denshi Kk Heating device utilizing microwave
JP2013231244A (en) * 2012-04-27 2013-11-14 Applied Materials Inc Apparatus for producing carbon fiber
JP2014067575A (en) * 2012-09-26 2014-04-17 Micro Denshi Kk Heating device to which microwaves are applied
WO2015012349A1 (en) * 2013-07-26 2015-01-29 東邦テナックス株式会社 Carbonization method and carbon fiber production method
JP2016195021A (en) * 2015-03-31 2016-11-17 東邦テナックス株式会社 Heating method, method for producing carbon fiber, and carbon fiber and heating device

Also Published As

Publication number Publication date
EP3556916A4 (en) 2019-11-27
WO2018117594A1 (en) 2018-06-28
KR20180071184A (en) 2018-06-27
CN110073041B (en) 2022-08-09
EP3556916A1 (en) 2019-10-23
KR102037843B1 (en) 2019-10-30
EP3556916B1 (en) 2021-01-27
CN110073041A (en) 2019-07-30
US20200056306A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP2020513486A (en) Carbon fiber manufacturing equipment using microwave
CN107081165B (en) One type graphene carbon nitride material and its preparation method and application
CN105503227B (en) A kind of preparation method of stereo fabric enhancing silicon carbide diamond composite
CN103508437A (en) Preparation method of phenolic resin base glass carbon microsphere
CN107820522A (en) Microwave heating equipment
CN107099687A (en) A kind of boron carbide particles strengthen the preparation method of nanometer/Ultra-fine Grained aluminum matrix composite
Shi-Gui et al. Effect of physical disturbance on the structure of needle coke
JP5205554B2 (en) Method for densifying porous articles
KR101219721B1 (en) Continuous Hybrid Carbon Fiber Production Method
KR102012753B1 (en) Precusor fiber for preparing carbon fiber, preparation method for producing the same and preparation method of carbon fiber
KR101554912B1 (en) Method for preparing graphite and furnace therefor
KR100979641B1 (en) Microwave assisted treatment of carbon foam
CN115626827B (en) Method for rapidly preparing carbon product by microwave roasting
JP2019131939A (en) Fiber preliminary oxidation equipment
CN112628326A (en) Preparation method of aircraft brake disc made of carbon/carbon composite material
CN112239368A (en) Carbon/carbon composite material, preparation method and application thereof, and carbon/carbon heater
KR101605414B1 (en) Method for preparing graphite sheet having improved property
CN104760954B (en) A kind of method of multiple physical field modified synergic graphene oxide regulation and control electromagnetic property
EP3828324B1 (en) Carbon fiber carbonizing apparatus using microwave
KR20140106777A (en) THE MANUFACTURING METHOD FOR C-SiC COMPOSITES
KR101656817B1 (en) Method for preparing graphite sheet and film roll structure used therein
JP2017178660A (en) Method for producing carbon particle
KR20160041438A (en) Container for preparing graphite sheet
KR20120070317A (en) Hybrid carbon fiber production method
Li et al. Progress in Catalytic Preparation of Carbon/Carbon Composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210218