JP2020181687A - Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material - Google Patents

Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material Download PDF

Info

Publication number
JP2020181687A
JP2020181687A JP2019083413A JP2019083413A JP2020181687A JP 2020181687 A JP2020181687 A JP 2020181687A JP 2019083413 A JP2019083413 A JP 2019083413A JP 2019083413 A JP2019083413 A JP 2019083413A JP 2020181687 A JP2020181687 A JP 2020181687A
Authority
JP
Japan
Prior art keywords
carbon nanotube
wire rod
cnt
nanotube wire
bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019083413A
Other languages
Japanese (ja)
Inventor
英樹 會澤
Hideki Aizawa
英樹 會澤
山下 智
Satoshi Yamashita
智 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019083413A priority Critical patent/JP2020181687A/en
Publication of JP2020181687A publication Critical patent/JP2020181687A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a carbon nanotube wire material capable of reducing contact resistance between carbon nanotube bundles and suppressing the occurrence of excess current.SOLUTION: A CNT wire material 1 is a CNT wire material constituted by twisting a plurality of CNT bundles 11, 11, ... and provided with a plating part 12 arranged along a longer direction of the CNT wire material 1 and arranged inside and on a surface part of the CNT wire material. In a cross section in a direction vertical to the longer direction of the CNT wire material 1, a ratio of a value obtained by dividing the number of the CNT bundles where a ratio of a length of a part where the plating part having a thickness of 1 μm or larger is formed on a surface of the CNT bundle, relative to an entire length of surfaces of the CNT bundle 11 is 0.5 or larger by a total number of the plurality of the CNT bundles 11, 11, ... is 70% or larger, and a degree of twisting of the plurality of the carbon nanotube bundles 11, 11, ... is 10 to 3000 T/m.SELECTED DRAWING: Figure 1

Description

本発明は、複数のカーボンナノチューブを束ねてなるカーボンナノチューブ束の複数を撚り合わせて構成されるカーボンナノチューブ線材、カーボンナノチューブ線材と該線材に接続されるはんだ部とを備えるカーボンナノチューブ線材接続構造体、及びカーボンナノチューブ線材の製造方法に関する。 The present invention is a carbon nanotube wire rod formed by twisting a plurality of carbon nanotube bundles formed by bundling a plurality of carbon nanotubes, and a carbon nanotube wire rod connecting structure including a carbon nanotube wire rod and a solder portion connected to the wire rod. And a method for producing a carbon nanotube wire rod.

従来、自動車や産業機器などの様々な分野における電力線や信号線として、一又は複数の線材からなる芯線と、該芯線を被覆する絶縁被覆とからなる電線が用いられている。芯線を構成する線材の材料としては、通常、電気特性の観点から銅又は銅合金が使用されるが、近年、軽量化の観点からアルミニウム又はアルミニウム合金が提案されている。例えば、アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、アルミニウム線材に、銅線材と同じ電流を流すためには、アルミニウム線材の断面積を、銅の線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウム線材を用いたとしても、アルミニウム線材の質量は、純銅の線材の質量の半分程度であることから、アルミニウム線材を使用することは、軽量化の観点から有利である。 Conventionally, as a power line or a signal line in various fields such as automobiles and industrial equipment, an electric wire composed of a core wire made of one or a plurality of wires and an insulating coating covering the core wire has been used. Copper or a copper alloy is usually used as a material for a wire rod constituting a core wire from the viewpoint of electrical characteristics, but in recent years, aluminum or an aluminum alloy has been proposed from the viewpoint of weight reduction. For example, the specific gravity of aluminum is about 1/3 of the specific gravity of copper, and the conductivity of aluminum is about 2/3 of the conductivity of copper (when pure copper is used as the standard for 100% IACS, pure aluminum is about 66% IACS). In order to pass the same current as the copper wire through the aluminum wire, it is necessary to increase the cross-sectional area of the aluminum wire to about 1.5 times the cross-sectional area of the copper wire. Even if a large aluminum wire is used, the mass of the aluminum wire is about half the mass of the pure copper wire, so that the use of the aluminum wire is advantageous from the viewpoint of weight reduction.

上記のような背景のもと、昨今では、自動車、産業機器等の高性能化・高機能化が進められており、これに伴い、各種電気機器、制御機器などの配設数が増加するとともに、これら機器に使用される電気配線体の配線数も増加する傾向にある。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、線材の軽量化が強く望まれている。 Against the background described above, in recent years, the performance and functionality of automobiles, industrial equipment, etc. have been improved, and along with this, the number of arrangements of various electric equipment, control equipment, etc. has increased. , The number of wires of the electric wiring body used for these devices also tends to increase. On the other hand, in order to improve the fuel efficiency of moving objects such as automobiles for environmental friendliness, it is strongly desired to reduce the weight of wire rods.

こうした更なる軽量化を達成するための新たな手段の一つとして、カーボンナノチューブを線材として活用する技術が新たに提案されている。カーボンナノチューブは、六角形格子の網目構造を有する筒状体の単層、あるいは略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、電流容量、弾性、機械的強度等の特性に優れるため、電力線や信号線に使用されている金属に代替する材料として注目されている。 As one of the new means for achieving such further weight reduction, a new technique for utilizing carbon nanotubes as a wire rod has been proposed. Carbon nanotubes are a three-dimensional network structure composed of a single layer of a tubular body having a hexagonal lattice network structure or multiple layers arranged substantially coaxially, and are lightweight, conductive, and have a current capacity. Since it has excellent properties such as elasticity and mechanical strength, it is attracting attention as a material that replaces metals used in power lines and signal lines.

カーボンナノチューブの比重は、銅の比重の約1/5(アルミニウムの約1/2)であり、また、カーボンナノチューブ単体は、銅(抵抗率1.68×10−6Ω・cm)よりも高導電性を示す。したがって理論的には、複数のカーボンナノチューブを撚り合わせてカーボンナノチューブ集合体を形成すれば、更なる軽量化、高導電率の実現が可能となる。しかしながら、nm単位のカーボンナノチューブを撚り合わせて、μm〜mm単位のカーボンナノチューブ線材を作製した場合、構成単位となる1本当たりの外径が非常に小さいため、カーボンナノチューブ間の接触抵抗や内部欠陥形成が要因となり、線材全体の抵抗値が増大してしまうという問題がある。そのため、カーボンナノチューブをそのまま線材として使用することが困難であった。また、接続の観点から、カーボンナノチューブ線材とはんだからなるカーボンナノチューブ接続構造体を作製する場合、カーボンナノチューブ線材とはんだの相性が悪く、接続強度や電気特性を確保することが困難であった。 The specific gravity of carbon nanotubes is about 1/5 of the specific gravity of copper (about 1/2 of aluminum), and carbon nanotubes alone are higher than copper (resistivity 1.68 x 10-6 Ω · cm). Shows conductivity. Therefore, theoretically, if a plurality of carbon nanotubes are twisted to form a carbon nanotube aggregate, further weight reduction and high conductivity can be realized. However, when carbon nanotubes in units of nm are twisted to produce carbon nanotube wires in units of μm to mm, the outer diameter of each carbon nanotube as a constituent unit is very small, so that contact resistance and internal defects between carbon nanotubes are observed. There is a problem that the resistance value of the entire wire rod increases due to the formation. Therefore, it has been difficult to use the carbon nanotubes as they are as a wire rod. Further, from the viewpoint of connection, when a carbon nanotube connection structure made of a carbon nanotube wire and a solder is produced, the compatibility between the carbon nanotube wire and the solder is poor, and it is difficult to secure the connection strength and the electrical characteristics.

カーボンナノチューブ撚線(線材)の端部でCVD(Chemical Vapor Deposition)等によってCNTを成長させ、当該端部から伸びた成長CNTを他のカーボンナノチューブ撚線或いはその成長CNTと接続することにより、カーボンナノチューブ撚線同士の接続強度や電気的特性を実現することが可能な製造方法が提案されている(特許文献1)。 CNTs are grown at the ends of carbon nanotube stranded wires (wires) by CVD (Chemical Vapor Deposition) or the like, and the grown CNTs extending from the ends are connected to other carbon nanotube stranded wires or their grown CNTs to form carbon. A manufacturing method capable of realizing connection strength and electrical characteristics between nanotube stranded wires has been proposed (Patent Document 1).

複数のカーボンナノチューブ線を撚り合わせて構成したカーボンナノチューブ線材の表面を金属被覆し、導電性の向上やソレノイド材料として使用した場合に渦電流を低減できるカーボンナノチューブ線材が提案されている(特許文献2)。 A carbon nanotube wire rod having a metal coating on the surface of a carbon nanotube wire rod formed by twisting a plurality of carbon nanotube wires to improve conductivity and reduce an eddy current when used as a solenoid material has been proposed (Patent Document 2). ).

特開2013−47402号公報JP 2013-47402 特許第5934643号公報Japanese Patent No. 5934643

しかしながら、特許文献1では、複数のカーボンナノチューブを撚り合わせてなるカーボンナノチューブ線材の端部同士を、成長CNTを介して接続することが開示されているにすぎない。カーボンナノチューブ束を撚り合わせて作成したカーボンナノチューブ線材では、カーボンナノチューブ束間の接触抵抗が高く、特定のカーボンナノチューブ束に電流が集中する、いわゆる過電流が生じやすい問題がある。 However, Patent Document 1 merely discloses that the ends of carbon nanotube wires obtained by twisting a plurality of carbon nanotubes are connected to each other via a growth CNT. The carbon nanotube wire rod produced by twisting the carbon nanotube bundles has a problem that the contact resistance between the carbon nanotube bundles is high and the current concentrates on a specific carbon nanotube bundle, so-called overcurrent is likely to occur.

特許文献2では、複数のカーボンナノチューブ線を撚り合わせてなるカーボンナノチューブ線材の一部に金属被覆し、はんだとの接合性を改善しているものの、カーボンナノチューブ線材は金属線よりも柔らかいため線材の形状が安定しにくく、撚線にする際に撚線を構成するカーボンナノチューブ線が表面に露出しやすい。そのため金属被覆されていない部分でカーボンナノチューブ線間の接触抵抗が向上し、渦電流が発生しやすくなる。また、複数のカーボンナノチューブ線を撚線化した場合に、一定の撚り度にしないと、カーボンナノチューブ線間の接触抵抗が大きくなり、撚線の許容電流が小さくなる問題、カーボンナノチューブ線材の端末を端子にはんだ付けした際に、はんだがカーボンナノチューブ線になじみにくくなる問題、そしてカーボンナノチューブ線の強度自体が低下する問題があるが、特許文献2では撚り度について言及されていない。さらに、金属被覆として使用しためっきが薄い場合、カーボンナノチューブ線はめっきと異種材料であるため、めっき剥がれが金属線へのめっきに比べて起こりやすい。そのため、カーボンナノチューブ線からのめっきの剥がれが生じやすくなり、大きな電流が流れた際にめっきの薄い部分、カーボンナノチューブが露出した部分等で発熱が生じ、カーボンナノチューブ線材の耐久性が低くなる問題がある。また、このような薄いめっき厚を有するカーボンナノチューブ線材の端末を端子にはんだ付けする場合、めっきがはんだに溶解することでカーボンナノチューブが露出し、カーボンナノチューブ線材とはんだとの接続性が悪化し、接続抵抗が増大する問題もある。しかしながら、特許文献2ではめっきの厚さについて言及されていない。そのため、特許文献2には、撚り度とめっき厚に起因する上記問題点の改善については開示されていない。 In Patent Document 2, although a part of the carbon nanotube wire made by twisting a plurality of carbon nanotube wires is coated with metal to improve the bondability with the solder, the carbon nanotube wire is softer than the metal wire, so that the wire is made of wire. The shape is difficult to stabilize, and the carbon nanotube wires that make up the stranded wire are easily exposed to the surface when the stranded wire is formed. Therefore, the contact resistance between the carbon nanotube wires is improved in the portion not coated with metal, and eddy currents are likely to be generated. In addition, when a plurality of carbon nanotube wires are twisted, if the twist degree is not constant, the contact resistance between the carbon nanotube wires will increase and the allowable current of the stranded wires will decrease. When soldered to the terminals, there is a problem that the solder does not easily fit into the carbon nanotube wire, and there is a problem that the strength of the carbon nanotube wire itself decreases, but Patent Document 2 does not mention the degree of twist. Further, when the plating used as the metal coating is thin, the carbon nanotube wire is a different material from the plating, so that the plating peeling is more likely to occur than the plating on the metal wire. Therefore, the plating is likely to peel off from the carbon nanotube wire, and when a large current flows, heat is generated in the thin portion of the plating, the exposed portion of the carbon nanotube, etc., and the durability of the carbon nanotube wire is lowered. is there. Further, when the terminal of the carbon nanotube wire having such a thin plating thickness is soldered to the terminal, the carbon nanotube is exposed by dissolving the plating in the solder, and the connectivity between the carbon nanotube wire and the solder deteriorates. There is also a problem that the connection resistance increases. However, Patent Document 2 does not mention the thickness of the plating. Therefore, Patent Document 2 does not disclose the improvement of the above-mentioned problems caused by the twist degree and the plating thickness.

本発明の目的は、カーボンナノチューブ束間の接触抵抗を低減させ、過電流の発生を抑制することができるカーボンナノチューブ線材、及びカーボンナノチューブ接続構造体を提供することにある。 An object of the present invention is to provide a carbon nanotube wire rod capable of reducing the contact resistance between carbon nanotube bundles and suppressing the generation of overcurrent, and a carbon nanotube connection structure.

本発明の要旨構成は、以下の通りである。
[1]複数のカーボンナノチューブ束を撚り合わせて構成されるカーボンナノチューブ線材であって、
前記カーボンナノチューブ線材の長手方向に沿って設けられ、前記カーボンナノチューブ線材の内部及び表層部に配されためっき部を備え、
前記カーボンナノチューブ線材の長手方向に垂直な方向の断面において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、前記複数のカーボンナノチューブ束の総数で除した値の比率が、70%以上であり、
前記複数のカーボンナノチューブ束の撚り度が10〜3000T/mであることを特徴とするカーボンナノチューブ線材。
[2]前記めっき部が、前記複数のカーボンナノチューブ束のうちの隣接する複数のカーボンナノチューブ束間に3次元的に形成されていることを特徴とする上記[1]に記載のカーボンナノチューブ線材。
[3]前記複数のカーボンナノチューブ束の撚り度が、50〜1000T/mであることを特徴とする、上記[1]又は[2]に記載のカーボンナノチューブ線材。
[4]前記複数のカーボンナノチューブ束の撚り度が、100〜400T/mであることを特徴とする、上記[3]に記載のカーボンナノチューブ線材。
[5]前記複数のカーボンナノチューブ束の撚り本数が10〜1000本であることを特徴とする、上記[1]〜[4]のいずれかに記載のカーボンナノチューブ線材。
[6]前記複数のカーボンナノチューブ束の撚り本数が50〜300本であることを特徴とする、上記[5]に記載のカーボンナノチューブ線材。
[7]前記めっき部は、銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択される金属或いはこれらの金属の少なくとも1種を含む合金で形成されることを特徴とする、上記[1]〜[6]のいずれかに記載のカーボンナノチューブ線材。
[8]異種元素がドープされていることを特徴とする、上記[1]〜[7]のいずれかに記載のカーボンナノチューブ線材。
[9]前記カーボンナノチューブ線材を構成するカーボンナノチューブが、2層又は3層の層構造を有することを特徴とする、上記[1]〜[8]のいずれかに記載のカーボンナノチューブ線材。
[10]複数のカーボンナノチューブ束を10〜3000T/mの撚り度で撚り合わせて構成されるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続されるはんだ部とを備えるカーボンナノチューブ線材接続構造体であって、
前記カーボンナノチューブ線材は、該カーボンナノチューブ線材の長手方向に沿って設けられ、前記カーボンナノチューブ線材の内部及び表層部に配されためっき部を備え、
前記カーボンナノチューブ線材の長手方向に垂直な方向の断面において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、前記複数のカーボンナノチューブ束の総数で除した値の比率が、70%以上であることを特徴とするカーボンナノチューブ線材接続構造体。
[11]複数のカーボンナノチューブ束で構成されるカーボンナノチューブ線材本体に無電界めっき処理を施して下地部を形成する工程と、
前記無電界めっき処理を施したカーボンナノチューブ線材本体に電界めっき処理を施して、前記カーボンナノチューブ線材本体の長手方向に沿って、該カーボンナノチューブ線材本体の内部及び表層部にめっき部を形成する工程と、
前記電界めっきを施す工程の後に、前記複数のカーボンナノチューブ束を10〜3000T/mの撚り度で撚り合わせる工程と、
を有することを特徴とする、カーボンナノチューブ線材の製造方法。
The gist structure of the present invention is as follows.
[1] A carbon nanotube wire rod formed by twisting a plurality of carbon nanotube bundles.
A plated portion provided along the longitudinal direction of the carbon nanotube wire rod and arranged inside and on the surface layer portion of the carbon nanotube wire rod is provided.
In the cross section in the direction perpendicular to the longitudinal direction of the carbon nanotube wire rod, the ratio of the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle to the total surface length of the carbon nanotube bundle is 0. The ratio of the value obtained by dividing the number of carbon nanotube bundles of 5 or more by the total number of the plurality of carbon nanotube bundles is 70% or more.
A carbon nanotube wire rod having a twist degree of 10 to 3000 T / m for the plurality of carbon nanotube bundles.
[2] The carbon nanotube wire rod according to the above [1], wherein the plated portion is three-dimensionally formed between a plurality of adjacent carbon nanotube bundles among the plurality of carbon nanotube bundles.
[3] The carbon nanotube wire rod according to the above [1] or [2], wherein the twist degree of the plurality of carbon nanotube bundles is 50 to 1000 T / m.
[4] The carbon nanotube wire rod according to the above [3], wherein the twist degree of the plurality of carbon nanotube bundles is 100 to 400 T / m.
[5] The carbon nanotube wire rod according to any one of [1] to [4] above, wherein the number of twists of the plurality of carbon nanotube bundles is 10 to 1000.
[6] The carbon nanotube wire rod according to the above [5], wherein the number of twists of the plurality of carbon nanotube bundles is 50 to 300.
[7] The plated portion includes copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), iron (Fe), chromium (Cr) and nickel ( The carbon nanotube wire rod according to any one of the above [1] to [6], which is formed of a metal selected from the group consisting of Ni) or an alloy containing at least one of these metals.
[8] The carbon nanotube wire rod according to any one of [1] to [7] above, which is doped with a different element.
[9] The carbon nanotube wire rod according to any one of [1] to [8] above, wherein the carbon nanotubes constituting the carbon nanotube wire rod have a two-layer or three-layer structure.
[10] A carbon nanotube wire connecting structure including a carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles at a twist degree of 10 to 3000 T / m and a solder portion connected to the carbon nanotube wire. hand,
The carbon nanotube wire rod is provided along the longitudinal direction of the carbon nanotube wire rod, and includes a plated portion arranged inside and on the surface layer portion of the carbon nanotube wire rod.
In the cross section in the direction perpendicular to the longitudinal direction of the carbon nanotube wire rod, the ratio of the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle to the total surface length of the carbon nanotube bundle is 0. A carbon nanotube wire rod connecting structure, wherein the ratio of the value obtained by dividing the number of carbon nanotube bundles of 5 or more by the total number of the plurality of carbon nanotube bundles is 70% or more.
[11] A step of forming a base portion by subjecting a carbon nanotube wire rod main body composed of a plurality of carbon nanotube bundles to a fieldless plating treatment.
A step of subjecting the carbon nanotube wire rod main body subjected to the electric field plating treatment to an electric field plating treatment to form a plated portion inside and on the surface layer portion of the carbon nanotube wire rod main body along the longitudinal direction of the carbon nanotube wire rod main body. ,
After the step of applying the electric field plating, a step of twisting the plurality of carbon nanotube bundles at a twist degree of 10 to 3000 T / m and a step of twisting the plurality of carbon nanotube bundles.
A method for producing a carbon nanotube wire rod, which comprises.

本発明によれば、カーボンナノチューブ線材における過電流の発生を低減することができる。 According to the present invention, it is possible to reduce the occurrence of overcurrent in the carbon nanotube wire rod.

本発明の実施形態に係るカーボンナノチューブ線材の構成の一例を示す模式図であり、(a)は斜視図、(b)は断面図である。It is a schematic diagram which shows an example of the structure of the carbon nanotube wire rod which concerns on embodiment of this invention, (a) is a perspective view, (b) is a sectional view. 本発明の実施形態に係るカーボンナノチューブ線材接続構造体の構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the carbon nanotube wire rod connection structure which concerns on embodiment of this invention.

以下、本発明の実施形態を、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<カーボンナノチューブ線材の構成>
図1は、本発明の実施形態に係るカーボンナノチューブ線材の構成の一例を示す模式図であり、(a)は斜視図、(b)はカーボンナノチューブ線材の長手方向に垂直な方向(径方向)の断面図である。なお、図1におけるカーボンナノチューブ線材は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図1のものに限られないものとする。
<Structure of carbon nanotube wire>
FIG. 1 is a schematic view showing an example of the configuration of the carbon nanotube wire rod according to the embodiment of the present invention. FIG. 1A is a perspective view, and FIG. 1B is a direction (diameter direction) perpendicular to the longitudinal direction of the carbon nanotube wire rod. It is a cross-sectional view of. The carbon nanotube wire rod in FIG. 1 shows an example thereof, and the shape, dimensions, etc. of each configuration according to the present invention are not limited to those in FIG.

図1(a)及び(b)に示すように、カーボンナノチューブ線材1(以下、CNT線材ともいう)は、複数のカーボンナノチューブ束11,11,・・・(以下、CNT束という)を撚り合わせて構成されるCNT線材であって、CNT線材1の長手方向に沿って設けられ、CNT線材1の内部1b及び表層部1aに配されためっき部12を備え、CNT線材1の長手方向に垂直な方向の断面(以下、単に「断面」ともいう)において、CNT束11(以下、CNT束を「素線」ともいう)の表面全長に対する、当該CNT束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるCNT束の個数を、複数のCNT束11,11,・・・の総数で除した値の比率が、70%以上である。 As shown in FIGS. 1A and 1B, the carbon nanotube wire rod 1 (hereinafter, also referred to as CNT wire rod) is obtained by twisting a plurality of carbon nanotube bundles 11, 11, ... (Hereinafter referred to as CNT bundles). The CNT wire rod is provided along the longitudinal direction of the CNT wire rod 1, includes a plating portion 12 arranged inside 1b of the CNT wire rod 1 and a surface layer portion 1a, and is perpendicular to the longitudinal direction of the CNT wire rod 1. A plated portion having a thickness of 1 μm or more on the surface of the CNT bundle with respect to the total surface length of the CNT bundle 11 (hereinafter, the CNT bundle is also referred to as “wire”) in the cross section in the above direction (hereinafter, also simply referred to as “cross section”). The ratio of the value obtained by dividing the number of CNT bundles in which the ratio of the lengths of the portions formed by is 0.5 or more by the total number of a plurality of CNT bundles 11, 11, ... Is 70% or more.

内部1b及び表層部1aに配されためっき部12は、具体的には、以下のように定義することができる。CNT線材1の断面において、めっき部12まで含めたCNT線材1の断面形状の重心をX、めっき部12を含まない各CNT束の断面形状の重心をYi、重心Xと重心Yiの双方を通る直線とめっき部12まで含めたCNT線材1の断面形状の外縁との交点をZiとしたとき、線分X−Yiの長さを線分X−Ziの長さで除した値が0.7以上となる領域に存在する各CNT束11aに形成されためっき部を表層部1aに配されためっき部とし、CNT線材1から各CNT束11aを除いた領域に存在する各CNT束11bに形成されためっき部を内部1bに配されためっき部とする。 Specifically, the plating portion 12 arranged on the inner portion 1b and the surface layer portion 1a can be defined as follows. In the cross section of the CNT wire rod 1, the center of gravity of the cross-sectional shape of the CNT wire rod 1 including the plated portion 12 is X, the center of gravity of the cross-sectional shape of each CNT bundle not including the plated portion 12 is Yi, and the center of gravity X and the center of gravity Yi are both passed through. When the intersection of the straight line and the outer edge of the cross-sectional shape of the CNT wire 1 including the plated portion 12 is Zi, the value obtained by dividing the length of the line segment X-Yi by the length of the line segment X-Zi is 0.7. The plated portion formed on each CNT bundle 11a existing in the above region is used as a plated portion arranged on the surface layer portion 1a, and is formed on each CNT bundle 11b existing in the region excluding each CNT bundle 11a from the CNT wire rod 1. The plated portion is used as the plated portion arranged inside 1b.

めっき部12は、複数のCNT束11,11,・・・のうちの隣接する複数のCNT束間に3次元的に形成されているのが好ましい。例えば、めっき部12は、複数のCNT束11,11,・・・間に連通して形成された3次元構造を有している。また、めっき部12の一部が、各CNT束11の外周面の一部又は全体にめっき層として配置されているのが好ましい。 The plating portion 12 is preferably formed three-dimensionally between a plurality of adjacent CNT bundles among the plurality of CNT bundles 11, 11, .... For example, the plating portion 12 has a three-dimensional structure formed by communicating between a plurality of CNT bundles 11, 11, .... Further, it is preferable that a part of the plating portion 12 is arranged as a plating layer on a part or the whole of the outer peripheral surface of each CNT bundle 11.

めっき部12は、好ましくはCNT線材1の長手方向に垂直な方向の断面において、CNT線材1の全体に偏り無く配されており、均一に分散して配置されている。図1では、めっき部12は、複数のCNT束11,11の表面に別個に形成されているが、表層部1aにおいて、めっき部12は、複数のCNT束11a,11a,・・・の表面に一体で形成されてもよい。また、めっき部12は、隣接する複数のCNT間、例えば隣接する2つのCNT11,11間に形成されるのが好ましい。更に、めっき部12は、隣接する複数のCNT間に、当該隣接する複数のCNTのいずれとも密着した状態で形成されるのがより好ましい。 The plated portions 12 are preferably evenly distributed over the entire CNT wire rod 1 in a cross section in a direction perpendicular to the longitudinal direction of the CNT wire rod 1, and are uniformly dispersed. In FIG. 1, the plating portion 12 is separately formed on the surfaces of the plurality of CNT bundles 11, 11, but in the surface layer portion 1a, the plating portion 12 is the surface of the plurality of CNT bundles 11a, 11a, ... It may be integrally formed with. Further, the plating portion 12 is preferably formed between a plurality of adjacent CNTs, for example, between two adjacent CNTs 11 and 11. Further, it is more preferable that the plating portion 12 is formed between the plurality of adjacent CNTs in a state of being in close contact with any of the plurality of adjacent CNTs.

めっき部12は、はんだとCNT線材1との相性の観点から銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択される金属或いはこれらの金属の少なくとも1種を含む合金で形成されているのが好ましく、銅又はスズで形成されているのがより好ましい。 The plated portion 12 includes copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), and iron (Fe) from the viewpoint of compatibility between the solder and the CNT wire rod 1. It is preferably formed of a metal selected from the group consisting of chromium (Cr) and nickel (Ni) or an alloy containing at least one of these metals, and more preferably formed of copper or tin. ..

CNT線材1は、めっき部12以外の他の金属部を有していてもよい。例えば、CNT線材1は、銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択される金属或いはこれらの金属の少なくとも1種を含む合金で形成されためっき部と、該めっき部の下地を構成し、鉄(Fe)、ニッケル(Ni)及びコバルト(Co)から選択される金属或いはこれらの金属の少なくとも1種を含む合金で形成された下地部とを備えてもよい。下地部は、好ましくはめっきで形成されており、この場合、上記めっき部とは異なる他のめっき部を構成する。また、CNT線材1にめっき部及び下地部の双方が形成される場合、下地部の一部が、CNT束11の外表面に形成され、めっき部の一部が、下地部の外表面に更に形成されるのが好ましい。このとき、CNT束11の重心から見て内側に位置する下地部を第1層、外側に位置するめっき部を第2層とすることができる。更に、CNT線材1にめっき部及び下地部の双方が形成される場合、上記下地部の複層が設けられてもよいし、上記めっき部の複層が形成されてもよい。CNT線材1或いはCNT束11に下地部が設けられることで、下地部とめっきとの濡れ性が向上し、CNT線材1とめっき部12との接着強度を向上させることができる。 The CNT wire rod 1 may have a metal portion other than the plating portion 12. For example, the CNT wire rod 1 includes copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), iron (Fe), chromium (Cr) and nickel (Ni). A metal selected from the group consisting of () or an alloy containing at least one of these metals forms a base for the plated portion, and iron (Fe), nickel (Ni) and cobalt (Co) are formed. ), Or a base portion formed of an alloy containing at least one of these metals. The base portion is preferably formed by plating, and in this case, another plating portion different from the plating portion is formed. Further, when both the plated portion and the base portion are formed on the CNT wire rod 1, a part of the base portion is formed on the outer surface of the CNT bundle 11, and a part of the plated portion is further formed on the outer surface of the base portion. It is preferably formed. At this time, the base portion located inside the CNT bundle 11 from the center of gravity can be used as the first layer, and the plated portion located outside can be used as the second layer. Further, when both the plated portion and the base portion are formed on the CNT wire rod 1, a plurality of layers of the base portion may be provided, or a plurality of layers of the plated portion may be formed. By providing the base portion on the CNT wire rod 1 or the CNT bundle 11, the wettability between the base portion and the plating can be improved, and the adhesive strength between the CNT wire rod 1 and the plating portion 12 can be improved.

めっき部12の厚さは、母材(CNT束)の保護及びコスト等を考慮し、0.3μm〜3.0μmである。めっき部と下地部の双方が形成される場合、めっき部と下地部の合計厚さは、0.3μm〜3.0μmである。このとき、CNT束の1層目に相当する下地部の材料は、CNT束との密着力に優れた金属、2層目に相当するめっき部の材料は、電気伝導の優れた金属であることが好ましい。 The thickness of the plated portion 12 is 0.3 μm to 3.0 μm in consideration of protection of the base material (CNT bundle) and cost. When both the plated portion and the base portion are formed, the total thickness of the plated portion and the base portion is 0.3 μm to 3.0 μm. At this time, the material of the base portion corresponding to the first layer of the CNT bundle is a metal having excellent adhesion to the CNT bundle, and the material of the plating portion corresponding to the second layer is a metal having excellent electrical conductivity. Is preferable.

複数のCNT束の撚り線において、めっきされていないCNT束同士では接触抵抗が大きく、素線間の導通がとりにくい。そのため、端末から電流を流す場合に、撚り線を構成する素線全部に電流が流れない場合があり、特に大電流を流した場合、特定の素線にのみ電流が流れ、素線の許容電流量を超え、素線が切断してしまう場合がある。 In the stranded wires of a plurality of CNT bundles, the contact resistance between the unplated CNT bundles is large, and it is difficult to obtain continuity between the strands. Therefore, when a current is passed from the terminal, the current may not flow through all the strands that make up the stranded wire. Especially when a large current is passed, the current flows only through a specific strand, and the allowable current of the strands The amount may be exceeded and the wire may be cut.

CNT束である素線がめっき処理されている場合、めっきされていない素線と素線同士に比べて、めっきされた素線同士では1/100程度、めっきされた素線とめっきされていない素線では1/10程度に接触抵抗が下がるため、素線同士の導通が向上し、素線全体に電流が流れるようになる。その結果、大電流を流した場合でも特定の素線にのみ過剰な電流が流れて素線が切断されることがない。 When the wires that are CNT bundles are plated, the plated wires are about 1/100 of the unplated wires and the wires, and the plated wires are not plated. Since the contact resistance of the strands is reduced to about 1/10, the continuity between the strands is improved and the current flows through the entire strands. As a result, even when a large current is passed, an excessive current flows only in a specific wire and the wire is not cut.

そこで、本実施形態では、CNT線材1の長手方向に垂直な方向の断面において、CNT束11の表面(外縁)全長に対する、当該CNT束の表面(外縁)に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるCNT束の個数を、複数のCNT束11,11,・・・の総数で除した値の比率が70%以上であり、75%以上が好ましく、80%以上がより好ましい。上記値の比率が70%未満であると、素線間の接触抵抗が十分下がらず、大きな電流が流れたときに特性の素線に過電流が生じやすい。上記値の比率の下限値が70%以上であることにより、CNT束間の接触抵抗を低減させ、過電流の発生を抑制することができる。また、上記値の比率の上限値は99%以下であることが好ましく、90%以下であることがより好ましい。特に、上記値の比率が90%以下であることにより、CNT線材1とはんだとの間に良好な接合性を付与しつつ、めっき部の増大に伴う線材の重量が増大を抑制し、電線の軽量化を図ることができる。 Therefore, in the present embodiment, in the cross section in the direction perpendicular to the longitudinal direction of the CNT wire rod 1, a plated portion having a thickness of 1 μm or more is formed on the surface (outer edge) of the CNT bundle with respect to the total length of the surface (outer edge) of the CNT bundle 11. The ratio of the value obtained by dividing the number of CNT bundles having a length ratio of 0.5 or more by the total number of a plurality of CNT bundles 11, 11, ... Is 70% or more, and 75% or more. Is preferable, and 80% or more is more preferable. If the ratio of the above values is less than 70%, the contact resistance between the strands does not decrease sufficiently, and an overcurrent is likely to occur in the characteristic strands when a large current flows. When the lower limit of the ratio of the above values is 70% or more, the contact resistance between the CNT bundles can be reduced and the occurrence of overcurrent can be suppressed. Further, the upper limit of the ratio of the above values is preferably 99% or less, and more preferably 90% or less. In particular, when the ratio of the above values is 90% or less, good bondability is imparted between the CNT wire rod 1 and the solder, and the weight of the wire rod increases due to the increase in the plated portion, and the weight of the wire rod increases. The weight can be reduced.

CNT線材1の長手方向に垂直な方向の断面において、CNT束11の表面(外縁)全長に対する、当該CNT束の表面(外縁)に厚さ1μm以上のめっき部が形成された部分の長さの比は、0.5以上であり、0.65以上がより好ましく、0.8以上が更に好ましい。上記比が0.5未満であると、はんだ付けの際にはんだの濡れ性が悪くなる傾向にある。さらに、めっきされていない素線同士での接触割合が多いため、素線同士の導通の向上が図れず、特定の素線に過電流が生じやすい。また、CNT束の表面(外縁)に形成されるめっき部の厚さが1μm未満であると、はんだ付けの際にめっきが剥がれてCNTが露出し、CNT線材1とはんだとの間に良好な接合性が付与されないおそれがあり、めっきの剥離に伴い、特定の部分において過電流が発生しやすくなる。 In the cross section in the direction perpendicular to the longitudinal direction of the CNT wire rod 1, the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface (outer edge) of the CNT bundle with respect to the total length of the surface (outer edge) of the CNT bundle 11. The ratio is 0.5 or more, more preferably 0.65 or more, still more preferably 0.8 or more. If the above ratio is less than 0.5, the wettability of the solder tends to deteriorate during soldering. Further, since the contact ratio between the unplated strands is high, the continuity between the strands cannot be improved, and an overcurrent is likely to occur in a specific strand. Further, if the thickness of the plated portion formed on the surface (outer edge) of the CNT bundle is less than 1 μm, the plating is peeled off during soldering and the CNT is exposed, which is good between the CNT wire 1 and the solder. Bondability may not be imparted, and overcurrent is likely to occur in a specific portion as the plating peels off.

各CNT束の断面が円形であるか或いは円相当直径が算出可能である場合、CNT線材1の長手方向に垂直な方向の断面において、CNT束11の外周全長に対する、当該CNT束の外周に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、複数のカーボンナノチューブ束11,11,・・・の総数で除した値の比率が、70%以上99%以下であることが好ましく、70%以上90%以下であることがより好ましい。上記値の比率が70%未満であると、素線間の接触抵抗が十分下がらず、大きな電流が流れたときに特性の素線に過電流が生じやすい傾向にある。また、90%を超えると、線材の重量が重くなり、電線の軽量化が難しくなる傾向にある。 When the cross section of each CNT bundle is circular or the equivalent diameter of the circle can be calculated, the thickness of the outer circumference of the CNT bundle is thicker than the total outer circumference of the CNT bundle 11 in the cross section in the direction perpendicular to the longitudinal direction of the CNT wire 1. The ratio of the number of carbon nanotube bundles in which the ratio of the lengths of the portions formed with plated portions of 1 μm or more is 0.5 or more divided by the total number of the plurality of carbon nanotube bundles 11, 11, ... However, it is preferably 70% or more and 99% or less, and more preferably 70% or more and 90% or less. If the ratio of the above values is less than 70%, the contact resistance between the strands does not decrease sufficiently, and an overcurrent tends to occur in the characteristic strands when a large current flows. On the other hand, if it exceeds 90%, the weight of the wire becomes heavy, and it tends to be difficult to reduce the weight of the electric wire.

めっき部12は、CNT線材1の長手方向の全長の一部に形成されてもよいし、CNT線材1の長手方向の全長に亘って形成されてもよい。このめっき部12では、CNT束11の外縁全長に対する、当該CNT束の表面(外縁)に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるCNT束の個数を、複数のCNT束11,11,・・・の総数で除した値の比率が、CNT線材1の長手方向に関してばらつきが小さいのが好ましい。例えば、長さ1.0mのCNT線材を概ね10箇所で切断して各断面をSEMで観察し、上述の算出方法を用いて各CNT束の上記値を算出する。得られた複数の上記比の値を平均することで、めっき部12の長手方向における上記値の平均値を得ることができる。また、10箇所で得られた上記値の標準偏差を求めることで、CNT線材1の長手方向に関する上記値のばらつきを確認することができる。 The plated portion 12 may be formed on a part of the entire length of the CNT wire 1 in the longitudinal direction, or may be formed over the entire length of the CNT wire 1 in the longitudinal direction. In the plated portion 12, the ratio of the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface (outer edge) of the CNT bundle to the total length of the outer edge of the CNT bundle 11 is 0.5 or more. It is preferable that the ratio of the value obtained by dividing the number by the total number of the plurality of CNT bundles 11, 11, ... Is small in the longitudinal direction of the CNT wire 1. For example, a CNT wire having a length of 1.0 m is cut at approximately 10 points, each cross section is observed by SEM, and the above value of each CNT bundle is calculated using the above calculation method. By averaging the obtained values of the plurality of the above ratios, the average value of the above values in the longitudinal direction of the plating portion 12 can be obtained. Further, by obtaining the standard deviation of the above values obtained at 10 points, it is possible to confirm the variation of the above values in the longitudinal direction of the CNT wire rod 1.

CNT線材1は、1層以上の層構造を有するCNTの複数が束ねられてなるCNT束11同士を撚り合わせて構成された撚り線である。撚り線としたCNT線材1の円相当直径は、例えば、0.01mm〜5mmである。 The CNT wire rod 1 is a stranded wire formed by twisting CNT bundles 11 formed by bundling a plurality of CNTs having a layer structure of one or more layers. The circle-equivalent diameter of the CNT wire rod 1 as a stranded wire is, for example, 0.01 mm to 5 mm.

撚り線としたCNT線材1において、複数のCNT束11(CNT線材1)の撚り度は、複数のCNT束11を撚り合わせた際のCNT線材1の単位長さ当たりの巻き数で表される。すなわち、撚り度は、複数のCNT束11のひねった回数(T)をCNT線材1の長さ(m)で除した値(単位:T/m)で表すことができる。複数のCNT束11の撚り度は、10〜3000T/mであり、50〜1000T/mであることが好ましく、100〜400T/mであることがより好ましい。撚り度が小さすぎると、素線同士の接触が弱いため、CNT線材に大きな電流が流れた場合、CNT線材にめっきされてない部分があると、他の線材に電流が逃げられないため、特定の素線に過電流を生じやすい。そのため、特定の素線への過電流の発生を抑制させる観点から、複数のCNT束11の撚り度の下限値は10T/m以上であり、50T/m以上であることが好ましく、100T/m以上であることがより好ましい。また、撚り度が大きすぎると、はんだがCNT線材1になじみにくく、良好な接合性が得られない。CNT線材1に良好な接合性を付与させる観点から、撚り度の上限値は3000T/m以下であり、1000T/m以下であることが好ましく、400T/m以下であることがさらに好ましい。このように、撚り度が10〜3000T/mであることにより、特定の素線への過電流の発生を抑制できると共に、はんだ付けの際にCNT線材1とはんだとの間に良好な接合性を付与させることができ、特に、撚り度が100〜400T/mであることにより、特定の素線への過電流の発生を抑制しやすい上、優れた接合性を示す。また、複数のCNT束11の撚り本数は、10〜1000本であることが好ましく、50〜300本であることがより好ましい。撚線の本数が多い程、めっきがCNT線材1に浸み込みやすく、接合性を向上させることができる。そのため、接合性の向上と生産性のバランスの観点から、複数のCNT束11の撚り本数は10〜1000本であることが好ましい。 In the CNT wire 1 as a stranded wire, the degree of twist of the plurality of CNT bundles 11 (CNT wire 1) is represented by the number of turns per unit length of the CNT wire 1 when the plurality of CNT bundles 11 are twisted together. .. That is, the degree of twist can be expressed by a value (unit: T / m) obtained by dividing the number of twists (T) of the plurality of CNT bundles 11 by the length (m) of the CNT wire rod 1. The twist degree of the plurality of CNT bundles 11 is 10 to 3000 T / m, preferably 50 to 1000 T / m, and more preferably 100 to 400 T / m. If the degree of twist is too small, the contact between the strands is weak, so if a large current flows through the CNT wire, if there is an unplated part in the CNT wire, the current cannot escape to other wires. Overcurrent is likely to occur in the wire. Therefore, from the viewpoint of suppressing the generation of overcurrent to a specific wire, the lower limit of the twist degree of the plurality of CNT bundles 11 is 10 T / m or more, preferably 50 T / m or more, preferably 100 T / m. The above is more preferable. Further, if the degree of twist is too large, the solder does not easily fit into the CNT wire rod 1, and good bondability cannot be obtained. From the viewpoint of imparting good bondability to the CNT wire rod 1, the upper limit of the twist degree is 3000 T / m or less, preferably 1000 T / m or less, and more preferably 400 T / m or less. As described above, when the twist degree is 10 to 3000 T / m, it is possible to suppress the generation of overcurrent to a specific wire, and at the time of soldering, good bondability between the CNT wire 1 and the solder is obtained. In particular, when the degree of twist is 100 to 400 T / m, it is easy to suppress the occurrence of an overcurrent to a specific wire, and it exhibits excellent bondability. The number of twists of the plurality of CNT bundles 11 is preferably 10 to 1000, more preferably 50 to 300. As the number of stranded wires increases, the plating easily penetrates into the CNT wire rod 1, and the bondability can be improved. Therefore, from the viewpoint of improving bondability and balancing productivity, the number of twists of the plurality of CNT bundles 11 is preferably 10 to 1000.

CNT線材1は、複数のCNTが纏められた束状体となっている。CNT線材1は、異種元素がドープされていてもよい。この場合、CNT束11に異種元素がドープされてなるカーボンナノチューブ複合体の複数を撚り合わせて構成されてもよい。 The CNT wire rod 1 is a bundle of a plurality of CNTs. The CNT wire rod 1 may be doped with a different element. In this case, a plurality of carbon nanotube composites obtained by doping the CNT bundle 11 with different elements may be twisted together.

CNT線材1を構成するCNTは、単層構造又は複層構造を有する筒状体であり、それぞれSWNT(Single-walled nanotube)、MWNT(Multi-walled nanotube)と呼ばれる。例えば、2層構造を有するCNTは、六角形格子の網目構造を有する2つの筒状体が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。 The CNTs constituting the CNT wire rod 1 are tubular bodies having a single-walled structure or a multi-walled structure, and are called SWNTs (Single-walled nanotubes) and MWNTs (Multi-walled nanotubes), respectively. For example, a CNT having a two-walled structure is a three-dimensional network structure in which two tubular bodies having a network structure of a hexagonal lattice are arranged substantially coaxially, and is called a DWNT (Double-walled nanotube). The hexagonal lattice, which is a constituent unit, is a six-membered ring in which carbon atoms are arranged at its vertices, and these are continuously bonded adjacent to other six-membered rings.

CNTの性質は、上記のような筒状体のカイラリティ(chirality)に依存する。カイラリティは、アームチェア型、ジグザグ型、及びそれ以外のカイラル型に大別され、アームチェア型は金属性、カイラル型は半導体性、ジグザグ型はその中間の挙動を示す。よってCNTの導電性はいずれのカイラリティを有するかによって大きく異なり、CNT集合体の導電性を向上させるには、金属性の挙動を示すアームチェア型のCNTの割合を増大させることが重要とされてきた。一方、半導体性を有するカイラル型のCNTに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、金属的挙動を示すことが分かっている。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性CNTに異種元素をドープした場合には、導電性の低下を引き起こす。 The properties of CNTs depend on the chirality of the tubular body as described above. Chirality is roughly classified into armchair type, zigzag type, and other chiral types. The armchair type is metallic, the chiral type is semiconducting, and the zigzag type is intermediate. Therefore, the conductivity of CNTs varies greatly depending on which chirality they have, and in order to improve the conductivity of CNT aggregates, it has been important to increase the proportion of armchair-type CNTs that exhibit metallic behavior. It was. On the other hand, it is known that by doping a chiral type CNT having a semiconductor property with a substance having an electron donating property or an electron accepting property (dissimilar element), it exhibits metallic behavior. Further, in a general metal, by doping a dissimilar element, conduction electrons are scattered inside the metal and the conductivity is lowered. Similarly, when a dissimilar element is doped in a metallic CNT, the dissimilar element is doped. , Causes a decrease in conductivity.

このように、金属性CNT及び半導体性CNTへのドーピング効果は、導電性の観点からはトレードオフの関係にあると言えることから、理論的には金属性CNTと半導体性CNTとを別個に作製し、半導体性CNTにのみドーピング処理を施した後、これらを組み合わせることが望ましい。しかし、現状の製法技術では金属性CNTと半導体性CNTとを選択的に作り分けることは困難であり、金属性CNTと半導体性CNTが混在した状態で作製される。このため、金属性CNTと半導体性CNTの混合物からなるCNT線材の導電性を向上させるには、異種元素・分子によるドーピング処理が効果的となるCNT構造を選択することが好ましい。 As described above, since it can be said that the doping effect on the metallic CNT and the semiconductor CNT has a trade-off relationship from the viewpoint of conductivity, the metallic CNT and the semiconductor CNT are theoretically manufactured separately. However, it is desirable to combine these after doping the semiconductor CNTs only. However, it is difficult to selectively produce metallic CNTs and semiconducting CNTs with the current manufacturing method technology, and metallic CNTs and semiconducting CNTs are produced in a mixed state. Therefore, in order to improve the conductivity of the CNT wire rod composed of a mixture of metallic CNT and semiconductor CNT, it is preferable to select a CNT structure in which doping treatment with different elements / molecules is effective.

CNT線材1を構成するCNTは、2層又は3層の層構造を有するのが好ましい。具体的には、CNT線材1を構成するCNT束11において、複数のCNTの個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が50%以上であるのが好ましく、75%以上であるのがより好ましい。すなわち、一のCNT束を構成する全CNTの総数をNTOTAL、上記全CNTのうち2層構造を有するCNT(2)の数の和をNCNT(2)、上記全CNTのうち3層構造を有するCNT(3)の数の和をNCNT(3)としたとき、下記式(1)で表すことができる。
{(NCNT(2)+NCNT(3))/NTOTAL}×100(%)≧50(%) ・・・(1)
The CNTs constituting the CNT wire rod 1 preferably have a two-layer or three-layer structure. Specifically, in the CNT bundle 11 constituting the CNT wire rod 1, the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure to the number of a plurality of CNTs is preferably 50% or more, and is 75. More preferably, it is% or more. That is, the total number of all CNTs constituting one CNT bundle is N TOTAL , the sum of the number of CNTs (2) having a two-walled structure among all the CNTs is N CNT (2) , and the three-walled structure among all the CNTs. When the sum of the numbers of CNTs (3) having is N CNT (3) , it can be expressed by the following equation (1).
{(N CNT (2) + N CNT (3) ) / N TOTAL } × 100 (%) ≧ 50 (%) ・ ・ ・ (1)

2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高い。また、ドーパントは、CNTの最内層の内部、もしくは複数のCNTで形成されるCNT間の隙間に導入される。CNTの層間距離はグラファイトの層間距離である0.335nmと同等であり、多層CNTの場合その層間にドーパントが入り込むことはサイズ的に困難である。このことからドーピング効果はCNTの内部および外部にドーパントが導入されることで発現するが、多層CNTの場合は最外層および最内層に接していない内部に位置するチューブのドープ効果が発現しにくくなる。以上のような理由により、複層構造のCNTにそれぞれドーピング処理を施した際には、2層構造又は3層構造を有するCNTでのドーピング効果が最も高い。また、ドーパントは、強い求電子性もしくは求核性を示す、反応性の高い試薬であることが多い。単層構造のCNTは多層よりも剛性が弱く、耐薬品性に劣るためにドーピング処理を施すと、CNT自体の構造が破壊されてしまうことがある。よって、CNT束に含まれる2層構造又は3層構造を有するCNTの個数に着目する。また、2層又は3層構造のCNTの個数の和の比率が50%未満であると、単層構造或いは4層以上の複層構造を有するCNTの比率が高くなり、CNT集合体全体としてドーピング効果が小さくなり、高導電率が得にくくなる。よって、2層又は3層構造のCNTの個数の和の比率を上記範囲内の値とすることが好ましい。 A CNT having a small number of layers, such as a two-layer structure or a three-layer structure, has relatively higher conductivity than a CNT having a larger number of layers. Further, the dopant is introduced inside the innermost layer of CNTs or in a gap between CNTs formed by a plurality of CNTs. The interlayer distance of CNTs is equivalent to 0.335 nm, which is the interlayer distance of graphite, and in the case of multi-walled CNTs, it is difficult for the dopant to enter between the interlayers in terms of size. From this, the doping effect is exhibited by introducing the dopant inside and outside the CNT, but in the case of the multi-walled CNT, the doping effect of the tube located inside not in contact with the outermost layer and the innermost layer is less likely to be exhibited. .. For the above reasons, when the CNTs having a multi-layer structure are individually doped, the doping effect of the CNTs having a two-layer structure or a three-layer structure is the highest. In addition, the dopant is often a highly reactive reagent that exhibits strong electrophile or nucleophile. A CNT having a single-walled structure has a weaker rigidity than a multi-walled one, and is inferior in chemical resistance. Therefore, when doping treatment is performed, the structure of the CNT itself may be destroyed. Therefore, attention is paid to the number of CNTs having a two-layer structure or a three-layer structure contained in the CNT bundle. Further, when the ratio of the sum of the number of CNTs having a two-layer or three-layer structure is less than 50%, the ratio of CNTs having a single-walled structure or a multi-walled structure having four or more layers becomes high, and the CNT aggregate as a whole is doped. The effect is reduced and it becomes difficult to obtain high conductivity. Therefore, it is preferable to set the ratio of the sum of the number of CNTs having a two-layer or three-layer structure to a value within the above range.

CNTにドープされるドーパントは、導電性が向上すれば特に限定はないが、例えば硝酸、硫酸、ヨウ素、臭素、カリウム、ナトリウム、ホウ素及び窒素からなる群から選択される1つ以上の異種元素もしくは分子である。 The dopant doped in CNT is not particularly limited as long as the conductivity is improved, and is, for example, one or more dissimilar elements selected from the group consisting of nitric acid, sulfuric acid, iodine, bromine, potassium, sodium, boron and nitrogen. It is a molecule.

また、CNT束11を構成するCNTの最外層の外径は5.0nm以下であるのが好ましい。CNT束11を構成するCNTの最外層の外径が5.0nmを超えると、CNT間および最内層の隙間に起因する空孔率が大きくなり、導電性が低下してしまうため、好ましくない。 Further, the outer diameter of the outermost layer of the CNTs constituting the CNT bundle 11 is preferably 5.0 nm or less. If the outer diameter of the outermost layer of the CNTs constituting the CNT bundle 11 exceeds 5.0 nm, the porosity due to the gaps between the CNTs and the innermost layer increases and the conductivity decreases, which is not preferable.

CNT線材1は、線材全体の強度及び導電性の観点から、その当該線材に分散配置された他の金属部材を有していてもよい。他の金属部材は、例えば長尺状の線材或いは粒子であり、このような形状を有する他の金属部材がCNTに混合されている。上記他の金属部材の金属は、例えば銅、銅合金、アルミニウム、アルミニウム合金を主成分とする材料である。 The CNT wire rod 1 may have other metal members dispersedly arranged on the wire rod from the viewpoint of the strength and conductivity of the entire wire rod. Other metal members are, for example, long wire rods or particles, and other metal members having such a shape are mixed with CNT. The metal of the other metal member is, for example, a material containing copper, a copper alloy, aluminum, or an aluminum alloy as a main component.

<カーボンナノチューブ線材の製造方法>
本実施形態に係るカーボンナノチューブ線材の製造方法は、複数のカーボンナノチューブ束で構成されるカーボンナノチューブ線材本体に無電界めっき処理を施す工程と、上記無電界めっき処理を施したカーボンナノチューブ線材本体に電界めっき処理を施して、上記カーボンナノチューブ線材本体の長手方向に沿って、該カーボンナノチューブ線材本体の内部及び表層部にめっき部を形成する工程と、電界めっきを施す工程の後に、複数のカーボンナノチューブ束を10〜3000T/mの撚り度で撚り合わせる工程と、を有する。
<Manufacturing method of carbon nanotube wire>
The method for producing the carbon nanotube wire rod according to the present embodiment includes a step of subjecting the carbon nanotube wire rod main body composed of a plurality of carbon nanotube bundles to an electric field plating treatment and an electric field on the carbon nanotube wire rod main body subjected to the electric field plating treatment. After the step of performing plating treatment to form a plated portion inside and the surface layer portion of the carbon nanotube wire rod main body along the longitudinal direction of the carbon nanotube wire rod main body and the step of performing electroplating, a plurality of carbon nanotube bundles It has a step of twisting with a twist degree of 10 to 3000 T / m.

具体的には、先ず、複数のCNT束で構成されるCNT線材本体を準備し、鉄(Fe)、ニッケル(Ni)及びコバルト(Co)から選択される金属或いはこれらの金属の少なくとも1種を含む合金を含有するめっき浴に所定時間浸漬して、CNT線材本体にめっき部の下地となる下地部を形成する。これにより、CNT線材の内部及び表層部に下地部が形成される。CNT線材本体に下地部を形成することで、CNT線材本体とめっき部との接着性を向上できる点で優れている。 Specifically, first, a CNT wire rod main body composed of a plurality of CNT bundles is prepared, and a metal selected from iron (Fe), nickel (Ni) and cobalt (Co) or at least one of these metals is used. Immerse in a plating bath containing the containing alloy for a predetermined time to form a base portion to be a base of the plating portion on the CNT wire rod main body. As a result, a base portion is formed inside the CNT wire rod and on the surface layer portion. By forming the base portion on the CNT wire rod main body, it is excellent in that the adhesiveness between the CNT wire rod main body and the plated portion can be improved.

次に、下地部が形成されたCNT線材本体を、銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択される金属或いはこれらの金属の少なくとも1種を含む合金を含有するめっき浴に所定時間浸漬して、CNT線材本体にめっき部を形成する。これにより、CNT線材の内部及び表層部にめっき部が形成される。本電界めっき処理により、CNT線材の内部及び表層部にめっき部が形成される。 Next, the CNT wire rod main body on which the base portion is formed is subjected to copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), iron (Fe), and chromium. A plated portion is formed on the CNT wire rod main body by immersing it in a plating bath containing a metal selected from the group consisting of (Cr) and nickel (Ni) or an alloy containing at least one of these metals for a predetermined time. As a result, a plated portion is formed inside the CNT wire rod and on the surface layer portion. By this electric field plating treatment, a plated portion is formed inside the CNT wire rod and on the surface layer portion.

上記無電界めっき或いは電界めっき処理によって形成されるめっき部の深さ方向の割合、すなわちCNT線材の外縁から重心までの長さに対するめっき部の厚さの比は、複数のCNT束の撚り度に依存する。めっき部の深さ方向の割合を好ましい範囲内の値にするには、上記無電界めっきを施す工程の後に、複数のCNT束を所定の撚り度に撚り合わせる工程を行うことが好ましい。無電界めっき処理を撚り線化する前の複数のCNT束に行うことで、めっき浴のめっきが複数のCNT束間を介してCNT線材本体全体に浸透しやすくなり、CNT線材の表層部に位置するCNT束に加えて、CNT線材の内部に位置するCNT束にもめっき部を形成することができる。このような工程により、内部及び表層部の両方にめっき部12を形成することができる。 The ratio in the depth direction of the plated portion formed by the above-mentioned electroless plating or electroplating treatment, that is, the ratio of the thickness of the plated portion to the length from the outer edge of the CNT wire to the center of gravity is determined by the twist degree of the plurality of CNT bundles. Dependent. In order to set the ratio of the plated portion in the depth direction to a value within a preferable range, it is preferable to perform a step of twisting a plurality of CNT bundles to a predetermined twist degree after the step of performing the electroless plating. By performing the electroless plating treatment on a plurality of CNT bundles before being stranded, the plating in the plating bath can easily permeate the entire CNT wire body through the plurality of CNT bundles, and is located on the surface layer of the CNT wire. In addition to the CNT bundle to be formed, a plated portion can be formed on the CNT bundle located inside the CNT wire rod. By such a step, the plating portion 12 can be formed both inside and on the surface layer portion.

次いで、下地部及びめっき部が形成された複数のカーボンナノチューブ束を撚り合わせる。これにより、内部1b及び表層部1aの両方に配されためっき部12を備えるCNT線材1が得られる。 Next, a plurality of carbon nanotube bundles in which the base portion and the plating portion are formed are twisted together. As a result, the CNT wire rod 1 having the plating portions 12 arranged on both the inner portion 1b and the surface layer portion 1a can be obtained.

<カーボンナノチューブ線材接続構造体の構成>
図2は、本実施形態に係るカーボンナノチューブ線材接続構造体の構成の一例を示す断面図である。なお、図2におけるカーボンナノチューブ線材接続構造体は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図2のものに限られないものとする。
<Structure of carbon nanotube wire connection structure>
FIG. 2 is a cross-sectional view showing an example of the configuration of the carbon nanotube wire rod connecting structure according to the present embodiment. The carbon nanotube wire rod connecting structure in FIG. 2 shows an example thereof, and the shape, dimensions, etc. of each configuration according to the present invention are not limited to those in FIG.

図2に示すように、カーボンナノチューブ線材接続構造体10(以下、CNT線材接続構造体ともいう)は、複数のCNT束11,11,・・・を10〜3000T/mの撚り度で撚り合わせて構成される上記のCNT線材1と、CNT線材1に接続されるはんだ部2とを備える。はんだ部2は、めっき部12を介してCNT線材1と接続されると共に、銅板などの被接続部材20と接続されている。 As shown in FIG. 2, the carbon nanotube wire connecting structure 10 (hereinafter, also referred to as a CNT wire connecting structure) twists a plurality of CNT bundles 11, 11, ... With a twist degree of 10 to 3000 T / m. Includes the above-mentioned CNT wire 1 and a solder portion 2 connected to the CNT wire 1. The solder portion 2 is connected to the CNT wire rod 1 via the plating portion 12 and is also connected to the connected member 20 such as a copper plate.

はんだ部2は、例えば、銅(Cu)、スズ(Sn)、鉛(Zn)、銀(Ag)、ニッケル(Ni)、クロム(Cr)から選択される金属或いはこれらの金属の少なくとも1種を含む合金で形成されている。はんだ部2は、例えばリフロー方式や、糸状はんだとはんだごてを用いた方法で形成することができる。 The solder portion 2 is, for example, a metal selected from copper (Cu), tin (Sn), lead (Zn), silver (Ag), nickel (Ni), chromium (Cr), or at least one of these metals. It is made of a containing alloy. The solder portion 2 can be formed by, for example, a reflow method or a method using a thread-like solder and a soldering iron.

はんだ部2は、めっき部12と同様、CNT線材1の長手方向に沿って設けられ、CNT線材1の内部1b及び表層部1aに配される。めっき部12は、上述のように、カーボンナノチューブ線材の長手方向に垂直な方向の断面において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、複数のカーボンナノチューブ束の総数で除した値の比率が、70%以上である。そして、はんだ部2は、CNT線材1の内部1b及び表層部1aに上述の割合で配されためっき部12と接合されている。これにより、はんだ部2とめっき部12とが良好に接着し、はんだ部2とCNT線材1との機械的接続及び電気的接続が確保される。 Like the plating portion 12, the solder portion 2 is provided along the longitudinal direction of the CNT wire rod 1, and is arranged in the inner 1b and the surface layer portion 1a of the CNT wire rod 1. As described above, in the plated portion 12, a plated portion having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle with respect to the total surface length of the carbon nanotube bundle in the cross section in the direction perpendicular to the longitudinal direction of the carbon nanotube wire rod. The ratio of the value obtained by dividing the number of carbon nanotube bundles having a portion length ratio of 0.5 or more by the total number of a plurality of carbon nanotube bundles is 70% or more. Then, the solder portion 2 is joined to the plating portion 12 arranged at the above ratio in the inner 1b of the CNT wire rod 1 and the surface layer portion 1a. As a result, the solder portion 2 and the plating portion 12 are well adhered to each other, and the mechanical connection and the electrical connection between the solder portion 2 and the CNT wire rod 1 are secured.

図1では、はんだ部2は、CNT線材1の長手方向に垂直な方向の断面において、CNT線材1の表層部1aに配されためっき部12の表面全体に形成されているが、CNT線材1との良好な接続性が確保できる範囲で、めっき部12の一部に形成されていてもよい。また、はんだ部2は、CNT線材1の表層部1aの表面全体に形成されているが、CNT線材1との良好な接続性が確保できる範囲で、CNT線材1の表層部1aの一部に形成されていてもよい。 In FIG. 1, the solder portion 2 is formed on the entire surface of the plated portion 12 arranged on the surface layer portion 1a of the CNT wire rod 1 in the cross section in the direction perpendicular to the longitudinal direction of the CNT wire rod 1, but the CNT wire rod 1 It may be formed in a part of the plating portion 12 as long as good connectivity with the solder can be ensured. Further, the solder portion 2 is formed on the entire surface of the surface layer portion 1a of the CNT wire rod 1, but is formed on a part of the surface layer portion 1a of the CNT wire rod 1 within a range in which good connectivity with the CNT wire rod 1 can be ensured. It may be formed.

上述したように、本実施形態によれば、複数のCNT束11,11,・・・が所定の撚り度で撚り合わされたCNT線材1は、該CNT線材の長手方向に沿って設けられ、且つCNT線材1の内部1b及び表層部1aに配されためっき部12を備え、CNT線材1の長手方向に垂直な方向の断面において、CNT束11の表面全長に対する、当該CNT束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、複数のCNT束11,11,・・・の総数で除した値の比率が70%以上であるので、めっき部12の介在によってCNT束間の接触抵抗が低減し、CNT線材1を構成する複数のCNT束11,11,・・・のほぼ全体に電流を流すことができる。これにより、CNT束間の接触抵抗を低減させ、過電流の発生を抑制することができる。 As described above, according to the present embodiment, the CNT wire rod 1 in which a plurality of CNT bundles 11, 11, ... Are twisted together at a predetermined twist degree is provided along the longitudinal direction of the CNT wire rod and is provided. A plated portion 12 arranged on the inner 1b of the CNT wire rod 1 and the surface layer portion 1a is provided, and the thickness of the surface of the CNT bundle is relative to the total surface length of the CNT bundle 11 in the cross section in the direction perpendicular to the longitudinal direction of the CNT wire 1. The ratio of the value obtained by dividing the number of carbon nanotube bundles in which the ratio of the lengths of the portions where the plated portions of 1 μm or more are formed is 0.5 or more by the total number of a plurality of CNT bundles 11, 11, ... Is 70. Since it is more than%, the contact resistance between the CNT bundles is reduced by the intervention of the plating portion 12, and the current can flow through almost the entire CNT bundles 11, 11, ... Consisting of the CNT wire rod 1. As a result, the contact resistance between the CNT bundles can be reduced and the occurrence of overcurrent can be suppressed.

また、CNT線材接続構造体10が、複数のCNT束11,11,・・・を所定の撚り度で撚り合わせて構成されるCNT線材1と、CNT線材1に接続されるはんだ部2とを備え、はんだ部2が、めっき部12を介してCNT線材1と接続されているので、CNT線材1と被接続部材20との良好な接続を実現することが可能となる。 Further, the CNT wire connecting structure 10 comprises a CNT wire 1 formed by twisting a plurality of CNT bundles 11, 11, ... With a predetermined twist degree, and a solder portion 2 connected to the CNT wire 1. Since the solder portion 2 is connected to the CNT wire rod 1 via the plating portion 12, it is possible to realize a good connection between the CNT wire rod 1 and the connected member 20.

以上、本発明の実施形態に係るCNT線材、CNT接続構造体およびその製造方法について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。 Although the CNT wire rod, the CNT connection structure and the manufacturing method thereof according to the embodiment of the present invention have been described above, the present invention is not limited to the described embodiment, and various types are based on the technical idea of the present invention. It can be transformed and changed.

以下、本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described.

(実施例1〜6)
先ず、浮遊触媒気相成長(FCCVD)法を用い、電気炉によって1300℃に加熱された、内径φ60mm、長さ1600mmのアルミナ管内部に、炭素源であるデカヒドロナフタレン、触媒であるフェロセン、及び反応促進剤であるチオフェンを、体積比率にてそれぞれ100:4:1で含む原料溶液Lを、スプレー噴霧により供給した。キャリアガスは、水素を9.5L/minで供給した。得られたCNTを回収機にてシート状に回収し、これらを集めてCNT集合体を製造し、更にCNT集合体を束ねてCNT線材を製造し、大気下において500℃に加熱し、さらに酸処理を施すことによって高純度化を行った。
(Examples 1 to 6)
First, using the floating catalytic vapor phase growth (FCCVD) method, decahydronaphthalene as a carbon source, ferrocene as a catalyst, and ferrocene as a catalyst are inside an alumina tube having an inner diameter of φ60 mm and a length of 1600 mm heated to 1300 ° C. by an electric furnace. A raw material solution L containing thiophene, which is a reaction accelerator, in a volume ratio of 100: 4: 1 was supplied by spray spraying. As the carrier gas, hydrogen was supplied at 9.5 L / min. The obtained CNTs are collected in a sheet form by a recovery machine, and these are collected to produce a CNT aggregate, and the CNT aggregates are bundled to produce a CNT wire rod, which is heated to 500 ° C. in the air, and further acid. High purity was achieved by applying the treatment.

得られたCNT50mgとコール酸ナトリウム450mgを24.5gの水に加え超音波攪拌装置を用いて30分攪拌した後、超音波ホモジナイザーを用いて分散液とした。続いて、内径1mmの注入ノズルを介して、前記CNT分散液をイソプロピルアルコール中に注入し、糸状に凝集させ、さらに乾燥させることで、円相当直径が0.1mmであるCNTからなる3mの素線(CNT束)を得た。同様の操作を行い、合計18本の素線を作製した。 50 mg of the obtained CNT and 450 mg of sodium cholic acid were added to 24.5 g of water and stirred for 30 minutes using an ultrasonic stirrer, and then a dispersion was prepared using an ultrasonic homogenizer. Subsequently, the CNT dispersion liquid is injected into isopropyl alcohol via an injection nozzle having an inner diameter of 1 mm, aggregated into a thread, and further dried to form a 3 m element composed of CNTs having a diameter equivalent to a circle of 0.1 mm. A wire (CNT bundle) was obtained. The same operation was performed to prepare a total of 18 strands.

得られた各素線を硫酸銅、ホルマリン、ロシェル塩からなるめっき液に浸漬し、無電解銅めっきした。その後、硫酸銅と硫酸の水溶液からなるめっき液にCNT線材本体を浸漬し、1Aで50分電解めっきすることで、電解めっきされた18本の素線を作製した。続いて銅めっきされた18本の素線を表1に示す撚り度で撚り、CNT線材本体に電界めっき処理が施されたCNT線材を作製した。 Each of the obtained strands was immersed in a plating solution composed of copper sulfate, formalin, and Rochelle salt, and electroless copper plating was performed. Then, the CNT wire rod main body was immersed in a plating solution composed of an aqueous solution of copper sulfate and sulfuric acid, and electroplated at 1A for 50 minutes to prepare 18 electroplated strands. Subsequently, 18 copper-plated strands were twisted at the twist degrees shown in Table 1 to prepare a CNT wire having an electric field plating treatment on the main body of the CNT wire.

(実施例7〜12)
めっき処理として、無電解銅めっきの代わりに、塩化スズからなるめっき液を用いた無電解スズめっきを行った以外は実施例1〜6と同様の方法を行い、CNT線材本体に電界めっき処理が施されたCNT線材を作製した。
(Examples 7 to 12)
As the plating treatment, the same method as in Examples 1 to 6 was performed except that electroless tin plating using a plating solution made of tin chloride was performed instead of electroless copper plating, and the CNT wire rod body was subjected to electroplating treatment. The applied CNT wire rod was produced.

(実施例13〜17)
CNT線材本体として、円相当直径が0.05mmであるCNTからなる素線を72本作製し、72本の素線を表1に示す撚り度で撚り合わせたCNT線材本体を用いた以外は実施例1〜5と同様の方法を行い、CNT線材本体に電界めっき処理が施されたCNT線材を作製した。
(Examples 13 to 17)
As the CNT wire main body, 72 strands made of CNT having a diameter equivalent to a circle of 0.05 mm were prepared, and the CNT wire main body was used in which the 72 strands were twisted at the twist degree shown in Table 1. The same method as in Examples 1 to 5 was carried out to prepare a CNT wire rod in which the CNT wire rod main body was electroplated.

(比較例1)
実施例2と同様の方法で作製した円相当直径が0.1mmであるCNTからなる素線を用いて、銅めっきされていない素線10本と、銅めっきされた素線8本をそれぞれ100T/mで撚り合わせた、CNT線材本体の一部に電界めっき処理が施されたCNT線材を作製した。
(Comparative Example 1)
Using the strands made of CNTs having a circle-equivalent diameter of 0.1 mm produced by the same method as in Example 2, 10 non-copper-plated strands and 8 copper-plated strands are 100T each. A CNT wire rod twisted at / m and subjected to electroplating treatment on a part of the CNT wire rod main body was produced.

(比較例2)
実施例17と同様の方法で作製した円相当直径が0.05mmであるCNTからなる素線を用いて、銅めっきされていない素線26本と、銅めっきされた素線46本を500T/mで撚り合わせた、CNT線材本体の一部に電界めっき処理が施されたCNT線材を作製した。
(Comparative Example 2)
Using the strands made of CNTs having a circle-equivalent diameter of 0.05 mm produced by the same method as in Example 17, 26 non-copper-plated strands and 46 copper-plated strands were 500T / A CNT wire rod twisted at m was produced by subjecting a part of the CNT wire rod main body to electroplating.

(参考例1)
実施例1と同様の方法で得たCNT線材本体を、実施例1と同じめっき液を用いて0.2Aで50分電解めっきすることで、めっき部の厚さが0.6μm、CNT線材の各素線の表面の全長に対するめっき部が形成されている部分の長さの比(被覆割合)が0.7のCNT線材を作製した。
(Reference example 1)
The CNT wire rod body obtained by the same method as in Example 1 was electroplated at 0.2 A for 50 minutes using the same plating solution as in Example 1, so that the thickness of the plated portion was 0.6 μm, and the CNT wire rod had a thickness of 0.6 μm. A CNT wire rod having a ratio (covering ratio) of the length of the portion where the plated portion was formed to the total length of the surface of each strand was 0.7 was produced.

(参考例2)
実施例1と同様の方法で得たCNT線材本体を、実施例1と同じめっき液を用いて1Aで15分電解めっきすることで、めっき部の厚さが1.2μm、被覆割合が0.3のCNT線材を作製した。
(Reference example 2)
The CNT wire rod main body obtained by the same method as in Example 1 was electroplated at 1A for 15 minutes using the same plating solution as in Example 1, so that the thickness of the plated portion was 1.2 μm and the coating ratio was 0. 3 CNT wire rods were produced.

(a)めっきされた素線の割合の測定
(CNT線材の表層部及び内部にめっき部が形成されている素線(CNT束)の確認)
1.0mのCNT撚り線を長手方向に10cm毎に測定した断面写真において、めっき部まで含めたCNT撚り線の断面形状の重心を求め、これをXとした。続いて、各素線に、めっき部を含まない素線の断面形状から、各素線の重心を求めこれをYiとした。続いて、重心Xと重心Yiを通る直線を引き、この直線とCNT撚り線の断面形状の外縁との交点をZiとした。線分X−Yiの長さ及び線分X−Ziの長さを測定し、線分X−Yiの長さを線分X−Ziの長さで除した値が0.7以上である素線を表層部に配された素線とし、それ以外の素線を内部に配された素線とし、各断面において表層部及び内部にめっき部が形成されている素線を確認した。
(A) Measurement of the ratio of plated strands (confirmation of the strands (CNT bundles) in which the plated portion is formed on the surface layer and inside of the CNT wire)
In a cross-sectional photograph of a 1.0 m CNT stranded wire measured every 10 cm in the longitudinal direction, the center of gravity of the cross-sectional shape of the CNT stranded wire including the plated portion was obtained and designated as X. Subsequently, the center of gravity of each wire was obtained from the cross-sectional shape of the wire not including the plated portion for each wire, and this was designated as Yi. Subsequently, a straight line passing through the center of gravity X and the center of gravity Yi was drawn, and the intersection of this straight line with the outer edge of the cross-sectional shape of the CNT stranded wire was defined as Zi. The length of the line segment X-Yi and the length of the line segment X-Zi are measured, and the value obtained by dividing the length of the line segment X-Yi by the length of the line segment X-Zi is 0.7 or more. The wire segment was defined as the wire segment arranged on the surface layer portion, the other strands were defined as the strands arranged inside, and the strands having the surface layer portion and the plated portion formed inside were confirmed in each cross section.

(めっき部が形成された素線(CNT束)の本数の測定)
1.0mのCNT撚り線(CNT線材)を長手方向に10cm毎に垂直な面で切断し、イオンミリングによって断面を研磨した。つづいてSEM観察を行った。CNT線材の各素線の表面の全長を求めこれをAとした。つづいて、当該素線の表面のうち厚さ1μm以上のめっき部が形成されている部分の長さをBとした。B/Aが0.5以上の素線を、めっき部が形成されている素線とし、その本数を求めた。
(Measurement of the number of strands (CNT bundles) on which the plated part is formed)
A 1.0 m CNT stranded wire (CNT wire rod) was cut in a vertical plane every 10 cm in the longitudinal direction, and the cross section was polished by ion milling. Subsequently, SEM observation was performed. The total length of the surface of each wire of the CNT wire was obtained and designated as A. Subsequently, the length of the portion of the surface of the wire on which the plated portion having a thickness of 1 μm or more was formed was defined as B. The strands having a B / A of 0.5 or more were defined as the strands on which the plated portion was formed, and the number thereof was determined.

上記にて求めた厚さ1μm以上のめっき部が形成された素線の本数を、CNT線材全体の素線の総数で除した値の比率を、めっきされた素線の割合(%)とした。 The ratio of the value obtained by dividing the number of strands having a plated portion having a thickness of 1 μm or more obtained above by the total number of strands of the entire CNT wire rod was defined as the ratio of the plated strands (%). ..

(b)はんだとの接合性
CNT撚り線の末端と銅板をはんだにて接続して、はんだ部が形成されたCNT接続構造体を作製し、銅板とCNT撚り線の間の接続抵抗(mΩ)を測定した。接続抵抗が50mΩ以下である場合を接合性が良好であると評価した。
(B) Bondability with Solder The end of the CNT stranded wire and the copper plate are connected with solder to prepare a CNT connection structure in which the solder portion is formed, and the connection resistance (mΩ) between the copper plate and the CNT stranded wire is formed. Was measured. When the connection resistance was 50 mΩ or less, the bondability was evaluated as good.

(c)許容電流
CNT撚り線10cmのサンプルを用い、直流電源(ケースレー社製 2268シリーズ)を用いて、1Aの電流を1分間通電した。CNT撚り線が断線しなかった場合、1分間室温で静置後、電流値を0.1A上げて1分通電した。同様の操作をCNT撚り線が断線する電流値まで繰り返した。断線しないで1分間通電できた最大の電流値をCNT撚り線の断面積で割った値を算出し、許容電流(A/mm)を測定した。許容電流が25A/mm以上である場合を過電流の発生が抑制されていると評価した。
(C) Allowable current A sample of 10 cm of CNT stranded wire was used, and a current of 1 A was applied for 1 minute using a DC power supply (2268 series manufactured by Keithley). When the CNT stranded wire was not broken, the CNT stranded wire was allowed to stand at room temperature for 1 minute, and then the current value was increased by 0.1 A to energize for 1 minute. The same operation was repeated until the current value at which the CNT stranded wire was broken. The maximum current value that could be energized for 1 minute without disconnection was divided by the cross-sectional area of the CNT stranded wire to calculate the allowable current (A / mm 2 ). When the allowable current was 25 A / mm 2 or more, it was evaluated that the occurrence of overcurrent was suppressed.

(d)CNT撚り線の密度
密度勾配管を用いて、上記CNT撚り線の密度を測定した。長手方向の長さが2cmのサンプルを用いた。CNT撚り線の密度は、アルミの密度と同等の2.7g/cm未満である場合を、軽量電線として有効であると評価した。
(D) Density of CNT stranded wire The density of the CNT stranded wire was measured using a density gradient tube. A sample having a length of 2 cm in the longitudinal direction was used. When the density of the CNT stranded wire was less than 2.7 g / cm 3, which is equivalent to the density of aluminum, it was evaluated to be effective as a lightweight electric wire.

上記実施例1〜17及び比較例1〜2の測定、評価結果を表1に示す。 Table 1 shows the measurement and evaluation results of Examples 1 to 17 and Comparative Examples 1 and 2.

Figure 2020181687
Figure 2020181687

表1に示すように、実施例1〜17では、CNT線材の内部及び表層部にめっき部が設けられており、CNT線材において、めっきされた素線の割合がいずれも70%以上であった。また、過電流の発生も抑えられていることから、耐久性に優れていた。また、はんだとの接合性もいずれも良好であり、さらにはCNT撚り線の密度もいずれも2.0以下であるため、軽量電線として有効であった。特に、撚り度が100T/m以上400T/m以下である実施例2〜4、8〜10、14〜16では、いずれも接続抵抗が15mΩ以下であり、優れた接合性を示した。また、撚り本数が多い実施例13〜17では、いずれも高い接合性を示し、特に実施例14は接合性が顕著に優れていた。 As shown in Table 1, in Examples 1 to 17, plated portions were provided inside the CNT wire rod and on the surface layer portion, and the ratio of the plated strands in the CNT wire rod was 70% or more. .. In addition, since the generation of overcurrent is suppressed, the durability is excellent. In addition, the bondability with the solder was good, and the density of the CNT stranded wires was 2.0 or less, so that it was effective as a lightweight electric wire. In particular, in Examples 2 to 4, 8 to 10 and 14 to 16 in which the twist degree was 100 T / m or more and 400 T / m or less, the connection resistance was 15 mΩ or less, and excellent bondability was exhibited. Further, in Examples 13 to 17 having a large number of twists, all showed high bondability, and in particular, Example 14 was remarkably excellent in bondability.

一方、比較例1、2では、いずれもCNT撚り線の密度が2.0以下であるため、軽量電線として有効であったものの、CNT線材において、めっきされた素線の割合が不十分であり、過電流が頻繁に発生し、耐久性に劣っていた。また、接続抵抗が実施例1〜17と比較して格段に大きいことから、CNT撚り線のはんだとの接合性も不良であった。参考例1では、めっき部の厚さが1μm未満であるため、はんだ付けの際にめっきが剥がれてCNTが露出し、CNT線材とはんだとの間に良好な接合性を付与させることができなかった。また、めっきの剥離に伴い、過電流が発生した。参考例2では、めっき部の厚さは1μm以上であるものの、被覆割合が0.5未満であるため、はんだ付けの際にはんだの濡れ性が悪く、参考例1と同様、CNT線材とはんだとの間に良好な接合性を付与させることができなかった。また、めっきされていない素線同士での接触割合が多いため、素線同士の導通の向上が図れず、過電流が発生した。 On the other hand, in Comparative Examples 1 and 2, since the density of the CNT stranded wire was 2.0 or less, it was effective as a lightweight electric wire, but the ratio of the plated strands in the CNT wire was insufficient. , Overcurrent occurred frequently and the durability was inferior. Further, since the connection resistance was remarkably large as compared with Examples 1 to 17, the bondability of the CNT stranded wire with the solder was also poor. In Reference Example 1, since the thickness of the plated portion is less than 1 μm, the plating is peeled off during soldering and the CNTs are exposed, so that good bondability cannot be imparted between the CNT wire and the solder. It was. In addition, an overcurrent was generated due to the peeling of the plating. In Reference Example 2, although the thickness of the plated portion is 1 μm or more, the coating ratio is less than 0.5, so that the wettability of the solder is poor during soldering, and as in Reference Example 1, the CNT wire and the solder are soldered. It was not possible to impart good bondability to and from. In addition, since the contact ratio between the unplated strands is high, the continuity between the strands cannot be improved, and an overcurrent occurs.

1 カーボンナノチューブ線材(CNT線材)
1a 表層部
1b 内部
2 はんだ部
10 カーボンナノチューブ線材接続構造体(CNT線材接続構造体)
11 カーボンナノチューブ束(CNT束)
11a カーボンナノチューブ束(CNT束)
11b カーボンナノチューブ束(CNT束)
12 めっき部
20 被接続部材
1 Carbon nanotube wire (CNT wire)
1a Surface layer 1b Inside 2 Solder part 10 Carbon nanotube wire connection structure (CNT wire connection structure)
11 Carbon nanotube bundle (CNT bundle)
11a Carbon nanotube bundle (CNT bundle)
11b Carbon nanotube bundle (CNT bundle)
12 Plating part 20 Connected member

Claims (11)

複数のカーボンナノチューブ束を撚り合わせて構成されるカーボンナノチューブ線材であって、
前記カーボンナノチューブ線材の長手方向に沿って設けられ、前記カーボンナノチューブ線材の内部及び表層部に配されためっき部を備え、
前記カーボンナノチューブ線材の長手方向に垂直な方向の断面において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、前記複数のカーボンナノチューブ束の総数で除した値の比率が、70%以上であり、
前記複数のカーボンナノチューブ束の撚り度が10〜3000T/mであることを特徴とするカーボンナノチューブ線材。
It is a carbon nanotube wire rod composed by twisting a plurality of carbon nanotube bundles.
A plated portion provided along the longitudinal direction of the carbon nanotube wire rod and arranged inside and on the surface layer portion of the carbon nanotube wire rod is provided.
In the cross section in the direction perpendicular to the longitudinal direction of the carbon nanotube wire rod, the ratio of the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle to the total surface length of the carbon nanotube bundle is 0. The ratio of the value obtained by dividing the number of carbon nanotube bundles of 5 or more by the total number of the plurality of carbon nanotube bundles is 70% or more.
A carbon nanotube wire rod having a twist degree of 10 to 3000 T / m for the plurality of carbon nanotube bundles.
前記めっき部が、前記複数のカーボンナノチューブ束のうちの隣接する複数のカーボンナノチューブ束間に3次元的に形成されていることを特徴とする請求項1に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to claim 1, wherein the plated portion is three-dimensionally formed between a plurality of adjacent carbon nanotube bundles among the plurality of carbon nanotube bundles. 前記複数のカーボンナノチューブ束の撚り度が、50〜1000T/mであることを特徴とする、請求項1又は2に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to claim 1 or 2, wherein the twist degree of the plurality of carbon nanotube bundles is 50 to 1000 T / m. 前記複数のカーボンナノチューブ束の撚り度が、100〜400T/mであることを特徴とする、請求項3に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to claim 3, wherein the twist degree of the plurality of carbon nanotube bundles is 100 to 400 T / m. 前記複数のカーボンナノチューブ束の撚り本数が10〜1000本であることを特徴とする、請求項1〜4のいずれか1項に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to any one of claims 1 to 4, wherein the number of twists of the plurality of carbon nanotube bundles is 10 to 1000. 前記複数のカーボンナノチューブ束の撚り本数が50〜300本であることを特徴とする、請求項5に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to claim 5, wherein the number of twists of the plurality of carbon nanotube bundles is 50 to 300. 前記めっき部は、銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択される金属或いはこれらの金属の少なくとも1種を含む合金で形成されることを特徴とする、請求項1〜6のいずれか1項に記載のカーボンナノチューブ線材。 The plated portion is made of copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), iron (Fe), chromium (Cr) and nickel (Ni). The carbon nanotube wire rod according to any one of claims 1 to 6, wherein the carbon nanotube wire rod is formed of a metal selected from the above group or an alloy containing at least one of these metals. 異種元素がドープされていることを特徴とする、請求項1〜7のいずれか1項に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to any one of claims 1 to 7, wherein the carbon nanotube wire rod is doped with a different element. 前記カーボンナノチューブ線材を構成するカーボンナノチューブが、2層又は3層の層構造を有することを特徴とする、請求項1〜8のいずれか1項に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to any one of claims 1 to 8, wherein the carbon nanotubes constituting the carbon nanotube wire rod have a two-layer or three-layer structure. 複数のカーボンナノチューブ束を10〜3000T/mの撚り度で撚り合わせて構成されるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続されるはんだ部とを備えるカーボンナノチューブ線材接続構造体であって、
前記カーボンナノチューブ線材は、該カーボンナノチューブ線材の長手方向に沿って設けられ、前記カーボンナノチューブ線材の内部及び表層部に配されためっき部を備え、
前記カーボンナノチューブ線材の長手方向に垂直な方向の断面において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、前記複数のカーボンナノチューブ束の総数で除した値の比率が、70%以上であることを特徴とするカーボンナノチューブ線材接続構造体。
A carbon nanotube wire connecting structure including a carbon nanotube wire formed by twisting a plurality of carbon nanotube bundles at a twist degree of 10 to 3000 T / m and a solder portion connected to the carbon nanotube wire.
The carbon nanotube wire rod is provided along the longitudinal direction of the carbon nanotube wire rod, and includes a plated portion arranged inside and on the surface layer portion of the carbon nanotube wire rod.
In the cross section in the direction perpendicular to the longitudinal direction of the carbon nanotube wire rod, the ratio of the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle to the total surface length of the carbon nanotube bundle is 0. A carbon nanotube wire rod connecting structure, wherein the ratio of the value obtained by dividing the number of carbon nanotube bundles of 5 or more by the total number of the plurality of carbon nanotube bundles is 70% or more.
複数のカーボンナノチューブ束で構成されるカーボンナノチューブ線材本体に無電界めっき処理を施して下地部を形成する工程と、
前記無電界めっき処理を施したカーボンナノチューブ線材本体に電界めっき処理を施して、前記カーボンナノチューブ線材本体の長手方向に沿って、該カーボンナノチューブ線材本体の内部及び表層部にめっき部を形成する工程と、
前記電界めっきを施す工程の後に、前記複数のカーボンナノチューブ束を10〜3000T/mの撚り度で撚り合わせる工程と、
を有することを特徴とする、カーボンナノチューブ線材の製造方法。
A process of forming a base portion by subjecting a carbon nanotube wire rod body composed of a plurality of carbon nanotube bundles to a fieldless plating process.
A step of subjecting the carbon nanotube wire rod main body subjected to the electric field plating treatment to an electric field plating treatment to form a plated portion inside and on the surface layer portion of the carbon nanotube wire rod main body along the longitudinal direction of the carbon nanotube wire rod main body. ,
After the step of applying the electric field plating, a step of twisting the plurality of carbon nanotube bundles at a twist degree of 10 to 3000 T / m and a step of twisting the plurality of carbon nanotube bundles.
A method for producing a carbon nanotube wire rod, which comprises.
JP2019083413A 2019-04-24 2019-04-24 Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material Pending JP2020181687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019083413A JP2020181687A (en) 2019-04-24 2019-04-24 Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019083413A JP2020181687A (en) 2019-04-24 2019-04-24 Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material

Publications (1)

Publication Number Publication Date
JP2020181687A true JP2020181687A (en) 2020-11-05

Family

ID=73024860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019083413A Pending JP2020181687A (en) 2019-04-24 2019-04-24 Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material

Country Status (1)

Country Link
JP (1) JP2020181687A (en)

Similar Documents

Publication Publication Date Title
JP6928526B2 (en) Manufacturing method of carbon nanotube wire rod, carbon nanotube wire rod connecting structure and carbon nanotube wire rod
EP2896051B1 (en) Bulk carbon nanotube and metallic composites and method of fabricating
US9570208B2 (en) Carbon nanotube composite wire
TWI525923B (en) Electrical contact component
US20140314949A1 (en) Carbon nanotube conductor with enhanced electrical conductivity
US20090194313A1 (en) Coaxial cable
JP2018170267A (en) Electrically conductive carbon nanotube wire having metallic coating and methods of forming the same
JP2017174689A (en) Carbon nanotube wire and carbon nanotube wire-connected structure
JP2007042355A (en) Composite coated copper wire and composite coated enamel copper wire
JP2012216526A (en) Metal-coated carbon fiber wire
JP6738627B2 (en) Carbon nanotube wire and carbon nanotube wire connecting structure
JP7097165B2 (en) Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod
CN109016778B (en) Method for preparing porous metal composite structure
JP6767292B2 (en) Carbon nanotube wire rod and carbon nanotube wire rod connection structure
JP2020181687A (en) Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material
JP2020181686A (en) Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material
JP6967854B2 (en) Carbon nanotube aggregates and carbon nanotube wires
RU178132U1 (en) EXTERNAL CONDUCTOR FOR COAXIAL TYPE ELECTRIC COMMUNICATION CABLES
JP7254708B2 (en) Carbon nanotube composite wire, carbon nanotube coated wire and wire harness
JP6719244B2 (en) Carbon nanotube wire connecting method and carbon nanotube wire connecting structure
JP7214644B2 (en) Carbon nanotube composite wires, carbon nanotube coated wires, wire harnesses, wiring for robots and overhead wires for trains
CN111041542B (en) Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof
JP7348714B2 (en) Carbon nanotube wire, carbon nanotube-coated electric wire, method for producing carbon nanotube wire, and method for processing carbon nanotube-coated electric wire
JP7370917B2 (en) connection structure
CN109019563B (en) Porous metal composite structure

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220209